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Abstract
Although Hyper-relational Knowledge Graphs
(HKGs) can model complex facts better than
traditional KGs, the Hyper-relational Knowl-
edge Graph Completion (HKGC) is more sen-
sitive to inherent noise, particularly struggling
with two prevalent HKG-specific noise types:
Intra-fact Inconsistency and Cross-fact Associa-
tion Noise. To address these challenges, we pro-
pose HDiff, a novel conditional denoising dif-
fusion framework for robust HKGC that learns
to reverse structured noise corruption. HDiff
integrates a Consistency-Enhanced Global
Encoder (CGE) using contrastive learning to
enforce intra-fact consistency and a Context-
Guided Denoiser (CGD) performing iterative
refinement. The CGD features dual condition-
ing leveraging CGE’s global context and lo-
cal confidence estimates, effectively combat-
ting both noise types. Extensive experiments
demonstrate that HDiff substantially outper-
forms state-of-the-art HKGC methods, high-
lighting its effectiveness and significant robust-
ness, particularly under noisy conditions.

1 Introduction

Hyper-relational Knowledge Graphs (HKGs)
(Hogan et al., 2021; Xiong et al., 2023) ex-
tend traditional KGs (Bordes et al., 2013) by
augmenting core facts (s, r, o) with qualifier
sets Q = {(qi, vi)} (Vrandečić and Krötzsch,
2014). This richer structure captures complex
factual statements with crucial context, vital
for applications like detailed question answer-
ing and biomedical discovery (Yan et al., 2022).
Hyper-relational Knowledge Graph Completion
(HKGC)—predicting missing elements in these
hyper-relational facts (H-Facts)—is thus essential
for enriching these knowledge bases.

Early HKGC approaches often adapted tradi-
tional KG embedding techniques, utilizing com-
positional scoring functions to integrate qualifier
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Figure 1: Conceptual comparison of noise types. Left:
Structure of a hyper-relational fact (H-Fact). Right: Tra-
ditional KG noise contrasted with HKG-specific noise
stemming from qualifiers.

information (Guan et al., 2019; Rosso et al., 2020).
More recently, methods employing Graph Neural
Networks (GNNs) have gained prominence, lever-
aging the inherent graph or hypergraph structure of
HKGs (Fatemi et al., 2022; Xu et al., 2021). These
GNN-based models typically feature specialized
message-passing schemes or attention mechanisms
designed to effectively aggregate information from
both core triple components and associated quali-
fiers (Luo et al., 2023; Xu et al., 2021). By captur-
ing intricate structural dependencies and learning
expressive representations, these methods have sig-
nificantly advanced the state of the art in HKGC.
Nevertheless, their success largely hinges on the
assumption of relatively clean data, often neglect-
ing the pervasive issue of noise commonly found
in real-world knowledge graphs.

Crucially, the complex structure of H-Facts, par-
ticularly the interplay involving qualifiers, intro-
duces distinct noise patterns that pose unique chal-
lenges beyond those encountered in simpler triple-
based KGs (see Figure 1). We identify two preva-
lent and particularly detrimental HKG-specific
noise types arising from these qualifier interactions:
(1) Intra-fact Inconsistency Noise: This refers to
contradictions or inconsistencies arising within a
single H-Fact, often involving conflicting informa-
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tion between the core triple and its qualifiers, or
among the qualifiers themselves. For example, an
H-Fact might state someone received an award in
a specific year (qualifier), while the core triple im-
plies a context inconsistent with that timeframe.
This internal incoherence, driven by semantically
conflicting components within the fact, compro-
mises the integrity of individual factual units. (2)
Cross-fact Association Noise: This noise mani-
fests as spurious semantic links or systemic con-
tradictions established between distinct H-Facts,
often propagated via misleading or inaccurate qual-
ifiers. For instance, inconsistent qualifiers across
multiple H-Facts describing related events could
create misleading relational patterns or erroneous
associations between entities, distorting the graph’s
broader structural representation. This type of
noise leverages qualifier semantics to propagate
errors in ways distinct from simple incorrect links
in traditional KGs.

These specific noise patterns severely under-
mine the effectiveness of existing HKGC meth-
ods (Fatemi et al., 2022; Luo et al., 2023). Methods
relying on aggregation (like GNNs) may propagate
inconsistencies, while those using scoring func-
tions might assign high confidence to internally
contradictory facts. Standard noise mitigation tech-
niques developed for traditional KGs (Hong et al.,
2020; Tenorio et al., 2023) often prove insufficient
as they are typically not designed to handle incon-
sistencies stemming from the complex interplay of
qualifiers within and across H-Facts.

To address these challenges, we propose HD-
iff, a novel conditional denoising diffusion frame-
work (Ho et al., 2020) for robust HKGC. HDiff
adopts a generative approach, learning to reverse
a structured noise corruption process. It integrates
two synergistic components: (1) A Consistency-
Enhanced Global Encoder (CGE) employs con-
trastive learning to enforce intra-fact semantic co-
herence, directly counteracting Intra-fact Incon-
sistency Noise. (2) A Context-Guided Denoiser
(CGD) performs iterative refinement conditioned
on both global context (from CGE) and local com-
ponent confidence estimates, robustly mitigating
both noise types by balancing global structure and
local uncertainty. Therefore, our main contribu-
tions are threefold:

• We identify and characterize two critical noise
patterns prevalent in HKGs: Intra-fact In-
consistency Noise and Cross-fact Associa-

tion Noise, highlighting the unique challenges
posed by qualifier interactions in their mani-
festation and impact.

• We propose HDiff, a novel conditional diffu-
sion framework for robust HKGC, featuring:

– A Consistency-Enhanced Global En-
coder (CGE) employing targeted con-
trastive learning (comparing the full H-
Fact representation against its core triple
representation) to explicitly enforce intra-
fact semantic consistency, thereby coun-
teracting Intra-fact Inconsistency Noise.

– A Context-Guided Denoiser (CGD)
featuring a dual conditioning mechanism
(global context + local confidence esti-
mates) to robustly reconstruct H-Facts,
effectively addressing both Intra-fact In-
consistency Noise and Cross-fact Associ-
ation Noise.

• We conduct extensive experiments on bench-
mark HKGC datasets under various synthetic
and realistic noise settings. Our results demon-
strate that HDiff achieves state-of-the-art per-
formance and demonstrates significantly en-
hanced robustness compared to existing meth-
ods, particularly in high-noise scenarios.

2 Related Work

2.1 Hyper-relational Knowledge Graph
Completion

Hyper-relational Knowledge Graph Completion
(HKGC) focuses on predicting missing elements
within hyper-relational facts (H-Facts) (s, r, o,Q),
where qualifiers Q = {(qi, vi)} provide crucial
context to the core triple (s, r, o) (Vrandečić and
Krötzsch, 2014; Hogan et al., 2021). Early works
often decomposed H-Facts or used compositional
functions to integrate qualifier information (Wen
et al., 2016a; Guan et al., 2019; Liu et al., 2020;
Rosso et al., 2020). While these methods suc-
cessfully integrated qualifiers, they typically lack
explicit mechanisms to ensure internal consis-
tency, making them susceptible to Intra-fact In-
consistency Noise, where contradictory informa-
tion within a single H-Fact can significantly de-
grade performance.

More recent approaches leverage Graph Neu-
ral Networks (GNNs) or attention mechanisms to
model the complex structure of HKGs (Fatemi
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et al., 2022; Xu et al., 2021; Luo et al., 2023).
For instance, GRAN (Xu et al., 2021) uses
graph attention for information aggregation, while
HAHE (Luo et al., 2023) employs hierarchical at-
tention to weigh H-Fact components. Although
powerful on clean data, these models often implic-
itly assume data integrity. Standard GNN aggrega-
tion can inadvertently propagate errors stemming
from misleading qualifiers (Cross-fact Associa-
tion Noise), and attention mechanisms may strug-
gle to correctly down-weight inconsistent compo-
nents within an H-Fact (Intra-fact Inconsistency
Noise), especially when learned representations
are distorted by noise. A common limitation across
most existing HKGC methods is the lack of ex-
plicit, intrinsic robustness mechanisms specifically
designed to counteract these prevalent, qualifier-
driven noise patterns.

2.2 Noise Robustness in Knowledge Graph
Completion

Addressing noise is critical for reliable Knowl-
edge Graph Completion (KGC) (Dong et al.,
2025). In traditional triple-based KGs, robustness
techniques include noise filtering (Borrego et al.,
2019), robust training objectives or sampling strate-
gies (Sun et al., 2019), rule-based consistency en-
forcement (Tang et al., 2024), and robust GNN
aggregators (Tenorio et al., 2023). These meth-
ods, however, primarily address triple-level noise
(e.g., incorrect links) and are insufficient for HKG
noise rooted in the complex semantic interplay of
qualifiers within and across H-Facts.

Research on robust HKGC is notably less devel-
oped. Adapting methods for noisy traditional KGs
like IDKG (Hong and Ma, 2023) is challenging
due to the fundamentally different nature of hyper-
relational noise. While methods like NYLON (Yu
et al., 2024) explore handling noisy H-Facts using
confidence, they rely on active learning or exter-
nal annotations for noise identification, requiring
costly manual effort or supervision. This highlights
a significant gap: the need for HKGC methods with
intrinsic robustness mechanisms operating without
external supervision or noise labeling.

Recently, diffusion models have emerged in the
KG domain. For instance, DiffKG (Jiang et al.,
2024) refines preference scores for recommenda-
tion, while KGDM (Long et al., 2024) uses un-
conditional diffusion for triple completion (see Ta-
ble 1). However, these models operate on standard
triples or user-item matrices. In contrast, HDiff

Work Task Conditional Handles
HKGs/Noise?

Key Difference from Our Work

DiffKG(Jiang
et al., 2024)

Recommendation ✗ ✗ Re-ranks nodes; Diffusion on 2D in-
teraction matrix to refine preference
scores.

KGDM(Long
et al., 2024)

Triple KGE ✗ ✗ Unconditional diffusion to refine score
distribution for triples.

HDiff (Ours) HKG Completion ✓

local & global
✓

two types
Dual-conditional diffusion on en-
tity/relation reps. for robust HKG
completion.

Table 1: Comparison with recent diffusion-based KG
models. HDiff is uniquely designed for the complexities
of robust HKG completion with a novel dual-conditional
mechanism.

is the first to employ a dual-conditional diffusion
process directly on hyper-relational entity and rela-
tion representations. This allows it to address the
unique structural complexities and noise patterns
inherent to HKGs, representing a distinct advance-
ment for robust link prediction in this setting.

Motivated by the distinct challenges posed by
HKG-specific noise patterns and the limitations
of existing methods regarding intrinsic robustness,
we propose HDiff, a novel conditional denoising
diffusion framework designed for robust HKGC.
In contrast to prior art which often assumes clean
data, lacks explicit noise handling mechanisms, or
requires external noise labels, HDiff incorporates
explicit, learnable components to address noise.

3 Methodology

We propose HDiff, a novel conditional denois-
ing diffusion framework specifically designed for
robust Hyper-relational Knowledge Graph Com-
pletion (HKGC). HDiff addresses HKG noise via
two core components: a Consistency-Enhanced
Global Encoder (CGE) generating noise-resilient,
semantically consistent initial embeddings, and a
Context-Guided Denoiser (CGD) for iterative re-
finement via conditional diffusion, guided by local
and global context for accurate, robust completion.
Figure 2 provides a schematic overview of the pro-
posed HDiff architecture.

3.1 Consistency-Enhanced Global Encoder
(CGE)

The CGE module (depicted in the upper panel of
Figure 2) aims to produce initial embeddings for
HKG components (entities, relations, and H-Facts)
that are robust to noise, particularly counteracting
Intra-fact Inconsistency.

First, we utilize a Graph Attention Network
(GAT) (Veličković et al., 2017) applied over the in-
put HKG structure to generate intermediate context-
aware embeddings (zk) for entities, relations, and
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Figure 2: Overview of HDiff. CGE’s robust embeddings are prepared for CGD: H-Fact sequences undergo
Controlled Noise Injection (to xt), while Serialized Condition Preservation derives conditioning signals (clc, che).

H-Facts. We chose GAT for its ability to dynami-
cally assign importance weights to different compo-
nents, including qualifiers of varying significance.
This flexibility proved crucial for robustness, as
GAT empirically outperformed other encoders like
GCN in noisy settings (see Appendix D.1). While
GATs are effective at capturing graph structure
through message passing, standard aggregation
mechanisms are prone to propagating noise present
in the graph.

To explicitly combat Intra-fact Inconsistency, we
integrate a contrastive learning objective based on
Barlow Twins (BT) (Zbontar et al., 2021). This
objective enforces semantic coherence by encour-
aging alignment between two key representations
derived from the GAT outputs: the aggregate rep-
resentation of the full H-Fact (zf ), and a repre-
sentation focused solely on its core triple (zsro).
The GAT yields zf as the aggregated represen-
tation for the entire H-Fact and component em-
beddings zk for all components (entities, relations,
qualifiers). We derive the core triple representa-
tion zsro by applying max pooling over the sub-
ject, relation, and object embeddings: zsro =
MaxPooling(zs, zr, zo). Both zf and zsro are then
passed through a shared projector PBT to obtain
projected representations pf and psro. The Bar-
low Twins loss LBT minimizes the redundancy be-
tween the dimensions of these projected represen-
tations by forcing their empirical cross-correlation

matrix C towards the identity matrix I:

LBT =
∑

i

(1− Cii)2 + βBT
∑

i

∑

j ̸=i
C2ij (1)

where βBT is a balancing hyperparameter. By en-
couraging the full H-Fact representation to be pre-
dictable from its core triple representation (and
vice versa), LBT effectively regularizes the em-
beddings, making them less susceptible to internal
contradictions caused by inconsistent or misleading
qualifiers within a single H-Fact.

Additionally, to anchor the learned embed-
dings in fundamental relational semantics and
provide a basic structural signal, we apply the
TransE (Bordes et al., 2013) margin-based rank-
ing loss (LTransE) to core triples (s, r, o). We use
standard negative sampling by corrupting the tail
entity to produce negative triples (s, r, o′):

LTransE =
∑

(s,r,o)
∈Fcore

∑

o′∈
N ′
o(s,r)

[
γ + ∥zs + zr − zo∥2

− ∥zs + zr − zo′∥2
]
+

(2)

Here, zk denotes the intermediate embedding from
the GAT for component k ∈ {s, r, o, o′}, ∥ · ∥2 is
the L2 norm, γ is the margin, Fcore is the set of
core triples, and N ′

o(s, r) is the set of corrupted
tails for (s, r, o).
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Finally, an MLP adaptation layer gψ transforms
the intermediate embeddings zk into final adapted
embeddings ek of dimension d: ek = gψ(zk). The
total training loss for the CGE module is a weighted
sum of the two objectives:

LCGE = λTransELTransE + λBTLBT (3)

where λTransE and λBT are hyperparameters bal-
ancing the contribution of each loss. This com-
prehensive process yields robust and semantically
consistent initial embeddings for entities (EE), re-
lations (ER), and H-Facts (EH ), providing the cru-
cial input for the subsequent denoising stage.

3.2 Context-Guided Denoiser (CGD)
The CGD employs a conditional Denoising Diffu-
sion Probabilistic Model (DDPM) framework (Ho
et al., 2020) operating on robust CGE embeddings
to iteratively reconstruct clean H-Fact representa-
tions, thereby mitigating both Intra-fact Inconsis-
tency and Cross-fact Association Noise. As shown
in the lower panel of Figure 2, for this diffusion
process, each H-Fact f = (s, r, o, {(ki, vi)}ni=1) is
serialized into an initial sequence of component
embeddings x0 ∈ RL×d by concatenating their
corresponding final CGE embeddings:

x0 = [es, er, eo, ek1 , ev1 , . . . , ekn , evn ] (4)

where L = 3 + 2n is the length of the sequence.
The indices i and j used hereafter refer to positional
indices within this sequence; for instance, i = 1
corresponds to the subject embedding er.

We apply the standard DDPM forward noising
process, which gradually adds Gaussian noise over
T timesteps to x0, producing noisy states xt. Train-
ing involves optimizing a Transformer-based de-
noiser ϵθ to predict the added noise ϵ from the
noisy state xt and the current timestep t.

To enhance robustness against specific HKG
noise patterns, the denoiser ϵθ is guided by HDiff’s
dual conditioning mechanism using CGE outputs:

(1) Local Confidence Condition (clc): To
specifically combat Intra-fact Inconsistency at a
fine-grained level, we identify the component em-
bedding ej within the initial x0 that is predicted
to have the lowest confidence score by a trainable
MLP Pconf:

j = argmini∈{1,...,L}{sigmoid(Pconf(ei))} (5)

This component ej corresponds to the element
within the H-Fact most likely to be erroneous or

inconsistent based on the learned confidence scores.
The embedding ej is then transformed into the lo-
cal confidence condition vector clc (e.g., via projec-
tion). This clc is subsequently concatenated as an
extra token to the noisy input sequence xt (along
with the timestep embedding et) before being fed
into the Transformer. This allows the denoiser’s
self-attention mechanism to explicitly attend to and
leverage information about the potentially inconsis-
tent component, aiding in its robust reconstruction.

(2) Global Context Condition (che): To main-
tain overall H-Fact coherence and mitigate both
Intra-fact Inconsistency and Cross-fact Associa-
tion Noise by leveraging global structural informa-
tion, we use the CGE’s consistency-regularized
H-Fact (hyperedge) embedding ef ∈ EH . A
learned projection layer transforms this embed-
ding into the global context condition vector che =
Projhe(ef ) ∈ Rd. This vector biases the Trans-
former’s self-attention scores, guiding the model
towards reconstructions that are consistent with the
learned robust global representation of the H-Fact:

score(i, j) =
qTi kj√

dk
+ (Wqqi)

T (Wcche) (6)

where qi and kj are the query and key vectors for
positions i and j, dk is the key dimension, and
Wq,Wc are learned weight matrices. The second
term serves as a global context bias, computing
a relevance score between the query at position i
and the global H-Fact context che, which is then
broadcast to all keys to uniformly guide attention
toward elements consistent with the fact’s overall
meaning.

By synergistically conditioning the diffusion pro-
cess on both local uncertainty signals (clc) derived
from component confidence and the global struc-
tural context (che) from the robust H-Fact embed-
ding, the CGD effectively learns to reverse the
diffusion process and predict clean H-Fact embed-
dings x̂0 = [ê1, . . . , êL], achieving robust handling
of the identified HKG noise types.

3.3 Model Training and Inference
HDiff is trained end-to-end by minimizing a com-
posite loss L (Eq. 7) combining three objectives.

L = LCGE + Ldiffusion + λpredLpred (7)

The first objective, LCGE (Eq. 3), optimizes
the Consistency-Enhanced Global Encoder to pro-
duce robust initial embeddings using the combined
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Dataset H-Facts Triple with Q(%) Arity Entities Relations Train/Valid/Test
JF17K 100,947 46,320 (45.9%) 2-6 28,645 501 76379 (75.7%) 24.3%

WD50K 236,507 32,167 (13.6%) 2-67 47,155 531 166435 (70.4%) 10.1% 19.5%

WikiPeople 369,866 9,482 (2.6%) 2-7 34,825 178 294439 (79.6%) 10.2%10.2%

Table 2: Statistics of the hyper-relational datasets

TransE and Barlow Twins objectives. The second
is Ldiffusion, the standard conditional DDPM ob-
jective (Ho et al., 2020), which trains the CGD’s
denoiser ϵθ to predict the noise ϵ added to the clean
data x0 at timestep t, conditioned on the noisy state
xt, timestep t, and derived conditions clc, che:

Ldiffusion =Et∼U(1,T ),x0∼p(x0),ϵ∼N (0,I)[
∥ϵ− ϵθ(xt, t, clc, che)∥2

] (8)

Finally, Lpred bridges the denoising process with
the downstream link prediction task. After estimat-
ing the clean H-Fact embedding sequence x̂0 from
the denoiser’s output (following the DDPM reverse
process), we extract the estimated clean embed-
ding êi for a component i and map it to vocabulary
scores using a linear Prediction Head:

Scoresi = Wpredêi + bpred (9)

The prediction loss is the cross-entropy between
these scores and the ground truth element:

Lpred = Ex0,t,i [− log Softmax(Scoresi)true_elementi ]
(10)

This objective optimizes the Prediction Head
and provides a task-specific signal for fine-tuning
both the CGD and CGE. The hyperparameter λpred
balances its contribution in the overall loss.

Inference: For an HKGC query involving a
partially observed H-Fact fquery with masked el-
ement(s), HDiff performs the following inference
procedure. First, the trained CGE encodes the
known components of fquery to derive the con-
ditions clc and che. Then, the conditional re-
verse diffusion process is performed: starting from
a noisy state xT ∼ N (0, I), the trained condi-
tional denoiser ϵθ is iteratively applied for t =
T, T − 1, . . . , 1 to reconstruct the estimated clean
H-Fact embedding sequence x̂0. Finally, to obtain
completion predictions, the reconstructed embed-
ding(s) êi at the masked position(s) i are extracted
from x̂0 and mapped to vocabulary scores using the
linear Prediction Head (Eq. 9). Candidates are then
ranked based on their predicted scores. Detailed
training procedures and algorithmic steps are pro-
vided in Algorithm 1, with a complexity analysis
of HDiff in Appendix C.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate on three standard HKG
benchmarks: JF17K (Wen et al., 2016b), WikiPeo-
ple (Guan et al., 2019), and WD50K (Fatemi et al.,
2022), which cover diverse domains and qualifier
prevalence. Dataset statistics are in Table 2.
Baselines. We compare HDiff with representa-
tive HKGC methods, including translational (m-
TransH (Wen et al., 2016b)), compositional/logic-
based (NaLP (Guan et al., 2019)), geometric
(HINGE (Rosso et al., 2020), sHINGE (Lu et al.,
2024)), and recent GNN/Transformer models
(StarE (Fatemi et al., 2022), GRAN (Xu et al.,
2021), HAHE (Luo et al., 2023)). HAHE serves as
a key state-of-the-art attention-based comparison.
Evaluation Metrics. We report standard filtered
Mean Reciprocal Rank (MRR) and Hits@K (K=1,
10). Evaluation covers predicting all missing H-
Fact components.
LLM Comparison. We conduct qualitative probes
using GPT-4o(Achiam et al., 2023) to illustrate
the challenges LLMs face in handling HKGC’s
structural complexity and precise output. Details
are in Appendix E.3.
Implementation Details. HDiff is implemented in
PyTorch and trained on NVIDIA RTX 4090 GPUs.
Key hyperparameters were tuned via validation.
Full implementation details and hyperparameter
settings are provided in Appendix A.

4.2 Main Results

Table 3 shows that HDiff consistently achieves
state-of-the-art (SOTA) entity prediction perfor-
mance, outperforming all baselines.

HDiff significantly surpasses traditional methods
(e.g., m-TransH), which often inadequately handle
qualifiers, making them inherently vulnerable to
Intra-fact Inconsistency. It also shows clear ad-
vantages over more sophisticated structural models
(e.g., HINGE, StarE, GRAN). While these capture
graph structure, their standard scoring or aggre-
gation mechanisms lack explicit consistency en-
forcement, potentially amplifying Intra-fact Incon-
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Model
JF17K WikiPeople WD50K

subject/object all entities subject/object all entities subject/object all entities

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
m-TransH (Wen et al., 2016b) 0.206 0.206 0.462 0.102 0.069 0.168 0.063 0.063 0.300 - - - - - - - - -
RAE (Zhang et al., 2018) 0.215 0.215 0.466 0.310 0.219 0.504 0.058 0.058 0.306 0.172 0.102 0.320 - - - - - -
NaLP (Guan et al., 2019) 0.221 0.165 0.331 0.366 0.290 0.516 0.408 0.331 0.546 0.338 0.272 0.466 - - - 0.224 0.158 0.330
NeuInfer (Guan et al., 2020) 0.449 0.361 0.624 0.473 0.397 0.618 0.476 0.415 0.585 0.333 0.259 0.477 0.243 0.176 0.377 0.228 0.162 0.341
HINGE (Rosso et al., 2020) 0.431 0.342 0.611 0.517 0.436 0.675 0.342 0.272 0.463 0.350 0.282 0.467 - - - 0.232 0.164 0.343
sHINGE (Lu et al., 2024) 0.458 0.372 0.628 - - - 0.478 0.425 0.586 - - - - - - - - -
StarE (Fatemi et al., 2022) 0.574 0.496 0.725 0.542 0.454 0.685 0.491 0.398 0.592 0.378 0.265 0.542 0.349 0.271 0.496 - - -
Hyper2 (Yan et al., 2021) 0.583 0.500 0.746 - - - 0.461 0.391 0.597 - - - - - - - - -
HyTransformer (Yu and Yang, 2021) 0.582 0.501 0.742 - - - 0.501 0.426 0.634 - - - 0.356 0.281 0.498 - - -
GRAN (Xu et al., 2021) 0.617 0.539 0.770 0.656 0.582 0.799 0.503 0.438 0.620 0.479 0.410 0.604 - - - 0.309 0.240 0.441
HAHE (Luo et al., 2023) 0.623 0.554 0.806 0.668 0.597 0.816 0.509 0.447 0.639 0.495 0.420 0.631 0.368 0.291 0.516 0.402 0.327 0.546
HDiff 0.637 0.562 0.812 0.676 0.605 0.822 0.512 0.447 0.642 0.502 0.430 0.639 0.373 0.292 0.512 0.405 0.325 0.546
HDiff w/o MLP 0.627 0.555 0.797 0.669 0.601 0.807 0.506 0.430 0.632 0.502 0.433 0.631 0.356 0.285 0.498 0.387 0.317 0.528
HDiff w/o TransE 0.620 0.545 0.770 0.661 0.591 0.800 0.485 0.417 0.623 0.478 0.415 0.627 0.354 0.270 0.484 0.375 0.296 0.492
HDiff w/o BT 0.621 0.548 0.769 0.662 0.593 0.799 0.488 0.423 0.625 0.478 0.416 0.627 0.355 0.271 0.484 0.375 0.296 0.495
HDiff w/o LC 0.633 0.559 0.785 0.673 0.604 0.814 0.507 0.424 0.633 0.489 0.424 0.630 0.363 0.288 0.504 0.394 0.322 0.535
HDiff w/o HE 0.622 0.548 0.771 0.663 0.593 0.800 0.488 0.422 0.625 0.479 0.417 0.627 0.356 0.271 0.483 0.375 0.298 0.496

Table 3: Performance Comparison on Hyper-Relational Knowledge Graph Completion. Entity prediction results on
JF17K, WikiPeople, and WD50K datasets are presented. The best result in each column is bolded, and the second
best is underlined. ’-’ indicates results not reported or available.

sistency during representation learning and prop-
agating distortions caused by Cross-fact Associ-
ation Noise. Notably, HDiff also outperforms re-
cent strong attention-based competitors like HAHE.
Although HAHE utilizes attention to weigh com-
ponents, its mechanism can still be misled by in-
ternally conflicting information (Intra-fact Incon-
sistency) without explicit regularization, and like
other discriminative models, it struggles to funda-
mentally correct for noise compared to HDiff’s
generative reconstruction approach. For instance,
on JF17K (subject/object), HDiff’s MRR of 0.637
surpasses HAHE’s 0.623.

HDiff’s superiority stems from its design tai-
lored for noisy HKGs. The CGE provides robust
initial embeddings via consistency-enhanced graph
learning (LBT ,LTransE). The CGD then employs
conditional diffusion, uniquely guided by both lo-
cal confidence (clc) and global context (che), en-
abling it to reconstruct clean facts generatively.
This strategy allows HDiff to handle HKG noise
patterns for more accurate completions.

4.3 Ablation Study

We conducted a critical ablation study to assess
the distinct contribution of each component within
HDiff. By systematically removing modules or
loss terms and evaluating performance on clean
data (Table 3), we observed consistent performance
degradation across metrics, validating our inte-
grated design.

Removing supporting components like the MLP
adaptation layer (’w/o MLP’) or the TransE loss
(’w/o TransE’) resulted in relatively minor perfor-

mance drops. Their roles are more foundational for
basic structure and alignment than primary noise
handling capabilities.

Ablating core components designed for robustly
handling HKG noise led to more significant per-
formance degradation. Specifically, removing the
Barlow Twins consistency loss (’w/o BT’), vital
for intra-fact consistency, or the Hyperedge Con-
text condition (’w/o HE’), crucial for global coher-
ence, caused notable decreases across metrics and
datasets. The Local Confidence condition (’w/o
LC’) also contributed positively.

Collectively, these results highlight the neces-
sity of each component for achieving robust perfor-
mance. For a detailed quantitative analysis of their
functional roles and critical impact on robustness
under noise, please refer to Appendix D.

4.4 Justification of the Diffusion Module

Method Clean MRR 10% Noise MRR Rel. Drop

GAT+CL (w/o Diffusion) 0.631 0.487 -22.8%
HDiff (Full Model) 0.637 0.562 -11.8%

Table 4: Impact of the diffusion module on robustness
on JF17K. The diffusion process significantly mitigates
performance degradation in noisy settings.

To validate the diffusion model’s role as a core
denoising component, we conducted an ablation
study comparing the full HDiff model against a
variant excluding the CGD module. As presented
in Table 4, the encoder alone offers some robust-
ness to noise; however, the diffusion module sig-
nificantly enhances performance. Its iterative re-
finement process reduces performance degradation
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Figure 3: llustrative case studies demonstrating HDiff’s handling of noise. Confidence scores (color bar) from Pconf

identify potentially inconsistent elements. Case 1 shows overcoming conflicting object information (Intra-fact
Inconsistency) for head prediction. Case 2 shows resolving conflicting qualifiers/objects for qualifier prediction.

under 10% noise from 22.8% to 11.8%, underscor-
ing its critical role in accurate fact reconstruction
in noisy settings.

4.5 Noise Robustness Analysis
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Figure 4: Robustness comparison (MRR) on JF17K
against HKGC and robust KGC baselines under increas-
ing synthetic noise.

To evaluate HDiff’s robustness, a key motiva-
tion as discussed in Section 2, we compare HDiff
with both HKGC models (GRAN, NYLON) and
a traditional robust KGC baseline, KGTtm (Jia
et al., 2019), on the JF17K training set with syn-
thetic noise from 2%-20%. KGTtm was chosen
as it can be fairly applied to score H-Facts di-
rectly, whereas other methods like CKRL would
require substantial, non-trivial modifications to han-
dle hyper-relational structures. Figure 4 shows that
while all models degrade with increasing noise,
HDiff consistently maintains the highest MRR. No-
tably, HDiff’s performance degrades more grace-
fully than other methods, especially at higher noise
levels. While NYLON also shows robustness, HD-
iff retains a clear advantage across the noise spec-
trum. Crucially, unlike prior methods requiring
external noise labels or complex pre-processing,
HDiff’s superior resilience stems from its intrinsic,
learnable noise handling components. This supe-

rior resilience validates HDiff’s design; its condi-
tional diffusion process, leveraging CGE’s consis-
tency regularization (LBT ) and CGD’s dual con-
ditioning (clc, che), effectively mitigates noise im-
pact during reconstruction. A detailed component-
wise analysis of how HDiff achieves this robust-
ness under noise through ablation is provided in
Appendix E.

4.6 Case Study

Figure 3 illustrates HDiff’s robustness via scenar-
ios: confidence estimation (Pconf ) identifies unre-
liable components, guiding CGD through clc and
leveraging global hyperedge features (che).

Case 1 (Intra-fact Inconsistency): Predict-
ing head entity ’Marie Curie’ for Nobel prize in
’1903’. Context contains conflicting objects: ’No-
bel Physics’ (relevant, high confidence) and ’No-
bel Chemistry’ (distractor, 0.47 confidence). This
inconsistency is characteristic of Intra-fact Incon-
sistency. Pconf identifies ’Nobel Chemistry’ as
low confidence, informing clc. Global context che
reflects coherent structure (Physics, 1903, collab-
orators). CGD integrates both, down-weighting
inconsistent ’Chemistry’ and correctly predicting
’Marie Curie’.

Case 2 (Intra-fact Inconsistency): Predicting
qualifier value ’DST’ for NSW time zone, given
object ’UTC+10:00’ (Standard Time). This object
conflicts with the typical DST offset (UTC+11:00).
This represents another form of Intra-fact In-
consistency. Pconf assigns low confidence to
’UTC+10:00’, influencing clc. Global context
che captures broader association (NSW, DST,
UTC+11:00). Guided by local uncertainty (clc)
and global knowledge (che), CGD correctly pre-
dicts ’DST’.

These cases demonstrate how HDiff’s internal
confidence assessment flags local inconsistencies,
while global context ensures structural coherence,
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enabling robust predictions even with noisy or con-
flicting H-facts.

5 Conclusion

We introduced HDiff, a novel conditional diffu-
sion framework addressing Intra-fact Inconsistency
and Cross-fact Association Noise for robust Hyper-
relational Knowledge Graph Completion (HKGC).
By integrating a Consistency-Enhanced Global
Encoder (CGE) with contrastive learning and
a Context-Guided Denoiser (CGD) employing
unique dual conditioning, HDiff facilitates robust
reconstruction of clean H-Facts from noisy inputs.
Experiments demonstrated state-of-the-art perfor-
mance and superior noise robustness, with abla-
tions validating core component contributions. HD-
iff represents a notable advancement towards reli-
able HKGC in complex and noisy environments.
Future work can explore efficiency improvements
and broader hyper-relational reasoning tasks.

Limitations

Despite its strong performance, HDiff has several
limitations. Firstly, integrating Transformer archi-
tectures and the iterative denoising process inherent
in diffusion models results in a higher computa-
tional cost compared to simpler baseline models.
Training and inference require significant computa-
tional resources and time, which could pose chal-
lenges for deployment on resource-constrained plat-
forms or extremely large-scale knowledge graphs.
Secondly, like many neural models, HDiff’s perfor-
mance can be sensitive to hyperparameter choices,
requiring careful tuning. Finally, our robustness
analysis was limited to synthetic noise levels be-
tween 2% and 20%. While this range is relevant for
evaluating HDiff’s intrinsic learned denoising in
practical scenarios (Section 2.2, Appendix D), the
model’s behavior under significantly higher or qual-
itatively different noise distributions remains unex-
plored. Investigating HDiff’s robustness across a
wider and more diverse noise spectrum is a crucial
direction for future work.
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A Hyperparameter Settings

We performed hyperparameter tuning for our pro-
posed HDiff model using a grid search strategy over
the parameter ranges specified in Table 5. The se-
lection was based on optimizing the Hits@1 metric
for the ’all entities’ prediction task on the respective
validation set of each dataset (JF17K, WikiPeople,
WD50K). The performance for each combination
was typically evaluated after a fixed number of
initial training epochs (60 epochs) to efficiently
explore the search space.

The key hyperparameters tuned include: the
main embedding dimension (d); the number of
GAT layers (LGAT ) in the CGE; the dimension
used for noise/timestep embeddings; the number
of diffusion timesteps (T ); the number of Trans-
former layers (LTF ) in the CGD; the training batch
size; the learning rate; and the weights for the auxil-
iary losses in the CGE, specifically the TransE loss
weight (λTransE) and the Barlow Twins contrastive
loss weight (λBT ).

Table 5 lists the search space explored for each
parameter and indicates the final optimal value se-
lected for each dataset, which is underlined.

B Results of Relation Prediction

As demonstrated in Table 6, previous models for
HKG embedding have yielded excellent outcomes
in relation prediction, with certain metrics even
attaining a success rate of 99%.

C Training Procedure and Complexity
Analysis

This appendix details the training algorithm for the
HDiff framework described in Section 3 and pro-
vides an analysis of its computational complexity.

C.1 Training Algorithm
Algorithm 1 outlines the end-to-end training pro-
cess for HDiff, integrating the optimization of both
the CGE and CGD modules based on the combined
loss function defined in Eq. 7.

C.2 Complexity Analysis
The computational cost per training iteration
(batch) is primarily driven by the forward passes
through the CGE’s GAT encoder and the CGD’s
Transformer denoiser (ϵθ). Let B be the batch size,
N the number of entities, M the number of H-Facts
in the batch, E the number of edges/relations pro-
cessed by the GNN, L̄ the average H-Fact sequence
length (number of components), d the embedding
dimension, and LTF the number of layers in the
Transformer denoiser.

The GNN cost depends on its specific architec-
ture; for GAT, it is roughly related to the number of
edges processed. However, the most computation-
ally intensive component is often the Transformer
denoiser due to its self-attention mechanism, which
scales quadratically with the sequence length L̄.

Ignoring the GNN cost (which can vary) and
focusing on the dominant Transformer part, the
time complexity per batch for the CGD forward
pass is approximately:

O(B · LTF · L̄2 · d) (11)

This highlights that the model’s runtime is partic-
ularly sensitive to the length of the H-Fact rep-
resentations (L̄), corresponding to the number of
components (core triple + qualifiers) in a hyper-
relational fact. Efficient implementation is crucial,
especially for HKGs where facts may contain nu-
merous qualifiers.

D Additional Ablation Studies and Model
Justifications

D.1 Encoder Comparison
To justify our choice of the Graph Attention Net-
work (GAT) as the primary encoder in the CGE
module, we conducted a comparative analysis
against other commonly used Graph Neural Net-
works: Graph Convolutional Network (GCN) and
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Hyperparameter JF17K WikiPeople WD50K
Embedding Dimension (d) {128, 256, 512} {128, 256, 512} {128, 256, 512}
GAT Layers (LGAT ) {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
Noise/Timestep Emb. Dim. {12, 16, 20, 24} {12, 16, 20, 24} {12, 16, 20, 24}
Diffusion Timesteps (T ) {10, 13, 15, 20} {10, 13, 15, 20} {10, 13, 15, 20}
Transformer Layers (LTF ) {2, 4, 8, 12} {2, 4, 8, 12} {2, 4, 8, 12, 16}
TransE Loss Weight (λTransE) {0.1, 0.5, 1.0} {0.1, 0.5, 1.0} {0.1, 0.5, 1.0}
Barlow Twins Loss Weight (λBT ) {0.1, 0.5, 1.0, 2.0} {0.1, 0.5, 1.0, 2.0} {0.1, 0.5, 1.0, 2.0}
Batch Size {64, 256, 512} {64, 256, 512} {64, 256, 512}
Learning Rate {0.0001, 0.0005, 0.001} {0.0001, 0.0005, 0.001} {0.00005, 0.0001, 0.0005}

Table 5: Hyperparameter search space and selected optimal values (underlined) for HDiff on JF17K, WikiPeople,
and WD50K.

Model
JF17K WikiPeople WD50K

subject/object all entities subject/object all entities subject/object all entities

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
m-TransH (Wen et al., 2016b) - - - - - - - - - - - - - - - - - -
RAE - - - - - - - - - - - - - - - - - -
NaLP (Guan et al., 2019) 0.639 0.547 0.822 0.825 0.762 0.927 0.482 0.32 0.482 0.735 0.595 0.938 - - - - - -
NeuInfer (Guan et al., 2020) 0.936 0.901 0.989 - - - 0.95 0.915 0.997 - - - - - - - - -
HINGE (Rosso et al., 2020) - - - 0.861 0.832 0.91 - - - 0.765 0.686 0.9 - - - - - -
sHINGE (Lu et al., 2024) 0.966 0.943 0.996 - - - 0.950 0.917 0.997 - - - - - - - - -
StarE (Fatemi et al., 2022) - - - 0.901 0.884 0.963 - - - 0.378 0.265 0.542 - - - - - -
Hyper2 (Yan et al., 2021) 0.95 0.933 0.976 - - - 0.947 0.914 0.987 - - - - - - - - -
HyTransformer (Yu and Yang, 2021) - - - - - - - - - - - - - - - - - -
GRAN (Xu et al., 2021) 0.992 0.988 0.988 0.996 0.993 0.999 0.957 0.942 0.976 0.96 0.946 0.977 - - - - - -
HAHE (Luo et al., 2023) 0.993 0.989 0.998 0.996 0.994 0.999 0.957 0.941 0.978 0.958 0.942 0.978 0.916 0.885 0.964 0.927 0.900 0.969

HDiff 0.995 0.993 0.998 0.997 0.996 0.999 0.973 0.958 0.991 0.973 0.959 0.992 0.950 0.924 0.985 0.956 0.934 0.987
HDiff w/o MLP 0.994 0.992 0.998 0.996 0.994 0.999 0.972 0.958 0.990 0.972 0.958 0.990 0.950 0.925 0.985 0.956 0.934 0.987
HDiff w/o TransE 0.994 0.991 0.997 0.995 0.993 0.998 0.972 0.957 0.990 0.972 0.957 0.990 0.949 0.923 0.985 0.956 0.933 0.987
HDiff w/o BT 0.994 0.991 0.998 0.995 0.992 0.998 0.972 0.958 0.991 0.972 0.956 0.990 0.949 0.923 0.986 0.957 0.934 0.987
HDiff w/o LC 0.995 0.992 0.998 0.997 0.995 0.999 0.976 0.961 0.994 0.976 0.962 0.994 0.947 0.921 0.985 0.954 0.931 0.986
HDiff w/o HE 0.995 0.992 0.998 0.996 0.994 0.999 0.975 0.961 0.994 0.976 0.961 0.994 0.946 0.921 0.985 0.954 0.930 0.986

Table 6: Performance Comparison on Hyper-Relational Knowledge Graph Completion – Relation Prediction Task.
Results (MRR, Hits@1, Hits@10) on JF17K, WikiPeople, and WD50K datasets. The best result in each column is
bolded, and the second best is underlined. ’-’ indicates results not reported or available.

Relational Graph Convolutional Network (R-GCN).
The experiment was performed on the JF17K
dataset under both clean and 10% noisy conditions.

As shown in Table 7, while all encoders perform
reasonably on clean data, GAT demonstrates sig-
nificantly superior performance in the noisy setting.
Its ability to dynamically assign attention weights
to different components in an H-Fact allows it to
better mitigate the impact of noisy or irrelevant
qualifiers, leading to a more robust representation.
This empirical result validates GAT as the most
suitable encoder for our robust HKGC framework.

Encoder Parameters Clean 10% Noise

GCN 21 M 0.614 0.437
R-GCN 23 M 0.621 0.441
GAT (Ours) 22 M 0.637 0.562

Table 7: MRR Performance of GNN Encoders on
JF17K.

D.2 Parameter Sensitivity Analysis
We analyzed HDiff’s sensitivity to key hyperparam-
eters (Figure 5). Performance generally peaks with
diffusion steps T around 10-20 (Fig. 5a), balanc-
ing refinement and efficiency. The optimal diffu-
sion dimension d is often observed around 16-24
(Fig. 5b). Deeper models benefit performance, with
Transformer layers LTF typically improving up to
8-12 before saturation (Fig. 5c), while GAT lay-
ers LGAT show optimal performance around 2 or
3 (Fig. 5d). Overall, HDiff demonstrates reason-
able stability across typical hyperparameter ranges,
indicating it is not overly sensitive to tuning.

E Detailed Robustness Analysis and Noise
Methodology

This appendix details the methodology behind our
noise analysis and presents an in-depth evaluation
of HDiff’s robustness. First, we provide an em-
pirical analysis of natural noise in the benchmark
datasets and detail our synthetic noise generation
strategy. Second, we present the full ablation study
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Algorithm 1 HDiff Training Procedure

Input: Training HKG H, batch size B, learning rate η, loss weights λTransE , λBT , diffusion steps T ,
total training steps Nsteps.

Output: Trained HDiff parameters Θ = {θCGE , θCGD}.
1: for step = 1 to Nsteps do
2: Sample a mini-batch of B H-Facts {fi}Bi=1 fromH.
3: // CGE Module Computations
4: Obtain intermediate GNN embeddings (using gω) for entities ZE,i and facts ZH,i in the batch.
5: Compute core triple embeddings zsro,i from ZE,i.
6: Calculate LTransE using ZE,i (Eq. 2).
7: Calculate LBT using ZH,i and zsro,i (Eq. 1).
8: Calculate CGE loss: LCGE = λTransELTransE + λBTLBT .
9: Obtain final adapted embeddings and Hi using MLP adapter gψ from ZE,i,ZH,i.

10: // CGD Module Computations (Diffusion)
11: Construct initial clean sequences {x0,i}Bi=1 using adapted embeddings Ei.
12: Calculate min confidence conditions {clc,i}Bi=1 using Pconf on {x0,i}.
13: Retrieve and project global hyperedge conditions {che,i}Bi=1 from Hi.
14: Sample timesteps {ti}Bi=1 ∼ Uniform(1, T ).
15: Sample noise {ϵi}Bi=1 ∼ N (0, I).
16: Compute noisy sequences xti,i =

√
ᾱtix0,i +

√
1− ᾱtiϵi.

17: Predict noise using the denoiser: ϵ̂i = ϵθ(xti,i, ti, clc,i, che,i).
18: Compute diffusion loss: Ldiffusion = 1

B

∑B
i=1 ||ϵi − ϵ̂i||2.

19: // Combined Loss and Parameter Update
20: Calculate the total primary training loss: L = Ldiffusion + LCGE .
21: Compute gradient w.r.t all parameters: ∇ΘL.
22: Update parameters using optimizer: Θ← OptimizerUpdate(Θ,∇ΘL, η).
23: end for

results under these noisy conditions to validate the
contribution of each model component.

E.1 Noise Analysis and Generation
Methodology

E.1.1 Empirical Analysis of Natural Noise
To ground our study in realistic conditions, we con-
ducted an empirical analysis to quantify the natural
noise present in the benchmark datasets. For each
of the three datasets, we randomly sampled 1,000
H-Facts. These 3,000 samples were then manu-
ally annotated by three graduate student annota-
tors in a double-blind setup to identify instances of
Intra-fact Inconsistency and Cross-fact Association
Noise. The inter-annotator agreement was high,
with a Cohen’s Kappa coefficient of 0.81. The re-
sults, summarized in Table 8, confirm that both
noise patterns are prevalent, with a total natural
noise rate ranging from 4.1% to 7.5%.

E.1.2 Synthetic Noise Generation Strategy
To evaluate model robustness in a controlled man-
ner, we designed a synthetic noise injection strat-

Dataset Intra-
fact (%)

Cross-
fact (%)

Total Natural
Noise (%)

JF17K 3.7 1.5 5.2
WD50K 5.4 2.1 7.5
WikiPeople 2.9 1.2 4.1

Table 8: Distribution of naturally occurring noise types
identified via manual annotation.

egy that simulates the observed natural noise pat-
terns. The process is detailed in Algorithm 2.
The overall noise rate ρ is explicitly allocated to
two types: Intra-fact corruption (with probability
pintra = 0.7), which simulates Intra-fact Incon-
sistency by randomly replacing elements within
a single H-Fact; and Cross-fact corruption (with
probability pcross = 0.3), which simulates Cross-
fact Association by swapping elements between
two H-Facts of the same schema. Our synthetic
noise distributions align closely with the natural
noise ratios found in Table 8. This setup allows for
a rigorous evaluation of a model’s intrinsic denois-
ing capabilities.
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Figure 5: Parameter sensitivity analysis (MRR) on JF17K, WD50K, and WikiPeople for: (a) Diffusion Steps (T ),
(b) Diffusion Dimension (d), (c) Transformer Layers (LTF ), (d) GAT Layers (LGAT ).

Algorithm 2 Synthetic Noise Injection

Input: Hyper-relational KGH; overall noise rate
ρ; allocation (pintra, pcross); max corrupt kmax.

Output: Corrupted set H̃ H̃ ← ∅.
1: for each f = (s, r, o, {(ki, vi)}ni=1) ∈ H do
2: Sample u ∼ U(0, 1).
3: if u ≥ ρ then
4: Add f to H̃; continue.
5: end if
6: Sample m ∼ UniformInt[1, kmax].
7: Sample z ∼ Bernoulli(pintra).
8: if z = 1 then
9: // Intra-fact corruption

10: Replace m elements in f with random
tokens of the same type.

11: else
12: // Cross-fact corruption
13: Select another fact f ′ with the same

schema.
14: Swap m aligned elements between f and

f ′.
15: end if
16: Add modified fact(s) to H̃.
17: end for
18: return H̃

E.1.3 Noise Sensitivity Analysis

To confirm that HDiff’s robustness is not depen-
dent on a specific noise mixture, we conducted a
sensitivity analysis on JF17K with 10% noise, test-
ing its performance against different noise types
exclusively. As shown in Table 9, HDiff signif-
icantly outperforms the strong baseline StarE in
all scenarios, with the greatest improvement seen
in the mixed-noise setting that mirrors real-world
conditions. This demonstrates the versatility of our
model’s denoising mechanism.

Noise Scenario StarE HDiff (Ours) Improvement

Intra-fact Only 0.418 0.539 +28.9%
Cross-fact Only 0.401 0.524 +30.7%
Mixed (Original) 0.411 0.562 +36.7%

Table 9: Noise sensitivity analysis on JF17K (MRR,
10% noise). HDiff demonstrates robust performance
across different noise compositions.

Figure 6: Robustness comparison (MRR) of HDiff and
its ablated variants on JF17K with increasing synthetic
noise levels (Raw/0%, 2%, 5%, 10%, 20%).

E.2 Robustness Ablation Analysis

We analyze the ablation results from two perspec-
tives: performance on clean data (Table 3) and
robustness under synthetic noise (Figure 6).

Analysis on Clean Data Performance. Ta-
ble 3 in the main paper presents the perfor-
mance of ablated HDiff variants on clean train-
ing/validation/test sets. While Section 4.3 provides
a summary, here we offer a more detailed break-
down of each component’s impact:

Supporting Components (MLP, TransE Loss):
As noted, removing the MLP adaptation layer (’w/o
MLP’), which aligns embedding spaces from differ-
ent encoders, results in minor performance drops
(e.g., JF17K all entities MRR: 0.676 → 0.669,
WikiPeople all entities MRR: 0.509→ 0.502). This
confirms its role in facilitating representation inte-
gration but shows it’s not the primary performance
bottleneck or noise handler. Similarly, ablating
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the TransE-based loss (’w/o TransE’), intended for
basic (s, r, o) structure capture, causes slight de-
creases (e.g., JF17K all entities MRR: 0.676 →
0.661, WD50K all entities MRR: 0.405→ 0.375).
This indicates its foundational role in providing
basic structural inductive bias, but its direct contri-
bution to handling complex hyper-relational noise
is limited.

Consistency Regularization (LBT ): Ablating the
Barlow Twins consistency loss (’w/o BT’) causes
a more significant performance drop (e.g., JF17K
all entities MRR: 0.676→ 0.662, WD50K all en-
tities MRR: 0.405 → 0.375). This loss is vital
for the CGE module to learn intra-fact semantic
consistency by making representations from dif-
ferent views of the same H-fact consistent. This
process creates more robust and less ambiguous
initial representations, crucial even on data nomi-
nally considered "clean" but potentially containing
subtle inconsistencies.

Context-Guided Denoiser (CGD) Conditions
(LC, HE): Within CGD, both conditions are im-
portant. Removing the Local Confidence condition
(’w/o LC’), which guides the denoiser using un-
certainty scores (clc) for individual elements, re-
duces performance (e.g., WD50K all entities MRR:
0.405→ 0.394, JF17K all entities MRR: 0.676→
0.673). This confirms the utility of fine-grained
guidance for targeting specific noisy parts. Ablat-
ing the global Hyperedge Context condition (’w/o
HE’), which uses CGE’s robust overall represen-
tation (che) for global coherence guidance, leads
to the largest performance drop on clean data (e.g.,
JF17K all entities MRR: 0.676→ 0.663, WD50K
all entities MRR: 0.405→ 0.375). This emphasizes
that maintaining global fact consistency during de-
noising is paramount for accurate prediction.

Robustness Analysis under Synthetic Noise.
Figure 6 visualizes the MRR of the full HDiff
model and key ablated variants on JF17K under
increasing levels of synthetic noise. This analy-
sis critically demonstrates which components are
essential for robustness.

As noise levels rise, all models degrade, but
the full HDiff model maintains the highest perfor-
mance. Ablation under noise reveals:

Impact of LBT on Robustness: The ’w/o BT’
variant shows a notably steeper performance de-
cline curve under noise compared to the full model.
This strongly validates that LBT ’s role in enforc-
ing intra-fact consistency within CGE is a primary
mechanism for building initial representations re-

silient to Intra-fact Inconsistency Noise.
Impact of CGD Conditions on Robustness: Re-

moving the Local Confidence condition (’w/o LC’)
also accelerates performance degradation under
noise, though typically less severely than ’w/o BT’
or ’w/o HE’. This confirms that using local uncer-
tainty signals clc allows CGD to more effectively
pinpoint and correct noisy elements, contributing
robustness particularly against localized Intra-fact
Inconsistency. Ablating the global Hyperedge Con-
text condition (’w/o HE’) leads to the most drastic
performance drop under noise, showing the steep-
est decline. This is because che guides the denois-
ing process towards overall coherent states, directly
counteracting noise that disrupts global fact mean-
ing or cross-element associations (Intra-fact and
potentially Cross-fact Association Noise). Without
this global guidance, the denoiser struggles to re-
construct a consistent and meaningful hyper-fact
from corrupted input.

Supporting Components’ Robustness: Consis-
tent with their minor impact on clean performance,
the ’w/o MLP’ and ’w/o TransE’ variants show
less severe degradation under noise compared to
the other ablations. This confirms their roles are
more about foundational structure and representa-
tion alignment rather than direct noise mitigation.

In summary, the ablation results on both clean
and noisy data, detailed herein, underscore the syn-
ergistic importance of HDiff’s components. The
CGE’s consistency learning (LBT ) builds resilient
initial representations, while the CGD’s dual con-
ditioning (clc, che) provides targeted and globally
coherent guidance for effective denoising. This
combination is crucial for both high performance
and robustly handling the complex, structured noise
inherent in HKGs.

E.3 Illustrative Examples and Empirical
Observations

F Considerations on Large Language
Models for Hyper-Relational
Knowledge Graph Completion

While Large Language Models (LLMs) have
demonstrated remarkable capabilities across numer-
ous natural language processing tasks, including
some promising explorations in traditional Knowl-
edge Graph Completion (KGC) by leveraging tex-
tual contexts and entity descriptions (Yao et al.,
2025; Wei et al., 2024), their direct and effective
application to hyper-relational knowledge graph
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Figure 7: Illustrative examples of hyper-relational facts and sample prompts for LLM-based knowledge graph
completion.

completion (HKGC) presents significant, distinct
challenges. Hyper-relational knowledge graphs
(HKGs) introduce complex, high-order structures
involving multiple entities per relation instance,
alongside attribute-value pairs modifying relation
instances. This inherent structural complexity and
the typically higher sparsity compared to traditional
KGs make HKGC a different problem space. Al-
though some recent work explores using LLMs for
HKG construction from text (Datta et al., 2024)
or evaluating their understanding of hypergraphs
(Feng et al., 2024), directly employing LLMs for
the completion task—predicting missing entities or
attributes within existing, complex hyper-relational
facts—is not yet a widely established or readily
superior paradigm.

To provide empirical context for the challenges
discussed and to illustrate practical difficulties
general-purpose LLMs may face in HKGC, we
conducted small-scale probes using GPT-4o on se-
lected hyper-relational completion tasks from our
dataset.

Case Study 1: Specific Agreement Location. Fig-
ure 7 (left) shows the task of predicting the sign-
ing location for the "Potsdam Agreement (1990)".
Probes using both direct and more context-rich
prompts revealed that, despite access to general
knowledge, the LLM showed susceptibility to
name ambiguity inherent in the fact’s subject
("Potsdam"). Extracting the precise qualified loca-
tion associated with this specific historical instance
(Moscow), which is stored as a specific attribute
value in the HKG, proved challenging for the LLM
without explicit structural guidance, often being
misled by the subject’s name.

Case Study 2: Qualified State Status. Figure 7
(right) test the LLM on completing a fact about
Germany’s status in a specific context, indicated
by the ‘applies to part‘ qualifier. Responses, even
with enhanced prompts, frequently exhibited dif-
ficulty accurately interpreting the complex quali-

fier’s semantic role within the hyper-relation. The
LLM often provided general interpretive text or
related but incorrect entities, instead of generating
the required specific entity ‘German Democratic
Republic‘ fitting the qualifier’s role.

These examples empirically demonstrate the dif-
ficulty general-purpose LLMs can have in disentan-
gling precise structural roles and extracting specific,
qualified outputs from complex hyper-relational
facts, even when the underlying information is im-
plicitly present in their training data. The need for
exact, structured predictions, rather than descrip-
tive text, appears a key challenge.

F.1 Discussion: LLM Challenges vs.
Task-Specific Models for HKGC

Despite their remarkable capabilities across many
NLP tasks, directly applying general-purpose
LLMs to hyper-relational knowledge graph comple-
tion (HKGC) faces significant, distinct challenges.
Unlike traditional KGs, HKGs feature complex,
high-order structures with qualifiers, leading to
unique structural complexities and often higher
sparsity. Successfully completing facts by predict-
ing missing elements within these existing com-
plex structures requires precise, structured outputs,
a task not inherently aligned with LLMs’ text-
based, general-purpose nature. While LLMs show
promise in related areas like HKG construction
from text, their direct efficacy for structured com-
pletion within existing HKG facts remains limited.

In contrast, approaches specifically designed for
hyper-relational knowledge graph tasks, which we
term Task-Specific HKG Models, are built pre-
cisely for these challenges. Our proposed HDiff is
an example of such a Task-Specific HKG Model.
These models are engineered to explicitly capture
precise structural patterns, dependencies, and roles
within graph data, potentially leveraging various
techniques including sequence processing where
appropriate for handling representations or specific
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components. As observed, HDiff, designed for
robust HKGC and trained on HKG structures, ac-
curately predicts precise, qualified entities in the
examples, handling name ambiguity and interpret-
ing complex qualifiers to produce structured output.
This capability stems from its design which learns
to explicitly model intra-fact consistency and lever-
age structural context.

Therefore, for HKGC demanding accurate, effi-
cient completion within complex, structured data,
Task-Specific HKG Models currently offer a more
feasible and performant solution than direct appli-
cation of general LLMs. While LLMs leverage
broad knowledge, completing missing elements
within complex structures benefits more from mod-
els trained explicitly for this task’s structural de-
mands. We will explore integrating LLMs into
HKGC in future work, potentially for tasks like
context generation or noise identification, comple-
menting task-specific models for completion.

G Acronyms and Symbols

This appendix provides reference tables for the
acronyms (Table 10) and mathematical symbols
(Table 11) used throughout the paper to describe
the HDiff framework and related concepts.

Acronym Description
BT Barlow Twins (Contrastive Learning

Method)
LC Local Confidence condition
HE global HyperEdge context condition
CGE Consistency-Enhanced Global Encoder
CGD Context-Guided Denoiser
DDPM Denoising Diffusion Probabilistic Model
GAT Graph Attention Network
GNN Graph Neural Network
H-Fact Hyper-relational Fact
HKG Hyper-relational Knowledge Graph
HKGC Hyper-relational Knowledge Graph Comple-

tion
KG Knowledge Graph
KGC Knowledge Graph Completion
KGE Knowledge Graph Embedding
MLP Multi-Layer Perceptron
MRR Mean Reciprocal Rank

Table 10: List of Acronyms
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Symbol Description Symbol Description
H Hyper-relational knowledge graph E Set of entities
Fcore Set of core triples (s, r, o) N ′

o(s, r) Set of corrupted tail entities for (s, r, o)
f An H-Fact (s, r, o, {(ki, vi)}ni=1) s, r, o Subject, relation, object
ki, vi i-th qualifier key and value n Number of qualifier pairs in an H-Fact
zk Intermediate GAT embedding for compo-

nent k
zf GAT embedding for a full H-Fact f

zsro GAT embedding for core triple (s, r, o) pf ,psro Projected representations for Barlow
Twins

ek Final CGE embedding for component k ef Final CGE embedding for an H-Fact f
EE ,ER,EH Sets of CGE embeddings for entities, rela-

tions, H-Facts
d Dimensionality of CGE embeddings ek

x0 Initial sequence of CGE embeddings for
an H-Fact

L Length of H-Fact sequence x0

xt Noisy H-Fact embedding sequence at
timestep t

x̂0 Estimated clean H-Fact sequence

êi Estimated clean CGE embedding for com-
ponent i

et Timestep embedding for diffusion

gψ MLP adaptation layer in CGE PBT Projector network for Barlow Twins
Pconf MLP for predicting component confidence Projhe Projection layer for global context
ϵθ Conditional denoiser network Wpred,bpred Prediction Head weights and bias
∥ · ∥2 L2 norm (Euclidean norm) E[·] Expectation operator
MaxPooling(·) Max pooling operation sigmoid(·) Sigmoid function
Softmax(·) Softmax function I Identity matrix
LBT Barlow Twins contrastive loss βBT Balancing hyperparameter for LBT
C Cross-correlation matrix for LBT LTransE TransE margin-based ranking loss
γ Margin parameter in TransE loss LCGE Total loss for CGE module
λTransE , λBT Loss weights for CGE components Ldiffusion DDPM diffusion loss
Lpred Link prediction loss λpred Weight for prediction loss Lpred
L Overall composite training loss T Total number of diffusion timesteps
t Current diffusion timestep (variable) ϵ Gaussian noise vector in diffusion
clc Local confidence condition vector che Global H-Fact context condition vector
p(x0) Data distribution of clean sequences N (0, I) Standard Gaussian distribution
score(i, j) Attention score (query i, key j) qi,kj Query and key vectors in attention
dk Dimension of key vectors in attention Wq,Wc Weight matrices for attention biasing

Table 11: List of Symbols
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