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Abstract

Large language models (LLMs) demonstrate
strong reasoning capabilities but are expensive
to run at inference time, limiting their practical
deployment. We propose Offloaded Reasoning
(OR), a modular strategy where a lightweight
model generates intermediate reasoning traces
that are then used by a larger model to pro-
duce the final answer. We further introduce
Offloaded Reasoning with Refinement (ORR),
where the large model first edits or improves
the reasoning trace before answering. Unlike
token-level acceleration methods, OR and ORR
operate at the reasoning level and require no
retraining of the large model. Experiments on
GSM8K and Math500 show that OR achieves
up to 8 x faster inference than full large-model
reasoning with minimal accuracy loss, while
ORR recovers or exceeds full accuracy at sub-
stantially lower cost. Our results highlight the
potential of modular, delegation-based reason-
ing for building more efficient and adaptable
LLM systems.

1 Introduction

Large language models (LLMs) have demonstrated
strong performance on a wide range of complex
reasoning tasks, such as arithmetic problem solv-
ing, logical inference, and open-domain question
answering (Achiam et al., 2023; Team et al., 2024;
Touvron et al., 2023; Roziere et al., 2023; Yang
et al., 2024). However, the computational demands
of such models during inference—especially at de-
ployment scale—pose significant bottlenecks in
resource-constrained applications.

A central challenge is to reduce the inference-
time compute cost of LLMs without degrading
their reasoning capabilities. Recent approaches like
speculative decoding (Leviathan et al., 2023) ad-
dress this by drafting token sequences using smaller
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Figure 1: Workflow of Offloaded Reasoning (OR) and
Offloaded Reasoning with Refinement (ORR). In OR, a
lightweight model generates an initial reasoning trace,
which is consumed by a larger model to produce the
final answer. In ORR, the large model additionally re-
fines the initial reasoning before generating the answer,
improving accuracy while maintaining efficiency.

models and verifying them with larger ones. While
effective for speeding up token generation, such
methods operate purely at the token level and re-
main agnostic to the higher-level reasoning struc-
ture required for complex tasks. Moreover, specu-
lative decoding imposes a significant practical con-
straint—it requires the smaller draft model and the
larger verifier model to share the same tokenizer
and vocabulary. This restricts model pair selection
and limits flexibility in deploying heterogeneous
model combinations for efficiency.

In this work, we propose Offloaded Reasoning
(OR), a simple yet powerful alternative that targets
the reasoning process itself. Instead of having the
large model perform all computation, OR offloads
the generation of the intermediate reasoning trace
(e.g., a chain-of-thought) to a smaller model. The
large model then reads this offloaded reasoning and
produces the final answer. This division allows the
small model to shoulder the “cognitive burden” of
reasoning while the large model focuses on synthe-
sis, significantly reducing overall inference cost.

To further improve quality and robustness, we
introduce Offloaded Reasoning with Refinement
(ORR). Here, the large model not only uses but
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also refines the offloaded reasoning—correcting
or extending it as needed—before producing the
answer. This enables the large model to catch errors
in the initial trace while still enjoying substantial
compute savings.

Our approach is orthogonal to decoding-level
acceleration and complements token-efficient gen-
eration. It builds on insights from chain-of-
thought prompting, and modular reasoning, but
focuses squarely on decoupling and optimizing
the reasoning pipeline. We evaluate OR and
ORR on two challenging mathematical reasoning
benchmarks—GSMS8K (Cobbe et al., 2021) and
Math500 (Lightman et al., 2023). Our main find-
ings are:

* OR substantially reduces inference cost:
For example, 7B-OR achieves a 8x speedup
over 7B full reasoning (FR) on Math500, with
only a minor accuracy drop.

* ORR recovers and often exceeds full rea-
soning performance: Across model sizes,
ORR consistently matches or outperforms FR
in accuracy, while still reducing latency.

* These benefits scale across model sizes: The
quality-efficiency tradeoff holds for 7B, 14B,
and 32B models, demonstrating robustness
across deployment regimes.

Our results show that reasoning can be effec-
tively delegated to smaller models, enabling sig-
nificant inference savings without compromising
quality. We argue that modular reasoning strate-
gies like OR and ORR offer a promising direction
for efficient and scalable NLP systems, and point
to a future where reasoning becomes a reusable,
composable primitive in LLM pipelines.

2 Methodology

Let @ denote an input question and .4 the final an-
swer. In traditional LLM inference, a large model
M, directly maps Q to A by internally generating
a reasoning trace Ry, (e.g., a chain-of-thought),

A= ML(Q) = fanswer(RL)a

where R, = freason(Q, Mp). Our core idea in Of-
floaded Reasoning (OR) is to offload the reasoning
component fieason to a smaller model M g, signif-
icantly reducing inference cost. Specifically, we
generate a offloaded reasoning trace R using Mg:

7?/ = freason(Qa MS)?

and feed this to the large model as additional con-
text to generate the final answer:

Aor = ML([Q || R]),

where [Q || R] denotes concatenation of the input
question and the reasoning trace.

This process enables the large model to focus
solely on synthesis (answer generation) while dele-
gating the expensive reasoning process to a smaller
model. The approach assumes that the small model
is capable of generating sufficiently high-quality in-
termediate reasoning to scaffold the large model’s
answer.

2.1 Offloaded Reasoning with Refinement
(ORR)

In ORR, we further enhance this setup by allow-
ing the large model to revise or extend the of-
floaded reasoning before generating the final an-
swer. That is, instead of directly consuming 7@, the
large model first computes a refined reasoning trace

R* = Reﬁne(f%, Q, Mp),
and then uses R* to produce the answer
Aorr = ML([Q || R™)).

This formulation allows M, to retain control
over correctness while still benefiting from the
structure provided by M. The refinement can
involve correcting factual errors, expanding terse
explanations, or realigning the reasoning with the
final objective. Importantly, this operation incurs
much lower compute than end-to-end large model
reasoning, as the input to M, is scaffolded with a
good starting point.

2.2 Compute Efficiency

Assuming the average number of tokens for rea-
soning is 7). and for answer generation is 7, the
total cost (in latency units) of standard inference is
proportional to

Costpaseline < 17 + T,

evaluated under M. In contrast, OR and ORR
incur
Costor TT(S) + TCEL),
COStORR x TT(S) + T;L,reﬁne) + TéL),
where superscripts (S) and (L) denote small
and large model compute respectively. Typically,

T < T,, and T2 < T making both OR
and ORR substantially more efficient.
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3 Experiment Settings

We evaluate Offloaded Reasoning (OR) and Of-
floaded Reasoning with Refinement (ORR) on two

established mathematical reasoning benchmarks:
GSMSK and Math500.

3.1 Datasets

GSMSK (Cobbe et al., 2021)!: A dataset of 8.5K
grade-school math word problems requiring step-
by-step arithmetic reasoning. Each problem typi-
cally involves 2—8 steps and tests general logical
reasoning skills. We evaluate on the official test
split (1K samples).

Math500 (Lightman et al., 2023)>: A diverse
benchmark of 500 mathematical questions from
competition-style domains such as algebra, number
theory, and geometry.

3.2 Experimental Setup

In our implementation, Mg is a DEEPSEEK-
R1-DISTILL-QWEN-1.5B (Guo et al., 2025) pa-
rameter model trained or finetuned to produce
high-quality reasoning traces. The large model
M, DEEPSEEK-R1-DISTILL-QWEN-{7B, 14B,
32B}, consumes these traces either directly (OR)
or via refinement (ORR). Importantly, no retraining
of the large model is required; we only condition
it on augmented inputs. These act as the answer
modules and operate under one of the following
configurations:

* No Reasoning (NR): Direct question-to-
answer generation without reasoning.

* Full Reasoning (FR): M, Performs both rea-
soning and answer generation internally.

* OR: M, Consumes reasoning traces from
M to generate an answer.

* ORR: M/, Refines the reasoning trace from
M s before generating the final answer.

We offload reasoning to the 1.5B model to signifi-
cantly reduce compute and latency. While its traces
may be imperfect, they are often sufficient for the
large model to refine or complete, making this setup
far more efficient than using the large model for
reasoning end-to-end. Specific prompts used for
OR and ORR are depicted in Appendix A.

1ht'cps ://huggingface.co/datasets/openai/gsm8k
2ht’cps ://huggingface.co/datasets/
HuggingFaceH4/MATH-500

Model GSM8K Math500
Res Rea Conf AIT(s) EM AIT(s) Pass@1
1.5B 1.5B FR 1.30 81.65 3.90 85.2
X NR 248 77.86 41.34 50.0
7B 7B FR 3.86 8522 55.89 89.4
1.5B  OR 240 83.17 7.42 86.6
1.5B  ORR 5.15 88.70  31.60 89.4
X NR 3.67 6459 61.20 57.6
14B 14B  FR 8.05 9030 77.56 89.0
1.5B OR 448 8537 1147 87.0
1.5B  ORR 7.59 9234 54770 90.6
X NR 378 40.64  65.90 53.6
32B 32B  FR 17.55 91.36 158.32 92.8
1.5B OR 7.24 84.00 23.16 87.4
1.5B ORR 1628 9340 128.18 93.2

Comparison with existing approaches (relative gains)

32B 1.5B-ORR -1.27  +2.04
GPT-4 SELF-R X

-30.14 +0.4
+0.2 X X

Table 1: Benchmarking on GSM8K and Math500 across
inference setups. Res is the LLM generating the final
response, Rea is the LLM generating the reasoning trace,
Conf corresponds to different configurations {NR, FR,
OR, ORR}, AIT is average inference time (seconds)
per query, EM is Exact Match. Methods compared are
SELF-R is SELF-REFINE from (Madaan et al., 2023)

3.3 Evaluation Metrics

Exact Match (EM) for GSM8K: Measures exact
string match with the gold solution.

Pass@1 for Math500: Measures whether the top-
1 generated answer is correct. Both the evalua-
tion metrics are borrowed from LIGHTEVAL(Habib
et al., 2023).

Average Inference Time (AIT): Measured in sec-
onds per input query, averaged over all the samples
per dataset including both reasoning and response
generation steps.

4 Results and Analysis

Our central goal is to demonstrate that modulariz-
ing the reasoning process via a small model Mg
can deliver efficiency gains without sacrificing (and
sometimes improving) performance.

4.1 Offloading Enables Efficient Reasoning.

Using a 1.5B reasoning model to assist a 7B
base model (OR) improves accuracy over the stan-
dalone 1.5B model (GSMS8K: 83.17 vs. 81.65 EM;
Math500: 86.6 vs. 85.2 Pass@1), while drastically
reducing inference latency relative to 7B Full Rea-
soning (FR) ( Math500: 7.42s vs. 55.89s). This

7452


https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500

establishes that Offloaded Reasoning offers a su-
perior quality-efficiency tradeoff compared to both
small and large standalone reasoning models.

At the 14B scale, OR remains competitive
in quality (GSM8K: 85.37 EM; Math500: 87.0
Pass@1) despite using a much smaller reason-
ing module, while achieving over 7x faster infer-
ence on Math500 compared to 14B-FR (11.47s vs.
77.56s). Even at 32B, the OR setup produces ac-
curate results (GSM8K: 84.00 EM; Math500: 87.4
Pass@1) while reducing inference time by over
7x on Math500 compared to 32B-FR (23.16s vs.
158.32s).

These trends underscore that Offloaded Reason-
ing not only scales well to larger backbone models,
but also provides substantial latency savings while
maintaining strong performance—making it an at-
tractive inference strategy across compute budgets.

4.2 Refinement Boosts Quality

The ORR setup, where the large model refines
the small model’s reasoning traces before answer-
ing, consistently outperforms all other configura-
tions in accuracy. For instance, on GSM8K, 7B-
ORR achieves 88.70 EM, outperforming both 7B-
FR (85.22) and 7B-OR (83.17). Similarly, 32B-
ORR achieves the highest overall scores on both
benchmarks (GSMS8K: 93.40 EM; Math500: 93.2
Pass@1). This indicates that large models can ef-
fectively refine and enhance imperfect reasoning
traces generated by smaller models. Few examples
are shown in Appendix B .

4.3 Substantial Inference Gains

Offloading reasoning consistently yields large re-
ductions in average inference time. For example,
7B-OR reduces latency by over 7x compared to
7B-FR on Math500 (7.42s vs. 55.89s) with less
than 3% drop in accuracy. Even at the 14B and
32B scale, OR setups demonstrate notable latency
improvements over FR while maintaining competi-
tive performance.

Although Offloaded Reasoning with Refinement
(ORR) incurs higher latency than OR (e.g., 7B-
ORR: 31.60s vs. 7.42s on Math500), it consistently
matches or exceeds FR in accuracy (e.g., 7B-ORR
and 7B-FR both yield 89.4 Pass@1 on Math500),
offering a favorable tradeoff for settings where ac-
curacy is paramount. At 32B, ORR reaches the
highest accuracy overall (Math500: 93.2 Pass@1),
while still being 1.3 faster than 32B-FR (128.18s
vs. 158.32s). These results suggest that ORR of-

fers a high-quality inference mode with moder-
ate efficiency gains, while OR maximizes speed
with minimal quality tradeoff.

4.4 Modularity Across Model Families

To test the modularity and transferability of of-
floaded reasoning, we applied the 1.5B reason-
ing traces to a different response model fam-
ily—DEEPSEEK-R1-DISTILL-LLAMA-8B. As
shown in Table 2, the OR and ORR configurations
significantly outperform full reasoning (FR) by the
same 8B model. In particular, ORR improves Exact
Match (EM) from 47.01 to 84.84, demonstrating
that reasoning traces generated by the 1.5B model
can generalize across model architectures and fam-
ilies. This highlights the plug-and-play potential of
offloaded reasoning for diverse LLM deployments.

Res Rea Conf AIT(s) EM
8B 8B FR 483 47.01
8B 1.5B OR 1.26  76.95
8B 1.5B ORR 436 84.84

Table 2: Evaluating modularity of 1.5B-generated rea-
soning traces to a LLAMA-8B response model.

5 Related Work

The goal of reducing inference cost while main-
taining or improving quality has been explored
through multiple research avenues, including ef-
ficient decoding strategies, modular computation,
and few-shot reasoning techniques. Our approach
draws from and contributes to each of these direc-
tions. Table 3 contrasts our proposed approach with
related reasoning optimization strategies in LLMs.

Efficient Inference in Large Language Models
Recent work has addressed the challenge of high
inference cost in large models by proposing tech-
niques such as early exit (Schuster et al., 2022),
speculative decoding (Leviathan et al., 2023), and
distillation (Sreenivas et al., 2024; Liu et al.,
2024). Speculative decoding in particular lever-
ages smaller draft models to speed up generation
by deferring verification to a larger model, though
it remains limited to token-level prediction rather
than higher-level reasoning. Unlike token-level ac-
celeration methods, our approach operates at the
level of full reasoning traces, offering orthogonal
benefits in structured reasoning tasks.
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Aspect Prior Work

This Work (OR / ORR)

Granularity of
Control

Operates at the level of reasoning length or token-level
interventions, e.g., Chain-of-Thought prompting (Wei et al.,
2022), instruction-driven expansion (Jin et al., 2024), multi-
agent debate (Liang et al., 2023; Pham et al., 2024), and use
of drafter models (Leviathan et al., 2023)

Operates at module-level granularity: a
small model performs reasoning, while the
large model synthesizes or refines the re-
sponse.

Adaptivity to
Query Com-
plexity

Explicitly controlled using reinforcement learning or heuris-
tic scheduling of reasoning steps (Aggarwal et al., 2023;
Xu et al., 2024; Wang et al., 2024), or self-reflective meth-
ods (Zelikman et al., 2022; Madaan et al., 2023).

Adaptivity is implicit—reasoning traces are
generated by the small model without pre-
specified length. ORR enables recovery or
improvement without explicit step control.

Efficiency
Mechanism

Reduces inference cost through response truncation, token
budget optimization, or rollout control (Snell et al., 2024).

Reduces compute by offloading reasoning
to a 1.5B model, yielding up to 8 x speedup
over full large-model reasoning.

Learning Re-
quirements
Skalse et al., 2022).

Requires RL-based or constrained training objectives (Alt-
man, 2021), with risk of reward hacking (Pan et al., 2022;

Requires no retraining or fine-tuning. The
pipeline is built entirely from prompt aug-
mentation and standard model calls.

Table 3: Comparison of Offloaded Reasoning (OR/ORR) with prior LLM-based reasoning optimization strategies.

Chain-of-Thought and Few-Shot Reasoning
Chain-of-thought prompting (Wei et al., 2022) and
its self-consistency variants (Wang et al., 2023)
have demonstrated large gains in reasoning tasks.
Recent approaches have further improved quality
by generating and selecting diverse reasoning paths
(Creswell et al., 2022). Our method builds on this
paradigm by explicitly offloading the reasoning to
a smaller model, showing that reasoning quality
and cost efficiency need not be tightly coupled to
model scale.

Collaborative and Multi-Agent LMs Multi-
agent systems (Park et al., 2023; Shinn et al., 2023)
explore the use of multiple language models in
collaborative roles. These works often involve di-
alogue or planning tasks. Our formulation is a
specific instance of this philosophy: one model is
tasked with reasoning and another with validating
or refining it. Unlike prior works that use agents
with similar capacities, we show how models of
vastly different scales can collaborate to achieve
higher efficiency and reliability.

6 Conclusion

Offloaded Reasoning with Refinement uniquely
combines modular reasoning, efficiency, and ro-
bustness in a unified framework. While prior works
have addressed components of this pipeline, our
contribution lies in orchestrating small and large
models for reasoning and refinement, resulting in
significant inference gains without compromising
accuracy. This modularity also enables dynamic
scaling, making it highly suitable for real-world
deployments with variable compute budgets.

Limitations

This work focuses on arithmetic and symbolic rea-
soning tasks (GSM8K and Math500), which offer
a controlled and well-understood setting for evalu-
ating modular reasoning. While we do not evaluate
on other domains, such as commonsense or open-
domain QA, our approach is model-agnostic and
readily extensible to these areas in future work.

The small reasoning model may occasionally
generate imperfect traces, but our results show that
even approximate reasoning often provides a strong
scaffold for the large model to refine or complete.
Investigating methods to further improve the ro-
bustness of reasoning quality—e.g., through selec-
tive verification or trace filtering—is a promising
direction.

We rely on lightweight prompt-based integra-
tion, which keeps the system simple and broadly
applicable. While prompt optimization and dy-
namic routing mechanisms (e.g., based on question
difficulty or model confidence) are not explored
here, they are orthogonal to our core contributions
and could further enhance the efficiency-accuracy
trade-off.

Finally, while we primarily report latency and
accuracy, our framework naturally supports fine-
grained analysis of compute, memory, or energy
cost—all of which can be incorporated in fu-
ture deployment-focused evaluations. Overall,
this work introduces a novel modular reasoning
paradigm that enables significant inference savings
with minimal system changes.
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A Prompt

Table 4 depicts the prompts used by Offloaded rea-
soning (OR) and Offloaded Reasoning with Refine-
ment (ORR). In OR, response model is not allowed
to reason but to produce the final response based
on the provided reasoning from a smaller size rea-
soning model. On the other hand, in ORR response
model is allowed to refine the offloaded reasoning
just by not closing the </think> token.

B Sample Examples

To demonstarte the effectiveness of the OR and
ORR, we picked few examples from GSMS8k
datasets in table 5 and 6 where the 1.5B LLM
takes the wrong turn (in RED) while generating
reasoning. In Table 5, 32B response generator able
to correctly identify the problem in the reasoning

Method Prompt Templates

NR {message } <Assistant><think>No rea-
soning available</think>

FR {message }<Assistant><think>

OR {message } <Assistant><think>{reason}
</think>

ORR {message }<Assistant><think>nahh.. I

got some speculations. let me
check that <SPECULATIONS> {rea-
son}</SPECULATIONS> ohh.. no..
But wait.. These speculations could be
incorrect.

Table 4: Here, message is the actual query and reason is
the offloaded reasoning from a smaller language model.
These prompts directly feed to the response LLM (M)
for next token generation.

step (in BLUE ) both with and without refinement.
In Table 6 32B response generator with 1.5B OR
does not perform any reasoning and fails to identify
the main cause of the wrong reasoning. However,
1.5B ORR able to refine the 1.5B generated reason-
ing and correctly identifies the main cause of 1.5B
reasoning incorrectness (in BLUE ).
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Key Value

Query Maggie’s oven is malfunctioning. When she sets it to 450 the actual temperature is 468. If it’s off by the
same percentage for any recipe, what temperature should she set it at if her recipe calls for 520 degrees?

Gold response The oven off by 18 degrees because 468 - 450 = «468-450=18»18The oven is off by 4% because 18 /
450 x 100 = «18/450%100=4»4%Therefore X + .04X = 520Therefore 1.04X = 520The temperature to set
it is 500 because 520 / 1.04 = «520/1.04=500»500 500

1.5B Reasoning  Okay, so I need to figure out what temperature Maggie should set her oven to for her recipe that calls
for 520 degrees. She’s currently setting it to 450, but the oven is malfunctioning. When she sets it to
450, the actual temperature is 468. That means the oven is overbaking by 18 degrees. First, I should
find out by what percentage the oven is overbaking. The formula for percentage overbaking is (Actual
Temperature - Set Temperature) divided by Set Temperature, then multiplied by 100. So that’s (468
- 450)/450 * 100. Let me calculate that: 18/450 is 0.04, and 0.04 times 100 is 4%. So the oven is
overbaking by 4%.Now, if she wants to adjust the temperature for any recipe, she needs to reduce the
temperature by the same percentage. So she’s currently at 450, and she wants to reduce it by 4%. To
find 4% of 450, I'll do 450 * 0.04, which equals 18. So she needs to reduce the temperature by 18
degrees.Subtracting that from the current temperature: 450 - 18 = 432. So the new temperature should
be 432 degrees. Wait, let me double-check that. If she sets it to 432, what would the oven actually be?
Using the same percentage calculation: (432 - 450)/450 * 100. That’s (-18)/450 * 100, which is -4%.
So the oven would be underbaking by 4%, which is the same percentage as before. That makes sense
because she’s adjusting the temperature to compensate for the overbaking.So, yes, 432 degrees should be
the correct temperature for her recipe.

1.5B Response ~ Maggie should set her oven to 432 degrees. This adjustment compensates for the 4% overbaking,
ensuring the recipe is correctly baked.

32B Response + To determine the correct temperature Maggie should set her oven to, we first calculate the percentage by

1.5B (OR) which the oven is overbaking. The oven is set to 450 but reaches 468, which is an overbake of 18. The
percentage overbake is: 4% To compensate for this, Maggie needs to reduce the temperature by 4%. For

500 degrees.
32B Response + Let me think again.Wait, actually, the oven is overbaking by 4% when set to 450. So, to get the correct
1.5B ORR temperature, she needs to set it lower. The correct temperature is 520 . So, she needs to find what

temperature to set so that when the oven overbakes by 4%, it reaches 520. So, let me rephrase that. Let
x be the temperature she should set. Then, x * 1.04 = 520. So, x = 520/ 1.04. Let me calculate that: 520
divided by 1.04. 1.04 times 500 is 520, so x is 500. So, she should set it to 500 degrees.Wait, that makes
more sense. Because if she sets it to 500, the oven will overbake by 4%, which is 500 * 0.04 = 20, so
500 + 20 = 520, which is the desired temperature.So, the correct answer is 500 degrees.</think>

Table 5: Here, 1.5B Reasoning is incorrect. where the 1.5 B reasoner incorrectly got 450 as actual temperature
...find 4% of 450..., it should be ...find 4% of 520....This is precisely fixed by the 1.5 OR and 1.5B ORR Variants
where the 32B able to correct the offloaded reasoning and able to identify the current temperature asked in the query
that is The correct temperature is 520. So...
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Key

Value

Query

Gold response

1.5B Reasoning

1.5B Response

32B Response +
1.5B (OR)
32B Response +
1.5B ORR

If Martin eats Cheerios every day for breakfast, he’ll lose 1.25 pounds/week. If he eats donuts every
day for breakfast, he’ll gain 1.75 pounds/week. What will be the difference in his weight at the end of 5
weeks between the two breakfast options?

First find the difference in weight gain per week: 1.75 pounds/week - ( -1.25 pounds/week) = 1.75
pounds/week + 1.25 pounds/week = «1.75-(-1.25)=3»3 pounds/weekThen multiply the weight gain per
week by the number of weeks to find the total difference at the end of 5 weeks: 5 weeks * 3 pounds/week
= «5*3=15»15 pounds 15

Okay, so I need to figure out the difference in weight between Martin’s two breakfast options over five
weeks. Let me break this down step by step.First, Martin eats Cheerios every day for breakfast. Over
one week, he loses 1.25 pounds. So, over five weeks, he would lose 1.25 pounds multiplied by 5. Let me
calculate that: 1.25 * 5 = 6.25 pounds lost.On the other hand, he eats donuts every day. This time, he
gains 1.75 pounds each week. So, over five weeks, he would gain 1.75 * 5 pounds. Calculating that gives
me 8.75 pounds gained. Now, to find the difference in weight between the two options at the end of five
weeks, I subtract the weight lost from the weight gained. That would be 8.75 - 6.25 = 2.5 pounds.So,
Martin would weigh 2.5 pounds more if he eats donuts every day compared to eating Cheerios every day
over five weeks.

Martin would weigh 2.5 pounds more if he eats donuts every day compared to eating Cheerios every day
over five weeks.

The difference in weight after 5 weeks is 2.5 pounds.

Let me think again.Wait, actually, the difference in weight would be the total weight change from each
option. Since one is a loss and the other is a gain, the total difference would be the sum of the absolute
values of both changes. So, if he loses 6.25 pounds on Cheerios and gains 8.75 pounds on donuts, the
difference between the two would be 6.25 + 8.75 = 15 pounds. Wait, that makes more sense because the
total difference in weight is the sum of the two changes since one is a loss and the other is a gain.So, the
correct difference is 15 pounds.</think>

Table 6: Here, 1.5B Reasoning is incorrect. where the 1.5 B reasoner end up subtracting the correctly computed
weights gains instead of adding them ...ould be 8.75 - 6.25 = 2.5 ..., it should be ...ould be 8.75 + 6.25 = 15 ....This
is precisely fixed by the 1.5 ORR Variants where the 32B able to refine the offloaded reasoning and able to identify
that the total difference in this question is in fact the sum of absolute values the total difference would be the sum of

the absolute values of both changes....
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