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Abstract

Recent advances in Large Multimodal Models
(LMMs) have showcased impressive visual un-
derstanding and vision-language reasoning ca-
pabilities, yet their computational cost hinders
practical deployment, especially in resource-
constrained settings. A key bottleneck is the
large number of visual tokens generated by
its vision encoders, which increases latency
and memory demands. Existing token reduc-
tion methods often require costly fine-tuning
or apply fixed token reduction ratios, ignoring
image complexity and vision-language inter-
actions. We propose AdaptMerge, a training-
free, inference-time token merging strategy that
adaptively reduces visual tokens by leverag-
ing feature diversity and language-guided rele-
vance. By dynamically adjusting to image com-
plexity and ensuring multimodal coherence,
AdaptMerge significantly lowers floating-point
operations while improving performance. Ex-
tensive experiments on Google’s latest Gemma
3 models (4B and 12B parameters) across
four challenging benchmarks demonstrate that
AdaptMerge outperforms state-of-the-art to-
ken reduction techniques, achieving both re-
duced computational costs and improved per-
formance, thereby providing a practical path-
way to more efficient LMMs.

1 Introduction

Recent advances in Large Multimodal Models
(LMMs) (Liu et al., 2023; Beyer et al., 2024; Team
et al., 2025) have demonstrated remarkable capabil-
ities in visual understanding and vision-language
reasoning. LMMs typically consist of a vision
encoder (Dosovitskiy et al., 2021; Radford et al.,
2021; Zhai et al., 2023) responsible for processing
visual information such as images into visual to-
kens or embeddings and a Large Language Model
(LLM) that processes the combined visual and
text tokens to perform sophisticated tasks requiring
complex multimodal understanding, such as visual
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Figure 1: Comparison of different token reduction
methods for Google’s latest high-performing Gemma-3-
4B and Gemma-3-12B LMMs during inference on the
AI2D dataset. Our method, AdaptMerge, reduces com-
putational cost (measured in TFLOPs) while surpassing
state-of-the-art methods by a substantial margin.

question answering and image captioning. How-
ever, the computational demands of LMMs during
inference remain a significant barrier to their practi-
cal adoption and efficient deployment, particularly
in resource-constrained environments. A primary
contributor to this challenge is the large number of
visual tokens generated by vision encoders, which
scales with image resolution and model size, lead-
ing to increased latency and substantial computa-
tional requirements (Bolya et al., 2023; Shang et al.,
2025; Sun et al., 2025; Alvar et al., 2025).

To mitigate these challenges, token reduction
techniques have been developed to streamline vi-
sual processing in LMMs while preserving perfor-
mance. However, existing methods face several
limitations. Many approaches require fine-tuning
or calibration on large datasets, which is computa-
tionally intensive and impractical due to substantial
GPU memory and training time requirements (Cai
et al., 2025; Li et al., 2024; Ye et al., 2025; Lin
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et al., 2025; Sun et al., 2025). Additionally, most
token reduction methods apply a fixed reduction
ratio across all images, lacking adaptiveness to im-
age complexity. This one-size-fits-all approach can
lead to suboptimal outcomes: images with sparse
details, such as natural scenes, could tolerate ag-
gressive token reduction, whereas images with fine-
grained details, like wildlife or satellite images,
require a more conservative strategy to preserve
critical information. Furthermore, the majority of
current methods (Bolya et al., 2023; Ye et al., 2025;
Shang et al., 2025; Alvar et al., 2025) focus solely
on visual information for token reduction, over-
looking the multimodal nature of LMMs and the
relevance and relationship of visual tokens to the
textual input, which is vital for optimizing perfor-
mance in vision-language tasks.

In this paper, we propose AdaptMerge, a novel
inference-time adaptive token reduction strategy
that integrates visual and language guidance to en-
hance the efficiency of LMMs. AdaptMerge is en-
tirely training-free, eliminating the need for costly
retraining or fine-tuning. For the unimodal vision
encoder, AdaptMerge employs diversity-guided vi-
sual token merging, which dynamically reduces to-
kens by prioritizing significant visual tokens while
merging redundant or less informative ones in each
encoder layer based on their feature diversity, adapt-
ing to the complexity of input images. Subse-
quently, it performs language-guided visual token
merging on the visual tokens fed into the LLM, pri-
oritizing those most relevant to the text prompt to
reduce LLM input tokens. By dynamically consoli-
dating visual tokens during inference, AdaptMerge
strikes an optimal balance between computational
cost and performance, reducing floating-point op-
erations (FLOPs) while improving accuracy across
multiple multimodal benchmarks compared to ex-
isting token reduction techniques (Fig. 1). As a
plug-and-play solution, AdaptMerge paves the way
for broader adoption of LMMs in real-world appli-
cations.

In summary, we make the following key contri-
butions:

* We highlight the importance of adaptive visual
token reduction in LMMs, which integrates both
visual and language inputs to improve its effi-
ciency.

* We introduce AdaptMerge, a novel inference-
time visual token reduction strategy that en-
hances the efficiency of LMMs through a

training-free, adaptive, and multimodal approach
guided by both visual and language cues.

* We conduct extensive experiments on the re-
cently released 4B and 12B versions of Google’s
powerful Gemma 3 models across four standard
multimodal benchmarks, showing that Adapt-
Merge outperforms state-of-the-art token reduc-
tion methods by reducing floating-point opera-
tions while achieving notable performance gains.

2 Related Work

2.1 Efficient Large Multimodal Models
(LMMs)

Recent state-of-the-art LMMs (Team et al., 2025;
Beyer et al., 2024; Liu et al., 2023; Bai et al., 2023)
have demonstrated impressive performance on var-
ious mutimodal tasks including image captioning
(Agrawal et al., 2019), visual question answering
(Goyal et al., 2017; Marino et al., 2019; Kembhavi
et al., 2016), OCR (Singh et al., 2019; Mathew
et al., 2021), and so on. These models have to
process a large number of visual tokens, driving
up both inference time and computational costs.
A number of recent works therefore aim to im-
prove efficiency of LMMs with minimal perfor-
mance degradation. For example, Mamba (Gu and
Dao, 2024) uses a selective state-space architecture
to reduce compute per token, while BLIP-2 (Li
et al., 2023) uses a specific vision encoder called Q-
Former (Zhang et al., 2024) that condenses image
features into a smaller set of visual tokens. Or-
thogonal approaches such as weight quantization
(Gong et al., 2014), layer skipping (Shukor and
Cord, 2024), knowledge distillation (Wang et al.,
2020) into smaller LLM backbones can also cut
inference cost. However, these methods rely on
costly re-training or fine-tuning. In contrast, var-
ious token reduction methods (Alvar et al., 2025;
Chen et al., 2024) including ours achieve computa-
tional savings while leaving the underlying model
architecture and pretrained weights untouched.

2.2 Visual Token Reduction in LMMs

As the computational demand of LMMs scales
quadratically with the token count, the sheer num-
ber of visual tokens, especially when processing
high-resolution images, hampers the practicality of
LMMs in real-world applications. Consequently,
recent studies has focused on reducing these visual
tokens through pruning and merging to boost LMM
efficiency while minimizing performance sacrifice
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(Alvar et al., 2025; Chen et al., 2024; Lin et al.,
2025; Shang et al., 2025). Token pruning methods
select a subset of the visual tokens based on some
importance criteria and simply discard the rest (Al-
var et al., 2025), whereas token merging methods
show that preserving the less important tokens by
merging them back into the selected ones is bene-
ficial for fine-grained analysis (Shang et al., 2025;
Bolya et al., 2023). ToMe (Bolya et al., 2023), a
seminal work on token merging, proposes to merge
visual tokens in ViT vision encoder (Dosovitskiy
et al., 2021) using bipartite matching. Our Adapt-
Merge framework adopts token merging as a to-
ken reduction strategy. Fine-tuning and calibration
based methods achieve token reduction (Sun et al.,
2025; Zhang et al., 2025; Ye et al., 2025) at the
expense of additional computational cost. FitPrune
(Ye et al., 2025) formulates a pruning recipe based
on the attention divergence statistics while M> (Cai
et al., 2025) employs model fine-tuning for train-
ing nested visual token representations at various
scales. To forgo additional fine-tuning or calibra-
trion, several works have proposed training-free
token reduction methods. Among them, PruMerge
(Shang et al., 2025) and FastV (Chen et al., 2024)
employs attention scores to prune their visual to-
kens. However, it is shown that this can lead to
a selection of redundant visual tokens (Lin et al.,
2025). DivPrune (Alvar et al., 2025) prunes a fixed
ratio of visual tokens and uses an algorithm based
on MMDP (Resende et al., 2010) to prune tokens.
Whereas, PruMerge selects their reduction ratio
using a simple outlier detection algorithm which
may lead to suboptimal results. However, these
methods do not reduce tokens in the vision encoder
and solely rely on visual information to make to-
ken reduction decisions while ignoring the highly
informative text prompt and its relevance to the
visual tokens. In contrast, our AdaptMerge strategy
reduces visual tokens in both the vision encoder
and the LLM input leading to substantial compute
savings. In addition, it is an adaptive approach that
is guided by both visual and language cues.

3  Our Approach

We present AdaptMerge, an inference-time, plug-
and-play adaptive token reduction strategy that can
be easily retrofitted into LMMSs. We begin by de-
scribing the general architecture of LMMs, fol-
lowed by a description of AdaptMerge.

3.1 Large Multimodal Models (LMMs)

Given an image I and a text prompt or query (), an
LMM, such as Gemma 3, generates a text response
R in an auto-regressive manner, leveraging the vi-
sual information in the image and the input text.
The LMM processes input images using a vision
encoder F, which is typically a transformer net-
work (Vaswani et al., 2017) consisting of multiple
sequential transformer layers. F first divides the
input image I into p patches of fixed size. These p
image patches are then processed to produce their
corresponding visual tokens VF = {vf s vf .
These visual tokens pass through a projection mod-
ule, which typically includes fully-connected and
adaptive average pooling layers, to produce a fixed
number of n visual tokens V' = {vy,...,v,}.
Meanwhile, the associated text query is mapped
to m text embeddings Q = {qi,...,qn}. The
LLM decoder receives the concatenated sequence
[V'; Q] as input and generates the text response R.

3.2 AdaptMerge

Due to the high dimensionality of visual input, the
number of visual tokens often far exceeds the num-
ber of text tokens. However, many of these visual
tokens may be redundant and irrelevant to the as-
sociated text prompt. As a result, effectively com-
pressing visual information by reducing the number
of visual tokens has significant potential to reduce
the computational load of LMMs during inference.
Reducing a fixed number or ratio of visual tokens
is suboptimal, as it does not account for the com-
plexity of input images. For instance, information-
dense inputs, such as wildlife images containing
complex animal behavior or environmental fea-
tures, require more tokens to capture fine details. In
contrast, sparse natural scenes or images dominated
by irrelevant regions can be processed with far
fewer tokens. To address this, we propose Adapt-
Merge, an adaptive approach that reduces visual
tokens during inference in LMMs by merging them
based on their visual redundancy and relevance to
the text prompt. AdaptMerge performs token reduc-
tion in two stages (Fig. 2): Adaptive Visual Token
Merging (AVTM) and Adaptive Language-Guided
Visual Token Merging (ALVTM).

3.2.1 Adaptive Visual Token Merging (AVTM)

Depending on the patch size and image, the vi-
sion encoder processes thousands of visual tokens
across multiple sequential transformer layers, often
resulting in significant redundant computation. To

7354



Vision Encoder

Visual tokens

(=
o
=3
133
9,
3
o
S
©
Q
£
-l

layer; layer; 1 layery,

Adaptive Visual
Token Merging (AVTM)

’ h

. \
% E ~ -
» ! 1
2 - e

Al = . Diversity-guided _ N .
. . Token Selection - X
Image input . 4 '

' \
' ~ =7 Merge :
/

vy Adaptive Language-guided vy

vy ’, N Vg

'
:
!

U3 ) 5! Language-guided .-
1 Token Selection
.
'
\
'
.
\

LLM

Text Encoder

What is the boy in blue and white trying to do?

Text Embeddings ————> | 92

Text prompt ——T

dm

Figure 2: Overview of our AdaptMerge strategy for adaptive visual token reduction during inference in the LMM.
AdaptMerge reduces visual tokens at two stages: within the vision encoder using Adaptive Visual Token Merging
(AVTM), and in the input to the LLM using Adaptive Language-Guided Visual Token Merging (ALVTM). AVTM
selects and merges tokens based on visual diversity at each layer of the vision encoder. ALVTM performs language-
guided merging by leveraging text prompt features from a text encoder jointly trained with the vision encoder. The
final reduced set of visual tokens is concatenated with the text prompt tokens and fed to the LLM for text generation.

address this, we propose prioritizing important vi-
sual tokens while merging redundant ones at each
layer of the vision encoder, progressively reducing
their number. Specifically, we reduce visual tokens
based on their visual diversity, which helps mitigate
redundancy and enables more efficient processing.

Let the vision encoder consist of L layers, and
denote the input to layer / as X! = {2, ... ,:c;l},

where p! represents the number of visual tokens at
layer [. At the first layer, the input is X' = V%,
with p! = p, where p is the number of image
patches, and V¥ is the set of p visual tokens cor-
responding to these patches. Applying adaptive
token merging at each layer progressively reduces
the number of visual tokens; therefore, for any layer
1, it holds that p!t! < p'.

We measure the diversity score d; of the ¢-th vi-
sual token xi by computing its average similarity to
all other visual tokens in the same layer. To reduce
computational overhead, instead of using the token
embeddings directly, we use their corresponding
key vectors from the attention mechanism of the
transformer layer, as these key vectors serve as
compressed representations of the tokens. Hence,
the diversity score d; for the i-th token in layer [
can be written as:

1 .
i#]

sim(mé,xé) = cosine k., ké) (2)

A low value of d; suggests that the visual token
! carries less informative content. We use the
corresponding attention key vector k:f as a compact
representation of zt. We select a subset of tokens K
with high diversity scores (i.e., d; > p) as they con-
tain significant information. For each unselected
token in the remaining set M, we merge it into its
most similar token in K by averaging. This strat-
egy minimizes information loss and helps maintain

accurate predictions.

AVTM retains more visual tokens for images
with fine-grained details due to higher token diver-
sity, while it aggressively merges tokens for sim-
pler images with lower diversity. This way, AVITM
adaptively reduces computational cost based on in-
put image complexity. We apply AVTM between
the Attention and MLP blocks in each vision en-
coder layer, significantly reducing the computa-
tional load by lowering the quadratic cost of atten-
tion computations.
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3.2.2 Adaptive Language-Guided Visual
Token Merging (ALVTM)

In the LMM, there is a linear projection module
next to the vision encoder that performs average
pooling to produce a fixed number of visual tokens
for the LLM. While AVTM reduces the token count
within the vision encoder, the projection module
still outputs that fixed number of tokens for the
LLM. Hence, to reduce the computational load of
the LLLM, we next apply ALVTM, an additional
adaptive merging step before feeding the tokens
into the LLM. Unlike AVTM, ALVTM leverages
multimodal information by using the text prompt to
guide token reduction. It selectively retains visual
tokens most relevant to the prompt, while merging
the less relevant ones.

Given a set of n visual tokens V' = {v1,...,v,}
as input to the LLM, our goal is to reduce it to a
smaller set V' containing 7 tokens, where 7 < n.
By forwarding only 7 visual tokens to the LLM, we
reduce its overall computational load and inference
time. We select tokens based on their relevance
to the text prompt. LMMs typically use vision
encoders (SigLIP (Zhai et al., 2023) in Gemma 3)
pretrained jointly with a corresponding text encoder
via contrastive learning, aligning visual and textual
features from paired image-text datasets. We utilize
this jointly trained text encoder (i.e., SigLIP text
encoder) to generate a robust text feature represen-
tation ¢ from the text prompt and use it to compute
a text-relevance score r; for each visual token v; as
follows:

i = cosine(vi, LT) fortr=1...n (3

Here, t denotes the pooled text feature obtained
from the text encoder for the prompt and cosine
refers to the cosine similarity function.

Next, we select a subset of visual tokens K that
are highly relevant to the text prompt, i.e., those
satisfying r; > 7. To prevent the loss of impor-
tant visual information, particularly crucial for fine-
grained, detail-sensitive tasks, we adopt a merging
strategy similar to AVTM. Each unselected token
in the remaining set M is merged into its most
similar token in C by averaging. This preserves
essential image context while reducing the number
of visual tokens passed to the LLM. Finally, the re-
sulting 7 visual tokens are then concatenated with
the LMM text embeddings () and fed into the LLM
to generate the output text.

ALVTM is language-guided and adaptive, as it

selects prompt-relevant visual tokens while merg-
ing less informative ones, resulting in a variable-
length set of visual tokens for different input im-
ages. Additionally, since the text encoder used for
ALVTM is explicitly trained via contrastive learn-
ing to align textual and visual features, extracting
the text feature ¢ from it produces more meaning-
ful text-relevance scores while introducing only
negligible computational overhead (less than 0.01
TFLOPs). Nevertheless, we experiment with using
LMM text embeddings directly to compute text-
relevance scores (see Table 4). Although this ap-
proach achieves reasonable performance, features
from the jointly trained text encoder perform better,
as they are explicitly optimized for alignment with
visual features.

4 Experiments

In this section, we first lay out our experimental set-
tings and implementation details. Then, we show-
case the effectiveness of our method on several
standard multimodal benchmarks.

4.1 Datasets and Settings

Datasets. We evaluate our method on four chal-
lenging image-language benchmarks focused on
multimodal reasoning and understanding tasks,
namely AI2D (Kembhavi et al., 2016), SQA (Lu
et al., 2022) (ScienceQA-IMG), OKVQA (Marino
et al., 2019), and TextVQA (Singh et al., 2019).
These datasets originally consist of around 15k,
14k, 21k, and 45k questions, respectively. Since
our method is applied at inference time, we use
only the respective test or validation splits to re-
port the performance. SQA, AI2D, and OKVQA
contains around 2k, 3k, and 5k test samples, respec-
tively. We evaluate on the TextVQA validation set
which contains around Sk samples.

AI2D (Kembhavi et al., 2016) is a popular bench-
mark for visual question answering related to sci-
ence diagrams. SQA (Lu et al., 2022) includes a
wide range of questions across topics in natural sci-
ences, social studies, and linguistics. Both datasets
provide an associated multiple-choice question for
each image. On the other hand, Outside Knowledge
VQA (OKVQA) (Marino et al., 2019) is used to
evaluate open-ended question answering based on
images, whereas TextVQA (Singh et al., 2019) fo-
cuses on evaluating a language-and-vision model’s
ability to read and understand textual information
from images.
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Model Method TFLOPs | ‘ OKVQA 1 AI2ZDT SQAT TextVQA (val) 1
Original 791 53.67 68.10 70.55 65.50
PruMerge 6.52 47.82 53.89 62.77 40.56

Gemma-3-4B ToMe 6.43 48.64 60.88 68.42 50.14
DivPrune 6.39 49.62 62.53 69.11 57.58
AdaptMerge (Ours) 5.12 5347 65.12 70.02 61.44
Original 12.87 59.77 77.82 76.45 75.96
PruMerge 11.50 52.17 61.64 73.55 60.55

Gemma-3-12B | ToMe 10.97 55.58 67.42 74.47 64.31
DivPrune 9.14 59.51 68.69 76.0 68.20
AdaptMerge (Ours) 8.87 59.71 71.53 76.60 71.56

Table 1: Comparison of performance and inference TFLOPs for the Original Gemma-3-4B and Gemma-3-12B
models, baseline methods, and AdaptMerge across four multimodal benchmarks.

Models and baseline comparisons. We evalu-
ate the performance of our token reduction strat-
egy, AdaptMerge, on two high-performing mul-
timodal models from Google’s latest Gemma 3
family (Team et al., 2025): Gemma-3-4B and the
larger Gemma-3-12B, using their official check-
points. For comparison, we implement three state-
of-the-art token reduction baselines using their pub-
lic code: (i) PruMerge (Shang et al., 2025), a
training-free method that adaptively selects key
visual tokens augmented with uniformly sampled
ones; (ii) ToMe (Bolya et al., 2023), which merges
tokens iteratively within the vision encoder using
bipartite matching; and (iii) DivPrune (Alvar et al.,
2025), an inference-time method that selects di-
verse output tokens from the projection layer. Addi-
tionally, we compare against the original Gemma-3
models without any token reduction, which serve
as upper-bound baselines and are referred to as
Original in our results. Note that DivPrune and
ToMe are not adaptive and use a fixed token re-
duction mechanism, whereas PruMerge is adaptive.
For a fair comparison with fixed token reduction
methods, specifically DivPrune and ToMe, we fol-
low prior work (Alvar et al., 2025) and configure
their token reduction mechanisms to have a slight
computational advantage over ours.

Metrics. Following the evaluation protocols of
prior work (Alvar et al., 2025; Team et al., 2025;
Shang et al., 2025), we use the Exact Match (EM)
metric for performance evaluation. For Gemma 3
models (Team et al., 2025), we use their standard
evaluation settings and employ few-shot prompt-
ing with four example image-question-answer pairs
from training data and apply pan and scan, which
converts images with wide aspect ratio in mul-

tiple dynamically cropped sqaure regions to en-
hance their performance. We measure efficiency
via teraFLOPs (i.e., TFLOPs), inference time, and
throughput.

Implementation details. The Gemma-3-4B and
Gemma-3-12B models, with approximately 4 bil-
lion and 12 billion parameters respectively, process
896 x 896 input images using the Sigl.IP vision
encoder (Zhai et al., 2023), which generates 4,096
initial visual tokens from 4,096 image patches. The
linear projector following the vision encoder in
Gemma 3 outputs a fixed set of 256 visual tokens
as input to the LLM. The AVTM component (Sec.
3.2.1) of AdaptMerge adaptively reduces the 4,096
initial visual tokens within each layer of the vision
encoder using a diversity threshold of p = 0.05,
while ALVTM (Sec. 3.2.2) reduces the 256 pro-
jected tokens for LLM input based on a text rele-
vance threshold of 7 = 0.15. We conduct exper-
iments on NVIDIA L40 GPUs for Gemma-3-4B
and A100 GPUs for Gemma-3-12B.

4.2 Comparisons with State-of-the-Art

In Table 1, we compare AdaptMerge with base-
line methods for Gemma-3-4B and Gemma-3-12B,
reporting performance and computational cost in
TFLOPs across the four multimodal benchmarks.
Note that TFLOPs are measured on the AI2D
dataset, as discussed in the following section on the
detailed efficiency analysis. By adaptively merging
tokens in the vision encoder and LLM input based
on visual redundancy and text relevance, Adapt-
Merge significantly reduces TFLOPs while achiev-
ing higher accuracy than state-of-the-art baseline
methods on all datasets. Notably, on the TextVQA
dataset, a key benchmark which evaluates the chal-
lenging ability to read and reason about text in
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Method TFLOPs | Inference Time | Vision Enc. Time | LLM Time| Throughput 1
(sec.) (sec.) (sec.) (sample/sec.)
Original 7.91 0.711 0.532 0.172 1.41
PruMerge 6.52 0.645 0.420 0.115 1.55
ToMe 6.43 0.481 0.316 0.122 2.08
DivPrune 6.39 0.503 0.423 0.059 1.99
AdaptMerge (Ours) 5.12 0.399 0.203 0.102 2.51

Table 2: Detailed inference efficiency comparison among Original Gemma-3-4B, baseline methods, and Adapt-

Merge.

images for answering questions, AdaptMerge sig-
nificantly minimizes performance degradation com-
pared to the Original models, demonstrating its
ability to enhance computational efficiency while
maintaining strong performance. It also shows that
AdaptMerge preserves critical visual details neces-
sary for fine-grained analysis and understanding.

4.3 Ablation Studies

To analyze the contribution of various components
of our method, we perform several ablation exper-
iments. We use the Gamma-3-4B model and the
AI2D dataset for all ablation experiments and effi-
ciency analysis.

Detailed efficiency analysis. Table 2 summa-
rizes the detailed inference efficiency of Adapt-
Merge, comparing to the Original Gemma-3-4B
model and baselines, reporting TFLOPs, run-time
metrics including inference time, vision encoder
time, LLLM time, and throughput on an NVIDIA
L40 GPU. We report the average of TFLOPs and
run-time metrics for each test image instance of
AI2D dataset without adding additional images
from few-shot prompting or pan and scan. Adapt-
Merge reduces total TFLOPs from 7.91 to 5.12
(~35% reduction) and end-to-end latency from
0.71s to 0.40 s (~44% improvement), surpassing
baselines. Despite higher computational loads, Di-
vPrune, ToMe, and PruMerge achieve lower accu-
racy. AdaptMerge halves vision encoder time and
boosts throughput from 1.41 to 2.51 samples/sec.,
outperforming all baselines. This demonstrates
AdaptMerge’s ability to minimize computational
cost through adaptive token merging while preserv-
ing accuracy.

Impact of AVTM and ALVTM. AdaptMerge pro-
poses reducing visual tokens in both the vision
encoder and the LLM input. AVTM adaptively
merges tokens in each vision encoder layer based
on visual redundancy, while ALVTM reduces LLM
input tokens based on text prompt relevance. Ta-

ble 3 quantifies their contributions. With larger
number of tokens in the vision encoder, AVIM
achieves a ~23% TFLOPs reduction with minimal
performance loss, whereas ALVTM offers smaller
savings. Importantly, combining both offers over
~35% TFLOPs reduction with only marginal per-
formance loss, demonstrating their complementary
efficiency gains.

AVTM | ALVTM | TFLOPs | AI2D

X X 7.91 68.10
4 X 6.08 65.42
X 4 7.17 65.38
4 4 5.12 65.12

Table 3: Ablation study on the relative impact of AVIM
and ALVTM in AdaptMerge.

SigLIP text features vs. LLM text embeddings:
Table 4 compares our ALVTM under two choices
for computing the text-relevance scores (Eq. 3).
When using raw LMM text embeddings to compute
text-relevance with the visual tokens from the lin-
ear projection, we achieve similar compute reduc-
tion in TFLOPs but observe a larger performance
drop. This occurs because the alignment between
the LLM embeddings and the projected visual to-
kens is achieved only indirectly through joint train-
ing for auto-regressive text generation, and their
embedding space is not explicitly optimized for
alignment with visual tokens. In contrast, guiding
AdaptMerge’s ALVTM using SigLIP text encoder
features achieves nearly the same compute savings
while maintaining higher performance. This in-
dicates that SigL.IP’s text encoder representations
are more effective for computing the text-relevance
scores in ALVTM.

Token merging vs. token dropping. Table 5 com-
pares the effects of visual token merging (Merge) in
AdaptMerge versus discarding (Drop) unselected

7358



Method TFLOPs | AI2D
Original 7.910 | 68.10
LMM text embeddings 5110 | 62.85
SigLIP text features (Ours) 5.118 65.12

Table 4: Comparison of SigLIP text encoder features
(Ours) vs. LLM text embeddings for computing text-
relevance scores in ALVTM.

visual tokens with low diversity or text relevance.
Merging unselected tokens into similar selected
ones preserves higher task performance by retain-
ing fine-grained details and preventing information
loss critical for multimodal tasks, unlike dropping,
which leads to information loss and lower perfor-
mance.

Method | TFLOPs | AI2D
Original 7.91 68.10
Drop 5.12 62.98
Merge (Ours) 5.12 65.12

Table 5: Comparison of token reduction strategies in
AdaptMerge: simply dropping them (Drop) vs. merging
unselected visual tokens into retained ones (Merge).

Importance of selected tokens. To assess the im-
portance of the tokens selected by AdaptMerge, we
conduct the following experiment. In AVTM, we
multiply each token’s diversity score by -1, causing
it to select less diverse tokens instead of the most
diverse ones. Similarly, in ALVTM, we invert each
token’s text-relevance score by multiplying it by -1,
leading it to select less relevant tokens. Addition-
ally, we invert the respective selection thresholds
for both AVTM and ALVTM. We observe a sig-
nificant drop in performance under these inverted
settings (Table 6), where unimportant tokens are se-
lected (AdaptMerge (inverted)). This performance
degradation provides quantitative evidence that the
selection criteria introduced in AdaptMerge effec-
tively identify important tokens.

Method | TFLOPs | AI2D
AdaptMerge (Ours) 5.12 65.12
AdaptMerge (inverted) 5.78 5291

Table 6: Comparison of AdaptMerge and its inverted
variant for token selection.

Effectiveness of AdaptMerge on another LMM.
In our paper, we primarily focus on Google’s latest
Gemma 3 models (Team et al., 2025) due to their
state-of-the-art performance. However, to further
evaluate the generalizability of AdaptMerge across
different models, we also conduct experiments on
another popular LMM, LLaVA-1.5-7B (Liu et al.,
2023). Once again, AdaptMerge outperforms exist-
ing state-of-the-art token reduction approaches on
this model (Table 7), achieving superior compute
efficiency and performance, thereby demonstrating
its effectiveness on other models.

Method | TFLOPs | AI2D
Original 9.95 53.50
PruMerge 8.23 41.45
ToMe 7.91 49.64
DivPrune 7.68 49.31
AdaptMerge (Ours) 7.56 51.30

Table 7: Performance comparison of AdaptMerge on
another LMM, LLaVA-1.5-7B.

Qualitative analysis. Figure 3 visualizes token se-
lection by PruMerge, DivPrune, and AdaptMerge
(Ours) for three sample images, with each row rep-
resenting one method and red masks indicating key
selected tokens. AdaptMerge dynamically selects
visual tokens based on image complexity and text
relevance, assigning more to information-dense im-
ages and fewer to sparse ones. Unlike the less
adaptive or static strategies of PruMerge and Di-
vPrune, AdaptMerge’s adaptive approach preserves
fine-grained and relevant visual details, enhanc-
ing multimodal task performance while reducing
TFLOPs.

5 Conclusion

We propose AdaptMerge, a novel inference-time,
training-free adaptive visual token merging strat-
egy that represents a significant advancement in the
pursuit of efficient LMMEs, facilitating the broader
adoption of multimodal Al in real-world applica-
tions. By addressing the computational challenges
of LMMs through an innovative integration of adap-
tiveness with both visual and language guidance,
AdaptMerge outperforms state-of-the-art token re-
duction methods, achieving lower computational
cost while enhancing task performance across di-
verse image-language benchmarks.
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Figure 3: Visualization examples of important visual
tokens identified by baseline methods and our Adapt-
Merge on three sample images. First row: PruMerge;
second row: DivPrune; third row: AdaptMerge. Red
masks on each image indicate the tokens deemed im-
portant by each method. Compared to the baselines,
AdaptMerge adaptively adjusts token selection based on
image complexity and text relevance.

Limitations

While AdaptMerge presents a promising approach
to improving efficiency in LMM, it is not without
limitations. It relies heavily on the availability and
quality of visual and language guidance, which
may limit its effectiveness in scenarios where either
modality is noisy or ambiguous, potentially leading
to suboptimal token merging. Additionally, the
reliance on adaptive token merging could introduce
challenges in terms of model interpretability and
consistency, as the merging process might obscure
how individual tokens contribute to the final output.
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