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Abstract

Recent advances in multimodal ECG represen-
tation learning center on aligning ECG signals
with paired free-text reports. However, subop-
timal alignment persists due to the complex-
ity of medical language and the reliance on a
full 12-lead setup, which is often unavailable in
under-resourced settings. To tackle these issues,
we propose K-MERL, a knowledge-enhanced
multimodal ECG representation learning frame-
work. K-MERL leverages large language mod-
els to extract structured knowledge from free-
text reports and employs a lead-aware ECG
encoder with dynamic lead masking to accom-
modate arbitrary lead inputs. Evaluations on
six external ECG datasets show that K-MERL
achieves state-of-the-art performance in zero-
shot classification and linear probing tasks,
while delivering an average 16% AUC im-
provement over existing methods in partial-lead
zero-shot classification'.

1 Introduction

Recent advancements in deep learning have en-
abled automated classification of cardiovascular
disease (CVD) using electrocardiograms (ECGs),
one of the most crucial diagnostic tools. How-
ever, most methods are supervised, requiring large
amounts of annotated data, which is costly and de-
mands prohibitively extensive expert effort in anno-
tation (Liu et al., 2023a; Huang and Yen, 2022). To
address this challenge, self-supervised multimodal
learning has recently emerged as an effective ap-
proach for learning representative ECG features
from accompanied free-text clinical reports (Li
et al., 2023; Pham et al., 2024; Liu et al., 2024). To
this end, MERL (Liu et al., 2024) recently intro-
duced the first comprehensive benchmark using the
largest dataset MIMIC-ECG (Gow et al.) for pre-
training, and six datasets (Wagner et al., 2020; Liu

Uhttps://github.com/cheliu-computation/EMNLP25-
KMERL

etal., 2018; Zheng et al., 2022, 2020) for evaluating
downstream task performance, including zero-shot
classification and linear probing.

Despite  outperforming signal-only self-
supervised approaches, multi-modal approaches,
including MERL (Liu et al., 2024), still have
notable drawbacks: They directly align ECG
signals with reports, introducing unnecessary
noise due to the free-text nature of the reports,
and failing to fully exploit the rich cardiac
knowledge contained within the text. Additionally,
they encode ECG in a lead-agnostic manner,
overlooking the unique spatial and temporal
characteristics of the individual 12 ECG leads.
Moreover, they require all 12 leads to be available
as input, limiting their ability to generalize across
different lead combinations. This raises important
practical concerns since full 12-lead ECG data is
not always available in clinical environments due
to factors such as patient mobility issues, the need
for rapid assessments in emergencies, and limited
resource in pre-hospital care environments (Bray
et al., 2021; Swor et al., 2006; Quinn et al., 2020;
Nonogi et al., 2008; Kotelnik et al., 2021; Zhang
and Frick, 2019; Nonogi et al., 2008).

To overcome the challenges listed above, we
make the following contributions: (1) We pro-
pose a framework dubbed Knowledge-enhanced
ECG Multimodal Representation Learning (K-
MERL), which extracts cardiac-related entities
from free-text ECG reports, converting unstruc-
tured reports into structured knowledge to enhance
self-supervised ECG multimodal learning. To the
best of our knowledge, this is the first work to
leverage structured cardiac entities extracted from
clinical reports to improve ECG multimodal learn-
ing. (2) To effectively capture and leverage the
lead-specific spatial and temporal characteristics of
12-lead ECGs, we explore various tokenization and
positional embedding techniques. In particular, we
design lead-specific tokenization and lead-specific

7298

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 7298-7316
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/cheliu-computation/EMNLP25-KMERL
https://github.com/cheliu-computation/EMNLP25-KMERL

spatial positional embeddings, enabling the frame-
work to capture the distinctiveness of each lead. (3)
To enable our framework to handle arbitrary com-
binations of input leads, we introduce a dynamic
lead masking strategy. In addition, we propose an
independent segment masking strategy to further
capture lead-specific temporal patterns. (4) Our
K-MERL framework demonstrates superior perfor-
mance in zero-shot classification and linear probing
on multiple downstream datasets in various lead
combinations, from a single lead to all 12 leads.

2 Method

2.1 Overview

To this end, we first utilize a general-purpose
open-source large language model (LLM), such
as Llama3.1 (AI@Meta, 2024), without domain-
specific fine-tuning, to extract cardiac-related enti-
ties from free-text ECG reports.? This makes our
approach adaptable and well-positioned to benefit
from future advancements in LLMs. Additionally,
we design a lead-aware ECG encoder with lead and
segment masking strategies, allowing the model to
handle arbitrary lead inputs while capturing lead-
specific spatial-temporal patterns.

Our overall framework is illustrated in Fig 1(b),
shown together with the previous state-of-the-art
MERL that is based on naive cross-modal con-
trastive learning (Liu et al., 2024), in Fig 1(a).
While both approaches utilize contrastive learning
with an ECG signal encoder Jg processing signal
inputs and a text encoder Ft processing reports,
our method introduces substantial innovations, in-
cluding lead-specific processing, dynamic masking
strategies, and the extraction of cardiac-related enti-
ties from free-text reports, significantly enhancing
ECG multimodal learning.

In the following sections, we introduce the
model framework and lead-specific processing in
Sec 2.2, followed by the proposed masking strate-
gies in Sec 2.3. We then describe the pipeline
for extracting cardiac-related entities as structured
knowledge from ECG reports in Sec 2.4. Finally,
in Sec 2.5, we explain the knowledge-enhanced
ECG multimodal learning process, a synergy of the
aforementioned components.

*Entity extraction is inherently simpler than high-level text
comprehension in specialized domains, and has been shown
effective with general-purpose LLMs (Zhang et al., 2023b).

2.2 Lead-specific Processing

To begin with, we define the symbols used in our
framework: Given a training dataset X’ consisting
of N ECG-report pairs, we represent each pair as
(el,t;), where el € £ denotes the raw 12-lead ECG
signals for lead | € {1,2,3,...,12} of the i-th
subject 1 = 1,2,3,..., N), and t; € T represents
the associated free-text report. We then perform
lead-specific processing, as illustrated in Fig 2.
Lead-specific Tokenization. Consider an input
ECG signal eé with 12 leads and a signal length de-
noted by .S. We split the time-series signal into M
non-overlapping segments, each segment of length
S

+7» and perform tokenization for them. In this way,

each lead ECG is projected into a sequence of to-

] ) sl el ()

where €l [p,,] corresponds to the ECG token for
the m-th segment for lead /. For 12 leads, the total
number of tokens is 12 X M. Unlike MERL (Liu
et al., 2024), which generates a single token for a
12-lead ECG temporal segment, we produce tokens
separately for each individual lead to capture the

lead-specific nature.
Lead-specific Spatial Positional Embedding. We

apply a learnable linear projection W € RP*¢
to each token €' [p,]. Then, we introduce learn-
able lead embeddings [leady, ..., lead;s|, where

lead; € R, to capture the characteristics of each
lead. The resulting input sequence can be written
as:

lead; + Wellp1],...,  lead: + Wellpu],

...... )
leadis + Wef;[pl], ..., leadis + Wel [pa].

Lead-agnostic Temporal Positional Embedding.
In line with lead-specific spatial positional embed-
ding, we also incorporate learnable lead-agnostic
temporal embeddings to retain the temporal infor-
mation of ECG signals. These embeddings are de-
noted as [tempy, ..., temp,,], where temp,, € R
It is worth noting that these positional embeddings
are shared across leads, enabling the model to rec-
ognize temporal properties across leads, as all leads
originate from the same source and share the same
temporal domain properties. The resulting input
sequence can be written as:

temp; + lead; + Wel[p],
., temp,s; + lead; + Weé D],
.., temp; + leady + Wel[py],
., tempy + leadis + Wel[pa].

3)
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Figure 1: Comparison between classical ECG multimodal learning and our K-MERL framework. (a): The classical
approaches (e.g., MERL (Liu et al., 2024)) are suboptimal: they processes all leads in a lead-agnostic manner and
naively align ECG signals directly free-text reports. (b): K-MERL introduces lead-specific processing and lead &
segment masking to capture spatial-temporal patterns unique to each lead. It also extracts cardiac-related entities
from reports as structured knowledge and aligns them with ECG features to enhance multimodal learning, thereby

reducing the complexity introduced by the grammatical structure of free-text reports.

t
o

T(ma
I

569
[

LeadEmb1 |41 Pos Emb1 ' > + mb1 '+ P 1= — .
I+ Lea 1 [ | Lead Emb 'os Emb

Lead1
—> I 4+ LeadEmb1 '=! Pos Emb2 = —

Lead1 1
LeadEmb1 |+ Pos Emb3 |—» - — P B 4| LeadEmb1 '+ PosEmb3 = » —
= »
M TN =
Lead 2 = 59 E S
T Lead2 1 "wgd i o
= [ /o -o|
; ]
.
1 : I |+ LeadEmb12 |4 |Pos Emb 1 |=> %  —> N .7l o
Lead 12 1 =—> I ' LeadEmb12 4 PosEmb2 —» — . ging:
' n B |+ LeadEmb 12 4! Pos Emb3 = — mmmm  Lead12! M;,d '
H 1 e
Y i/
12Leads Lead-specific Lead-specific Lead i Lead-Specifi i
ECG Signal Tokenization  SpatialEmb  Temporal Emb ECG Token Emb
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Figure 2: Tlustration of our lead-specific processing and handling of partial leads input in K-MERL. (a): Lead-specific
processing and masking during pre-training. The model employs lead-specific tokenization, spatial embeddings, and lead-
agnostic temporal embeddings to capture spatial-temporal patterns for each lead (see Sec 2.2). Dynamic lead masking is used to
simulate inputs with arbitrary combinations of leads, while segment masking encourage the framework to captures temporal
patterns (see Sec 2.3). (b): Handling partial lead input during downstream tasks. When leads are missing, the model processes
only the available leads using lead-specific embeddings, allowing maintained performance even with incomplete data.

2.3 Lead and Segment Masking Segment Masking (LSM) (Fig. 2 a). Applying

masking across all tokens from an ECG signal
Using a fixed number of masked leads limits the  ¢ould lead to imbalances, where some leads have
model’s flexibility in handling arbitrary lead in-  more masked tokens than others. To avoid this,
puts. To address this, we propose Dynamic Lead [ .SM applies masking separately to each lead, en-
Masking (DLM), enabling the model to handle  suring an equal number of masked tokens per lead.
varying lead combinations (Fig. 2 a). Foran ECG gy each unmasked lead signal eg, we randomly se-
signal eﬁ with 12 leads, we first randomly sample i
a number from {9, 10, 11}, which determines how
many leads will be masked. Then, we randomly
select a set of unmasked lead indices, denoted as i,
and mask the remaining leads. This approach en-
sures the model is exposed to diverse combinations
of unmasked and masked leads during pretrain-
ing. The resulting ECG signal with the selected

unmasked leads is denoted as eé.

lect masked token indices ' based on a masking
proportion of 0.25. The model then processes only

the unmasked tokens, denoted as {e![pp]} neni- We
ablate DLM or LSM to verify their effectiveness,
as shown in Tab 2c and Fig 7.

2.4 Mining Cardiac-related Entities from
Report

To better capture the temporal patterns of  In this section, we introduce the structured knowl-
each ECG lead, we introduce Lead-independent  edge extraction process for handling free-text ECG
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Figure 3: Illustration of mining structured knowledge from free-text reports (see Sec 2.4). First, cardiac-related
entities are extracted from free-text ECG reports using an open-source LLM (e.g., Llama3.1-70B-Instruct). Next,
we query the LLM to merge duplicated or synonymous cardiac-related entities into a list of unique names. Finally,
the LLM detects and aggregates subtypes into their respective superclasses, creating a structured hierarchy of

cardiac-related entities.

reports. The pipeline is illustrated in Fig 3. Since
each ECG report provides descriptions of cardiac-
related entities, as shown in the leftmost part of Fig.
3, our goal is to extract all positive cardiac-related
entities mentioned in the report as structured knowl-
edge to enhance the supervision signals for ECG
multimodal learning.

Extracting Cardiac-related Entities. Unlike ex-
isting biomedical multimodal learning approaches
from the radiology domain, which rely on knowl-
edge graphs to extract structured knowledge from
reports (Zhang et al., 2023b; Wu et al., 2023),
we directly query an LLM with the following
prompt: ‘Please extract all positive
Cardiac-related Entities from the given
ECG report. Output format is [Entityl,
Entity2, ...1’. There are two main reasons
for this approach. First, there is no off-the-shelf
knowledge graph (KG) specifically focused on
ECG, making it impractical to use KG-based meth-
ods for extracting structured knowledge. Sec-
ond, since we are only extracting existing terms
from the free-text report, we can easily verify that
the extracted cardiac-related entities are present
and positive, ensuring no non-existent terms are
generated by the LLM. Moreover, (Zhang et al.,
2023b) has already demonstrated that a general-
purpose LLM can effectively extract existing med-
ical terms from free-text reports independently of
any external knowledge database. To ensure ac-
curacy, after each extraction operation, we query
the LLM with: ‘Please verify the extracted
cardiac-related entities as existing and
positive in the given report. Output
format is YES or NO’, and only retain the cardiac-
related entities with a ‘YES’ response. After this
stage, we obtain a total of 341 unique cardiac-
related entities in the whole dataset..

Merging Duplicated Cardiac-related Entities.
After extracting all cardiac-related entities from
whole dataset, we observe that many names share
the same semantics but are expressed differently,
as shown in the second part of Fig 3. This vari-
ation arises because different clinical protocols
generate ECG reports in different styles, even
though they describe the same cardiac-related
entities. To address this, we query the LLM
with: ‘Please merge the cardiac-related
entities that have the same semantics
but different expressions. Here are <all
Cardiac-related Entities>. Output format
is JSON, where the key is the original
name and the value is the merged name.’
After this stage, we obtain a total of 252 unique
cardiac-related entities in the whole dataset..

Aggregating Subtypes into Superclasses.
Since cardiac-related entities are organized in
a clear hierarchical structure (Arnaout et al.,
2016; Okshina et al., 2019), for example, as
shown in the rightmost part of Fig 3, ‘anterior

myocardial infarction’ and ‘inferior
myocardial infarction’ are subtypes of
the superclass ‘Myocardial infarction’

(Brieger et al., 2000), we query the LLM

with the following prompt: ‘Please detect
all the superclasses present in <all
Cardiac-related Entities>. Output

format is JSON, where the key is the
superclass name and the values are the
cardiac-related entities that belong to
this superclass.’

After this stage, we identify 25 superclasses of
cardiac-related entities. By the end of the process,
we obtain a list of 277 unique cardiac-related en-
tities for the entire dataset. The list of these enti-
ties is represented as @ = {q1,¢2, ..., qQ}, where
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@ = 277. For each ECG report t;, we create a
label vector of length 277, where the positions cor-
responding to present and positive cardiac-related
entity are set to 1, and all other positions are set
to 0. This results in a binary label vector for each
report, which we denote as y; € {0, 1}277.

2.5 Knowledge-enhanced ECG Multimodal
Learning

Aligning ECG and Reports. In this framework,
as shown in Fig 1 (b), two distinct encoders for
ECG signals and text reports, symbolized as JFg
and Fr, transform the sample pair (e;, t;) into the
latent embedding space, represented as (z. i, Z¢ ;).
The dataset at the feature level is then denoted as
X = {(2e1,261) 5 (Ze2,262) 5 - -+ (Ze, N, ZeN) }s
where z.; = Fg(e;) and z;; = Fr(t;). Af-
terward, two non-linear projectors for ECG and
text embeddings, denoted as P, and P, trans-
form z.; and z;; into the same dimensionality
d, with z.; = P.(AvgPool(z.;)) and z;; =
Pi(AvgPool(z; ;)). Next, we compute the cosine
similarities as s§3' = 2,2, representing the
ECG-report similarities, and formulate the ECG-
report contrastive 10ss Leontrast-

£ — log exp(sfg,t /T)
j L )
D k=1 Lz exp(ssy /)
1 N N
Econtrast = E Z Z E;‘%‘t' (4)
i=1 j=1

The temperature hyper-parameter, denoted as 7,
is set to 0.07 in our study. L refers to the batch size
per training step, which is a subset of N.
Aligning ECG and Cardiac-related Entities. To
learn the knowledge from extracted cardiac-related
entities, we design a cardiac query network, de-
noted as Fcq. This network consists of four trans-
former layers concatenated with a linear classifier
that predicts each ECG’s corresponding cardiac
entity labels y;. Given the set of cardiac-related en-
tities O, we compute a corresponding set of cardiac
query vectors using the text encoder, denoted as
Q = {a1,92,...,9¢}, where each query vector
q; is obtained as q; = F1(q;). These query vectors
are then used as inputs for the cardiac query net-
work Fcq. During pre-training, the ECG features
Z.; serve as the key and value inputs to the cardiac
query network Fcq. We use binary cross-entropy
(BCE) loss to compute the predictions from Fcq
and compare them to the existence labels y;. The
total loss is defined as:

N
1
ECQ = E ZBCE(ICQ(Q? Ze,i)a yl)a

i=1
ﬁtotal = £contrast + ﬁCQ- (5)
3 Experiments

3.1 Pre-training Configurations

MIMIC-ECG. We pre-train K-MERL using the
MIMIC-ECG dataset (Gow et al.), comprising
800,035 ECG-report pairs. Each sample includes
a raw ECG signal recorded at 5S00Hz over a
10-second duration, along with its correspond-
ing report. For fair comparison with the MERL
framework (Liu et al., 2024), we adhere to their
preprocessing protocol, available in the official
GitHub repository>. After preprocessing, we ob-
tain 771,693 samples for model pre-training.
Implementation. For pre-training, we inherit the
settings from MERL (Liu et al., 2024), using a
ViT-tiny model as the ECG encoder and Med-CPT
(Jin et al., 2023) as the text encoder. The key dif-
ferences in our approach are the proposed lead-
specific tokenizer and spatial-temporal positional
embeddings. For extracting cardiac-related entities
from the ECG reports, we utilize Llama3.1-70B-
Instruct (Al@Meta, 2024) as our main extractor.
While we are aware that smaller LLMs, such as
those at the 7B scale, can also acceptable good
results, we select the 70B model to maximize ex-
traction quality. Additionally, entity extraction is
performed only once prior to pretraining, so the
computational cost of using a larger model has min-
imal impact on overall efficiency. Ablation results
comparing different LLM extractors are provided
in Table 7c. Pre-training configuration details are
provided in Sec B.

3.2 Downstream Tasks Configurations

We evaluate our framework on both zero-shot clas-
sification and linear probing, using full and partial
lead ECGs across multiple public datasets cover-
ing over 100 cardiac conditions. We adhere to the
data split and preprocessing provided by MERL
(Liu et al., 2024). The tasks are implemented on
the following datasets: (1) PTBXL: The PTBXL
dataset (Wagner et al., 2020) includes 21,837 ECG
signals from 18,885 patients, sampled at 500 Hz
for 10 seconds. It provides four subsets for multi-
label classification: Superclass (5 categories), Sub-
class (23 categories), Form (19 categories), and

3https://github.com/cheliu-computation/MERL-
ICML2024/tree/main
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Rhythm (12 categories), with varying sample sizes.
(2) CPSC2018: The CPSC2018 dataset (Liu et al.,
2018) contains 6,877 12-lead ECG records, sam-
pled at 500 Hz, annotated with 9 distinct labels.
(3) CSN: The Chapman-Shaoxing-Ningbo (CSN)
dataset (Zheng et al., 2020, 2022) comprises 45,152
ECG records sampled at 500 Hz for 10 seconds.
After excluding records with ‘unknown’ annota-
tions, the final curated dataset includes 23,026 ECG
records with 38 labels. Detailed information about
the downstream datasets is presented in Tab 3. We
introduce the details of the compared methods in
Sec. C.

In the downstream tasks, we implement three
scenarios: zero-shot classification, linear probing,
and partial lead analysis. The implementation de-
tails are provided in Sec D.3.

3.3 State-of-the-art on Zero-shot
Classification

We first evaluate K-MERL on zero-shot classifi-
cation using 12-lead input across all downstream
datasets. The results for each dataset, along with
the average AUC score across six datasets, are
shown in Fig 4. Our framework significantly out-
performs MERL with both backbone architectures,
demonstrating the superiority of K-MERL when
using the original disease names as text prompts.
State-of-the-art on Unseen Disease Prediction.
Additionally, since we extract cardiac-related enti-
ties from reports during pre-training, there may be
overlap with categories in downstream tasks. This
could provide our model with prior knowledge of
certain categories, leading to an unfair comparison
with MERL (Liu et al., 2024). To address this, we
use Med-CPT (Jin et al., 2023), the text encoder, to
extract embeddings for all 277 cardiac-related enti-
ties and for all category names in the downstream
datasets. We compute the similarity between these
embeddings, and if the similarity exceeds 0.95, we
consider them overlapped. We identify 35 out of
277 extracted cardiac-related entities that overlap
with downstream categories, as listed in Tab 5. We
label these as ‘Seen Classes, while the remain-
ing downstream categories are labeled as ‘Unseen
Classes’

The average F1 score are depicted in Fig 5(b). K-
MERL outperforms MERL in both seen and unseen
categories. Notably, both K-MERL and MERL
exhibit performance drops on unseen classes com-
pared to seen classes, demonstrating that we suc-
cessfully detected an overlap of approximately

12.7% between the extracted cardiac-related enti-
ties from MIMIC-ECG and downstream categories,
effectively separating the tasks into ‘seen’ and ‘un-
seen’ groups. The results show that K-MERL per-
forms well not only on categories present during
pre-training but also on unseen categories, demon-
strating its generalizability. Since the original
MERL (Liu et al., 2024) framework relies on man-
ual prompt engineering (PE) at inference time to
enhance performance, we also evaluate MERL with
customized prompts, as detailed in Sec. F, to pro-
vide a comprehensive comparison. Notably, our
method outperforms MERL with PE while being
entirely independent of prompt engineering.

3.4 Performance of Linear Probing

As shown in Tab 1, K-MERL consistently outper-
forms multimodal methods, including MERL (Liu
et al., 2024) with both ResNet and ViT backbones,
as well as all eSSL methods across datasets and
data ratios. This highlights K-MERL’s robust per-
formance and the quality of its learned ECG fea-
tures, which not only improve multimodal tasks but
also significantly enhance single-modality tasks.

3.5 Performance with Partial Leads Input

We explore the robustness of K-MERL to missing
leads by simulating missing-lead scenarios through
progressively adding visible leads starting from a
single lead, as there is no publicly available ECG
dataset explicitly designed to evaluate missing-lead
scenarios.* As shown in Fig 6 (a) and (b), K-MERL
consistently outperforms MERL across all lead
combinations from 1 to 12 in both zero-shot classi-
fication and linear probing. Impressively, K-MERL
with just a single lead surpasses MERL'’s perfor-
mance using all 12 leads. Additionally, K-MERL
shows a stable performance trend as the number
of leads increases, unlike MERL, which exhibits
fluctuations in Fig 6 (a). This demonstrates the
effectiveness of our dynamic lead masking strat-
egy, lead-specific processing, and spatial-temporal
positional embeddings, contributing to K-MERL’s
superior results.

4 Analysis

This section provides ablation studies on the key
components of K-MERL and reports zero-shot clas-
sification results for single-lead and 12-lead inputs

“In most cases, publicly released datasets undergo strict cu-

ration, with samples containing missing leads often excluded
as corrupted data, despite their clinical relevance.
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Table 1: Linear probing results of K-MERL and other ECG learning methods, with best results bolded.
PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN
Method 1% 10% 100% | 1% 10% 100% | 1% 10% 100% | 1% 10% 100% | 1% 10% 100% | 1% 10% 100%
From Scratch
Random Init (CNN) 7045 77.09 8161 | 5582 67.60 7791 | 55.82 62.54 73.00 | 4626 62.36 79.29 | 5496 7147 7833 | 47.22 63.17 73.13
Random Init (Transformer) 7031 7527 77.54 | 5336 67.56 7743 | 5347 61.84 7208 | 45.36 60.33 77.26 | 5293 680 7744 | 4555 6023 7137
ECG only SSL
SimCLR 6341 6977 73.53 | 60.84 6827 7339 |54.98 5697 6252|5141 69.44 7773 | 5978 6852 7654 |59.02 67.26 73.20
BYOL 7170 7383 7645 | 5716 6744 7164 | 4873 61.63 7082 | 41.99 7440 7717 | 60.88 7442 7875 | 5420 7192 74.69
BarlowTwins 7287 7596 7841 | 62.57 7084 7434 | 5212 60.39 66.14 | 50.12 7354 77.62 | 5512 7275 7839 | 6072 71.64 77.43
MoCo-v3 7319 7665 7826 | 5588 6921 76.69 | 50.32 63.71 7131|5138 71.66 7433 | 62.13 7674 7529 | 5461 7426 77.68
SimSiam 7315 7270 7563 | 6252 6931 7638 |55.16 6291 7131|4930 69.47 7592 | 5835 7289 7531 | 5825 68.61 77.41
TS-TCC 7073 7588 7891 | 53.54 6698 77.87 |48.04 6179 7118|4334 69.48 7823 | 57.07 73.62 7872|5526 6848 76.79
CLOCS 68.94 7336 7631 | 57.94 7255 7624 |51.97 57.96 7265 | 47.19 71.88 7631|5959 77.78 77.49 | 5438 7193 76.13
ASTCL 7251 7731 8102 | 61.86 6877 7651 |44.14 60.93 6699 | 52.38 7198 7605 | 5790 77.01 79.51 | 5640 7087 75.79
CRT 69.68 7824 7724 | 6198 70.82 T8.67 | 4641 5949 68.73 | 47.44 7352 7441 | 5801 7643 8203 | 5621 7370 78.80
ST-MEM 6112 6687 71.36 | 5412 57.86 63.59 | 5571 5999 6607 | 5112 6544 7485 | 5669 6332 70.39 | 5977 6687 71.36
Multimodal Methods
MERL (ResNet) 8239 8627 88.67 | 6490 80.56 8472|5826 7243 79.65 | 5333 82.88 88.34 | 70.33 8532 90.57 | 66.60 8274 87.95
MERL (ViT) 7864 8390 8527 | 6141 77.55 8298 | 5632 69.11 77.66 | 52.16 78.07 B81.83 | 69.25 8282 8944 | 63.66 78.67 84.87
K-MERL (Ours) 84.19 8771 $9.83 | 68.22 8154 88.00 | 60.11 7371 8148|6372 84.16 9104 | 7191 86.13 91.26 | 69.51 8353 9371
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Figure 6: Performance comparison of K-MERL and MERL with partial lead inputs. (a) Zero-shot classification shows K-MERL
consistently outperforming MERL with two backbones across all lead combinations from 1 to 12. (b) Linear probing with 1%
data demonstrates K-MERL’s superior performance and robustness, even with limited data and varying lead inputs.

across all downstream datasets. Due to the page
limit, we show more ablation studies in Sec H.

Loss Ablation. Tab 2a shows the effect of remov-
ing Leontrast and Lcoq during pre-training. Re-
moving Lcq, which excludes structured knowl-
edge from cardiac-related entities, leads to a signif-
icant performance drop. While removing Lcontrast
also reduces performance, the impact is less se-
vere. This indicates that both losses are necessary,
with cardiac-related entities alignment providing a

larger benefit for pre-training.

Tokenization Size. In Fig 7 (a), we ablate the to-
ken size p and find the optimal length to be 100.
Larger token sizes (e.g., 200) have a more nega-
tive impact than smaller sizes (e.g., 25), likely due
to convert multiple segments to one token, which
introduces ambiguity. Across all token sizes, K-
MERL consistently outperforms MERL (Liu et al.,
2024), demonstrating the robustness and effective-
ness of our method.
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Figure 7: Ablation study on zero-shot classification with 12 leads. Left: Performance of K-MERL across varying token lengths,
showing optimal results with a token length of 100, consistently outperforming MERL. Right: Impact of different segment
masking ratios (25%, 50%, 75%) and the minimum number of masked leads. K-MERL outperforms MERL, with the best
performance at a 25% mask ratio and a minimum of 9 masked leads.

Table 2: Results of various ablation experiments. The best results are bolded.

(a) Ablating Loss Function.

(b) Effects of Entities Processing.

(c) Effects of Masking Strategy.

Loss | 1Lead 12 Leads Methods

| ILead 12 Leads Masking Strategy | 1Lead 12 Leads

K-MERL (Ours) ‘ 71.61 76.52 K-MERL (Ours)

K-MERL (Ours) 71.61 76.52

| 71.61  76.52

- ECG-Text Alignment (Leonrast) | 69.23 73.98
— ECG-Condition Alignment (Lcq) ‘ 65.44 68.95

— Subtype Aggregation

— Merging Duplicated Patterns

70.32
68.93
67.84

75.21
74.74
72.11

— Lead-independent Segment Masking
— Segment Masking
— Dynamic Lead Masking

70.11 74.62
70.54 74.93

Cardiac-related Entities Processing. As shown
in Tab 2b, both subtype aggregation and merging
duplicate entity names improve K-MERL’s perfor-
mance. However, the best results are achieved
when both procedures are applied together, indi-
cating they complement each other.

Masking Strategy and Ratio. Tab 2c shows the
results of various masking strategies, where all ap-
proaches enhance K-MERL’s performance. Re-
moving dynamic lead masking and using a fixed
number of masked leads degrades performance,
highlighting its importance. Similarly, omitting
lead masking during pre-training causes a sharp
drop in zero-shot classification, indicating its role
in capturing lead-specific features. Fig 7 (b) ex-
plores mask ratios and lead masking. An optimal
configuration is identified with a mask ratio of 25%
and a minimum of 9 masked leads. Increasing the
mask ratio beyond this or using more than 9 leads
as the minimum for masking leads to a decrease in
performance.

5 Related Work

Recent ECG self-supervised learning (eSSL) ap-
proaches have explored contrastive (Kiyasseh et al.,
2021; Wang et al., 2023) and generative (Zhang
et al., 2022; Na et al., 2023; Jin et al., 2024) ob-
jectives, but they remain unimodal and often lack
clinical context. Multimodal ECG methods (Liu
et al., 2024; Li et al., 2023; Yu et al., 2024)
typically align signals with text using simplistic
prompts or assume fixed lead configurations, lim-
iting generalizability. Drawing inspiration from

— Lead Masking 65.41 69.10

knowledge-enhanced radiograph-language mod-
els (Zhang et al., 2023b; Wu et al., 2023), we in-
troduce structured cardiovascular entities extracted
from ECG reports to provide fine-grained supervi-
sion without relying on radiology-specific ontolo-
gies, preserving clinical distinctions such as my-
ocardial infarction subtypes (Thygesen et al., 2018).
Additionally, we address the practical challenge of
partial-lead ECG inputs (Alizadeh Meghrazi et al.,
2020) by designing dynamic masking and lead-
specific processing, enabling our model to operate
robustly under varying lead configurations. A more
comprehensive review and comparison with prior
work are provided in Appendix A.

6 Conclusion

We present K-MERL, a knowledge-enhanced ECG
multimodal learning framework capable of process-
ing arbitrary lead inputs. First, we mine cardiac-
related entities as structured knowledge from ECG
free-text reports using a general LLM, without re-
lying on external domain-specific resources. Next,
we align ECG features with these cardiac-related
entities to integrate this knowledge into the ECG
multimodal learning. Additionally, we introduce
lead-specific processing and lead&segment mask-
ing strategies to capture the spatial-temporal pat-
terns unique to each ECG lead, enabling the model
to handle varying lead inputs. Our experiments on
six downstream ECG classification tasks, along
with extensive ablation studies, demonstrate K-
MERL’s superior performance over existing ECG
representation learning methods.
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Limitation

While K-MERL demonstrates promising results
in handling arbitrary lead inputs and integrating
knowledge from ECG reports, there are some lim-
itations to consider. The framework’s reliance on
LLMs for mining cardiac-related entities, though
effective, may be limited by the model’s ability
to capture highly specialized domain knowledge.
Due to the lack of publicly available datasets ex-
plicitly designed for missing-lead ECG scenarios,
we simulate this setting by progressively adding
ECQG leads starting from a single lead. While this
strategy enables controlled evaluation, we hope fu-
ture research will explore more realistic clinical
benchmarks to better validate performance under
naturally occurring lead dropouts. Additionally,
while our experiments show strong zero-shot and
linear probing performance, further evaluation is
needed to assess K-MERL’s effectiveness in real-
world clinical settings, where data quality and noise
levels can be more challenging. Future work will
focus on enhancing the robustness of knowledge
extraction and developing more adaptive strategies
for handling diverse ECG data sources.
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A Related Work

A.1 ECG Representation Learning

Recently, ECG self-supervised learning (eSSL) has
shown promise in learning ECG representations
from unannotated signals (Lai et al., 2023; Chen
et al., 2020; Sangha et al., 2024). Contrastive
methods such as CLOCS (Kiyasseh et al., 2021)
and ASTCL (Wang et al., 2023) explore tempo-
ral and spatial invariance, while generative tech-
niques (Zhang et al., 2022; Sawano et al., 2022;
Na et al., 2023; Jin et al., 2024; Choi et al., 2023;
Oh et al., 2022; McKeen et al., 2024) focus on
masked segment reconstruction. However, both ap-
proaches often lack clinical domain knowledge and
are limited to single-modality settings, restricting
the quality of learned representations.

Multimodal learning has shown success in multi-
ple biomedical applications (Wan et al., 2023; Liu
et al., 2023b; Wu et al., 2023). However, ECG
signals pose unique challenges due to their com-
plex spatial-temporal structure, necessitating well-
tailored modeling. As a result, few studies have
explored multimodal ECG learning. (Lalam et al.,
2023; Yu et al., 2024) demonstrated the effective-
ness of combining ECG and EHR data using large
language models (LLMs) to rewrite textual reports.
However, their work is restricted to private datasets,
making reproducing and comparisons challenging.
Other works such as (Li et al., 2023; Liu et al.,
2023c; Zhou et al., 2024) explored multimodal
ECG learning for zero-shot classification. How-
ever, their methods were over simplistic: They
align signals with text without sufficiently captur-
ing the distinctiveness of individual ECG leads, and
rely on naive category names as prompts, which
fail to capture relative patterns, leading to subop-
timal performance. Their limited evaluations on
small datasets also fall short of fully assessing mul-
timodal ECG learning in real-world scenarios. Ad-
ditionally, works such as (Zhao et al., 2024; Wan
et al., 2024) focus on ECG-to-text generation tasks,
but their results are not publicly accessible, making
reproducing and comparisons difficult.

MERL (Liu et al., 2024) is the first open-source
study to demonstrate the potential of ECG multi-
modal learning in zero-shot classification and lin-
ear probing across diverse datasets. Therefore, we
mainly compare our work to MERL. However, like
other methods, MERL relies on all 12 ECG leads
as input and cannot handle arbitrary lead combina-
tions, limiting its applicability in real-world clini-

cal scenarios where all 12 leads may not always be
available (Jahrsdoerfer et al., 2005; Madias, 2003;
Fontana et al., 2019; Maheshwari et al., 2014)

A.2 Knowledge Enhanced Medical
Multimodal Learning

Leveraging medical knowledge to improve medi-
cal multimodal learning has advanced significantly,
particularly in the radiograph domain, with meth-
ods like MedKLIP, KAD, and MAVL (Zhang et al.,
2023b; Wu et al., 2023; Phan et al., 2024). These
approaches focus on extracting structured knowl-
edge, such as clinical entities from free-text ra-
diology reports, and using this information as an
additional supervisory signal to guide multimodal
learning. Many models mimic radiological prac-
tices or modify structures based on diagnostic rou-
tines (Li et al., 2019; Huang et al., 2020; Zhang
et al., 2023b; Wu et al., 2023). However, they rely
heavily on well-annotated knowledge graphs, such
as RadGraph (Delbrouck et al., 2024) and Chest
ImaGenome (Wu et al., 2021), which require sub-
stantial human annotation and are limited to the
radiology domain. Due to the distinct nature of
ECG signals compared to radiographs, the above
pipelines cannot be directly adapted for ECG mul-
timodal learning. Furthermore, CVD has a clear
hierarchical structure because conditions can have
multiple subtypes, such as myocardial infarction,
which can be further classified as inferior or ante-
rior myocardial infarction (Thygesen et al., 2018).
Unlike lung diseases, typically categorized by mor-
phological or pathological patterns rather than dis-
tinct region based subtypes (King Jr, 2017), directly
using only the entity from an ECG report can lead
to information loss by ignoring the superclass or
subtypes.

A.3 Challenge in Partial Leads ECG Input

Currently, full 12 leads ECG data dominates pub-
licly accessible ECG datasets (Gow et al.; Ribeiro
et al., 2020; Junior et al., 2023). However, in
real clinical scenarios, obtaining a standard 12
leads ECG can be excessive and often requires
advanced clinical knowledge, which may not al-
ways be readily available (Chamadiya et al., 2013;
Alizadeh Meghrazi et al., 2020; Dai et al., 2016).
This makes partial-lead ECG data both crucial and
common for practical applications. Despite its im-
portance, partial leads issue is often overlooked and
remain unaddressed in existing ECG multimodal
representation learning studies. To handle partial
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lead inputs across various downstream tasks, in
this work, we design lead-specific processing and
dynamic lead masking strategies that enable our
model to accept any combination of ECG leads
as input. adaptable to various clinical scenarios
(Jahrsdoerfer et al., 2005; Madias, 2003; Fontana
et al., 2019; Maheshwari et al., 2014). We evalu-
ate our model on extensive downstream tasks with
partial lead inputs, demonstrating its ability to rec-
ognize and adapt to the lead-specific nature of ECG
signals.

B Pre-training Configuration

Following MERL (Liu et al., 2024), we employ the
AdamW optimizer with a learning rate of 2 x 10~4
and a weight decay of 1 x 107°. Pre-training runs
for 50 epochs, with a cosine annealing scheduler
for learning rate adjustments. We use a batch size
of 512 per GPU, with all experiments conducted
on eight NVIDIA A100-80GB GPUs.

C Baseline Details

In this work, we compare against both multimodal
and unimodal ECG representation learning meth-
ods for a comprehensive evaluation. For multi-
modal methods, we compare with MERL (Liu et al.,
2024), as it is the first multimodal ECG represen-
tation learning framework that publicly released
both code and pretrained models. For unimodal
methods, following the setup in (Liu et al., 2024),
we compare with general self-supervised learning
(SSL) methods such as SImCLR (Chen et al., 2020),
BYOL (Grill et al., 2020), Barlow Twins (Zbontar
et al., 2021), MoCo v3 (Chen et al., 2021), and
SimSiam (Chen and He, 2021), as well as TS-
TCC (Eldele et al., 2021), a time-series-specific
SSL baseline. Furthermore, we include compar-
isons with ECG-specific SSL methods including
CLOCS, ASTCL, CRT, and ST-MEM (Kiyasseh
etal., 2021; Wang et al., 2023; Zhang et al., 2023a;
Na et al., 2023). All results are directly taken from
the original MERL (Liu et al., 2024) paper to en-
sure a fair comparison.

D Downstream Task Details

D.1 Downstream Task Data Split

We detail the data splits in Tab. 3. For all datasets,
we follow the splits provided by MERL’. The

Shttps://github.com/cheliu-computation/MERL-
ICML2024/tree/main/finetune/data_split

preprocessing for all datasets is also done using
MERL’s official codebase®.

D.2 Downstream Task Configuration

We detail the key hyperparameters used across
all downstream tasks in Tab. 4. For each
dataset (PTBXL-Super, PTBXL-Sub, PTBXL-
Form, PTBXL-Rhythm, CPSC2018, and CSN), we
maintain consistency in the learning rate, batch
size, number of epochs, and optimizer configura-
tion with MERL (Liu et al., 2024).

D.3 Downstream Tasks Implementation

Zero-shot Classification. For zero-shot classifica-
tion, we freeze the entire model and use the original
category names from the dataset as entity queries
Q for input to the cardiac query network, Fcq.
The ECG signals are converted into ECG feature
with Fg, serving as the key and value inputs for
Fcq- The output of Fcq provides the predicted
probabilities for each category.

Linear Probing. For linear probing, we keep the
ECG encoder JFx, frozen and only update the pa-
rameters of a randomly initialized linear classifier.
We conduct linear probing with {1%, 10%, 100% }
of the training data. This configuration is used con-
sistently across all linear probing tasks. Further
implementation details are provided in the Tab 4.
Partial Lead Setting. In the partial lead setting,
we follow the lead order from the MIMIC-ECG
dataset (Gow et al.): [I, II, III, aVF, aVR, aVL, V1,
V2, V3, V4, V5, V6], progressively expanding the
input from a single lead to all 12 leads in sequence.
In contrast, since MERL (Liu et al., 2024) requires
a full 12-lead input, we pad the missing leads with
zeros to maintain the 12-lead format.

D.4 Overlapped Categories

As described in Sec 3.3 and Fig 5, we observe that
35 categories are present in both the pre-training
and downstream datasets, and we list all the class
names in Tab 5.

E Standard Deviation Comparison with
MERL

We provide standard deviations in Tab. 6 to sup-
port the performance claims more rigorously. No-
tably, we report all results using the original disease

®https://github.com/cheliu-computation/MERL-
ICML2024/tree/main/finetune

7312



Table 3: Details on Data Split.

Dataset Number of Categories ~ Train  Valid  Test
PTBXL-Super (Wagner et al., 2020) 5 17,084 2,146 2,158
PTBXL-Sub (Wagner et al., 2020) 23 17,084 2,146 2,158
PTBXL-Form (Wagner et al., 2020) 19 7,197 901 880
PTBXL-Rhythm (Wagner et al., 2020) 12 16,832 2,100 2,098
CPSC2018 (Liu et al., 2018) 9 4,950 551 1,376
CSN (Zheng et al., 2022, 2020) 38 16,546 1,860 4,620
Table 4: Hyperparameter settings on downstream tasks.
PTBXL-Super PTBXL-Sub PTBXL-Form  PTBXL-Rhythm CPSC2018 CSN
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Batch size 16 16 16 16 16 16
Epochs 100 100 100 100 100 100
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Learing rate scheduler Cosine anealing Cosine anealing Cosine anealing  Cosine anealing  Cosine anealing Cosine anealing
Warump steps 5 5 5 5 5 5

Table 5: Overlap of cardiac-related entities between downstream tasks and the pretraining dataset.

prolonged qt interval

normal

arrhythmia

first degree av block

anterior myocardial infarction

ventricular premature complex

conduction disturbance

second degree av block

hypertrophy

st depression

atrial premature complex

prolonged pr interval

t wave abnormalities

premature complex

atrial fibrillation

sinus tachycardia

sinus arrhythmia

sinus bradycardia

atrial flutter

supraventricular tachycardia

atrial premature complex

abnormal q wave

av block

left bundle branch block

myocardial infarction

right bundle branch block

st elevation

st-t changes

t wave changes

ventricular bigeminy

ventricular premature complex

sinus tachycardia

atrial flutter

supraventricular tachycardia

atrial tachycardia

names as prompts to ensure fair and consistent eval-
uation across models. The results are directly taken
from MERL (Liu et al., 2024).

Table 6: Comparison of AUC scores and standard de-
viations between MERL and K-MERL under zero-shot
and 1% linear probing settings.

Methods ‘ Zero-shot (AUC) 1% Linear Probe (AUC)
MERL (ResNet) 61.5+ 1.6 65.96 + 2.1
MERL (ViT) 63.7 £ 2.0 63.53 +£2.6
K-MERL (Ours) 76.5 + 1.8 69.61 + 1.7

F State-of-the-Art Without Prompt
Engineering

It is important to note that MERL heavily relies
on prompt engineering (PE), which requires tai-
loring the text prompt of each possible disease at
inference time, querying external knowledge bases
using LLM, which is inefficient (Liu et al., 2024).
To fully showcase the our method’s capabilities, we
compare K-MERL with the PE-enhanced version
of MERL in Fig 8. Unlike MERL, K-MERL does
not depend on any customized disease prompts
at inference time, as it has better leveraged car-
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diac knowledge contained in the reports during
pre-training. Despite being free from PE, K-MERL
still surpasses MERL with PE, demonstrating the
superiority of our approach.

MERL w/o PE MERL w PE K-MERL free with PE
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Figure 8: Comparison of K-MERL and MERL with prompt
engineering (PE). Notably, even though MERL with PE uses
customized disease prompts with human effort, K-MERL, free
with PE, still surpasses both versions of MERL, demonstrat-
ing its generalizability and effectiveness.
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Figure 9: Reported performance of zero-shot classification
with scaled ECG encoders. As the model size increases
from K-MERL(Tiny) to K-MERL(Base), the performance
improves, demonstrating the scalability of the model.

G Scalability

We scale our ECG encoder using ViT-Tiny, ViT-
Small, ViT-Middle, and ViT-Base, as shown in Fig.
9. K-MERL consistently improves as model size
increases, demonstrating its scalability for ECG
multimodal learning.

H Additional Ablation Studies

Lead-specific Processing. In Tab 7a, we ablate the
effects of lead-specific tokenization, lead-specific
spatial positional embedding, and lead-agnostic
temporal embedding. he results show each compo-
nent enhances K-MERL’s performance, with the
full combination yielding the best results. The re-
sults demonstrate that lead-specific processing is
crucial for enabling the ECG multimodal model to
recognize lead uniqueness.

Text Encoder. Tab. 7b shows Med-CPT (Jin et al.,
2023) outperforms BioClinical BERT (Alsentzer
et al., 2019) and Med-KEBERT (Zhang et al.,
2023b), due to contrastive pretraining on a large

Table 7: Additional Ablation Studies.

(a) Effects of Lead-specific Processing.

Methods ‘ 1 Lead 12 Leads
K-MERL (Ours) ‘ 71.61 76.52
— Lead-specific Tokenization 68.47 74.23
— Lead-specific Spatial Positional Embedding 69.12 75.35
— Lead-agnostic Temporal Positional Embedding | 70.84 75.10

(b) Effects of Text Encoder.

Text Encoder ‘ 1 Lead 12 Leads

BioClinical BERT ‘ 68.25 73.21
Med-KEBERT | 69.62  74.59
Med-CPT | 71.61  76.52
(c) Effects of LLM on Processing Cardiac-related
Entities.
Methods 1Lead 12 Leads
Llama3.1-8B-Instruct 68.52 74.19
Gemma-2-9B 68.94 74.47
Gemma-2-27B 70.54 75.81
Llama3.1-70B-Instruct | 71.61 76.52

(d) Effects of the Number of Transformer
Layers in the Cardiac Query Network Fcq

Num of Layers ‘ 1 Lead 12 Leads

1 69.92 72.96
2 70.14 73.13
3 70.31 74.40
4 71.61 76.52
5 69.25 74.94

(e) Effects of the Number of Heads in the
Cardiac Query Network Fcq.

Num of Heads ‘ 1 Lead 12 Leads

1 68.76 74.89
2 70.25 74.23
3 70.27 75.36
4 71.61 76.52
5 71.23 75.48

medical corpus, suggesting contrastive pretraining
improves text encoder performance for this task.

Robustness of Entity Extraction. We evaluate the
robustness of our method to the choice of LLM
and prompt formulation. As shown in Tab. 8,
we observe a monotonic relationship between the
LLM’s entity extraction accuracy and downstream
performance, confirming that stronger LLMs yield
better supervision. Larger LLMs produce more ac-
curate extractions and better ECG performance,
with Llama3.1-70B-Instruct achieving the high-
est extraction accuracy (95.9%) and 12-lead AUC
(76.52%). Furthermore, to evaluate robustness to
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prompt formulation, we test three different prompt
variants using Llama3.1-70B. As shown in Tab. 9,
the results show only minor variations, indicating
the extraction process is robust to prompt wording.
Loss Weighting. In Tab. 10, we study the bal-
ance between the contrastive 10ss Lcontrast and the
classification loss Lcg. We fix the coefficient for
Lecontrast at 1.0 and vary the coefficient for Lcq
from 0.25 to 1.25. The results show that perfor-
mance improves as the Lcq weight increases, peak-
ing at a coefficient of 1.0. A slight drop in AUC
is observed when the coefficient exceeds 1.0. This
trend indicates a strong contribution from Lcq
to learning clinically meaningful representations.
Based on this, we set both coefficients to 1.0 to
ensure a balanced contribution from contrastive
alignment and cardiac entity classification during
training.
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Table 8: Ablation study on the choice of LLM for entity extraction. Performance is measured by downstream
12-lead AUC and entity extraction accuracy.

Method 12-Lead AUC (%) Entity Extraction Accuracy (%)
Llama3.1-8B-Instruct 74.19 89.3
Gemma-2-9B 74.47 90.5
Gemma-2-27B 75.81 93.4
Llama3.1-70B-Instruct 76.52 95.9

Table 9: Ablation study on prompt formulation for entity extraction using Llama3.1-70B-Instruct.

Prompt Index 12-Lead AUC (%) Entity Extraction Accuracy (%)

Prompt 1 76.52 95.9
Prompt 2 76.46 95.7
Prompt 3 76.58 96.1

Prompt 1 (Original): Please extract all positive Cardiac-Related Entities from the given ECG report. Output format
is [Entity1, Entity2, ...]

Prompt 2: Identify all positively mentioned cardiac conditions described in the ECG report. List them as a
comma-separated array.

Prompt 3: From this ECG interpretation, extract every cardiac-related term that is confirmed present. Return them
as: [Entity1, Entity2, ...].

Table 10: Ablation on the loss (Lcq) weight. The contrastive loss weight is fixed at 1.0.

Coefficient of Lcq 12-Lead AUC (%)

0.25 75.23
0.50 75.89
0.75 76.20
1.00 76.52
1.25 75.97
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