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Abstract

We present a study to benchmark representa-
tive watermarking methods in cross-lingual set-
tings. The current literature mainly focuses
on the evaluation of watermarking methods for
the English language. However, the literature
for evaluating watermarking in cross-lingual
settings is scarce. This results in overlook-
ing important adversary scenarios in which a
cross-lingual adversary could be in, leading to
a gray area of practicality over cross-lingual
watermarking. In this paper, we evaluate four
watermarking methods in four different and
vocabulary rich languages. Our experiments
investigate the quality of text under different
watermarking procedure and the detectability
of watermarks with practical translation attack
scenarios. Specifically, we investigate practical
scenarios that an adversary with cross-lingual
knowledge could take, and evaluate whether
current watermarking methods are suitable for
such scenarios. Finally, from our findings, we
draw key insights about watermarking in cross-
lingual settings1.

1 Introduction

The advancement of Large Language Models
(LLMs) has significantly transformed text genera-
tion across various domains, producing outputs that
closely mimic human writing. This advancement
has raised concerns within the research community
regarding potential misuses, including academic
misconduct, the spread of disinformation, and the
creation of synthetic training data (Bender et al.,
2021; Xue and Lou, 2022; Zheng et al., 2024; Xue
et al., 2023b; Lou et al., 2024). In response to
these challenges, watermarking methods have been
developed to differentiate between human-written
and AI-generated texts (Aaronson, 2022; Kirchen-

1code and data: https://github.com/SecureDL/
xlingual_watermark_eval

bauer et al., 2023a; Kuditipudi et al., 2023; He et al.,
2024; Dathathri et al., 2024; Chang et al., 2024).

Watermarking involves embedding a signal in
AI-generated texts to identify the generating LLM
using hypothesis testing. Specifically, watermark-
ing offers theoretical guarantees regarding the de-
tectability of the embedded signal by performing
statistical inference on the generated text and test-
ing against the null hypothesis. Since watermark-
ing alters the original LLM output, it is crucial to
ensure that the impact on text quality is minimal
while maintaining the watermark’s detectability. 2

Much of the existing literature on watermarking
has primarily focused on the quality and detectabil-
ity of watermarked texts, with a predominant em-
phasis on English texts. While these methods are
theoretically language-agnostic, cross-lingual stud-
ies can reveal new adversarial scenarios in which
watermark signal could be removed, and that have
yet to be thoroughly investigated.

Existing studies on watermarking robustness
have largely regarded the interplay between lan-
guages by back translation in which the English
watermarked text is translated to some pivot lan-
guage then by translating back to English, weaken-
ing the watermark signal (Kuditipudi et al., 2023;
Zhao et al., 2023; Pang et al., 2024; Ghanim et al.,
2024). This overlooks other potential adversarial
scenarios that may emerge following a translation
to non-English languages.

A recent work by He et al. (2024) attempted to
explore adversarial scenarios within a cross-lingual
context with specific translation attacks (e.g., Cross-
lingual Watermark Removal Attack CWRA) to by-
pass watermarking by first obtaining a response
from an LLM in a pivot language, which is then

2Although steganography and watermarking share the prac-
tice of embedding signals, steganography primarily aims to
conceal information through alterations of the text’s meaning,
whereas watermarking serves to assert text source without
changing the text’s semantics.
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Figure 1: Existing symmetric cross-lingual attacks in comparison to our asymmetric attacks. (a) In Symmetrical
translation attacks, a pivot language is used to ❶ translate the prompt. Then the original language is obtained ❷
without further edits are considered. (b) In Asymmetrical translation, the user ❶ translates to a target language. The
user can use directly or ❷ optionally edit the text, further attenuating the watermark signal. Stage ❸ is also optional,
which restores some of the watermark signal.

translated into the target prompt language. As can
be shown in Figure 1-a, we refer to this type of
translation including back-translation as symmetri-
cal, since an attacker does not utilize the pivot lan-
guage. However, more practical adversarial scenar-
ios are not studied, especially in the settings where
users with cross-lingual knowledge might take to
remove the watermark. As shown in Figure 1-b,
we call this asymmetrical since the user may use
other languages without intentionally removing the
watermark. This oversight accounts for both un-
intentional alterations made by users for clarity or
context adjustment and sophisticated adversaries
intentionally refining the text to destroy watermark
traces such as CWRA. Additionally, a broader as-
sessment of text quality under watermarking tech-
niques in diverse languages is scarce but necessary,
particularly given linguistic differences.

In this paper, we evaluate four representative wa-
termarking methods under two high-level themes.
First, syntactical watermarking, which involves
syntax changes to the generated text by manipu-
lating the logits before the decode stage. Second,
Semantic watermarking, which involves semantics
manipulation of the generated text before the de-
code stage as well. The syntactical methods we
consider are KGW (Kirchenbauer et al., 2023a),
EXP (Aaronson, 2022), and Unigram (Zhao et al.,
2023). For the semantic methods, we choose XSIR
(He et al., 2024) as it aligns with our cross-lingual
investigation in this paper. Specifically, this paper
addresses the following research questions.

• RQ1: How do watermarking methods perform
across languages in terms of detectability, text
quality, and diversity?

• RQ2: How resilient are watermarking methods
against existing cross-lingual attacks, particularly
translation attacks?

• RQ3: How do different adversarial approaches
to cross-lingual watermark evasion perform?
Specifically, how do attacks fare under our asym-
metrical threat model, where the output language
differs from the pivotal language?
Our investigation reveals that current watermark-

ing methods face significant challenges in cross-
lingual settings. Furthermore, we find that tradi-
tional text quality metrics may not adequately cap-
ture the diversity of cross-lingual watermarked text,
necessitating new quality evaluation approaches.
The main contributions of this paper are as follows:
• We investigate the role of text watermarking

across four different languages and four popular
text watermarking methods, with a concentration
on analyzing watermark detectability and quality.

• We propose a new text diversity metric that uti-
lizes Self-BLEU to effectively evaluate the qual-
ity of watermarked text generated in a cross-
lingual context.

• We evaluate the detectability of watermarks un-
der practical attack pipeline consisting of transla-
tion, translation then paraphrase, and subsequent
translation to the original language, and highlight
the results on a robust cross-lingual method.

2 Background and Related Work

Syntactical-based Watermarking. Syntactical-
based watermarking manipulates log-probabilities
of generated text. KGW (Kirchenbauer et al.,
2023a,b) and EXP (Aaronson, 2022) pioneered this
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by generating watermarks based on hashing pre-
vious tokens, introducing hypothesis testing with
low False Positive Rate (FPR) for detection. Sub-
sequent research expanded on these approaches:
Unigram (Zhao et al., 2023) used a pre-determined
key for all generations; Kuditipudi et al. (2023);
Christ et al. (2024) developed distortion-free wa-
termarking to enhance the quality of watermarked
text; Dathathri et al. (2024) introduced specula-
tive sampling for generation at scale; and Lu et al.
(2024); Lee et al. (2023) explored token entropy’s
role in watermark detectability.

Semantic Watermarking. To address paraphras-
ing and back-translation attacks that compro-
mise syntactical watermarks, semantic approaches
emerged. SIR (Liu et al., 2024) introduced seman-
tic hashing of context rather than tokens. XSIR (He
et al., 2024) extended this with cross-lingual set-
tings to counter translation attacks. Chang et al.
(2024) developed a blackbox semantic watermark-
ing for closed-source LLMs, while Hou et al.
(2023, 2024) introduced sentence-level clustering.
However, their rejection sampling approach slows
watermarked text generation compared to methods
in our benchmark.

Post-hoc Detection Approaches. Our evaluation
focuses on proactive detection with embedded wa-
termarks, but passive/discriminator methods ex-
ist for AI-generated text detection. Tian (2023);
Mitchell et al. (2023); Gehrmann et al. (2019) use
statistical patterns with discriminator models to
differentiate human from AI written text. Alsham-
mari and Elleithy (2024) detects AI-generated Ara-
bic text using diacritics, while Abdelnabi and Fritz
(2021) embeds hidden watermarks by modifying
transformer internals.

Watermarking via Backdoors. Recent work
has explored backdoor-based approaches for fin-
gerprinting and watermarking LLM outputs. Xu
et al. (2024) used a technique to embed model-
specific fingerprints through backdoor triggers in
instruction tuning. Unlike traditional watermark-
ing that modifies token probabilities during infer-
ence (Kirchenbauer et al., 2023a; Aaronson, 2022;
Kuditipudi et al., 2023), backdoor approaches im-
plant distinctive generation patterns during model
training (Qi et al., 2021; Kurita et al., 2020) or at
inference time (Al Ghanim et al., 2023; Xue et al.,
2023a; Zheng et al., 2023). This creates persistent
model behaviors that can be detected with special
inputs that trigger the backdoor.

3 Threat Model

We propose a threat model for text watermarking
that addresses realistic removal scenarios. Our
model includes various attack pipelines including
translation, paraphrasing, and combinations thereof
as illustrated in Figure 1. We focus on closed-
source LLMs where model owners are the primary
victims of watermark removal attacks.
Attacker Knowledge: We consider multilingual
adversaries ranging from naive (unaware of water-
marks) to advanced (deliberately trying to evade
detection). Importantly, regular users may uninten-
tionally remove watermarks through normal multi-
lingual usage patterns.
Attacker Capability: Adversaries can access AI
chat interfaces, translation APIs, and have the abil-
ity to paraphrase or edit text, potentially disrupting
watermark signals.
Real-world Scenarios: In an academic setting,
non-English speaking professors providing English
questions while allowing answers in native lan-
guages, enabling students to use AI-generated con-
tent with translation. This is not uncommon es-
pecially for science subjects where English is the
language of the content is in English. Another sce-
nario could take place in media and information
sharing in which the post/content is translated from
English to local languages and edited for specific
audiences, inadvertently removing watermarks. We
call these types of translations as asymmetric as
the language of the utilized generation is different
from that of the prompt.

These scenarios are common yet rarely consid-
ered in current watermark threat models. Robust
watermarking systems must address multilingual
use cases rather than focusing solely on using a lan-
guage as pivotal to remove the watermark without
utilizing it.

4 Methodology

4.1 Benchmark Challenges

Quality Metrics. Evaluating watermarked text
quality is essential for assessing watermark meth-
ods. Most studies focus on English, so we intro-
duce a pipeline for multi-lingual LLMs. Initially,
we used perplexity (PPL), but it wasn’t effective
across languages. PPL results can be shown in Ap-
pendix A, Figures 5 and 6. For better assessment,
we use GPT-Judger from Singh et al. (2023) with
an advanced OpenAI model. However, since we
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assess watermarking in multiple languages, eval-
uating quality with one method may not be suffi-
cient to capture any possible linguistics nuances
not captured in previous monolingual works. For
example, multiple studies have shown biases intro-
duced by the so called llm-as-a-judge paradigm in
which a LLM is given multiple options to choose
from (Zheng et al.; Pezeshkpour and Hruschka,
2023; Ye et al., 2024; Koo et al., 2023). Therefore,
we augment our quality evaluation with an eval-
uation of the judger itself by conducting fairness
studies for any possible biases toward a specific
language. Additionally, due to k-gram repetitions
in watermarking, we apply Self-BLEU (SB) (Zhu
et al., 2018) to measure diversity and repetition. We
combine the results from GPT-Judger and SB to cre-
ate a metric that adjusts diversity more effectively,
and provides insights into evaluating watermarked
text quality in cross-lingual settings.
Text Interpolations in Cross-lingual Settings. Ex-
isting literature on watermark attacks has primar-
ily focused on intentional attacks designed to re-
move watermarks. In these studies, non-English
languages are typically used as pivotal languages
for back-and-forth translation to weaken or remove
the watermark signal. However, this approach over-
looks more practical and nuanced cross-lingual
usage scenarios. Watermarked text in multilin-
gual settings faces challenges from translation and
meaningful use in the intermediate languages. Ad-
versaries with multilingual capabilities may utilize,
edit, and distribute the content in various languages.
These scenarios present more complex threats than
simple pivotal translation attacks.
Adjusted Diversity AD. Because SB alone can be
misleading in measuring the diversity of text –for
example mixing tokens from different languages
yields very low SB score, hence more diversity in
text– we create a new diversity metric that reflects
unwanted diversity or excessive repetition in text by
leveraging the Judger’s coherency criterion scores
as follow:

AD = wSB + (1− w)(1− NC) (1)

Where NC indicates Normalized Coherency score
from GPT-Judger, w is a weight between 0 and 1
that can be adjusted based on how much importance
we want to give to each metric. The term (1− NC)
inverts the coherency score from GPT-Judger so
that a low coherency score (indicating problematic
text) contributes to a higher "unrealistic diversity"
in the text. In our experiment, we choose w to be

0.3 as SB doesn’t catch the semantic level of the
text as GPT-Judger does, yet SB could give a subtle
indication of repetition in the text.

4.2 Watermark Methods

KGW (Kirchenbauer et al., 2023a). The KGW
method embeds a watermark signal in generated
text by manipulating log-probabilities (logits) of
next token. The vocabulary v is divided into green
and red lists based on a split ratio γ. A secret
key Sk and a hash of the previous k − 1 token ids
seed a pseudorandom generator to produce the next
token k. The generating model is either limited to
the green list (hard watermark) or biased toward it
(soft watermark) by adding a small value δ to the
logits. Soft watermarking manages low-entropy
contexts with few green list options.
Unigram (Zhao et al., 2023). Unigram, like KGW,
divides the vocabulary v into green list vg and red
list vr. The key distinction is that in Unigram, these
lists are consistent for all generated tokens over the
course of the generation process, as it does not
utilize hashing with previous token IDs. Instead,
Unigram employs the sha256 hashing algorithm,
using a secret key Sk to partition the vocabulary
into the green and red lists. Subsequently, it ap-
plies the soft-watermark technique to adjust the
logit values. This approach is expected to reduce
the effectiveness of watermark frequency counting
removal attacks, since the hashing process does not
incorporate previous token IDs. Both KGW and
Unigram use the following equation to detect the
watermark.

z = (|s|G − γ|s|)/
√

|s|γ(1− γ) (2)

where |s|G is the number of green tokens in the
generated text, and γ = |vG|

|v| .
EXP (Aaronson, 2022). EXP uses exponential
minimum sampling, which is a variant of the Gum-
bel trick Papandreou and Yuille (2011), to bias the
distribution of the next token generation. Specifi-
cally, like KGW, EXP uses k − 1 context-window
to seed a pseudorandom generator (PRG) to gener-
ate the next token k. However, instead of using soft
watermark or applying a δ value to the logits, EXP
uses PRG to generate random numbers rt,i, which
is the same size as the vocabulary of the generating
model. Then, at position t, token i is sampled by
maximizing the following quantity.

argmaxi(r
1/pt,i
t,i )
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when pt,i is very small, token i will only be chosen
if rt,i is close to one, which is very unlikely to hap-
pen. In terms of randomness, this sampling method
will return the same token every time the same k−1
context is used for the PRG. The watermark is then
detected by the following equation.

n∑

t=1

log(
1

1− rt,i
) (3)

XSIR (He et al., 2024). XSIR is designed to en-
hance cross-lingual watermarking by ensuring that
semantically similar prefix texts receive similar
logit biases. Instead of directly hashing token IDs,
XSIR hashes a semantic chunk of the prefix text to
generate the logit bias for the next token k. This
approach ensures that different prefix texts with
similar meanings produce comparable logit bias
distributions:

Sim(∆(x),∆(y)) ≈ Sim(E(x), E(y)) (4)

where E is a multilingual embedding model, and ∆
is the function that determines the watermark logit
bias distribution for all tokens in the vocabulary.
XSIR uses semantic clustering to assign consistent
biases, ensuring tokens with similar prefixes or
context receive similar watermarking bias.

Besides, XSIR also enforces consistent biases
across words within the same semantic cluster.
Specifically, words that share the same meaning
across different languages are assigned identical
biases:

C(i) = C(j) ⇒ ∆C(i) = ∆C(j) (5)

where C(i) represents the cluster index of word i.
As a result, if tokens i and j are semantically equiv-
alent, they receive the same logit bias, preserving
watermark consistency across translations.

5 Experimental Setup

Choice of Models. Due to scarcity of open-source
LLMs that universally support our targeted lan-
guages, we employ different models suitable for
different languages. For Chinese and Indonesian,
we utilize the Sailor2 1B and 8B variants (Sailor2
Team, 2024). For Arabic text generation, we use
the Jais family 6.7B model (Inception, 2024), while
perplexity is assessed using Acegpt 7B (Huang
et al., 2023). For English, we generate text us-
ing both aforementioned models. The use of vary-
ing models across languages is essential to accom-
modate the lack of universally compatible models

but ensures credible cross-lingual watermarking
assessments. Recently, a model that support all
our targeted languages was released (Cohere et al.,
2025) in which all of our targeted languages are
supported3. We use this model to add experiments
for an instruction-following and text-completion
task with more languages.
Dataset Selection. For all experiments, we use
500 examples from the C4 dataset (Raffel et al.,
2020), which is available in all evaluated languages.
For English, we follow previous work by using
the RealNewsLike split; for other languages, we
use the main training split, as RealNewsLike is
available only for English4. We also utilized a
cleaned version of LFQA dataset from this work
(Krishna et al., 2023). We use this dataset along
with instruction-following prompting for informa-
tion entropy analysis in different languages to fur-
ther assess the quality of text with watermarking.
Watermarking Parameters. We evaluate water-
marking across four methods: KGW, Unigram,
XSIR, and EXP. For KGW and Unigram, parame-
ters include green list ratios γ ∈ 0.1, 0.5, 0.9 and
bias values δ ∈ 2, 5, 10. A context size of 1 is
applied for KGW’s lefthash. For EXP, a context
length of 4 and a p-value threshold of 10−4 are
used. XSIR divides the vocabulary with γ = 0.5
and bias values δ ∈ 2, 5, 10. Standard settings of
γ = 0.5 and δ = 2.0 are typically used unless
otherwise noted, based on optimal empirical re-
sults. Additional parameter results are detailed in
the appendices.
Watermarking Metrics Following prior stud-
ies (Kirchenbauer et al., 2023a; Zhao et al., 2023;
Dathathri et al., 2024), watermark detection is an-
alyzed via ROC curves, focusing on the trade-off
between the false and true positive/negative rates.
An empirical threshold is determined using a com-
parison between unwatermarked and watermarked
text scores to enhance multilingual watermark con-
sistency. See Appendix B for detailed performance
metrics using specific threshold values.
Language Bias Assessment. We conducted con-
trolled experiments to identify potential language
biases in LLM judges. Starting with English ex-
amples from the C4 dataset, we used GPT-3.5-
Turbo to create perfect translations in seven lan-
guages: English, Arabic, Chinese, Indonesian, Per-
sian (Farsi), German, and Japanese. This approach

3https://huggingface.co/CohereLabs/
c4ai-command-r7b-12-2024

4https://huggingface.co
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Figure 2: GPT-judge coherency criterion results. We compute the average of watermarked and unwatermarked
scores for 500 generations. We use Jais model for Arabic and Sail for Chinese and Indonesian. We use Cohere to
represent all languages.

established ground truth by ensuring identical con-
tent across all languages, allowing us to isolate
language-specific biases. For methodological rigor,
we randomized text presentation order and con-
ducted multiple runs with different seeds. See Ap-
pendix C for complete experimental details.
Execution Details. Experiments involve generat-
ing watermarked text in various languages, with
processes taking approximately 10 GPU hours for
KGW and Unigram, 7 hours for XSIR, and 3 hours
for EXP. For qualitative assessment, the GPT-4o-
mini-2024-07-18 serves as the GPT-based judger,
conducting quality evaluations in roughly 20 min-
utes for 500 generations. Since translations are
heavily used in this work, we opt for the open-
sourced and easy to use OPUS-MT models (Tiede-
mann and Thottingal, 2020; Tiedemann et al., 2022)
which are used by previous works such as Kudi-
tipudi et al. (2023).

6 Results

6.1 RQ1: Watermarking Performance under
Cross-lingual Setting

Quality. We evaluate text quality through two com-
plementary approaches: GPT-Judger and our pro-
posed diversity metrics. This dual evaluation pro-
vides a comprehensive view of how watermarking
affects text quality across languages.

In Figures 2 and 3 we show the result of ob-
taining the decrease percentage in quality after
watermarking. In these figures, we only present
the coherency criterion since its scores reflect the
most affected criterion in all languages according
to GPT-Judger. The relative decrease in the figure
is calculated as:

(
unwatermarked_score − watermarked_score

unwatermarked_score
)100 (6)

We use C4 to reflect a more generalized text com-
pletion scenario, and we use LFQA for low-entropy

instruction-following completions. The relative
impact of coherency decrease varies between lan-
guages in the same watermarking method, particu-
larly for C4 dataset. While Chinese and Indonesian
often show higher coherency decrease than English
and Arabic in several methods, this impact is re-
duced in low-entropy completions. While this sug-
gests easier watermarking for instruction-following
scenarios, it can affect the detectability of the wa-
termark as shown in Table 7 in the appendices.
Among non-English languages, Arabic seems to
be easier to watermark under KGW and Unigram
methods, but more difficult to watermark under
XSIR. In terms of watermarking method, KGW
has minimal impact of quality for both datasets,
while XSIR and EXP showcase the largest degrade
of the quality across all languages. In Appendix
A, Figure 7, we show more results for additional
languages.

Table 1: GPT-Judger Final Verdict Analysis. A soft-win
is recorded when the watermarked text is judged to be
of equal (Tie) or superior quality (Hard-win) compared
to the non-watermarked version, reflecting the method’s
ability to preserve text quality. Higher soft-win rates
indicate better quality retention after watermarking.

Method Language Hard-Win ↑ Tie ↑ Soft-Win ↑

KGW

English 0.42 0.05 0.47
Arabic 0.41 0.15 0.56

Chinese 0.31 0.26 0.57
Indonesian 0.29 0.18 0.47

Unigram

English 0.38 0.08 0.46
Arabic 0.37 0.12 0.49

Chinese 0.24 0.27 0.51
Indonesian 0.27 0.14 0.41

XSIR

English 0.22 0.12 0.34
Arabic 0.20 0.06 0.26

Chinese 0.11 0.24 0.35
Indonesian 0.16 0.12 0.28

EXP

English 0.10 0.04 0.14
Arabic 0.14 0.10 0.25

Chinese 0.07 0.24 0.31
Indonesian 0.15 0.12 0.26
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Figure 3: GPT-judge coherency criterion results for Co-
here model on LFQA dataset, computed as the average
of watermarked and unwatermarked scores for 500 gen-
erations.

To further analyze the GPT-Judger results, we
calculate soft-win rates in Table 1. Among all
methods, KGW achieves the highest soft-win rate.
Nonetheless, the GPT-Judger occasionally strug-
gles to deliver definitive judgments, particularly for
non-English texts, as indicated by the high tie rates.
LLM Judge Language Bias. Our fairness exper-
iments reveal significant language biases in GPT-
Judger’s final verdict, which may explain some of
the result in Figure 2. The results of these experi-
ments are presented in Appendix C Tables 9 and
10. When evaluating identical content translated
into different languages (Translation Experiment),
we found clear preferences for certain languages
regardless of content quality. German was most pre-
ferred, followed by Arabic and English, while Chi-
nese, Persian, and Indonesian received consistently
lower scores. In a complementary "Paraphrase Ex-
periment" using same-language text pairs, we ob-
served judges showing higher TIE rates for some
languages over the others. Additionally, the judger
consistently favored paraphrased texts generated by
their own model family over original texts. These
biases suggest that the high TIE rates in our water-
marking evaluations likely affected by the biased
preferences we saw in the "translation experiment"
rather than actual quality equivalence judgments.
For detailed analysis including position bias investi-
gation and cross-language comparison metrics, see
Appendix C. These findings align with token bias
studies by Zheng et al. and model self-preference
observations by Ye et al. (2024), and therefore, llm-
as-a-judge paradigms should be coupled with some
sort of debiasing procedures to ensure fair choice
between texts of different languages.
Diversity. To more objectively quantify quality of
text with a predefined text quality metric, we intro-
duce our new metric rooted in the Self-BLEU (SB)

metric. In our experiments, the Adjusted Diversity
(AD) is used to further assess the quality of water-
marked text along with the assessment provided
by the GPT-Judger’s coherency scores. Previous
research has used the SB metric to assess the di-
versity of watermarked text (Dathathri et al., 2024).
Table 2 includes results from SB and the Adjusted
Diversity (AD) metrics for various watermark meth-
ods. While SB suggests high diversity for Chi-
nese and Indonesian, it can be misleading; low
SB scores (e.g., 0.04 for Chinese) might indicate
text degradation, as shown by higher AD scores
(≥ 0.44). This pattern holds across other languages.
When we employ larger δ values with γ = 0.5, AD
ratios are higher compared to SB, indicating unre-
alistic diversity in watermarked text. More detailed
results with different hyper-parameters are in Ta-
ble 3 in Appendix A.
Detectability. Our detection analysis examines
both performance without attack and attack re-
silience across languages. Prior to any attacks,
all methods demonstrate strong detectability as
shown in Figure 8 in Appendix B in which all
methods across all languages achieve ≥ 0.99 AUC
scores. For KGW, Unigram, and XSIR, we identi-
fied δ = 2.0 and γ = 0.5 as the optimal parameters
yielding the best detection results. However, the
role of employing different hyper-parameters for
detection differs from that for text quality. When
larger values of γ are used with delta = 2.0, de-
tection scores are adversely affected, especially for
Unigram method. We show detailed results in Fig-
ure 9 in which we illustrate the close relationship
between γ and δ for methods like KGW and Uni-
gram in Appendix B.

6.2 RQ2: Watermarking Resilience to
Translation Attacks.

Regarding attack resilience, all methods are vulner-
able to our attack pipeline. In Figure 4 (left), we
perform asymmetrical translation attacks against
KGW, Unigram, and EXP. The results showcase the
watermark detectability under translation attacks
varies by language. For instance, KGW shows
the lowest AUC of 0.55 for Arabic-English, while
Unigram presents a worst-case AUC of 0.57 for
English-Arabic and Arabic-English. For EXP (
Figure 4 (c)), all attacks are notably invasive, likely
due to its larger k-gram hashing window of 4 com-
pared to KGW’s recommended window of 1.

In Figure 4 (right), we evaluate all of our asym-
metrical attacks to the more cross-lingual XSIR
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Table 2: SelfBleu results for all watermark methods. For KGW, Unigram and XSIR, γ = 0.5 and δ = 2.0. We
consider this setting is the best for these methods with different languages. More results with varying the γ and δ
values in are in Appendix.

Method Language self-bleu (↓ more diverse) AD (↓ better)

watermarked unwatermarked watermarked unwatermarked

KGW

English 0.16 0.16 0.38 0.34
Arabic 0.11 0.12 0.36 0.35

Chinese 0.04 0.04 0.44 0.40
Indonesian 0.10 0.10 0.43 0.38

Unigram

English 0.23 0.17 0.40 0.35
Arabic 0.16 0.12 0.41 0.35

Chinese 0.02 0.04 0.47 0.40
Indonesian 0.12 0.10 0.46 0.37

XSIR

English 0.20 0.17 0.49 0.32
Arabic 0.14 0.12 0.45 0.33

Chinese 0.03 0.04 0.55 0.38
Indonesian 0.12 0.11 0.53 0.37

EXP

English 0.19 0.17 0.57 0.29
Arabic 0.20 0.12 0.55 0.31

Chinese 0.13 0.04 0.61 0.38
Indonesian 0.21 0.10 0.57 0.36
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Figure 4: Watermark detection ROC curves with AUC after attacks. For all attacks, the watermark threshold is
calculated automatically by comparing unwatermarked and attacked watermarked text score for 100 generations.
Left: we perform symmetrical translation attacks on KGW, Unigram, and EXP. Right: Only the leftmost column
represent symmetrical translation attack setting. We further apply more invasive attacks to XSIR to highlight its
robustness.

method. Although XSIR was developed for sym-
metrical attacks, it remains susceptible to asym-
metrical attacks. This vulnerability underscores
the severity of attack scenarios where the pivot lan-
guage differs from the output language. XSIR’s
semantic clusters vary across languages, weaken-
ing its watermark robustness when the pivot and
output languages differ. In contrast, back-translate
attacks preserve the watermark (Figure 4 (f)).

Finally, KGW and EXP have more predictable
results than XSIR and Unigram where different lan-
guages affect the watermark signal differently. For
instance, detection outcomes for translation and
translation-paraphrase attacks remain consistently
tight across languages for KGW and EXP, whereas
XSIR and Unigram exhibit greater variability, with
some languages deviating significantly. This be-
havior may stem from technical challenges such as
preserving text length during translation.

6.3 RQ3: Asymmetrical Translation Attacks
Raise a New Threat

Despite XSIR being specifically designed for cross-
lingual scenarios, our results shown in Figure 4(b)
demonstrate that it remains vulnerable to post-
generation translation attacks. Particularly, the vul-
nerability is pronounced for Chinese and Arabic
languages, suggesting that XSIR’s effectiveness
varies significantly by language. This contrasts
with XSIR proposed adversarial scenario of trans-
lating prompts before generation and translating
them back into the original language.

From Figures 4 and 11, our analysis reveals a
critical asymmetry: starting the prompt with EN-
GLISH seems to yield better detection rates than
starting with other languages. In other words, con-
sidering the interpolation of languages in the con-
text of only using a language as pivotal to evade
watermarking is not enough to assess the robust-
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ness of watermarks in cross-lingual manner.
The attacks presented are invasive, significantly

weakening the watermark signal, but can be coun-
tered through various strategies. We believe that
developing more resilient cross-lingual watermark-
ing techniques should integrate KGW and EXP pre-
dictability with the robust Unigram method. XSIR
could be instrumental here, as it manipulates text
semantics over syntax.

Our investigation into XSIR revealed that its
shortcomings in handling translation attacks are
largely technical. XSIR clusters semantically simi-
lar words across languages by constructing a graph
from a comprehensive dictionary that contains pairs
of related words in multiple languages. It then
creates connected components (CCs) to connect
all similar nodes together through string matching.
This creates a mapping that is used to broadcast
the same bias to the logits of all related words
in a cluster. However, the process in which the
words in the dictionary are connected to a specific
model’s vocabulary is tokenizer-dependent. This is
because some tokenizers store vocabularies as uni-
code characters as a result of the encoding process
of tokenization methods of different vocabularies.
English tokens are usually stored as English alpha-
bets, but this is not the case for non-English tokens.
This creates clusters of matching English tokens
only, bypassing similar words in other languages.

To enhance XSIR’s robustness, one can modify
the detection process to translate a generated text to
the original language of the prompt. Given that En-
glish handles XSIR cluster effectively, translating
non-English outputs to English before detection
could ensure watermark signal identification. How-
ever, this only works if the language in which the
first prompt was generated is English. Clearly, this
is not a viable option in a cross-lingual setting in
which the prompt language can be non-English.

7 Conclusion

Our study reveals significant variations in LLM wa-
termarking effectiveness across languages. KGW
best preserves text quality, while all methods show
vulnerability to translation attacks, especially asym-
metrical ones where pivot and output languages
differ. We identified substantial language biases in
LLM-based evaluations, with GPT-Judger showing
clear preferences for certain languages over others.
Our findings demonstrate that current watermark-
ing approaches inadequately address cross-lingual

complexities, as effectiveness depends not only on
the target language but also on specific language
paths during attacks. This highlights the need for
more robust cross-lingual watermarking methods
that maintain effectiveness across diverse linguistic
contexts.

8 Limitations

In this study, we evaluate four distinct watermark-
ing methods across four languages—English, Ara-
bic, Chinese, and Indonesian—focusing on prac-
tical quality evaluation and removal attacks in a
cross-lingual context. We also extend the investi-
gation to Turkish and Hindi using the CohereAI
model. However, we believe that more research
should include a wider variety of languages - both
low-resource languages and those with complex
syntactic and grammatical features. Additionally,
we have included studies on C4 and LFQA datasets
but we think expanding the datasets beyond these
two could be beneficial in ensuring final insights
about a language or a watermarking method.

9 Ethics Consideration

Our research reveals critical vulnerabilities in
text watermarking when subjected to cross-lingual
translation attacks—specifically, the risk that the
original language of a text can be concealed, allow-
ing adversaries to evade detection and potentially
disseminate harmful content. We acknowledge that
such findings may be exploited by malicious actors,
thereby posing a serious risk to digital authenticity
and safety. However, the primary goal of our work
is to illuminate these weaknesses so that more ro-
bust watermarking strategies can be developed and
integrated into language models. In the interim, we
propose simple yet effective countermeasures that
can be readily incorporated by AI service providers.
Our study employs publicly available data and mod-
els and is intended solely for academic research and
the improvement of digital security. We strongly
advocate for responsible disclosure and the con-
tinuous refinement of safeguards to ensure that AI
technologies are deployed safely and ethically.
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A More Quality Results

1.1 Perplexity (PPL)
Perplexity is a metric that, although known for its
limitations, still provides a useful statistical or prob-
abilistic background for assessing text quality. It
measures how well a probability distribution pre-
dicts a sample. In the context of language models,
it provides insights into how surprised the model
is by the actual sequence of words compared to its
predicted probabilities. A lower perplexity score
indicates that the model found the text more pre-
dictable and thus, in a broad sense, of higher qual-
ity. In our experiments, the PPL is calculated as
follows:

Perplexity(W ) = exp

(
1

N

N∑

i=1

− log p(wi)

)

where exp represents the exponential function. N
is the total number of words in the text. p(wi)
is the probability assigned to the word wi by the
model. The negative log likelihood, − log p(wi), is
referred to the Cross-Entropy loss for word wi.

PPL Analysis:
Figures 5 and 6 show the strength of detection

of the watermark as a function of PPL. The results
in figure 5(a) confirm the findings in (Kirchen-
bauer et al., 2023a) about the slight effect of larger
δ values to the quality of the watermarked text for
all languages. We see similar trends for Unigram
in figure 5(b) only when γ ≥ 0.5. For smaller
values of γ, the quality of text seems to slightly
improve even for larger δ values. We believe that
this effect is a result of low-entropy completions
from the red list being repeated over and over given
smaller potion of the vocabulary, which increases
the z-scores and precludes PPL from catching this
effect.

For the other watermark methods XSIR and EXP,
we show their results in figure 6. For EXP, we ex-
periment with the whole data points to clearly iden-
tify the trends. In figure 6(a), XSIR shows similar
trends to KGW in terms of the effect of larger val-
ues of δ on text quality. For EXP as shown in figure
6(b), the quality of text has a consistent relation-
ship with the lower p-values across all languages.
In other words, the p-values remain virtually insen-
sitive to variations in the quality of the text.

1.2 Complete Self-BLEU Results
Table 3, we show complete results of self-BLEU
and Adjusted Diversity (AD) using different hyper-

parameter settings. From the results, it’s clear that
when the δ is large, the text diversity unrealistically
increases for KGW, Unigram and XSIR. This is
due to the tight relationship between γ and δ in
which lower γ values with higher δ values causes
an adverse effect on the text quality.

1.3 Sensitivity Analysis for w choice in AD
metric

The choice of w in our paper is based on empirical
results. In Table 4 we show more resuts with vary-
ing the w parameters to be in [0.1, 0.3, 0.7]. After
we generate the outputs for a specific language, and
after we noticed unexplainable numbers for some
results (for example very low Self-Bleu scores),
we revise the outputs to check if something is off
with the data. Self-blue (SB) results are sometimes
< 0.05 which is good in terms of diversity, yet the
quality of the output is not as good due to mixture
of characters from different languages or gibberish
chars, hence lower values of SB scores. However,
when the text is generated correctly, we want to
catch any repetition in the text due to watermark-
ing. The result of the Judge could still help here
since we only utilize its explanation about the co-
herency of the text, and not its final verdict as to
which text is better to avoid judger choice biases.
For this reason, we preferred higher weight when
we used the coherency scores. Additionally, larger
w weights will attribute more weight to SB which
is mere n-gram test. Therefore, any non-repeated
but incorrect generations will not be explained in
the SB scores.

1.4 Complete Soft-Win Results

In Table 5, we show more results across different
hyper-parameter settings for KGW, Unigram and
XSIR. The soft-win rates drastically decreases with
lower γ values and higher δ values. This is explain-
able since larger δ values increases the magnitude
of watermark signal in which the next-token gener-
ation is greatly affected.

1.5 More Quality Results for Turkish and
Hindi Languages

In Figure 7, we show more coherency difference
results for low-resource languages such as Turkish
and Hindi using the CohereAI model.
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Figure 5: Detection scores as a function of PPL for KGW and Unigram. For KGW, we notice that as δ grows higher,
the quality of text decreases for all languages. Larger γ values with smaller δ values greately affected the watermark
strength in which it is attenuated. Unigram presents interesting graphs. When γ is large, we see simiar trend as in
KGW. However, smaller γ values behave differently for different languages. The PPL and Z-scores are calculated
on 500 generations.
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Figure 6: Detection scores as a function of PPL for XSIR and EXP. XSIR employs γ = 0.5. The smaller the δ the
better the qulaity of text. EXP p-values show insensitivity to PPL scores with a few examples falling above the
threshold or indicating False Negatives.

B More Detection Results

2.1 Watermark Detection with Multiple γ
Ratios for KGW and Unigram

KGW Kirchenbauer et al. (2023a) as shown in
8(a) performs the best among all other watermark
methods, while Unigram as shown in figure 8(b)
performs the worst. XSIR and EXP as shown in
figures 8(c) and 8(d) respectively show higher
TPRs compared to KGW and Unigram. In all wa-
termark methods, English language shows stable
AUC curve in all FPRs in all watermark methods.
For KGW and Unigram, increasing the value of
γ and decreasing the value of δ has adverse effect
on the TPR characteristic, especially for languages
other than English (see subsequent sections for roc
curves with zoomed-in rates).

Kirchenbauer et al. (2023a) has investigated the
tight relationship of γ and δ in watermark strength
by creating a lower bound on γ with the spike en-

tropy in the picture. However, we believe more in-
vestigation is needed in cross-lingual manner. For
example, beside the effect of the sampling method
(greedy or multinomial), what could be done to
incorporate the role of the tokenization of different
languages in the γ lower bound analysis? By doing
a simple analysis of the results with γ = 0.9 and
δ = 0.2, we found that only an average of 2 green-
list tokens are missing to raise the z-score from, say
3.52 to 4, with a z-score of threshold 4. As shown
in Figures 9(a) and 9(b), the z-score threshold per-
forms adequately for both methods in English but
struggles with other languages. KGW experiences
TPR drop in Arabic and Indonesian, while Uni-
gram’s TPR drops primarily in Chinese and Indone-
sian with low FPR rates. XSIR as shown in Figure
10(a) has relatively minor effects for smaller val-
ues of δ. This is because XSIR logically uses 50%
of the total vocabulary, which is high compared
to a smaller δ value such as 2.0. Finally, EXP, as
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Table 3: Complete SelfBleu results with the Adjusted Diversity (AD) metric with w = 0.3 for all watermark
methods. For KGW, Unigram, and XSIR, we fix γ = 0.5 and vary δ = [2.0, 5.0, 10.0]

Method Language γ δ self-bleu (↓ more diverse) AD (↓ more diverse)

watermarked unwatermarked watermarked unwatermarked

KGW English 0.5
2.0 0.16 0.16 0.38 0.34
5.0 0.15 0.17 0.46 0.32
10.0 0.15 0.17 0.50 0.31

Arabic 0.5
2.0 0.11 0.12 0.36 0.35
5.0 0.12 0.12 0.41 0.35
10.0 0.12 0.13 0.45 0.33

Chinese 0.5
2.0 0.04 0.04 0.44 0.40
5.0 0.04 0.04 0.46 0.41
10.0 0.04 0.04 0.48 0.40

Indonesian 0.5
2.0 0.10 0.10 0.43 0.38
5.0 0.08 0.10 0.53 0.35
10.0 0.08 0.11 0.60 0.33

Unigram English 0.5
2.0 0.23 0.17 0.40 0.35
5.0 0.26 0.17 0.54 0.32
10.0 0.27 0.17 0.59 0.31

Arabic 0.5
2.0 0.16 0.12 0.41 0.35
5.0 0.19 0.12 0.48 0.32
10.0 0.21 0.12 0.52 0.34

Chinese 0.5
2.0 0.02 0.04 0.47 0.40
5.0 0.02 0.04 0.52 0.39
10.0 0.03 0.03 0.54 0.39

Indonesian 0.5
2.0 0.12 0.10 0.46 0.37
5.0 0.13 0.10 0.57 0.34
10.0 0.13 0.11 0.63 0.33

XSIR English 0.5
2.0 0.20 0.17 0.49 0.32
5.0 0.22 0.17 0.59 0.30
10.0 0.22 0.17 0.63 0.29

Arabic 0.5
2.0 0.14 0.12 0.45 0.33
5.0 0.19 0.13 0.55 0.30
10.0 0.19 0.13 0.57 0.31

Chinese 0.5
2.0 0.03 0.04 0.55 0.38
5.0 0.04 0.04 0.61 0.36
10.0 0.03 0.04 0.62 0.36

Indonesian 0.5
2.0 0.12 0.10 0.53 0.37
5.0 0.10 0.10 0.66 0.32
10.0 0.10 0.10 0.68 0.31

EXP

English

- -

0.19 0.17 0.57 0.29
Arabic 0.20 0.12 0.55 0.31

Chinese 0.13 0.04 0.61 0.38
Indonesian 0.21 0.10 0.57 0.36

shown in Figure 10(b), shows stable results for all
languages in terms of the curve characteristics.

We further show results in Tables 6, 8 for
C4 dataset, and Table 7 for LFQA dataset. In
these tables we show the results when fixing the z-
threshold to 4.0, 5.0 for KGW, Unigram, XSIR, and
p-value to 10e−5 and 10e−4 for EXP method. The
same conclusion can be drawn from using larger γ
values with smaller δ values. Using larger values
of the threshold makes detection harder for those γ
settings as shown in Table 6 for all languages. The

effect of detection drop is minimized when LFQA
instruction-following task is used as shown in Ta-
ble 7 with exception of Unigram method where
TPRs drops are clear for fixed z-threshold.

2.2 Watermark Detection After Attacks for
Syntactical Methods

In Figure 11(b) shows the completion of attack
pipeline performed on KGW, Unigram, and EXP.
Translation followed by paraphrase attacks are no
worse than translations alone for syntactical meth-
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Table 4: Self-BLEU / Adjusted Diversity for All Methods, Languages, and Weights in w = [0.1, 0.3, 0.7] for
CohereAI model. The w weight is used in equation 1 where smaller values indicate larger weighing from judger
coherency scores. Smaller values like 0.1 and 0.3 seems to reflect closer AD scores for the watermarked text in
comparison to a large one such as 0.7.

Method Lang w Watermarked SB / AD Unwatermarked SB / AD

KGW

En 0.1 0.16 / 0.44 0.16 / 0.40
0.3 0.16 / 0.38 0.16 / 0.34
0.7 0.16 / 0.25 0.16 / 0.24

Ar 0.1 0.11 / 0.43 0.12 / 0.42
0.3 0.11 / 0.36 0.12 / 0.35
0.7 0.11 / 0.22 0.12 / 0.22

Zh 0.1 0.04 / 0.55 0.04 / 0.51
0.3 0.04 / 0.44 0.04 / 0.40
0.7 0.04 / 0.21 0.04 / 0.19

Id 0.1 0.10 / 0.52 0.10 / 0.46
0.3 0.10 / 0.43 0.10 / 0.38
0.7 0.10 / 0.24 0.10 / 0.22

Unigram

En 0.1 0.23 / 0.45 0.17 / 0.40
0.3 0.23 / 0.40 0.17 / 0.35
0.7 0.23 / 0.30 0.17 / 0.24

Ar 0.1 0.16 / 0.47 0.12 / 0.42
0.3 0.16 / 0.41 0.12 / 0.35
0.7 0.16 / 0.27 0.12 / 0.22

Zh 0.1 0.02 / 0.60 0.04 / 0.51
0.3 0.02 / 0.47 0.04 / 0.40
0.7 0.02 / 0.21 0.04 / 0.20

Id 0.1 0.12 / 0.55 0.10 / 0.45
0.3 0.12 / 0.46 0.10 / 0.37
0.7 0.12 / 0.27 0.10 / 0.22

XSIR

En 0.1 0.20 / 0.57 0.17 / 0.37
0.3 0.20 / 0.49 0.17 / 0.32
0.7 0.20 / 0.32 0.17 / 0.24

Ar 0.1 0.14 / 0.54 0.12 / 0.38
0.3 0.14 / 0.45 0.12 / 0.33
0.7 0.14 / 0.27 0.12 / 0.21

Zh 0.1 0.03 / 0.70 0.04 / 0.48
0.3 0.03 / 0.55 0.04 / 0.38
0.7 0.03 / 0.25 0.04 / 0.19

Id 0.1 0.12 / 0.65 0.11 / 0.44
0.3 0.12 / 0.53 0.11 / 0.37
0.7 0.12 / 0.29 0.11 / 0.22

EXP

En 0.1 0.19 / 0.67 0.17 / 0.33
0.3 0.19 / 0.57 0.17 / 0.29
0.7 0.19 / 0.35 0.17 / 0.23

Ar 0.1 0.20 / 0.65 0.12 / 0.37
0.3 0.20 / 0.55 0.12 / 0.31
0.7 0.20 / 0.35 0.12 / 0.21

Zh 0.1 0.13 / 0.74 0.04 / 0.48
0.3 0.13 / 0.61 0.04 / 0.38
0.7 0.13 / 0.34 0.04 / 0.19

Id 0.1 0.21 / 0.67 0.10 / 0.43
0.3 0.21 / 0.57 0.10 / 0.36
0.7 0.21 / 0.36 0.10 / 0.21

ods. However, we notice that beginning with En-
glish in the pipeline performs better in all methods
as can be seen from the top row of all the figures.

Translation-paraphrase-translation performs well
when English is the source language in all methods
across all target languages, whereas the detection is
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Table 5: Soft Win Rates for Different Methods by Language and Hyper-parameters. Columns are added for averages
across languages and methods.

Method Language γ δ Soft Win Rate Language Avg. Method Avg.

KGW

English 0.5
2.0 0.47

0.314

0.355

5.0 0.264
10.0 0.21

Arabic 0.5
2.0 0.56

0.4175.0 0.418
10.0 0.314

Chinese 0.5
2.0 0.566

0.5025.0 0.514
10.0 0.426

Indonesian 0.5
2.0 0.468

0.2675.0 0.224
10.0 0.108

Unigram

English 0.5
2.0 0.462

0.287

0.314

5.0 0.232
10.0 0.166

Arabic 0.5
2.0 0.494

0.3525.0 0.292
10.0 0.27

Chinese 0.5
2.0 0.51

0.4365.0 0.422
10.0 0.376

Indonesian 0.5
2.0 0.412

0.2345.0 0.178
10.0 0.112

XSIR

English 0.5
2.0 0.342

0.256

0.218

5.0 0.2
10.0 0.226

Arabic 0.5
2.0 0.26

0.1835.0 0.136
10.0 0.1

Chinese 0.5
2.0 0.35

0.2935.0 0.262
10.0 0.268

Indonesian 0.5
2.0 0.276

0.155.0 0.108
10.0 0.066

EXP

English

- -

0.142

- 0.24Arabic 0.246
Chinese 0.31

Indonesian 0.262

very low when English is not the source language.

C GPT-Judger Fairness Experiments

We perform two experiments in an attempt to elicit
any possible biases toward a specific language over
the other. First, we focus on the languages we study
which are English, Arabic, Chinese and Indonesian.
We also add closely related languages such as Per-
sian or Farsi (close to Arabic), German (close to
English), and Japanese (close to Chinese). To pre-
pare our data with ground truth values, we use nat-
ural English examples from the C4 dataset then we

translate these examples to all other languages us-
ing a powerful GPT model such as GPT-3.5-Turbo.
The objective here is to ensure that we have the
same text but in different languages to ascertain
any biases toward a specific language. In all of our
judging experiments we randomized the order in
which the texts are fed to the LLM and use two
runs under different seeds to allow for a more rigor
investigation.

Judging Texts from Different Languages. To
further analyze the judger’s result, we conduct a
fairness experiment we call "Translation Experi-

7411



C4 LFQA
0

5

10

15

20
Re

la
tiv

e 
D

ec
re

as
e 

(%
)

(a) KGW

 English  Arabic  Chinese  Indonesian  Turkish  Hindi

C4 LFQA
0

5

10

15

20

25

Re
la

tiv
e 

D
ec

re
as

e 
(%

)

(b) Unigram
C4 LFQA

0

10

20

30

40

Re
la

tiv
e 

D
ec

re
as

e 
(%

)

(c) XSIR
C4 LFQA

0

10

20

30

40

50

Re
la

tiv
e 

D
ec

re
as

e 
(%

)

(d) EXP

Figure 7: GPT-judge coherency criterion results. We compute the average of watermarked and unwatermarked
scores for 500 generations. Here we only use Cohere model for more languages like Turkish and Hindi.
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Figure 8: Watermark detection ROC curves with AUC before attacks. We fix γ = 0.5 and δ = 2.0 for KGW,
Unigram, and XSIR. The watermark threshold is calculated automatically by comparing unwatermarked and
watermarked scores for 500 generations.
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Figure 9: Here we fix δ at 2.0 and vary γ for KGW and Unigram with γ = (0.1, 0.5, 0.9) and with a fixed δ = 2.0.
The larger the γ ratio, the worse the watermark detection. We also use smaller FPRs in the range [0.1, 0.15]

ment" in which we investigate whether GPT-Judger
shows bias toward a specific language when given
the same text in multiple languages. We use the
same judge we used for our main experiment in
the main content of the paper, which means we
used the same LLM and system prompt with slight
adjustment to the prompt to account for multiple op-
tions instead of only two options (unwatermarked
and watermarked texts.) Table 9 shows the result of

judging the same text in multiple languages. The
hard win column reflects the judge final verdict for
the language of the winning text. the first-last col-
umn reflects the percentage of the winning text
when it is placed in the first or the last option
in the prompt to investigate position bias if any
(Pezeshkpour and Hruschka, 2023). As can be seen
from the table, we see 6.5% for both English and
Chinese, yet their hard win rates are largely dif-
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Figure 10: Watermark detection for XSIR and EXP with lower values of FPRs, which are in the range [0.1, 0.15].
For XSIR, lower values of δ results in lower TPRs at very low FPRs.
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Figure 11: Watermark detection ROC curves with AUC after attacks for syntactical methods KGW, Unigram, and
EXP. We fix γ = 0.5 and δ = 2.0 for KGW and Unigram. For each attack, the watermark threshold is calculated
automatically by comparing unwatermarked and attacked watermarked text score for 100 generations. The bottom
row in all figures represent XSIR original attack setting in which non-English language is used first.

ferent. Therefore, it is not clear whether the order
affects the final verdict of the judge in this settings.
However, it’s clear that some languages are pre-
ferred over other despite ensuring that the texts
are mere translations of each other, and therefore
should have more TIE percentages 5. For exam-
ple, German language is the most preferred one,
followed by Arabic, and finally English, while Chi-
nese, Persian, and Indonesian languages receives
the lowest scores. Persian language, despite the fact
that it originates from the same family as Arabic,
receives the lowest scores. Therefore, we hypothe-
size that there is a bias toward languages that the
judge is most proficient at or more familiar with.
Judging Texts from the Same Language In this
experiment which we call "Paraphrase Experi-
ment", we used the same judge as the one used

5We instruct the judge to clearly return TIE as the final
verdict if the text quality of all languages are equally good.

watermarking experiments. Our natural text in this
case represent the original translated text (for non-
English) from the translation experiment. In this
experiment, the two texts (natural and perturbed)
are essentially the same. In other words, we use
GPT-3.5-turbo to paraphrase the original text and
we call the resultant text the perturbed text. We
create 500 examples in this manner and we used
two seeds to sample different 100 examples for
our fairness assessments. Table 10 shows the re-
sults from using GPT-Judger with these modified
texts to assess their quality. Comparing the para-
phrase results with that of the translation, we see
a pattern that confirms the translation experiments.
We noticed that the languages that received lower
scores in translation experiment are at the top of the
paraphrase tables, and those that received higher
scores are at the bottom in terms of the TIE scores.
However, there is an exception for the Indonesian
language, which appears to have lower TIE scores.
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Table 6: Performance Metrics for Multiple Languages and Watermarking Methods calculated by following the test
statistics score with two threshold values as shown by z. The results show the effect of varying γ values with a fixed
δ = 2.0 for KGW Kirchenbauer et al. (2023a) and Unigram Zhao et al. (2023).

Method Language γ
Metrics (z = 4.0) Metrics (z = 5.0)

TPR TNR FPR FNR TPR TNR FPR FNR

KGW

English
0.1 0.998 1.0 0.0 0.002 0.994 1.0 0.0 0.006
0.5 0.998 1.0 0.0 0.002 0.998 1.0 0.0 0.002
0.9 0.162 1.0 0.0 0.838 0.0 1.0 0.0 1.0

Arabic
0.1 0.970 0.990 0.010 0.030 0.954 0.994 0.006 0.046
0.5 0.974 0.994 0.006 0.026 0.958 0.998 0.002 0.042
0.9 0.112 1.0 0.0 0.888 0.0 1.0 0.0 1.0

Chinese
0.1 1.0 0.992 0.008 0.0 0.994 0.992 0.008 0.006
0.5 1.0 0.998 0.002 0.0 0.992 1.0 0.0 0.008
0.9 0.162 1.0 0.0 0.838 0.0 1.0 0.0 1.0

Indonesian
0.1 0.956 1.0 0.0 0.044 0.902 1.0 0.0 0.098
0.5 0.966 0.996 0.004 0.034 0.862 1.0 0.0 0.138
0.9 0.026 1.0 0.0 0.974 0.0 1.0 0.0 1.0

Unigram

English
0.1 0.986 0.998 0.002 0.014 0.936 1.0 0.0 0.064
0.5 1.0 0.990 0.010 0.0 1.0 0.998 0.002 0.0
0.9 0.244 1.0 0.0 0.756 0.0 1.0 0.0 1.0

Arabic
0.1 0.976 0.970 0.030 0.024 0.948 0.976 0.024 0.052
0.5 0.986 0.970 0.030 0.014 0.970 0.996 0.004 0.030
0.9 0.432 0.998 0.002 0.568 0.0 1.0 0.0 1.0

Chinese
0.1 1.0 0.856 0.144 0.0 1.0 0.926 0.074 0.0
0.5 0.998 0.876 0.124 0.002 0.996 0.926 0.074 0.004
0.9 0.500 0.946 0.054 0.500 0.0 1.0 0.0 1.0

Indonesian
0.1 0.952 0.970 0.030 0.048 0.922 0.982 0.018 0.078
0.5 0.984 0.954 0.046 0.016 0.962 0.990 0.010 0.038
0.9 0.052 0.998 0.002 0.948 0.0 1.0 0.0 1.0

Table 7: Performance Metrics for Multiple Languages and Watermarking Methods calculated by following the
test statistics score with fixed z = 4.0 and automatic z threshold for LFQA dataset. Here we employ γ = 0.5 and
δ = 2.0 for KGW, Unigram and XSIR.

Method Language Metrics (z = 4.0) Automatic z thresholds

TPR TNR FPR FNR TPR@FPR= 0.1% TPR@FPR= 1%

KGW

English 0.854 1.000 0.000 0.146 0.958 0.984
Arabic 0.834 1.000 0.000 0.166 0.936 0.986

Chinese 0.942 0.998 0.002 0.058 0.918 0.998
Indonesian 0.972 1.000 0.000 0.028 0.990 1.000

Unigram

English 0.490 1.000 0.000 0.510 0.626 0.944
Arabic 0.568 1.000 0.000 0.432 0.648 0.938

Chinese 0.956 0.988 0.012 0.044 0.876 0.954
Indonesian 0.616 1.000 0.000 0.384 0.894 0.980

EXP

English 0.980 1.000 0.000 0.020 0.990 0.992
Arabic 0.996 1.000 0.000 0.004 1.000 1.000

Chinese 1.000 1.000 0.000 0.000 1.000 1.000
Indonesian 1.000 1.000 0.000 0.000 1.000 1.000

XSIR

English 0.958 1.000 0.000 0.042 0.964 0.992
Arabic 0.994 0.920 0.080 0.006 0.866 0.976

Chinese 0.996 0.982 0.018 0.004 0.970 0.994
Indonesian 1.000 0.994 0.006 0.000 0.994 1.000

We could argue here that with the model being able
to say two texts are equal in quality is not because it
is able to assert that the quality of the two texts are
equally good, but rather because it might not be pro-

ficient in these languages (as seen in Table 9) that it
preferred to choose a TIE. For Indonesian language,
token bias as investigated by Zheng et al. can play
a role since the alphabets used in this language are
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Table 8: Performance Metrics for Multiple Languages and Watermarking Methods calculated by following the
test statistics score for C4 dataset. The results show the effect of varying δ values with a fixed of γ = 0.5 for
KGW, Unigram, and XSIR. Using a threshold of 0.2 for XSIR resulted in higher FPRs Specifically for the English
language.

Method Language δ
Metrics (z = 4.0) Metrics (z = 5.0)

TPR TNR FPR FNR TPR TNR FPR FNR

KGW

English
2.0 0.998 1.0 0.0 0.002 0.998 1.0 0.0 0.002
5.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0

10.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0

Arabic
2.0 0.974 0.994 0.006 0.026 0.958 0.998 0.002 0.042
5.0 1.0 0.998 0.002 0.0 1.0 1.0 0.0 0.0

10.0 1.0 0.998 0.002 0.0 1.0 1.0 0.0 0.0

Chinese
2.0 1.0 0.998 0.002 0.0 0.992 1.0 0.0 0.008
5.0 1.0 0.994 0.006 0.0 1.0 0.998 0.002 0.0

10.0 1.0 0.998 0.002 0.0 1.0 1.0 0.0 0.0

Indonesian
2.0 0.966 0.996 0.004 0.034 0.862 1.0 0.0 0.138
5.0 0.996 1.0 0.0 0.004 0.992 1.0 0.0 0.008

10.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0

Unigam

English
2.0 1.0 0.990 0.010 0.0 1.0 0.998 0.002 0.0
5.0 1.0 0.984 0.016 0.0 1.0 1.0 0.0 0.0

10.0 1.0 0.984 0.016 0.0 1.0 1.0 0.0 0.0

Arabic
2.0 0.986 0.970 0.030 0.014 0.97 0.996 0.004 0.03
5.0 1.0 0.972 0.028 0.0 1.00 0.990 0.010 0.00

10.0 1.0 0.960 0.040 0.0 1.00 0.990 0.010 0.00

Chinese
2.0 0.998 0.876 0.124 0.002 0.996 0.926 0.074 0.004
5.0 1.0 0.890 0.110 0.0 1.0 0.924 0.076 0.0

10.0 1.0 0.878 0.122 0.0 1.0 0.922 0.078 0.0

Indonesian
2.0 0.984 0.954 0.046 0.016 0.962 0.990 0.010 0.038
5.0 1.0 0.962 0.038 0.0 1.0 0.994 0.006 0.0

10.0 1.0 0.942 0.058 0.0 1.0 0.984 0.016 0.0

Metric (z = 0.2) Metric (z = 0.3)

TPR TNR FPR FNR TPR TNR FPR FNR

XSIR

English
2.0 1.0 0.702 0.298 0.0 0.994 0.958 0.042 0.006
5.0 1.0 0.734 0.266 0.0 0.998 0.964 0.036 0.002

10.0 0.996 0.708 0.292 0.004 0.996 0.960 0.040 0.004

Arabic
2.0 0.998 0.916 0.084 0.002 0.996 0.994 0.006 0.004
5.0 1.0 0.928 0.072 0.0 0.998 0.994 0.006 0.002

10.0 1.0 0.898 0.102 0.0 0.998 0.982 0.018 0.002

Chinese
2.0 1.0 0.966 0.034 0.0 0.994 0.994 0.006 0.006
5.0 0.996 0.944 0.056 0.004 0.992 0.982 0.018 0.008

10.0 0.992 0.964 0.036 0.008 0.992 0.994 0.006 0.008

Indonesian
2.0 0.988 0.990 0.010 0.012 0.976 0.998 0.002 0.024
5.0 0.998 0.994 0.006 0.002 0.998 1.0 0.0 0.002

10.0 0.996 0.984 0.016 0.004 0.994 0.998 0.002 0.006

Metric (p = 10e− 5) Metric (p = 10e− 4)

TPR TNR FPR FNR TPR TNR FPR FNR

EXP

English - 0.998 1.0 0.0 0.002 0.998 0.996 0.004 0.002
Arabic - 0.982 1.0 0.0 0.018 0.982 1.0 0.0 0.018

Chinese - 0.994 1.0 0.0 0.006 0.994 1.0 0.0 0.006
Indonesian - 0.990 1.0 0.0 0.010 0.992 1.0 0.0 0.008

the same as the English alphabets. Another impor-
tant observation is that the perturbed text is favored
more by the LLM judger in all the languages as
shown in the second column of the table, whereas

natural text is less favored by the judger despite
not being gone through a lot of modification. This
confirms studies that indicate LLMs favoring texts
generated by their own model variants (Ye et al.,
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Table 9: Translation Verdict Percentages over two runs with different seeds. Each run contains 100 samples from
500 translation examples for a total of 200 examples. The first-last column reflects the percentage of the winning
text when it is placed in the first or the last option in the prompt to investigate position bias if any.

Language hard win (%) first-last (%)
EN 19.50 ± 4.95 6.50
JA 14.50 ± 3.54 13.00
FA 2.00 ± 0.00 2.00
AR 23.00 ± 5.66 13.00
ZH 7.00 ± 1.41 6.50
DE 30.50 ± 3.54 11.00
ID 3.50 ± 0.71 3.50

Total 100 55.5

Table 10: Paraphrase Verdict Percentages over two runs with different seeds. Each run contains 100 samples from
500 paraphrased examples from the original non-perturbed text. The Perturbed Text column is the paraphrased
version of the Natural Text.

Language Perturbed Text (%) Natural Text (%) TIE (%) Model Failure (%)

ZH 30.00 ± 1.41 26.00 ± 0.00 44.00 ± 1.41 0.00
FA 39.50 ± 3.54 20.00 ± 4.24 40.50 ± 0.71 0.00
JA 34.00 ± 7.07 28.50 ± 0.71 37.50 ± 6.36 0.00
AR 40.50 ± 4.95 30.50 ± 6.36 29.00 ± 1.41 0.00
DE 47.50 ± 6.36 28.50 ± 2.12 23.00 ± 8.49 1.00
ID 48.00 ± 4.24 30.50 ± 7.78 21.50 ± 3.54 0.00
EN 75.50 ± 9.19 24.00 ± 9.90 0.50 ± 0.71 0.00

2024) since our perturbed text has gone through
perturbations of the same model variant. Therefore,
it has become easier for the GPT-judge to select as
the winning text. However, in our main watermark-
ing experiments, our perturbed texts (watermarked
texts and non-English language texts) don’t have
such perturbation footprint, which can put aside the
bias toward model-own generations from our main
experiments.
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