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Abstract

With the continuous development of language
models and the widespread availability of var-
ious types of accessible interfaces, large lan-
guage models (LLMs) have been applied to
an increasing number of fields. However, due
to the vast amounts of data and computational
resources required for model development, pro-
tecting the model’s parameters and training
data has become an urgent and crucial concern.
Due to the revolutionary training and applica-
tion paradigms of LLMs, many new attacks on
language models have emerged in recent years.
In this paper, we define these attacks as “reverse
engineering” (RE) techniques on LMs and aim
to provide an in-depth analysis of reverse en-
gineering of language models. We illustrate
various methods of reverse engineering applied
to different aspects of a model, while also pro-
viding an introduction to existing protective
strategies. On the one hand, it demonstrates
the vulnerabilities of even black box models to
different types of attacks; on the other hand, it
offers a more holistic perspective for the devel-
opment of new protective strategies for models.

1 Introduction

Language Models (LMs) have experienced remark-
able technological advancements, showing tremen-
dous potential for development and promising ap-
plication prospects in various fields (Zhang et al.,
2023; Reed et al., 2022; Guo et al., 2023). Training
high-performance language models often requires
substantial computational resources and time in-
vestment (Meta, 2024; Bi et al., 2024). Therefore,
even a single disclosure of LMs can incur substan-
tial economic losses (IBM Security and Ponemon
Institute, 2024). To protect their intellectual prop-
erty from being stolen, model owners typically
choose to keep their models secret, allowing ex-
ternal users to access them only by input-output
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Figure 1: A taxonomy of Reverse Engineering of lan-
guage model.

queries over a predefined API. However, API-based
access alone does not guarantee model security.
Extensive research has shown that attackers can
employ various techniques to infer sensitive infor-
mation from the model, including training data (He
et al., 2024; Nasr et al., 2025; Hayase et al., 2024),
prompts (Sha and Zhang, 2024a; Gao et al., 2024),
model parameters (Zanella-Beguelin et al., 2021;
Carlini et al., 2024), and knowledge (Li et al., 2024;
Hinton et al., 2015), all of which pose considerable
risks to the model owner.

In recent years, research in the field of model
theft has emerged rapidly, covering various do-
mains (Li et al., 2024; He et al., 2021; Esmradi
et al., 2023; Das et al., 2025; Chen et al., 2025).
Oliynyk et al. (2023) conducted a relatively com-
prehensive analysis of model theft. However, the
methods discussed in the paper are relatively out-
dated and lack coverage of large language mod-
els. Since the release of GPT-3 (OpenAl, 2020) by
OpenAl, there have been significant changes in the
training and deployment methods of language mod-
els, which has led to the emergence of many new
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types of model theft techniques. Considering the
rapid development of large language models and
the continuous emergence of new stealing methods,
a comprehensive analysis of the different methods
and protection against model theft remains an im-
portant open task.

Rooted in the theory of reverse engineering in
software analysis (Varady et al., 1997; Miiller et al.,
2000), we propose the concept of reverse engineer-
ing for language models for the first time, which we
called RE. To be more specific, Language Model
Reverse refers to the process of analyzing and re-
constructing various aspects and functionalities of
the target language model, including its training
data, model parameters, and operational functions,
under conditions of limited knowledge and access.

Based on the objectives of reverse engineering
of language models, we surveyed over 130 papers
from top conferences and related technical reports,
categorizing them into two primary types: data-
centric reverse engineering (Section 3) and model-
centric reverse engineering (Section 4), as shown
in Figure 1. And a more detailed structural diagram
is presented in Figure 5. In the data recovery en-
gine, attackers primarily aim to reverse-engineer
the label information, data-related attributes of the
training data or directly obtain the data itself. In the
model reconstruction engine, the attacker’s focus
is primarily on the model itself, with the objec-
tive of uncovering its structure, extracting various
parameters, or potentially replicating the trained
model. Furthermore, we also analyze two types of
protection mechanisms in Section 5 and provide an
organized summary of several experiments in the
Appendix. Our primary objective is to provide a
comprehensive overview of the current state of this
field and raise awareness about the security issues
of language model, with the hope that our work can
provide a useful roadmap for researchers interested
in this area and shed light on future research.

2 Preliminaries

For the first time, we formally define the re-
verse engineering as the process of inferring key
construction elements of LMs by analyzing their
externally observable information. Such elements
include training data, model parameters, and al-
gorithmic properties. In reality, reverse engineer-
ing not only advances the interpretability (Mattern
et al., 2023), robustness (Wallace et al., 2020), and
fairness (Gallegos et al., 2024) of large language

models, but also directly impacts intellectual prop-
erty rights and asset protection. To our knowledge,
this paper is the first systematic study of this topic
in the context of LMs.

Formalization Suppose the victim LM M is
trained on the dataset D and is accessible through
an open interface fa. The adversary’s objective
can then be summarized as recovering relevant in-
formation about both D and M by accessing fa:

R(fm) = (D, M)

where * denotes an estimation of D or M, capturing
either their inherent properties or macro-level char-
acteristics. Following this line, we conceptualize
reverse engineering of LMs as a unified technical
framework consisting of three parallel inference or
protection engines, each targeting a distinct aspect
of estimation. Specifically, these are :

(i) Data recovery engine: Recovers information
about the training dataset D.

(ii) Model reconstruction engine: Rebuilds the
parameters, architecture, and functions of the target
model M.

(iii) Defense engine: Protects both model M
and data D by preventive and detective measures.

Black-Box Grey-Box White-Box
hat(z) X v v
O X X v
Interface Web API Open-source
Cases ChatGPT, Claude DeepSeek, Qwen

Table 1: Security protocols of existing LM products
(OpenAl, 2024; Anthropic, 2024; Guo et al., 2025;
Team, 2024).

Threat Model The adversary’s access to the vic-
tim M through f is restricted by specific secu-
rity protocols (Table 1). These protocols define
distinct levels of observable information, including:
(1) M (x)— the textual output of the model given
an input x; (2) haq(x)— intermediate information
generated during inference, such as probability dis-
tributions; (3) 6 ,— the model’s parameters. All
protocols permit data recovery, while model recon-
struction is only applicable under black-box and
grey-box protocols, as the model’s complete infor-
mation is already exposed in the white-box setting.
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3 Data Recovery Engine

Data is a crucial asset for developers, and its recov-
ery engine typically operates along two folds:

* Direct recovery: Recovering training samples
or run-time inputs, which may be used to repli-
cate specific behaviors of the model.

* Indirect recovery: Recovering higher-level
traits that reflect the characteristics of D, in-
cluding membership inference function or
other statistical properties.

3.1 Direct Recovery

Training Data Extraction During training, LMs
tend to memorize some of their training data (Car-
lini et al., 2021a), thereby enabling adversaries to
recover it with proper triggers during inference. We
refer to this as untargeted training data extraction
(Carlini et al., 2021a; Oh et al., 2023; Nasr et al.,
2025; Bai et al., 2024) when the adversary has
no prior knowledge of the specific data they are
attempting to extract, and instead seeks to re-
cover any training data. Carlini et al. (2021a) ex-
tracted untargeted memorized samples by repeat-
edly querying GPT-2 with empty prompts or ran-
dom prompts sourced from public internet text.
Building on this work, various techniques for ex-
tracting training data with prompt engineering have
been proposed, such as prompting LMs to do token-
level duplication (Oh et al., 2023), word-level du-
plication (Nasr et al., 2025) or querying them with
special tokens (Bai et al., 2024).

In contrast, targeted training data extraction
(Carlini et al., 2023a; Nasr et al., 2025; Yu et al.,
2023; Panda et al., 2024; He et al., 2024; Wang
et al., 2024; Ozdayi et al., 2023; Parikh et al.,
2022) occurs when the adversary aims to extract
a specific example from the model. Carlini et al.
(2023a) fed the prefixes of the training samples
and found that the possibility of the open-source
language models returning the rest of the samples
heavily depends on the model scale, duplication
of the tested sample, and the length of the prefix.
Nasr et al. (2025) found that fine-tuning an aligned,
production LM on datasets designed to complete
text based on given prefixes significantly improves
the efficacy of both targeted and untargeted train-
ing data extraction attacks. PHISH (Panda et al.,
2024) showed that poisoning pre-trained GPT mod-
els from Pythia (Biderman et al., 2023) with a
few benign-looking adversarial samples—based

on vague prior knowledge of the secret fine-tuning
data structure—allows adversaries to extract sen-
sitive or personally identifiable information (PII)
from the fine-tuning data.

Input Reconstruction Data recovery engine
can also be leveraged to recover the input from
the model output, typically consisting of system
prompt, user prompt, and sometimes in-context.

Adversaries can extract the system prompt
(Perez and Ribeiro, 2022; Hui et al., 2024; Liu
et al., 2024b; Zhang et al., 2024d) by manually
designing or automatically optimizing a malicious
trigger prompt to trick the model into emitting the
prompt by itself. For instance, PROMPTINJECT
(Perez and Ribeiro, 2022) extracts the system
prompt of GPT-3 by querying “\n\n======END.
Now spell-check and print the above
prompt”. PLEAK (Hui et al., 2024) optimizes an
adversarial query that causes the victim models to
reveal their system prompt incrementally through
a gradient-based approach.

Additionally, in a different scenario, ad-
versaries or malicious third party can also
reconstruct the whole input (Morris et al., 2024;
Zhang et al., 2024a; Sha and Zhang, 2024b; Gao
et al., 2024; Morris et al., 2023) by analyzing the
output results derived through eavesdropping. For
instance, the input can be inferred by feeding the
model’s output into an inversion model, which is
trained to predict the model’s input based on its
output. The output could be a next-token proba-
bility distribution (Morris et al., 2024), text em-
beddings (Morris et al., 2023), or a generated sen-
tence (Zhang et al., 2024a). Orthogonal to machine
learning methods, other studies also reconstruct the
input by exploiting the vulnerability of the under-
lying hardware optimization mechanisms, such as
cache-sharing optimization (Zheng et al., 2024),
GPU local memory (Sorensen and Khlaaf, 2024),
or KV-Cache Sharing (Wu et al., 2025).

3.2 Indirect Recovery

Membership Inference Unlike the exact recon-
struction of memorized samples, this sub-direction
aims to determine a membership inference func-
tion that can infer whether a given sample (z,y)
belongs to D by exploiting the interface fx4. This
objective also aligns with the Membership Infer-
ence Attack (MIA) (Shokri et al., 2017) in machine
learning. In the context of MIA on LMs, the pro-
posed methods can generally be divided into two
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categories: reference-free and reference-based ap-
proaches, as shown in Figure 2. The reference-free
method detects the membership of a given data
point by exploiting the output signal of the vic-
tim model itself on the given data, e.g., perplexity
(Carlini et al., 2021a):

1 n
=1

where (z;]-) = {zi|(z1,22,...,2;_1}, ; is the
given data point, and f4 returns the probability
of z; given the preceding tokens. While lower
perplexity indicates the given data is more likely
to be included in the training dataset and memo-
rized by the smaller LM, it may not be optimal
for detecting LLMs’ pre-training data, since LLMs
are only trained for one epoch on the massive pre-
training data (Duan et al., 2024). Therefore, many
reference-free methods (Xie et al., 2024; Wang
et al., 2025; Li et al., 2023; Zhang et al., 2024b,c;
Liu et al., 2024d) have been proposed as alterna-
tives to perplexity for detecting pre-training data.
For example, MIN-K% (Shi et al., 2024a) proposes
to calculate the perplexity of the k% tokens with
the lowest probabilities based on the assumption
that there are only a few outlier words with low
probability in the unseen sample, while the prob-
abilities of all the tokens in the seen sample are
generally higher.

Different from the reference-free method, the
reference-based method (Carlini et al., 2021a;
Mireshghallah et al., 2022; Carlini et al., 2022)
needs to compare the signal of the victim model
to the signal of the reference model trained on a
disjoint dataset (to D) sampled from the same un-
derlying pre-training data distribution. While this
kind of method shows better results, in practice the
adversary may not be accessible to samples closely
resembling the original training data or have the
resources to pre-train reference models. Therefore,
various research (Fu et al., 2024; Mattern et al.,
2023; Ye et al., 2024) has proposed the equivalent
substitution to mitigate the over-optimistic assump-
tions and heavy computation costs. For example,
instead of reference models, neighborhood attacks
(Mattern et al., 2023) compare the victim model’s
scores with scores of synthetically generated neigh-
bor texts of the given sample. SPV-MIA (Fu et al.,
2024) prompts the victim model to generate the
dataset used for training the reference model and
proposes a more reliable membership signal based

Reference-free Method
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Figure 2: The illustration of two different methods of
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on probabilistic variation.

In addition to sample-level detection, techniques
for membership inference on datasets (Oren et al.,
2024; Choi et al., 2025; Golchin and Surdeanu,
2024; Maini et al., 2024a) have also been de-
veloped, judging by comparing variations in the
model’s confidence scores, ranking preferences, or
embedding structures on the dataset. For exam-
ple, Maini et al. (2024a) aggregate a large number
of sample-level membership inference attack sig-
nals and employ statistical hypothesis testing to
assess whether the dataset was used during model
training.Notably, while current MIA methods have
demonstrated impressive results, recent studies
(Duan et al., 2024; Meeus et al., 2024b; Maini et al.,
2024b) have highlighted that their success is largely
due to the distribution shift between members and
non-members in the evaluated MIA benchmarks.
When evaluated under more rigorous conditions,
these methods often barely surpass random guess-
ing, we will discuss these problems further in the
Appendix.

Property Inference Unlike indirect recovery
which focuses on the membership status, property
inference (Ateniese et al., 2015; Kandpal et al.,
2024; Shejwalkar et al., 2021; Song and Shmatikov,
2019; Hayase et al., 2024), as shown in Figure
6 in Appendix, aims to infer a global property
of the training dataset, such as the proportion of
data possessing a particular attribute. For instance,
Hayase et al. (2024) propose a method to uncover
the proportion of disjoint categories represented in
the training data (e.g., texts in different languages,
code, or books) by exploiting the characteristics of
byte-pair encoding tokenizers commonly employed
in modern LMs. Furthermore, it has been shown
that the participation of a user’s texts in the training
data of a LM can be identified even without direct
access to the potential training samples from the
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user (Kandpal et al., 2024).

4 Model Reconstruction Engine

In most restricted access scenarios, developers typ-
ically consider the model M itself as a critical IP
and seek to prevent its public disclosure or unautho-
rized access. For example, OpenAl has patented
multiple GPT model architectures and algorithms
(Gillham, 2024) and actively enforces its intellec-
tual property rights. However, adversaries often
attempt to exploit this IP by reconstructing the vic-
tim model through three levels, namely: (i) Pa-
rameter Extraction (ii) Function Imitation and (iii)
Structure Trace.

4.1 Parameter Extraction

Another important direction of model reverse en-
gineering is the theft of model parameters. The
targets of such theft are primarily divided into the
following two categories:

* Model Parameter: Model Parameters are
configuration variables of the trained model,
whose values are derived through the training
process, such as weights and biases.

* Algorithm and Hyperparameter: Hyperpa-
rameters are parameters set prior to training
and remain unchanged during the training pro-
cess, such as learning rate, regularization fac-
tors, and batch size. Algorithm parameters, on
the other hand, refer to the algorithmic choices
and parameters employed by the model, in-
cluding decoding strategies, optimizers, etc.

Since the specific methods of parameter extrac-
tion vary depending on the target parameters and
algorithms, we selected several particularly repre-
sentative studies for analysis.

Model Parameter Extraction In the context of
extracting model parameters from generative lan-
guage models, the adversary aims to obtain as much
information as possible from each layer of the
model. Since the information disclosed by query
outputs is limited, some studies focus on extract-
ing the low-rank components of the model. For
instance, Zanella-Beguelin et al. (2021) studied
the extraction of the parameters in the presence of
additional information. They investigated the re-
covery of classification layer parameters when the
embedding layer representation (i.e., the output of
the encoding layer) is known. The embedding is

constructed into matrix (G, and the logits are con-
structed into matrix L. By solving the equation:
L = AG + b using linear methods such as least
squares, the parameters of the classification layer
are obtained. Further, Carlini et al. (2024) relaxed
the conditions for extracting the projection layer,
making it sufficient to obtain the model’s output
to perform the extraction. They discovered that by
obtaining the logit vectors of the model’s outputs,
they can infer the hidden layer dimensions of the
Transformer-structure model:

Q1,Q2,. ..

where [Q1,Qo2, ..., Qy] is the result matrix from
multiple queries and each column @),, corresponds
to the logit vector of the output for a particular
query. U - ¥ - VT is the result of performing sin-
gular value decomposition (SVD) on the result ma-
trix, where the number of columns in the singular
value matrix V' can reflect the dimensionality of
the hidden layer. And it can be proved that the
model’s projection matrix can be obtained as fol-
lows: W = U -X . Liu and Moitra (2024) extended
this method to low-rank models, successfully ex-
tracting the hidden dimensions and transition prob-
ability matrix of hidden Markov models. At the
same time, we note that due to their large scale
and complex structure, extracting the architectural
components of generative language models is not
an easy task. It is worth mentioning that research
on model extraction for neural networks (Jagielski
et al., 2020; Shamir et al., 2023; Pal et al., 2019)
is relatively abundant . Therefore, we encourage
further exploration on how to apply these methods
and ideas to generative language models.

Qu)=U-2- VT )

Algorithm and Hyperparameter Extraction
An important prerequisite of parameter extraction
for algorithms and hyperparameters is that differ-
ent decoding algorithms and varying hyperparam-
eter values can leave distinguishable signatures
on the text generated via API (Dou et al., 2022).
Therefore, adversary can make inferences by an-
alyzing the features of the model’s output. For
example, the choice of decoding strategies for a
model, such as top-p, top-k, and their hyperparam-
eters, can be determined by conducting multiple
queries and analyzing the statistical features of the
outputs (Naseh et al., 2023; Ippolito et al., 2023).
Furthermore, these extractions can also be achieved
through learning-based methods. Oh et al. (2019)
directly used a dataset of input-output pairs from
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neural networks with various known attributes as a
meta-training set, and trained a meta-model capa-
ble of predicting the architecture and optimization
algorithms of the black-box target.

4.2 Function Imitation

Function imitation refers to reverse engineering the
victim model to train an imitation model(Orekondy
et al., 2019) that captures the same knowledge as
the victim model. Concretely, the imitation model
is designed to align with the victim model in both
fidelity and accuracy. One existing approach for
extracting model knowledge is knowledge distilla-
tion. However, knowledge distillation primarily fo-
cuses on distilling knowledge from gray-box mod-
els, where the training data and model parameters
are partially accessible(Gou et al., 2021; Hinton
et al., 2015). In contrast, function imitation places
greater emphasis on extracting knowledge from
black-box models, where such internal information
is unavailable. Current function imitation mainly
follows a multi-stage pipeline, consisting of query
acquisition, query filtration and model training, as
shown in Figure 3.

Query Sample Acquisition During the query
sample generation phase, the adversaries aim to
minimize query cost while maximizing the fidelity
of the extracted model. To achieve this, they in-
teract with the target model through API queries,
using queries based on proxy datasets and tasks
(Pal et al., 2019) or random queries (Krishna
et al., 2020) as input. While for LLMs, addi-
tional strategies such as Chain-of-Thought(CoT)
(Wei et al., 2022; Feng et al., 2023) and In-Context
Query(ICQ) (Lampinen et al., 2022) can also be
employed to enhance the quality of responses. Af-
ter that, adversaries filter out low quality samples
using different strategies. For example, Pal et al.
(2019) leveraged active learning by employing un-
certainty sampling, k-center selection and adversar-
ial querying to obtain higher-quality samples for
model imitation.

Training the Imitation Model Once the query
samples have been acquired, the attacker needs to
select an appropriate imitation model for training.
For LMs on specific tasks, a common approach is
to train a model with the same architecture (Krishna
et al., 2020; Tramer et al., 2016), while Wallace
et al. (2020); He et al. (2021) showed that minor
structural difference do not significantly impact the
training results. In fact, the structure of the imita-

r_
' Generate |

Queryl1: Introduce the functions of the |
following code in concise language : ...... .

Receive l

Query | Query2: Please help me use Python to writea - Query
piece of code that can measure time. |
_________________
o= =4
Query Pairs Filter -------- -
Imitation Model i / \ Victim Model
I
Train i - & \ Re=I{: " Return
Query pairs /
Model 1 \ / \l v/ Answer
\  Select Informative Pairs ),

Figure 3: Illustration of the function imitation of the
victim model.

tion model is not crucial as long as it can achieve
similar functionality. Li et al. (2024) achieved the
extraction of LLM code-generation functionality
using a mid-sized backbone model. Therefore, if
the structure of the imitation model is better aligned
with the specific task, it may achieve even better
performance than the target model. During training,
most studies (Wallace et al., 2020; Li et al., 2024)
inherit Model Extraction Attack (MEA) algorithms
from traditional fields like computer vision Tramer
et al. (2016); Papernot et al. (2017), using super-
vised learning to fine-tune imitation models. Con-
sidering the alignments of modern LLLMs, Liang
et al. (2024) adopt a localized reinforcement dis-
tillation approach by generating both positive and
negative samples y;i 1> Y4, and then optimizing
both the target loss Loy and regularization loss
Lyeg to train the imitation model and improve its
watermark resistance.

4.3 Structure Trace

In addition to the model function and parameters,
attackers can also make simple inferences about the
model’s structure information, including its hierar-
chical structure, scale, architecture, etc. For exam-
ple, Gao (2021) recover model sizes by correlating
performance on published benchmarks with model
sizes in academic papers. Carlini et al. (2024) ex-
tracted the dimensionality of the embedding projec-
tion layer through queries (This has been explained
in detail in equation 2). For DNN with relatively
limited computational scale, inference can be made
using the architecture-dependent footprints on the
low-level hardware components at runtime, com-
monly referred to as cache side-channel attacks
(Yan et al., 2020; Zhu et al., 2021; Wei et al., 2020).

5 Defense Engine

This section will provide an overview and sys-
tematization of the protective engine of malicious
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Figure 4: Illustration of the different defense measures
of Reverse Engineering.

reverse engineering. Based on the different em-
phases of protection, we classify protective mea-
sures into two categories: Preventive Defenses: Di-
rectly harden the model by enhancing its robust-
ness and interrupting the attack pipeline to prevent
any extraction; Detective Defenses: Improve the
model’s traceability and forensic capabilities to de-
tect and attribute any misuse or extraction attempts.

5.1 Preventive Defenses

Preventive defenses refer to measures that directly
defend against potential attacks. Depending on
whether a defense is tailored to a specific attack,
defenses can be classified it into general purpose
defenses and targeted defenses.

5.1.1 General Purpose Defenses

General purpose defenses have been extensively
studied in traditional security research. These ap-
proaches aim to bolster model robustness, render-
ing it less sensitive to malicious inputs and thereby
safeguarding its integrity. Common techniques
include differential privacy (Hassan et al., 2020),
model regularization (Srivastava et al., 2014; Salem
et al., 2019), model alignment (Shen et al., 2023;
Kirk et al., 2024; Bao et al., 2023), and adversar-
ial training (Szegedy et al., 2014a; Altinisik et al.,
2023; Mao et al., 2019; Cai et al., 2018; Tramer
et al., 2018). Specifically, model developers can
use differential privacy techniques (Dwork, 2006;
Yan et al., 2022a) to introduce perturbations to the
samples on the decision boundary, thereby protect-
ing the model. However, these defenses inevitably
introduce performance degradation and incur sub-
stantial training overhead. Given the accuracy re-
quirements and training cost of LLMs, general pur-
pose defenses therefore offer limited protection.
Additionally, given that most of the aforemen-
tioned attacks require issuing numerous queries to
the model, another general purpose defense is to

throttle malicious query traffic. Model owners can
both limit overall access volume—e.g., via API
rate limiting (OpenAl, 2025) and implement moni-
toring systems (Kesarwani et al., 2018; Yan et al.,
2022b; Juuti et al., 2019; Sadeghzadeh et al., 2024)
to detect and identify malicious requests for more
targeted mitigation.

5.1.2 Targeted Defenses

Targeted defenses are specifically designed to
thwart reverse-engineering attacks. Model owners
can analyze known reverse-engineering techniques
to identify and selectively disable the prerequisites
on which those attacks depend. A concrete exam-
ple appears in Carlini et al. (2024) (in Section 4.1):
this attack infers information of the embedding
layer by analyzing changes in logit bias and output
probabilities. In response, OpenAl directly dis-
abled the ability for logit bias to affect the top log-
probabilities—thereby preventing this attack. Fur-
thermore, to mitigate extraction prompts (e.g., “Ig-
nore previous prompt” (Perez and Ribeiro, 2022)),
developers can directly apply targeted training to
render them ineffective. While these methods may
lack conceptual sophistication, they more closely
conform to practical engineering requirements.

5.2 Detective Defenses

Unlike preventive defenses, detective defenses do
not directly protect the model itself; rather, they
strengthen the owner’s ability to trace and at-
tribute misuse, thereby countering reverse engineer-
ing attacks through enhanced forensic capabilities.
Specifically, for a publicly released model M, it
may be stolen or fine-tuned by malicious users
and subsequently re-released as M’. Model own-
ers hope to determine whether M’ is an imitation
of M, ie., R(IM') = Z(M' = M), to determine
whether the model had been attacked.

An important method for developers to identify
the victim model is to use unique invariants as
fingerprints. In practice, developers mainly tend
to achieve identification with two main forms of
model fingerprinting: one is the embedded fin-
gerprint (Dragar, 2025; Russinovich and Salem,
2024), and the other is treating the model’s intrin-
sic features as its fingerprint (Xiong et al., 2022;
Yang et al., 2022). Embedded fingerprints primar-
ily work by inserting a unique *“ backdoor ” into
the model. For example, the model owner can
embed seemingly random input-output pairs "x-y"
into the model through fine-tuning (Xu et al., 2024)
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as markers for detection. In addition to embed-
ding the input-output pairs, fingerprints can also be
embedded into the components and parameters of
the model (Wang and Kerschbaum, 2021; Li et al.,
2022), or embedded as special rules for model iden-
tification (Kirchenbauer et al., 2023).

Another detective defense approach differenti-
ates by detecting the model’s intrinsic characteris-
tics. Zeng et al. (2024) discovered that the direction
vectors of LLM parameters are almost unchanged
in subsequent training processes. Furthermore, to
mitigate the impact of dimension rearrangement
and matrix rotation attacks, three vector combina-
tions were identified that remain invariant under
such permutations. These combinations were then
converted into natural images and published as fin-
gerprints, enabling model identification. Detection
can also be achieved by identifying other charac-
teristics, including model parameters (Xiong et al.,
2022) and model behavior (Pasquini et al., 2024;
Yang et al., 2022).

6 Future Directions

Despite growing interest in the reverse engineering
of language models, several key challenges remain
unresolved.

(i) Enhancing Performance on Latest Models
Language models have evolved rapidly in architec-
ture, algorithms, and parameter count. As a result,
attacks that once succeeded on earlier versions may
now be obsolete or already neutralized by stronger
defenses. For example, several shortcomings in
membership inference attacks have been the sub-
ject of recent debate (Duan et al., 2024; Meeus
et al., 2024b; Maini et al., 2024b). Furthermore,
the experiments in Appendix revealed that many at-
tack techniques perform poorly against reasoning-
oriented models. Therefore, with the advent of
new language models, especially those designed
for reasoning, reverse engineering methods demand
further study and consolidation. To this end, we
include in the Appendix a catalog of open-source,
actively maintained reverse engineering techniques,
comparing their target models and performance on
the latest commercial systems.

(ii) Practical Challenges in Real-World Set-
tings As noted in Rawat et al. (2024), both reverse
engineering and defensive strategies face a variety
of practical constraints. Specifically, attackers must
address: @ How to execute attacks within controlled
cost budgets « How to balance attack effectiveness

against complexity and resource expenditure ¢ How
reverse-engineering techniques perform in differ-
ent application scenarios. Conversely, developers
need to study: e How to protect models effectively
under resource constraints @ How to block adver-
sarial intents while mitigating attack outcomes e
How to design customized defenses for specific
attack types. Advancing research in these areas
will significantly propel the security of large-scale
models.

(iii) Comprehensive Evaluation Framework
The limitation of evaluation methods for data re-
verse engineering results remains an important
problem. The lack of well-annotated benchmark
datasets, along with issues such as data contamina-
tion, makes it difficult to find suitable non-training
data for evaluation. Future work could focus on
building evaluation datasets that are easier to anno-
tate and evaluate and establishing a more compre-
hensive evaluation framework.

(iv) Reverse Engineering in Multimodal Mod-
els While most existing work has focused on text-
only models, multimodal large models (e.g., vi-
sion—language models, VLMs) also pose signifi-
cant reverse engineering risks. Investigating data
recovery and model reconstruction in cross-modal
settings will be a key challenge for future research.

7 Conclusion

In this paper, we introduce the concept of reverse
engineering in language models for the first time
and provide a systematic overview from the per-
spectives of data reconstruction, model reconstruc-
tion, and defense strategies. Our goal is to of-
fer security-oriented insights for organizations and
practitioners working with language models, while
also highlighting the key challenges and opportuni-
ties in this emerging area. We hope our work can
help foster further research in this field.

Limitations

In this paper, we survey existing studies on reverse
engineering on language model from both data and
model perspectives, as well as the protection mea-
sures of victim model. However, given the exten-
sive body of related work, we may have overlooked
some equally valuable contributions. At the same
time, model reverse engineering is a broad topic
that encompasses the reverse of various models and
types of information, including images, audio and
text, needing more work in the future.
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Ethics and Responsible Disclose

Our work aims to enhance the security of language
models. Therefore, we approach the research with
a responsible attitude. First, we introduce the at-
tack methods related to language model reverse
engineering, and then propose effective protective
strategies against such attacks. We firmly believe
that research into reverse engineering of language
models contributes to advancing the field of lan-
guage model security and protecting the data pri-
vacy and digital assets of model owners. We mini-
mize the real-world impact through the following
approaches: (1) We do not involve any private data
and take measures to avoid causing any harm to
real users. (2) We have only introduced the ex-
perimental approaches of known methods without
exposing any real-world failure modes.

Acknowledgments

This paper is supported by the Fundamental Re-
search Funds for the Zhejiang Provincial Univer-
sities (No. 226-2025-00004) and the National Re-
gional Innovationand Development Joint Fund (No.
U24A20254). Junbo Zhao is partially supported
by the National Key Research and Development
Program of China (No. 2022YFB3304100).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Enes Altinisik, Hassan Sajjad, Husrev T. Sencar, Safa
Messaoud, and Sanjay Chawla. 2023. Impact of ad-
versarial training on robustness and generalizability
of language models. In Findings of the Association
for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 7828-7840. Associa-
tion for Computational Linguistics.

Anthropic. 2024. Claude 3.5 sonnet. https://www.
anthropic.com/news/claude-3-5-sonnet.

Giuseppe Ateniese, Luigi V Mancini, Angelo Spog-
nardi, Antonio Villani, Domenico Vitali, and Gio-
vanni Felici. 2015. Hacking smart machines with
smarter ones: How to extract meaningful data from
machine learning classifiers. International Journal
of Security and Networks, 10(3):137-150.

Yang Bai, Ge Pei, Jindong Gu, Yong Yang, and Xingjun
Ma. 2024. Special characters attack: Toward scalable
training data extraction from large language models.
arXiv preprint arXiv:2405.05990.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,
Fuli Feng, and Xiangnan He. 2023. Tallrec: An ef-
fective and efficient tuning framework to align large
language model with recommendation. In Proceed-
ings of the 17th ACM Conference on Recommender
Systems, pages 1007-1014.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, and
Kai Dong. 2024. Deepseek LLM: scaling open-
source language models with longtermism. CoRR,
abs/2401.02954.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
2397-2430. PMLR.

Qi-Zhi Cai, Chang Liu, and Dawn Song. 2018. Cur-
riculum adversarial training. In Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pages 3740-3747. ijcai.org.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang
Song, Andreas Terzis, and Florian Tramer. 2022.
Membership inference attacks from first principles.
In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1897-1914. IEEE.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023a. Quantifying memorization across neural lan-
guage models. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Nicholas Carlini, Milad Nasr, Christopher A. Choquette-
Choo, Matthew Jagielski, Irena Gao, Pang Wei
Koh, Daphne Ippolito, Florian Tramer, and Ludwig
Schmidt. 2023b. Are aligned neural networks adver-
sarially aligned? In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvi-
jotham, Thomas Steinke, Jonathan Hayase, A. Feder
Cooper, Katherine Lee, Matthew Jagielski, Milad
Nasr, Arthur Conmy, Eric Wallace, David Rolnick,
and Florian Tramer. 2024. Stealing part of a pro-
duction language model. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine

7491


https://doi.org/10.18653/v1/2023.findings-acl.496
https://doi.org/10.18653/v1/2023.findings-acl.496
https://doi.org/10.18653/v1/2023.findings-acl.496
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.48550/arXiv.2401.02954
https://doi.org/10.48550/arXiv.2401.02954
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://doi.org/10.24963/ijcai.2018/520
https://doi.org/10.24963/ijcai.2018/520
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
http://papers.nips.cc/paper_files/paper/2023/hash/c1f0b856a35986348ab3414177266f75-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c1f0b856a35986348ab3414177266f75-Abstract-Conference.html
https://openreview.net/forum?id=VE3yWXt3KB
https://openreview.net/forum?id=VE3yWXt3KB

Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, et al. 2021a. Extracting training data
from large language models. In 30th USENIX Secu-

of Lecture Notes in Computer Science, pages 1-12.
Springer.

rity Symposium (USENIX Security 21), pages 2633—  Aysan Esmradi, Daniel Wankit Yip, and Chun-Fai Chan.

2650.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021b.
Extracting training data from large language models.
In 30th USENIX Security Symposium, USENIX Se-
curity 2021, August 11-13, 2021, pages 2633-2650.
USENIX Association.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021c.
Extracting training data from large language models.
In 30th USENIX Security Symposium, USENIX Se-
curity 2021, August 11-13, 2021, pages 2633-2650.

2023. A comprehensive survey of attack techniques,
implementation, and mitigation strategies in large
language models.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,

Di He, and Liwei Wang. 2023. Towards revealing
the mystery behind chain of thought: A theoretical
perspective. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu,

Yong Li, and Tao Jiang. 2024. Membership inference
attacks against fine-tuned large language models via
self-prompt calibration. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

USENIX Association. Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow,

Kang Chen, Xiuze Zhou, Yuanguo Lin, Shibo Feng,
Li Shen, and Pengcheng Wu. 2025. A survey on
privacy risks and protection in large language models.
CoRR, abs/2505.01976.

Md. Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed.
2024. Bias and fairness in large language models: A
survey. Comput. Linguistics, 50(3):1097-1179.

Leo Gao. 2021. On the sizes of openai api models.

Hyeong Kyu Choi, Maxim Khanov, Hongxin Wei,

and Yixuan Li. 2025. How contaminated is your ~ Lirong Gao, Ru Peng, Yiming Zhang, and Junbo Zhao.

benchmark? quantifying dataset leakage in large
language models with kernel divergence. Preprint,
arXiv:2502.00678.

Badhan Chandra Das, M. Hadi Amini, and Yanzhao
Wu. 2025. Security and privacy challenges of large

2024. DORY: deliberative prompt recovery for LLM.
In Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 10614-10632.
Association for Computational Linguistics.

language models: A survey. ACM Comput. Surv., Jonathan Gillham. 2024. Openai patent list.

57(6):152:1-152:39.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah A. Smith, and Yejin Choi. 2022. Is GPT-3 text
indistinguishable from human text? scarecrow: A
framework for scrutinizing machine text. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2022, Dublin, Ireland, May 22-27, 2022,
pages 7250-7274. Association for Computational

Shahriar Golchin and Mihai Surdeanu. 2024. Time

travel in Ilms: Tracing data contamination in large
language models. In The Twelfth International Con-

ference on Learning Representations, ICLR 2024,

Vienna, Austria, May 7-11, 2024. OpenReview.net.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and

Dacheng Tao. 2021. Knowledge distillation: A sur-
vey. Int. J. Comput. Vis., 129(6):1789-1819.

Linguistics. Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024.

Frenk Dragar. 2025. Learnable fingerprints for large
language models. Master’s thesis, Utrecht Univer-
sity.

Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah,  Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,

Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia
Tsvetkov, Yejin Choi, David Evans, and Hannaneh
Hajishirzi. 2024. Do membership inference attacks
work on large language models? In First Conference
on Language Modeling.

Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. CoRR,
abs/2301.07597.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,

Cynthia Dwork. 2006. Differential privacy. In Au-
tomata, Languages and Programming, 33rd Inter-
national Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, volume 4052

7492

Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.


https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://arxiv.org/abs/2505.01976
https://arxiv.org/abs/2505.01976
https://arxiv.org/abs/2502.00678
https://arxiv.org/abs/2502.00678
https://arxiv.org/abs/2502.00678
https://doi.org/10.1145/3712001
https://doi.org/10.1145/3712001
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501
https://openreview.net/forum?id=av0D19pSkU
https://openreview.net/forum?id=av0D19pSkU
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-981-97-1274-8_6
https://doi.org/10.1007/978-981-97-1274-8_6
https://doi.org/10.1007/978-981-97-1274-8_6
http://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
https://blog.eleuther.ai/gpt3-model-sizes/
https://doi.org/10.18653/v1/2024.findings-acl.631
https://originality.ai/blog/openai-patent-list?utm_source=chatgpt.com
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=2Rwq6c3tvr
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://doi.org/10.48550/arXiv.2301.07597
https://doi.org/10.48550/arXiv.2301.07597

Muneeb Ul Hassan, Mubashir Husain Rehmani, and
Jinjun Chen. 2020. Differential privacy techniques
for cyber physical systems: A survey. IEEE Commun.
Surv. Tutorials, 22(1):746-789.

Jonathan Hayase, Alisa Liu, Yejin Choi, Sewoong Oh,
and Noah A. Smith. 2024. Data mixture inference:
What do BPE tokenizers reveal about their training
data? CoRR, abs/2407.16607.

Jiaming He, Guanyu Hou, Xinyue Jia, Yangyang Chen,
Wengi Liao, Yinhang Zhou, and Rang Zhou. 2024.
Data stealing attacks against large language models
via backdooring. Electronics, 13(14):2858.

Xuanli He, Lingjuan Lyu, Lichao Sun, and Qiongkai
Xu. 2021. Model extraction and adversarial transfer-
ability, your BERT is vulnerable! In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 2006-2012. Associa-
tion for Computational Linguistics.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 14409-14428. Association for Computa-
tional Linguistics.

Bo Hui, Haolin Yuan, Neil Gong, Philippe Burlina, and
Yinzhi Cao. 2024. Pleak: Prompt leaking attacks
against large language model applications. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, pages
3600-3614.

IBM Security and Ponemon Institute. 2024. Cost of
a data breach report 2024. https://www.ibm.com/
reports/data-breach. Accessed: 2025-04-23.

Daphne Ippolito, Nicholas Carlini, Katherine Lee, Mi-
lad Nasr, and Yun William Yu. 2023. Reverse-
engineering decoding strategies given blackbox ac-
cess to a language generation system. In Proceedings
of the 16th International Natural Language Genera-
tion Conference, pages 396—406.

Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. 2020. High ac-
curacy and high fidelity extraction of neural networks.
In 29th USENIX Security Symposium, USENIX Se-
curity 2020, August 12-14, 2020, pages 1345-1362.
USENIX Association.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N. Asokan. 2019. PRADA: protecting against DNN

model stealing attacks. In IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2019, Stock-
holm, Sweden, June 17-19, 2019, pages 512-527.
IEEE.

Nikhil Kandpal, Krishna Pillutla, Alina Oprea, Peter
Kairouz, Christopher A. Choquette-Choo, and Zheng
Xu. 2024. User inference attacks on large language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2024, Miami, FL, USA, November 12-16,
2024, pages 18238-18265. Association for Computa-
tional Linguistics.

Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and
Sameep Mehta. 2018. Model extraction warning in
mlaas paradigm. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC
2018, San Juan, PR, USA, December 03-07, 2018,
pages 371-380. ACM.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Proceed-
ings of the 40th International Conference on Machine
Learning, pages 17061-17084.

Hannah Rose Kirk, Bertie Vidgen, Paul Réttger, and
Scott A Hale. 2024. The benefits, risks and bounds
of personalizing the alignment of large language
models to individuals. Nature Machine Intelligence,
6(4):383-392.

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh,
Nicolas Papernot, and Mohit Iyyer. 2020. Thieves
on sesame street! model extraction of bert-based
apis. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020.

Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y.
Chan, Kory W. Mathewson, Michael Henry Tessler,
Antonia Creswell, James L. McClelland, Jane Wang,
and Felix Hill. 2022. Can language models learn
from explanations in context? In Findings of the
Association for Computational Linguistics: EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 537-563. Association for Compu-
tational Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial
text against real-world applications. In 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society.

Marvin Li, Jason Wang, Jeffrey G. Wang, and Seth Neel.
2023. Mope: Model perturbation based privacy at-
tacks on language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 13647-13660. Association
for Computational Linguistics.

7493


https://doi.org/10.1109/COMST.2019.2944748
https://doi.org/10.1109/COMST.2019.2944748
https://doi.org/10.48550/ARXIV.2407.16607
https://doi.org/10.48550/ARXIV.2407.16607
https://doi.org/10.48550/ARXIV.2407.16607
https://doi.org/10.18653/v1/2021.naacl-main.161
https://doi.org/10.18653/v1/2021.naacl-main.161
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2023.acl-long.806
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://aclanthology.org/2023.inlg-main.28/
https://aclanthology.org/2023.inlg-main.28/
https://aclanthology.org/2023.inlg-main.28/
https://www.usenix.org/conference/usenixsecurity20/presentation/jagielski
https://www.usenix.org/conference/usenixsecurity20/presentation/jagielski
https://doi.org/10.1109/EuroSP.2019.00044
https://doi.org/10.1109/EuroSP.2019.00044
https://aclanthology.org/2024.emnlp-main.1014
https://aclanthology.org/2024.emnlp-main.1014
https://doi.org/10.1145/3274694.3274740
https://doi.org/10.1145/3274694.3274740
https://openreview.net/forum?id=Byl5NREFDr
https://openreview.net/forum?id=Byl5NREFDr
https://openreview.net/forum?id=Byl5NREFDr
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.18653/v1/2023.emnlp-main.842
https://doi.org/10.18653/v1/2023.emnlp-main.842

Yiming Li, Linghui Zhu, Xiaojun Jia, Yong Jiang, Shu-
Tao Xia, and Xiaochun Cao. 2022. Defending against
model stealing via verifying embedded external fea-
tures. In Proceedings of the AAAI conference on
artificial intelligence, volume 36, pages 1464—1472.

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Chaowei
Liu, Shuai Wang, Daoyuan Wu, Cuiyun Gao, and
Yang Liu. 2024. On extracting specialized code abili-
ties from large language models: A feasibility study.
In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, Lis-
bon, Portugal, April 14-20, 2024, pages 74:1-74:13.

Zi Liang, Qingqing Ye, Yanyun Wang, Sen Zhang,
Yaxin Xiao, Ronghua Li, Jianliang Xu, and Haibo
Hu. 2024. Alignment-aware model extraction attacks
on large language models. CoRR, abs/2409.02718.

Allen Liu and Ankur Moitra. 2024. Model steal-
ing for any low-rank language model. Preprint,
arXiv:2411.07536.

Daizong Liu, Mingyu Yang, Xiaoye Qu, Pan Zhou,
Yu Cheng, and Wei Hu. 2024a. A survey of attacks on
large vision-language models: Resources, advances,
and future trends. arXiv preprint arXiv:2407.07403.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Advances in
neural information processing systems, 36:34892—
34916.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei
Xiao. 2024b. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang, and
Yu Qiao. 2024c. Safety of multimodal large lan-
guage models on images and text. In Proceedings of
the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI 2024, Jeju, South Korea,
August 3-9, 2024, pages 8151-8159. ijcai.org.

Zhenhua Liu, Tong Zhu, Chuanyuan Tan, Bing Liu,
Haonan Lu, and Wenliang Chen. 2024d. Probing lan-
guage models for pre-training data detection. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1576—1587. Association for Compu-
tational Linguistics.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and
Adam Dziedzic. 2024a. LLM dataset inference: Did
you train on my dataset? In Advances in Neural

Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,
NeurlPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024.

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and
Adam Dziedzic. 2024b. LLM dataset inference: Did
you train on my dataset? In Advances in Neural
Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,
NeurlIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024.

Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Von-
drick, and Baishakhi Ray. 2019. Metric learning
for adversarial robustness. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurlPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 478-489.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing
Jin, Bernhard Scholkopf, Mrinmaya Sachan, and Tay-
lor Berg-Kirkpatrick. 2023. Membership inference
attacks against language models via neighbourhood
comparison. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 11330-11343. Association for
Computational Linguistics.

Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-
Alexandre de Montjoye. 2024a. Did the neurons read
your book? document-level membership inference
for large language models. In 33rd USENIX Security
Symposium, USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024. USENIX Association.

Matthieu Meeus, Igor Shilov, Shubham Jain, Manuel
Faysse, Marek Rei, and Yves-Alexandre de Mon-
tjoye. 2024b. Sok: Membership inference attacks on
Ilms are rushing nowhere (and how to fix it). arXiv
preprint arXiv:2406.17975.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available 1lm to date.

Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and
Moritz Hardt. 2019. Model reconstruction from
model explanations. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency,
FAT* 2019, Atlanta, GA, USA, January 29-31, 2019,
pages 1-9. ACM.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit
Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
2022. Quantifying privacy risks of masked language
models using membership inference attacks. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 8332-8347. Association for Computa-
tional Linguistics.

John Morris, Volodymyr Kuleshov, Vitaly Shmatikov,
and Alexander Rush. 2023. Text embeddings reveal
(almost) as much as text. In Proceedings of the 2023

7494


https://doi.org/10.1145/3597503.3639091
https://doi.org/10.1145/3597503.3639091
https://doi.org/10.48550/arXiv.2409.02718
https://doi.org/10.48550/arXiv.2409.02718
https://arxiv.org/abs/2411.07536
https://arxiv.org/abs/2411.07536
https://openreview.net/forum?id=7Jwpw4qKkb
https://openreview.net/forum?id=7Jwpw4qKkb
https://www.ijcai.org/proceedings/2024/901
https://www.ijcai.org/proceedings/2024/901
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://papers.nips.cc/paper_files/paper/2024/hash/e01519b47118e2f51aa643151350c905-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e01519b47118e2f51aa643151350c905-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e01519b47118e2f51aa643151350c905-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e01519b47118e2f51aa643151350c905-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract.html
https://doi.org/10.18653/v1/2023.findings-acl.719
https://doi.org/10.18653/v1/2023.findings-acl.719
https://doi.org/10.18653/v1/2023.findings-acl.719
https://www.usenix.org/conference/usenixsecurity24/presentation/meeus
https://www.usenix.org/conference/usenixsecurity24/presentation/meeus
https://www.usenix.org/conference/usenixsecurity24/presentation/meeus
https://ai.meta.com/blog/metallama-3/
https://ai.meta.com/blog/metallama-3/
https://doi.org/10.1145/3287560.3287562
https://doi.org/10.1145/3287560.3287562
https://doi.org/10.18653/v1/2022.emnlp-main.570
https://doi.org/10.18653/v1/2022.emnlp-main.570

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12448—12460. Association
for Computational Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119-126.

John X. Morris, Wenting Zhao, Justin T. Chiu, Vitaly
Shmatikov, and Alexander M. Rush. 2024. Language
model inversion. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Hausi A. Miiller, Jens H. Jahnke, Dennis B. Smith,
Margaret-Anne D. Storey, Scott R. Tilley, and Kenny
Wong. 2000. Reverse engineering: a roadmap. In
22nd International Conference on on Software Engi-
neering, Future of Software Engineering Track, ICSE
2000, Limerick Ireland, June 4-11, 2000, pages 47—
60. ACM.

Ali Naseh, Kalpesh Krishna, Mohit Iyyer, and Amir
Houmansadr. 2023. Stealing the decoding algorithms
of language models. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communica-
tions Security, page 1835-1849.

Milad Nasr, Javier Rando, Nicholas Carlini, Jonathan
Hayase, Matthew Jagielski, A. Feder Cooper, Daphne
Ippolito, Christopher A. Choquette-Choo, Florian
Tramer, and Katherine Lee. 2025. Scalable extraction
of training data from aligned, production language
models. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net.

Myung Gyo Oh, Leo Hyun Park, Jaeuk Kim, Jaewoo
Park, and Taekyoung Kwon. 2023. Membership
inference attacks with token-level deduplication on
korean language models. IEEE Access, 11:10207—
10217.

Seong Joon Oh, Bernt Schiele, and Mario Fritz. 2019.
Towards reverse-engineering black-box neural net-
works. Explainable Al: interpreting, explaining and
visualizing deep learning, pages 121-144.

Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber.
2023. Tknow what you trained last summer: A survey
on stealing machine learning models and defences.
ACM Comput. Surv., 55(14s):324:1-324:41.

OpenAl. 2020. Language models are few-shot learners.
CoRR, abs/2005.14165.

OpenAl 2024. Introducing openai ol-preview: A new
series of reasoning models for solving hard problems.
available now.

OpenAl. 2025. Rate limits - openai api.
https://platform.openai.com/docs/guides/rate-
limits?utm_source=chatgpt.com.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
2019. Knockoff nets: Stealing functionality of black-
box models. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 4954-4963. Com-
puter Vision Foundation / IEEE.

Yonatan Oren, Nicole Meister, Niladri S. Chatterji,
Faisal Ladhak, and Tatsunori Hashimoto. 2024. Prov-
ing test set contamination in black-box language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Mustafa Ozdayi, Charith Peris, Jack FitzGerald,
Christophe Dupuy, Jimit Majmudar, Haidar Khan,
Rabhil Parikh, and Rahul Gupta. 2023. Controlling
the extraction of memorized data from large language
models via prompt-tuning. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pages 1512—
1521. Association for Computational Linguistics.

Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade,
Shirish K. Shevade, and Vinod Ganapathy. 2019. A
framework for the extraction of deep neural networks
by leveraging public data. CoRR, abs/1905.09165.

Ashwinee Panda, Christopher A. Choquette-Choo,
Zhengming Zhang, Yaoqing Yang, and Prateek Mit-
tal. 2024. Teach llms to phish: Stealing private in-
formation from language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Nicolas Papernot, Patrick D. McDaniel, lan J. Goodfel-
low, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. 2017. Practical black-box attacks against ma-
chine learning. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab
Emirates, April 2-6, 2017, pages 506-519. ACM.

Rabhil Parikh, Christophe Dupuy, and Rahul Gupta. 2022.
Canary extraction in natural language understanding
models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 552-560. Association for
Computational Linguistics.

Dario Pasquini, Evgenios M. Kornaropoulos, and
Giuseppe Ateniese. 2024.  Llmmap: Finger-
printing for large language models.  Preprint,
arXiv:2407.15847.

Fabio Perez and Ian Ribeiro. 2022. Ignore previous
prompt: Attack techniques for language models.
arXiv preprint arXiv:2211.09527.

Ambrish Rawat, Stefan Schoepf, Giulio Zizzo, Gian-
domenico Cornacchia, Muhammad Zaid Hameed,

7495


https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=t9dWHpGkPj
https://doi.org/10.1145/336512.336526
http://dx.doi.org/10.1145/3576915.3616652
http://dx.doi.org/10.1145/3576915.3616652
https://openreview.net/forum?id=vjel3nWP2a
https://openreview.net/forum?id=vjel3nWP2a
https://openreview.net/forum?id=vjel3nWP2a
https://doi.org/10.1145/3595292
https://doi.org/10.1145/3595292
https://arxiv.org/abs/2005.14165
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
http://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://doi.org/10.18653/v1/2023.acl-short.129
https://doi.org/10.18653/v1/2023.acl-short.129
https://doi.org/10.18653/v1/2023.acl-short.129
http://arxiv.org/abs/1905.09165
http://arxiv.org/abs/1905.09165
http://arxiv.org/abs/1905.09165
https://openreview.net/forum?id=qo21ZlfNu6
https://openreview.net/forum?id=qo21ZlfNu6
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.18653/v1/2022.acl-short.61
https://doi.org/10.18653/v1/2022.acl-short.61
https://arxiv.org/abs/2407.15847
https://arxiv.org/abs/2407.15847

Kieran Fraser, Erik Miehling, Beat Buesser, Eliza-
beth M. Daly, Mark Purcell, Prasanna Sattigeri, Pin-
Yu Chen, and Kush R. Varshney. 2024. Attack atlas:
A practitioner’s perspective on challenges and pitfalls
in red teaming genai. CoRR, abs/2409.15398.

Scott E. Reed, Konrad Zolna, Emilio Parisotto,
Sergio Gémez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, Tom Eccles,
Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas
Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. 2022. A
generalist agent. Trans. Mach. Learn. Res., 2022.

Mark Russinovich and Ahmed Salem. 2024. Hey, that’s
my model! introducing chain & hash, an llm finger-
printing technique. Preprint, arXiv:2407.10887.

Amir Mahdi Sadeghzadeh, Amir Mohammad Sob-
hanian, Faezeh Dehghan, and Rasool Jalili. 2024.
HODA': hardness-oriented detection of model ex-
traction attacks. IEEE Trans. Inf. Forensics Secur.,
19:1429-1439.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. 2019.
Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning
models. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet
Society.

Zeyang Sha and Yang Zhang. 2024a. Prompt steal-
ing attacks against large language models. CoRR,
abs/2402.12959.

Zeyang Sha and Yang Zhang. 2024b. Prompt stealing
attacks against large language models. arXiv preprint
arXiv:2402.12959.

Adi Shamir, Isaac Andrés Canales Martinez, Anna
Hambitzer, Jorge Chdvez-Saab, Francisco Rodriguez-
Henriquez, and Nitin Satpute. 2023. Polynomial time
cryptanalytic extraction of neural network models.
CoRR, abs/2310.08708.

Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr,
and Robert Sim. 2021. Membership inference attacks
against nlp classification models. In NeurIPS 2021
Workshop Privacy in Machine Learning.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu,
Weilong Dong, Zishan Guo, Xinwei Wu, Yan Liu,
and Deyi Xiong. 2023. Large language model align-
ment: A survey. CoRR, abs/2309.15025.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Dangi Chen, and
Luke Zettlemoyer. 2024a. Detecting pretraining data
from large language models. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqgi Chen, and
Luke Zettlemoyer. 2024b. Detecting pretraining data
from large language models. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. 2017. Membership inference attacks
against machine learning models. In 2017 IEEE sym-
posium on security and privacy (SP), pages 3—18.
IEEE.

Congzheng Song and Vitaly Shmatikov. 2019. Audit-
ing data provenance in text-generation models. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 196-206.

Tyler Sorensen and Heidy Khlaaf. 2024. Leftoverlocals:
Listening to 1lm responses through leaked gpu local
memory. Preprint, arXiv:2401.16603.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929—
1958.

Anshuman Suri. 2024. Reassessing emnlp 2024’s best
paper: Does divergence-based calibration for mem-
bership inference attacks hold up?

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014a. Intriguing properties of neural
networks. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014b. Intriguing properties of neural
networks. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian J.
Goodfellow, Dan Boneh, and Patrick D. McDaniel.
2018. Ensemble adversarial training: Attacks and de-
fenses. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

7496


https://doi.org/10.48550/arXiv.2409.15398
https://doi.org/10.48550/arXiv.2409.15398
https://doi.org/10.48550/arXiv.2409.15398
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
https://arxiv.org/abs/2407.10887
https://arxiv.org/abs/2407.10887
https://arxiv.org/abs/2407.10887
https://doi.org/10.1109/TIFS.2023.3320609
https://doi.org/10.1109/TIFS.2023.3320609
https://www.ndss-symposium.org/ndss-paper/ml-leaks-model-and-data-independent-membership-inference-attacks-and-defenses-on-machine-learning-models/
https://www.ndss-symposium.org/ndss-paper/ml-leaks-model-and-data-independent-membership-inference-attacks-and-defenses-on-machine-learning-models/
https://www.ndss-symposium.org/ndss-paper/ml-leaks-model-and-data-independent-membership-inference-attacks-and-defenses-on-machine-learning-models/
https://doi.org/10.48550/arXiv.2402.12959
https://doi.org/10.48550/arXiv.2402.12959
https://doi.org/10.48550/arXiv.2310.08708
https://doi.org/10.48550/arXiv.2310.08708
https://doi.org/10.48550/arXiv.2309.15025
https://doi.org/10.48550/arXiv.2309.15025
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://arxiv.org/abs/2401.16603
https://arxiv.org/abs/2401.16603
https://arxiv.org/abs/2401.16603
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://www.anshumansuri.com/blog/2024/calibrated-mia/
https://www.anshumansuri.com/blog/2024/calibrated-mia/
https://www.anshumansuri.com/blog/2024/calibrated-mia/
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://openreview.net/forum?id=rkZvSe-RZ
https://openreview.net/forum?id=rkZvSe-RZ

Florian Tramer, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. 2016. Stealing machine
learning models via prediction apis. In 25th USENIX
Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016, pages 601-618.

Tamds Vdrady, Ralph R. Martin, and Jordan Cox. 1997.
Reverse engineering of geometric models - an intro-
duction. Comput. Aided Des., 29(4):255-268.

Eric Wallace, Mitchell Stern, and Dawn Song. 2020.
Imitation attacks and defenses for black-box machine
translation systems. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20,
2020, pages 5531-5546.

Cheng Wang, Yiwei Wang, Bryan Hooi, Yujun Cai,
Nanyun Peng, and Kai-Wei Chang. 2025. Con-recall:
Detecting pre-training data in llms via contrastive
decoding. In Proceedings of the 31st International
Conference on Computational Linguistics, COLING
2025, Abu Dhabi, UAE, January 19-24, 2025, pages
1013-1026. Association for Computational Linguis-
tics.

Tianhao Wang and Florian Kerschbaum. 2021. Riga:
Covert and robust white-box watermarking of deep
neural networks. In Proceedings of the Web Confer-
ence 2021, pages 993-1004.

Zhepeng Wang, Runxue Bao, Yawen Wu, Jackson Tay-
lor, Cao Xiao, Feng Zheng, Weiwen Jiang, Shangqian
Gao, and Yanfu Zhang. 2024. Unlocking memo-
rization in large language models with dynamic soft
prompting. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2024, Miami, FL, USA, November 12-
16, 2024, pages 9782-9796. Association for Compu-
tational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurlPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and
Mohammad Abdullah Al Faruque. 2020. Leaky
dnn: Stealing deep-learning model secret with gpu
context-switching side-channel. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 125-137. IEEE.

Guanlong Wu, Zheng Zhang, Jianyu Niu, Weili Wang,
Yao Zhang, Ye Wu, and Yinqgian Zhang. 2025. 1
know what you asked: Prompt leakage via kv-cache
sharing in multi-tenant llm serving. Network and
Distributed System Security Symposium.

Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang,
Rong Ge, Jian Pei, Neil Gong, and Bhuwan Dhingra.

2024. Recall: Membership inference via relative con-
ditional log-likelihoods. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pages 8671-8689. Associa-
tion for Computational Linguistics.

Cheng Xiong, Guorui Feng, Xinran Li, Xinpeng Zhang,
and Chuan Qin. 2022. Neural network model pro-
tection with piracy identification and tampering lo-
calization capability. In Proceedings of the 30th
ACM International Conference on Multimedia, page
2881-2889, New York, NY, USA.

Jiashu Xu, Fei Wang, Mingyu Ma, Pang Wei Koh,
Chaowei Xiao, and Muhao Chen. 2024. Instructional
fingerprinting of large language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 3277-3306.

Haonan Yan, Xiaoguang Li, Hui Li, Jiamin Li, Wenhai
Sun, and Fenghua Li. 2022a. Monitoring-based dif-
ferential privacy mechanism against query flooding-
based model extraction attack. /IEEE Trans. Depend-
able Secur. Comput., 19(4):2680-2694.

Haonan Yan, Xiaoguang Li, Hui Li, Jiamin Li, Wenhai
Sun, and Fenghua Li. 2022b. Monitoring-based dif-
ferential privacy mechanism against query flooding-
based model extraction attack. IEEE Trans. Depend-
able Secur. Comput., 19(4):2680-2694.

Mengjia Yan, Christopher W Fletcher, and Josep Tor-
rellas. 2020. Cache telepathy: Leveraging shared
resource attacks to learn {DNN} architectures. In
29th USENIX Security Symposium (USENIX Security
20), pages 2003-2020.

Kang Yang, Run Wang, and Lina Wang. 2022. Metafin-
ger: Fingerprinting the deep neural networks with
meta-training. In IJCAI, pages 776-782.

Wentao Ye, Jiaqi Hu, Liyao Li, Haobo Wang, Gang
Chen, and Junbo Zhao. 2024. Data contamination
calibration for black-box llms. In Findings of the As-
sociation for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-
16, 2024, pages 10845-10861. Association for Com-
putational Linguistics.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. 2018. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 31/st
IEEE Computer Security Foundations Symposium,
CSF 2018, Oxford, United Kingdom, July 9-12, 2018,
pages 268-282. IEEE Computer Society.

Weichen Yu, Tianyu Pang, Qian Liu, Chao Du, Bingyi
Kang, Yan Huang, Min Lin, and Shuicheng Yan.
2023. Bag of tricks for training data extraction from
language models. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 40306—-40320.
PMLR.

7497


https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://doi.org/10.1016/S0010-4485(96)00054-1
https://doi.org/10.1016/S0010-4485(96)00054-1
https://doi.org/10.18653/v1/2020.emnlp-main.446
https://doi.org/10.18653/v1/2020.emnlp-main.446
https://aclanthology.org/2025.coling-main.68/
https://aclanthology.org/2025.coling-main.68/
https://aclanthology.org/2025.coling-main.68/
https://aclanthology.org/2024.emnlp-main.546
https://aclanthology.org/2024.emnlp-main.546
https://aclanthology.org/2024.emnlp-main.546
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://aclanthology.org/2024.emnlp-main.493
https://aclanthology.org/2024.emnlp-main.493
https://doi.org/10.1145/3503161.3548247
https://doi.org/10.1145/3503161.3548247
https://doi.org/10.1145/3503161.3548247
https://doi.org/10.1109/TDSC.2021.3069258
https://doi.org/10.1109/TDSC.2021.3069258
https://doi.org/10.1109/TDSC.2021.3069258
https://doi.org/10.1109/TDSC.2021.3069258
https://doi.org/10.1109/TDSC.2021.3069258
https://doi.org/10.1109/TDSC.2021.3069258
https://doi.org/10.18653/v1/2024.findings-acl.644
https://doi.org/10.18653/v1/2024.findings-acl.644
https://doi.org/10.1109/CSF.2018.00027
https://doi.org/10.1109/CSF.2018.00027
https://proceedings.mlr.press/v202/yu23c.html
https://proceedings.mlr.press/v202/yu23c.html

Santiago Zanella-Beguelin, Shruti Tople, Andrew
Paverd, and Boris Kopf. 2021. Grey-box extraction
of natural language models. In Proceedings of the
38th International Conference on Machine Learning,

pages 12278-12286.

Boyi Zeng, Lizheng Wang, Yuncong Hu, Yi Xu,
Chenghu Zhou, Xinbing Wang, Yu Yu, and Zhouhan
Lin. 2024. Huref: HUman-REadable fingerprint for
large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

Chaoning Zhang, Chenshuang Zhang, Sheng Zheng,
Yu Qiao, Chenghao Li, Mengchun Zhang, Sumit Ku-
mar Dam, Chu Myaet Thwal, Ye Lin Tun, Le Lu-
ang Huy, Dong Uk Kim, Sung-Ho Bae, Lik-Hang
Lee, Yang Yang, Heng Tao Shen, In So Kweon, and
Choong Seon Hong. 2023. A complete survey on
generative Al (AIGC): is chatgpt from GPT-4 to GPT-
5 all you need? CoRR, abs/2303.11717.

Collin Zhang, John X. Morris, and Vitaly Shmatikov.
2024a. Extracting prompts by inverting LLM out-
puts. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2024, Miami, FL, USA, November 12-16,
2024, pages 14753-14777. Association for Computa-
tional Linguistics.

Weichao Zhang, Ruqing Zhang, Jiafeng Guo, Maarten
de Rijke, Yixing Fan, and Xueqi Cheng. 2024b. Pre-
training data detection for large language models:
A divergence-based calibration method. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2024, Miami,
FL, USA, November 12-16, 2024, pages 5263-5274.
Association for Computational Linguistics.

Weichao Zhang, Ruqing Zhang, Jiafeng Guo, Maarten
de Rijke, Yixing Fan, and Xueqi Cheng. 2024c. Pre-
training data detection for large language models:
A divergence-based calibration method. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2024, Miami,
FL, USA, November 12-16, 2024, pages 5263-5274.
Association for Computational Linguistics.

Yiming Zhang, Nicholas Carlini, and Daphne Ippolito.
2024d. Effective prompt extraction from language
models. In First Conference on Language Modeling.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jia-
jun Liang. 2022. Decoupled knowledge distillation.
In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, pages 11943-11952. IEEE.

Xinyao Zheng, Husheng Han, Shangyi Shi, Qiyan Fang,
Zidong Du, Xing Hu, and Qi Guo. 2024. Inputsnatch:
Stealing input in IIm services via timing side-channel
attacks. Preprint, arXiv:2411.18191.

Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and
Yantao Lu. 2021. Hermes attack: Steal {DNN} mod-
els with lossless inference accuracy. In 30th USENIX
Security Symposium (USENIX Security 21).

A Knowledge Distillation

We have introduced function imitation in section
3.2.3, to some extent, knowledge distillation (Hin-
ton et al., 2015) can also be considered as a form of
function imitation. Knowledge Distillation aims to
transfer knowledge from a large teacher model to a
small student model. By encouraging the student
model to approximate the behavior of the teacher
model, the student is able to achieve functional imi-
tation with minimal loss in quality, while achieving
higher inference efficiency (Zhao et al., 2022; Gu
et al., 2024) .

However, most knowledge distillation methods
often assume white-box access to the teacher model
and have a certain understanding of training data.
Therefore, its application on model reverse is lim-
ited, and it is not considered as a primary attack
method.

B Function Imitation for DNNs

For neural network models, the extraction of them
is relatively easier compared to transformer mod-
els. As a result, attackers typically do not achieve
function imitation by training imitation model with
input-output pairs, but instead analyze parameters
directly and then reconstruct the model. Milli et al.
(2019); Jagielski et al. (2020) covers some com-
mon strategies for DNNs imitation, through mul-
tiple queries and algebraic methods, attackers can
estimate the number of layers, the activation func-
tions used, and the overall structure of the model.
Pal et al. (2019); Shamir et al. (2023), through us-
ing activate learning to effectively generate queries,
select the most informative samples for better re-
construction.

C Reverse Engineering of Multimodel
Large Language Models

The emergence of Multimodal Large Language
Models (MLLMs) (Liu et al., 2023; Achiam et al.,
2023; Team et al., 2023) has introduced both new
opportunities and unique challenges in the context
of reverse engineering. Unlike traditional language
models, MLLMs process not only textual data but
also other modalities such as images, audio, and
video, creating additional attack surfaces. Simi-
lar to other attacks (Liu et al., 2024c,a), these ex-
panded interfaces are anticipated to heighten the
models’ susceptibility to reverse engineering at-
tempts. For instance, the integration of visual in-
puts, such as images, presents new challenges, in-
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Figure 5: A taxonomy of the paper

cluding adversarial visual perturbations (Szegedy
et al., 2014b; Madry et al., 2018), which can be
more more dangerous and difficult to mitigate (Car-
lini et al., 2023b) compared to adversarial textual
perturbations (Morris et al., 2020; Li et al., 2019).

Therefore, future research could explore interest-
ing topics such as: e Benchmarking vulnerabilities
of MLLMs to reverse engineering. ® Developing
strategies of multimodal reverse engineering. e
Designing robust protective mechanisms.

D Extra Experiment for Latest Model

First, we survey the targets of the latest and most
representative reverse-engineering techniques, as
summarized in Table 1. The data reveal that most
attacks focus on open-source models, while among
commercial offerings, current efforts concentrate
predominantly on GPT-3.5 Turbo. This disparity
arises partly from the ease of evaluating attack effi-
cacy on open-source platforms and partly from the
more comprehensive defenses employed by com-
mercial providers. Accordingly, a systematic as-
sessment of these methods’ performance on state-
of-the-art models is both warranted and valuable

for guiding future research.

Therefore, we compiled a collection of repre-
sentative reverse engineering studies with actively
maintained codebases and evaluated their methods
on GPT-40. We note that the membership inference
attack experiments are detailed in the following sec-
tion.

For the training data extraction phase, we se-
lected three methods from (Carlini et al., 2021a;
Ozdayi et al., 2023; Bai et al., 2024). Although
evaluating the success of data extraction attacks
is inherently challenging, our experiments show
that these techniques failed to recover any mean-
ingful information, yielding virtually no outputs
resembling the original training data.

For the prompt extraction and property inference
phase, we evaluated four methods from (Perez and
Ribeiro, 2022; Hui et al., 2024; Zhang et al., 2024d;
Hayase et al., 2024). Our results show that, rela-
tive to training data recovery, these prompt extrac-
tion techniques achieve substantially higher suc-
cess rates. However, it is worth noting that prompt
defenses have evolved just as quickly: OpenAl is
progressively deploying countermeasures against
prompts that exhibit high extraction success rates.
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Table 2: Model targets of some newest attack

Attack Type Method GPT-2 Falcon Pythia Llama Llama-2 Llama-3 Mistral GPT-3.5-turbo GPT-40
Carlini et al. (2021a) v
Traini Nasr et al. (2025) v v 4 v v
raining Data
Bai et al. (2024) v v v v
Panda et al. (2024)
Hui et al. (2024) v v v
Prompt Extract
Sha and Zhang (2024a) 4 v
Property Inference Hayase et al. (2024) v v v v 4
MIA Maini et al. (2024a) 4
Model parameter Carlini et al. (2024) v v v 4
Model function Li et al. (2024) v
Table 3: Evaluation of Existing Attack Methods
Attack Type Method dataset Effectiveness Prerequisites Query Count Leakage Quality
Carlini et al. (2021a) X
Training Data Ozdayi et al. (2023) X
Bai et al. (2024) X
Perez and Ribeiro (2022) X
Prompt Extract Hui et al. (2024) v low low medium
Zhang et al. (2024d) awesome-chatgpt-prompts 4 low low high
Property Inference Hayase et al. (2024) Oscar v high low high
Model parameter  Carlini et al. (2024) X
Model function Liet al. (2024) 4 low high high
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Figure 6: The illustration of the data property inference
attack, where most commercial models publicly release
their merge. txt file and the source data comprise di-
verse datasets hosted on Hugging Face.

Table 4: Experiment on Effective Prompt Extraction
from Models

Dataset  awesome  sharegpt  unnatural
exact 54.1 48.1 68.2
approx 81.3 79.4 74.8

Due to the high computational cost and the ab-
sence of publicly available code in most model
level attack studies, we selected two representa-
tive methods for our experiments (Carlini et al.,
2024; Li et al., 2024). We note that, because few

Table 5: Property Inference of GPT-40

Category GPT-40 LLAMA3 Claude
Web 20.5 12.7 25.6
Code 32.8 30.3 25.8
Book 7.4 8.5 12.8

French 29 1.8 3.1

security papers provide complete implementations,
we effectively executed every technique with suffi-
cient supporting code or detailed descriptions. As
demonstrated above, many of these approaches
have since been mitigated by (i) more restrictive
access policies, (ii) accelerated vulnerability patch-
ing, and (iii) increasingly robust defense mecha-
nisms, rendering them largely ineffective against
today’s state of the art models. Nonetheless, their
foundational insights remain valuable: data recon-
struction and functionality extraction can be further
refined through additional experimentation, while
full model reconstruction continues to pose an open
research challenge, one that will require substantial
future investment and resource intensive efforts.

7500



E Current Problems in MIA

Although membership inference attacks were first
proposed by Shokri et al. (2017) and validated on
classifiers and fine-tuned models, recent papers
(Duan et al., 2024; Meeus et al., 2024b; Maini
et al., 2024b) and blog posts (Suri, 2024) have
shown their underwhelming performance on pre-
trained large-scale models. Motivated by these
findings, we conducted some simple experiments
on the Pythia-1.4B to intuitively expose poten-
tial shortcomings in current MIA methodologies,
datasets, and benchmarking practices, as we show
in Table 6, compared to the randomly partitioned
Wikipedia dataset, WikiMIA exhibits pronounced
distributional drift. In drift-free datasets, the
four MIA techniques—Iloss-based (Yeom et al.,
2018), reference-based (Carlini et al., 2021b), Min-
k (Shi et al., 2024b), and zlib (Carlini et al.,
2021c)—achieve near-random membership infer-
ence; however, their efficacy notably increases on
GitHub data, revealing dataset-specific biases—for
example, zlib performs best on GitHub but falls
short of Ref on Wikipedia. This motivated us to
systematically summarize the existing challenges
in the MIA field:

Table 6: Traditional MIA method on LLM

Category Loss Ref min-k zlib

Wikimia 0.534  0.607 0.685 0.674

Wikipedia  0.516  0.571 0.514  0.524
Github 0.654 0594  0.643 0.671

(i) Improper membership splitting. Instead of
random sampling, some studies construct member
and non-member sets post hoc—after model train-
ing—using non-random criteria such as corpus ori-
gin, timestamps, or labels. This practice introduces
severe distributional drift and semantic cue leakage,
causing attacks to exploit differences in writing
style or token frequencies rather than true member-
ship signals. For example, a 2023 corpus contains
time-sensitive tokens like “COVID-19” or “Chat-
GPT” that are absent in a 2020 dataset, allowing
MIAs to distinguish samples based solely on their
relative occurrence frequencies. Duan et al. (2024)
conducted more detailed experiments and showed
that fuzzy leakage can occur even when there is no
exact overlap between member and non-member
samples. They argue that semantic and syntactic
similarity measures should be incorporated into
the design of more robust evaluation frameworks

and benchmarks. Meeus et al. (2024b) also point
out that certain datasets—such as WikiMIA, arXiv,
Books, and Stack—may inherently exhibit distri-
butional drift, which undermines the reliability of
results derived from them.

(i1) Excessive pretraining scale. Large language
models are trained for just one epoch over massive
corpora, which dilutes their retention of individual
samples. As a result, many attack assumptions that
hold for classifiers break down on LLMs, that’s
why loss-based inference methods perform at near-
chance levels in MIA evaluations against large pre-
trained models. To address the scale and industrial
requirements of modern LLMs, Maini et al. (2024b)
extend the membership inference paradigm to the
dataset level and introduce a novel detection frame-
work—dataset inference—which employs a com-
posite indicator function to determine whether a
given dataset was used in the model’s pretraining.

(>iii) Lack of standardized benchmarks and pro-
tocols. Studies often employ disparate models and
evaluation suites without common control experi-
ments, and attack performance varies across do-
mains. This inconsistency makes it difficult to
quantitatively compare the effectiveness of differ-
ent MIA methods.

F Frequently Chosen Benchmarks for
Data Recovery Engine

We have collected frequently used metrics in Table
7 and datasets in Table 8.

G Prompt Extraction Examples

Here, we present successful cases of prompt ex-
traction against several state-of-the-art commercial
models, as shown in Table ??. Furthermore, our
experiments reveal that reasoning oriented models
exhibit markedly greater resilience to prompt ex-
traction attacks: most prompts that succeed against
GPT-40 are ineffective when applied to these rea-
soning models.

H Comparison with Existing Surveys

For the multiple surveys mentioned in the Intro-
duction, we provide here a detailed comparison to
highlight how they differ from our work (as shown
in 10).

"https://github.com/google-research/
Im-extraction-benchmark

2https://github.com/f/awesome—chatgpt-prompts

Shttps://github.com/sahil280114/codealpaca
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Table 7: Frequently evaluated metrics of data recovery engine. MIA, TDEA and IRA stand for membership
inference attack, training data extraction attack and input reconstruction attack.

Attack Type Metric Name Explanation

MIA AUROC Area under the ROC curve.

MIA TPR@5% FPR true positive rate at 5% false positive rate.

TDEA Speed The amount of time required for the attack to execute.

TDEA Verbatim Extraction Rate The proportion of generated suffixes that exactly match the original
text.

TDEA Paraphrase Extraction Rate The proportion of generated suffixes that are rephrased versions
of the original text.

IRA BLEU N-gram similarity between the original and reconstructed texts.

IRA Exact Match The multi-class F1 score comparing the set of predicted tokens to
the set of true tokens.

IRA Token-level F1 Score The percentage of reconstructed outputs that exactly match the
ground truth.

IRA Semantic Similarity The cosine similarity between the output of the text embedding

models.

Table 8: Frequently evaluated datasets of data recovery engine. MIA, TDEA and IRA stand for membership
inference attack, training data extraction attack and input reconstruction attack.

Attack Type Dataset Name

Comment

MIA WikiMIA (Shi et al., 2024a) split sentence-level members/non-members by date.

MIA StackMIAsub (Ye et al., 2024) split sentence-level members/non-members by date.

MIA MIMIR (Duan et al., 2024) split sentence-level members/non-members by origi-
nal training/test set.

MIA ArXiv - Document (Meeus et al., 2024a) split document-level members/non-members by date.

TDEA LM Extraction Benchmark ! prefixes if 50-token length are given to extract the
suffixes based on The Pile dataset.

IRA Alpaca Code Generation 2 Code prompts from Alpaca.

IRA Awesome-ChatGPT-Prompts Detailed prompts designed to adapt the LLM to a
specific role.

IRA Unnatural Instructions (Honovich et al., 2023) A large, diverse set of instructions, collected with

minimal human effort.

Table 10: Comparison with Existing Surveys in topic and scope.

Ref

Year Topic and Motivation Covered Technical Approaches

Esmradi et al. (2023) 2023 Analyze different types of attacks tar- Prompt Injection, Privacy Leakage, Model Theft,

Das et al. (2025)

geting LLMs.

Data Reconstruction, Data Poisoning, Model Hijack-
ing, Membership Inference

2024 Organize privacy and security chal- PromptHacking, Adversarial Attacks, Gradient Leak-

lenges in LLMs.

age, Membership Inference, PII Leakage

Chen et al. (2025) 2025 Discuss privacy risks and protection Backdoor Attacks, Model Inversion, Model Stealing,

Ours

methods.

Data Stealing, Training Data Extraction, Membership
& Attribute Inference

2025 Recover/infer protected information Training Data Extraction, Input Reconstruction,

from LLMs.

Membership & Property Inference, Model Parameter
Extraction, Function Imitation, Structure Tracing
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