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Abstract

Pre-trained retrieval models often face chal-
lenges in zero-shot retrieval for knowledge-
based question answering, as different tasks
rely on different corpora. We introduce
SQUARE (Synthetic QUery-based Adaptive
REtrieval), a novel method for corpus-
specific unsupervised retrieval customiza-
tion. SQUARE leverages LLMs to gener-
ate grounded synthetic question-answer pairs
from the corpus, which are then used to fine-
tune the retriever. A filtering mechanism based
on the synthetic answers is employed to en-
sure high quality of tuning data. Extensive
experiments on various datasets demonstrate
superior performance of SQUARE compared
to zero-shot retrieval and other customiza-
tion methods, highlighting the value of corpus
adaptation for effective retrieval.

1 Introduction

Large language models (LLMs) frequently use
retrieval-augmented generation to improve their
question-answering capabilities [10, 5, 16]. It is
based on retrieving relevant information from a
large text corpus, allowing LLMs to produce more
accurate and comprehensive responses. Retrieval is
essential for grounding LLM responses, ensuring
consistency and relevance to the information within
the corpus [23, 7]. The accuracy of the retrieval
process often directly determines the quality of the
LLMs’ answers.

Pre-trained dense embedding models are widely
used for retrieval and often demonstrate strong zero-
shot performance across diverse corpora [11, 8, 9].
However, their effectiveness can decline when
the target corpus significantly deviates from the
training data [21]. To overcome this bottleneck,
customizing the retrieval model has the potential
to yield significant improvements. Existing cus-
tomization methods often rely on labeled query-
document pairs from the corpus [22, 18], employ-

ing techniques like adaptor approaches, parameter-
efficient fine-tuning [6], and full model fine-tuning.
However, obtaining such labeled data can be costly
and time-consuming. Moreover, some fine-tuning
approaches often require substantial amounts of
labeled data, limiting their practicality.

Unsupervised customization provides a more
practical approach to customize retrieval, elimi-
nating the need for costly labeled query-document
pairs. This approach is designed to leverage the
target corpus directly, which is readily available.
Existing unsupervised techniques include Promp-
tagator [3], which uses LLMs to generate relevant
queries from passages (with filtering), and docu-
ment expansion [14], where LLMs generate and ap-
pend synthetic queries to each document. However,
they have major bottlenecks. Promptagator’s effec-
tiveness is limited by its inability to handle queries
related to multiple documents (due to its strict one-
to-one query-document pairing) and its weak error
filtering (relying solely on round-trip consistency
with generated synthetic samples). Document ex-
pansion suffers from scalability issues, requiring
synthetic query generation for the entire corpus to
avoid retrieval bias.

To overcome these limitations, we introduce
SQUARE (Synthetic QUery-based Adaptive RE-
trieval), a novel unsupervised retrieval customiza-
tion method. SQUARE generates both synthetic
queries and corresponding answers for each doc-
ument of the corpus. These synthetic answers
are then used to robustly filter noisy or irrelevant
queries and identify additional relevant documents
for each query. The resulting synthetic query-
document pairs are used to fine-tune the retrieval
model via supervised customization techniques.

We specifically selected newer retrieval bench-
marks—BRIGHT [17], LongEmbed [24], and
MTEB-Law [19]—from the MTEB leaderboard
[13] to evaluate SQUARE. These benchmarks, not
widely used in pre-training, provide an opportu-
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Figure 1: Overview of the SQUARE approach. From
the document corpus, a single document is chosen and
an LLM generates synthetic query-answer pairs, ensur-
ing the answers are grounded to the selected document.
These synthetic answers are then used to filter the re-
maining documents for relevance. The resulting rele-
vant documents, along with the synthetic queries, form
the synthetic data used to customize the retriever.

nity to measure how well our unsupervised cus-
tomization generalizes to unseen data. Our results
demonstrate significant performance gains com-
pared to the zero-shot baselines and other unsuper-
vised tuning methods, showcasing the effectiveness
of SQUARE in improving retrieval accuracy for
various LLM applications.

2 Method

In this section, we present SQUARE, a novel
unsupervised framework designed to enhance re-
trieval performance. The complete workflow of
SQUARE is described in Fig. 1. Given a corpus
D = {d1, d2, ..., dN} containing N documents,
our goal is to extract information to generate syn-
thetic data for customizing a retrieval model, ulti-
mately improving retrieval accuracy within D.

We leverage an LLM which inputs and produces
text. For each document dk, we prompt LLM with
an instruction prompt Ip to generate a synthetic
query q̂k and its corresponding answer âk:

q̂k, âk = LLM(Ip, dk). (1)

Details of the prompting strategy are provided in

Appendix A.
The generated synthetic query-answer-document

triplets are represented as D̂ = {(q̂i, âi, di)}Ni=1.
Unlike Document Expansion [14], SQUARE
doesn’t necessitate generating synthetic data for
every document. For large corpora, generating
data for a representative subset is sufficient, sig-
nificantly enhancing scalability. Our experiments
confirm that adapting with a subset of documents
effectively boosts retrieval performance.

The generated answers âk are crucial for refin-
ing the relationship between the synthetic query q̂k
and the documents in D. We employ a pre-trained
embedding model E that transforms text into nu-
merical vectors, enabling similarity comparisons.
We compute the similarity between the embedding
of the generated answer,E(âk), and the embedding
of each document di in the corpus, E(di):

s(âk, di) = Sim(E(âk), E(di)). (2)

If the similarity score between E(âk) and E(dk) is
higher than the threshold ηK(âk,D), we consider
(q̂k, dk) a relevant query-document pair and add it
to our filtered set:

D̃o = {(q̂, â, d) ∈ D̂|s(â, d) > ηK(â,D)}, (3)

where ηK(â,D) is top-K-th similarity scores
among s(â, d) where d in the entire corpus. This
filtering step is introduced to remove low-quality
synthetic query-answer pairs, where the generated
answer lacks strong grounding in the corresponding
document.

We then expand this set by identifying other po-
tentially relevant documents. If any document di
has a higher similarity score with E(âk) than the
similarity between E(âk) and E(dk), we also in-
clude (q̂k, di) in our synthetic query-document pair
set:

D̃f ={(q̂k, âk, d)|s(âk, d) ≥ s(âk, dk)
where d ∈ D and (q̂k, âk, dk) ∈ D̃o}. (4)

Note that for this stage, we use only the synthetic
query-answer pairs that survived from the previous
filtering process (D̃o).

These filtering and expansion methods offer
two key advantages. First, they exploit the di-
rect relationship between generated answers and
source documents, leading to more robust relevance
learning, especially beneficial in complex question-
answering scenarios requiring reasoning and infer-
ence (e.g., BRIGHT benchmarks [17]). Second,

7284



Datasets Short documents Long documents

Zero Prompt Doc SQUARE Zero Prompt Doc SQUARE

Biology 0.4035 0.4294 0.4227 0.4941 0.4167 0.4213 0.4221 0.4717
Earth-Science 0.4377 0.4596 0.4246 0.4931 0.3843 0.3922 0.3914 0.4274

Economics 0.2673 0.2904 0.2674 0.3233 0.2087 0.2379 0.2476 0.3091
Psychology 0.3641 0.3848 0.3639 0.4208 0.3366 0.3628 0.3422 0.4574

Robotics 0.1746 0.1752 0.1845 0.2091 0.1188 0.1288 0.1240 0.1584
Stackoverflow 0.2716 0.2724 0.2722 0.2969 0.1923 0.2038 0.2017 0.2350

Sustainable living 0.1687 0.1931 0.1761 0.2493 0.3282 0.3692 0.3772 0.3932
Pony 0.0259 0.0199 0.0042 0.0218 0.0229 0.0237 0.0207 0.0041

Average 0.2642 0.2781 0.2645 0.3136 0.2511 0.2675 0.2659 0.3070

Table 1: Retrieval performance with BRIGHT datasets in nDCG@10 (for short document) and Recall@1 (for long
document). Bold represents the best performance per each dataset.

they allow a single query to be associated with mul-
tiple relevant documents, addressing a limitation of
previous methods [3] and reflecting the common
scenario of diverse and heterogeneous corpora in
modern information retrieval systems.

We now have a set of filtered synthetic query-
answer-document triplets, denoted as D̃f . This syn-
thetic dataset is then used to fine-tune the retriever
model in a supervised fashion.

3 Experiments

3.1 Experimental settings

We evaluate the effectiveness of SQUARE on three
retrieval benchmarks from the MTEB leaderboard:
BRIGHT [17], LongEmbed [24], and MTEB-Law
[19]. These relatively new additions to MTEB [13]
are selected specifically as they haven’t been exten-
sively used in pre-trained embedding model train-
ing, allowing to assess the impact of our unsuper-
vised customization on unseen data. Dataset de-
tails can be found in Appendix B. We use Gemini-
1.5-Flash-002 as the LLM for generating synthetic
query-answer pairs in Eq. 1. We also includes ex-
perimental results using Gemini-2.0-Flash-001 in
Appendix D, highlighting the LLM-agnostic nature
of SQUARE.

We compare SQUARE against three baselines:
(i) Zero-shot (A pre-trained embedding model with-
out any customization), (ii) Promptagator (fully un-
supervised version) [3], (iii) Document Expansion
[14]. Our evaluation of retrieval quality across the
three benchmarks centers on nDCG@10, a metric
that effectively captures the relevance and ranking
of the top 10 retrieved documents. Nevertheless, to
ensure alignment with the established evaluation
protocols of the BRIGHT benchmark, particularly
for the BRIGHT-Long document dataset, we uti-

Long-Embed datasets

Sub-data Zero Prompt Doc SQUARE

Wikim-QA 0.7288 0.7371 0.7482 0.7642
QMSum 0.3830 0.3901 0.3936 0.4824

Summ screen FD 0.9328 0.9336 0.9505 0.9542
Narrative-QA 0.3267 0.3695 0.3441 0.4050

Average 0.5928 0.6076 0.6091 0.6515

MTEB-Law datasets

AILA-casedocs 0.3416 0.3530 0.3308 0.3691
AILA-statutes 0.4104 0.4178 0.4180 0.4282

Consumer contracts 0.8301 0.8348 0.8410 0.8393
Corporate lobbying 0.9331 0.9284 0.9321 0.9466

Legal summary 0.6266 0.6340 0.6587 0.6768

Average 0.6284 0.6336 0.6361 0.6520

Table 2: Retrieval performance with Long-Embed and
MTEB-Law datasets in terms of nDCG@10.

lize Recall@1. See Appendix C for the additional
experimental details.

3.2 Experimental results

We fine-tune Google’s Gecko-004 dense retriever
using a Search-Adaptor [22] and our generated syn-
thetic query-document pairs. While we employ
this specific method, SQUARE is compatible with
other fine-tuning techniques, which we explore in
Sec. 4.3. Furthermore, despite using the Gecko-
004 for these experiments, SQUARE is retriever-
agnostic, as demonstrated by results with alterna-
tive retrievers presented in Sec. 4.1.

Our results, starting with Table 1, demonstrate
that SQUARE significantly outperforms the zero-
shot baseline and other unsupervised tuning meth-
ods across all BRIGHT datasets consistently, en-
compassing both long and short document settings.
This substantial improvement highlights the effec-
tiveness of our approach, especially given that it
requires no labeled data. Furthermore, as shown
in Table 2, SQUARE achieves similar performance
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gains on LongEmbed and MTEB-Law, demonstrat-
ing its generalizability across diverse datasets. No-
tably, we use the same prompt (detailed in Ap-
pendix A) for all experiments, underscoring the
robustness of our method which is critical in unsu-
pervised settings. Some qualitative analyses can be
found in Appendix F.

4 Discussions

4.1 Combine with other dense retrievers

To gain a deeper understanding of SQUARE’s ef-
fectiveness, we conduct a series of analyses. We
first investigate how well SQUARE generalizes
across different retriever models. In addition to
Google’s Gecko-004, we also consider OpenAI-
embedding-3-small and GTE-Large [11].

Retriever Method BRIGHT Long MTEB

models Short Long Embed -Law

Google- Zero 0.2642 0.2511 0.5928 0.6284
Gecko SQUARE 0.3136 0.3070 0.6515 0.6520

OpenAI- Zero 0.2634 0.2229 0.5234 0.6124
3-small SQUARE 0.2877 0.2761 0.5995 0.6242

GTE- Zero 0.1867 0.2285 0.5661 0.4176
Large SQUARE 0.2044 0.2767 0.5667 0.4871

Table 3: Performance of SQUARE across different re-
triever models. Full results are in Appendix E.

We apply SQUARE to these three models (with
Search-Adaptor being the fine-tuning approach).
The performance gains shown in Table 3 highlight
SQUARE’s effectiveness in enhancing a range of
retriever models through unsupervised adaptation.

4.2 Ablation study

To pinpoint the specific factors contributing to the
performance gains, we perform ablation studies,
systematically removing critical components of
SQUARE and observing the resulting performance
degradation. By analyzing the impact of each com-
ponent’s absence, we can discern the individual
contributions of components.

The ablation study presented in Table 4 eluci-
dates the individual impact of each component on
performance, offering a detailed understanding of
the method’s effectiveness and confirming their cor-
responding importances. SQUARE’s effectiveness
is notably enhanced by its answer-based filtering
and its capacity to identify multiple relevant docu-
ments for each query.

Datasets Zero SQUARE w/o w/o multi
filtering relevance

Biology 0.4035 0.4941 0.4803 0.4670
Earth Science 0.4377 0.4931 0.4735 0.4848

Economics 0.2673 0.3233 0.3146 0.3039
Psychology 0.3641 0.4208 0.4077 0.4101

Robotics 0.1746 0.2091 0.2025 0.1966
Stackoverflow 0.2716 0.2969 0.2778 0.2815

Sustainable living 0.1687 0.2493 0.2170 0.2209
Pony 0.0259 0.0218 0.0075 0.0105

Average 0.2642 0.3136 0.2976 0.2969

Table 4: Ablation studies for SQUARE. Without filter-
ing represents skipping Eq. 3. Without multi rel. repre-
sents skipping Eq. 4.

4.3 Combine with other fine-tuning methods

We explore different fine-tuning approaches with
the synthetic datasets generated by SQUARE.
Alongside Search-Adaptor, we employ LoRA [6]
and OpenAI cookbook1 as alternative fine-tuning
approaches using the generated synthetic query-
corpus pairs. It is important to note that LoRA re-
quires access to model weights (beyond just predic-
tion API-based access) – thus, we use GTE-Large
[11] as the dense retriever and apply the three ap-
proaches on it with synthetic data generated by
SQUARE.

Datasets Zero Search LoRA OpenAI
-Adaptor Cookbook

BRIGHT-Short 0.1867 0.2044 0.1861 0.1866
BRIGHT-Long 0.2285 0.2767 0.2301 0.2243
Long-Embed 0.5661 0.5667 0.5709 0.5731
MTEB-Law 0.4176 0.4871 0.3387 0.4364

Table 5: Performance of the proposed method across
different fine-tuning method. Here, we use GTE-Large
as the retriever method because this can be applicable
for all three fine-tuning methods. Full results can be
found in Appendix E.

Table 5 shows that only Search-Adaptor consis-
tently improves performance over the zero-shot
baseline. This consistency likely stems from
Search-Adaptor’s suitability for data-scarce sce-
narios. While LoRA and the OpenAI cookbook
achieve clear improvements on some datasets (full
results in Appendix E), they lack the robustness
of Search-Adaptor across all datasets. This is a
consistent pattern with the Search-Adaptor find-
ings, even when they used the original, unaltered
query-document pairs.

1https://cookbook.openai.com/examples/
customizing_embeddings
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4.4 SQUARE with various base LLMs

To ensure SQUARE works with different LLMs,
we test it using Claude 3.5 Sonnet v22 to create
synthetic query-answer pairs, in addition to our
previous experiments with Gemini-1.5-Flash-002.
We then use Search-Adaptor to fine-tune Google’s
Gecko-004 embedding models with the SQUARE-
generated and filtered synthetic data. As shown in
Table 6, various base LLM models yielded high-
quality synthetic queries, leading to improved re-
trieval performance compared to the zero-shot base-
line. This validates SQUARE’s generalizability
across diverse LLMs and more results can be found
in Appendix D.

Datasets Zero
SQUARE

Gemini-1.5 Claude-3.5
-Flash -Sonnet-v2

Wikim-QA 0.7288 0.7642 0.7509
QMSum 0.3830 0.4824 0.4686

Summ screen FD 0.9328 0.9542 0.9529
Narrative-QA 0.3267 0.4050 0.4075

Average 0.5928 0.6515 0.6450

Table 6: Retrieval performance with LongEmbed
datasets in nDCG@10 using two base LLM models.

5 Related Works

SQUARE is distinct from HyDE [4], which gener-
ates hypothetical documents from the query at infer-
ence time and averages their embeddings. This not
only incurs a significant computational cost during
inference—requiring multiple LLM invocations
and embedding calculations per query—but also
differs fundamentally from SQUARE. SQUARE
generates synthetic queries and answers directly
from the documents during the tuning phase, en-
suring all knowledge is grounded in the provided
corpus and adding no overhead at inference beyond
a single query embedding. [2] also differs in its
problem setting, as it begins with real queries to
generate synthetic documents for fine-tuning re-
rankers. In contrast, SQUARE is unsupervised,
generates synthetic queries, and adapts embedding
models for retrieval. We see these approaches as
complementary and SQUARE could potentially
generate the initial queries for [2].

Other related works focus on synthetic data gen-
eration but for different goals. The primary aim of

2https://www.anthropic.com/news/
claude-3-5-sonnet

[20] is to create large, diverse, multilingual datasets
for training general, zero-shot embedding mod-
els. Conversely, SQUARE focuses on construct-
ing task-specific models by generating synthetic
data tailored to a given document set. [1] is much
closer to Promptagator [3], focusing on efficient
synthetic query generation using small language
models. However, it inherits Promptagator’s key
limitations, namely an inability to effectively han-
dle queries that span multiple documents and a fil-
tering method vulnerable for its reliance on round-
trip consistency. Furthermore, its simple generation
prompts may limit its ability to create the complex
queries necessary for specialized domains.

6 Limitations and Future Works

This paper presents SQUARE, an effective unsuper-
vised framework for customizing retrieval models
to specific corpora. By generating and refining
synthetic query-answer pairs, SQUARE achieves
significant performance improvements compared
to baselines.

Although our study utilized state-of-the-art
LLMs for the generation of synthetic data, it would
be beneficial for future research to investigate the
performance of SQUARE when employing smaller,
open-source LLMs. This exploration would pro-
vide valuable insights into the accessibility and
broader applicability of our approach. Furthermore,
we intentionally excluded BEIR datasets from our
evaluation due to the extensive pre-training of
the initial embedding models on these datasets,
which could potentially obscure the true impact
of SQUARE. Expanding SQUARE’s capabilities
to include multilingual data expansion is another
important avenue for future development.
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A Generation Prompt

To generate synthetic queries and answers from a document, we use a single, adaptable prompt that works
effectively across various datasets.

Please generate <M> different descriptive queries which includes enough contexts.
Queries should be answered by the given document but the queries should not refer this document.
Please avoid straightforward queries and queries should be descriptive.
Please also generate the answers to these questions that are grounded by the document.

The answer format should be query1 @@@ answer1 /// query2 @@@ answer2 /// ... ///
query<M> @@@ answer<M>. Please maintain this format.

Document: <Given Document>

Figure 2: Prompt for synthetic query-answer pair generation. Text in black provides basic instruction; blue text
describes output format; and red text is interchangable across different samples.

B Datasets

This section describes the data statistics of the four datasets used in our experiments (see Table 7 and
Table 8. It’s important to note that only the corpus is used for training; all queries and labels are reserved
exclusively for evaluation. Also, this study is limited to English datasets; multilingual datasets are not
included.

B.1 BRIGHT

Datasets BRIGHT-Short BRIGHT-Long

Query no Corpus no Label no Query no Corpus no Label no

Biology 103 57539 372 103 524 134
Earth Science 116 121249 585 116 601 187

Economics 103 50220 800 103 516 109
Psychology 101 52835 692 101 512 116

Robotics 101 61961 520 101 508 106
Stackoverflow 117 107081 478 117 1858 129

Sustainable living 108 60792 576 108 554 129
Pony 112 7894 2219 112 577 769

Table 7: Data statistics of BRIGHT-Short and BRIGHT-Long datasets

B.2 LongEmbed & MTEB-Law

LongEmbed MTEB-Law

Dataset Query no Corpus no Label no Dataset Query no Corpus no Label no

Wikim-QA 300 300 300 AILA-casedocs 50 186 195
QMSum 1527 197 1527 AILA-statutes 50 82 217

Summ screen FD 336 336 336 Consumer contracts 396 154 396
Narrative-QA 10449 355 10449 Corporate lobbying 340 319 340

Legal summary 284 438 439

Table 8: Data statistics of LongEmbed and MTEB-Law datasets.
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C Experimental details

C.1 SQUARE
SQUARE generates three synthetic query-answer pairs per document (i.e., M=3 in the prompt). A cutoff
threshold of K = 3 was used across all experiments; any generated pairs where the relevant document
was not within the top-3 retrieved results were discarded. For corpora larger than 10,000 documents, we
randomly subsample 10,000 documents for synthetic data generation. This demonstrates SQUARE’s
efficiency, as it avoids processing the entire corpus, reducing latency and cost. For datasets smaller than
10,000 documents, the entire corpus is used.

C.2 Search-Adaptor tuning
For dense retriever fine-tuning, we primarily use Search-Adaptor [22] due to its effectiveness with
limited labeled data. To mitigate overfitting with our unsupervised approach, we use the hyperparameters
recommended in the Search-Adaptor paper (specifically, α = β = 0.1 for all experiments). The synthetic
data is split into training (80%) and validation (20%) sets. We then select the Search-Adaptor checkpoint
that maximized validation retrieval performance. Critically, both training and validation use only the
synthetic data. The held-out test data is used solely for final evaluation.

C.3 LoRA tuning
We experiment with LoRA as an alternative to facilitate efficient fine-tuning of the GTE-Large model [6].
We apply LoRA to all attention layers, set the rank r to 4 and scaling factor a to 8. This configuration
resulted in only 589,824 trainable parameters (0.1757% of the model’s parameters), reducing the risk of
overfitting given that our training dataset is relatively small. Similar to Sec. C.2, the synthetic dataset is
split into training and validation sets with an 80/20 ratio and we select the checkpoint that maximized
validation retrieval performance. Unlike Search-Adaptor which can be directly applied to the pre-trained
embeddings, obtaining LoRA-adapted embeddings requires a full forward pass of the entire model,
incurring a much higher computational cost in each validation step, especially when the corpus is large.
To reduce the computational time and enable faster evaluation cycles, the validation queries are used to
rank a representative subset of documents rather than all the documents. For the loss function, we employ
InfoNCE loss [15] with in-batch negatives and fixed the temperature at 0.1. Training is performed using
the AdamW optimizer [12] with a learning rate of 5× 10−5 and a weight decay of 0.01, combined with a
linear learning rate scheduler.

C.4 OpenAI Cookbook
We consider the benchmark from the OpenAI cookbook 3, which introduces a method to train a simple
projection layer (i.e. a single matrix multiplication) to the pre-trained embeddings for higher accuracy on
binary classification tasks. We adopt the approach for our specific use case of semantic similarity-based
ranking using GTE-Large embeddings. Specifically, we make the following modifications:

• We compute the retrieval metrics (nDCG@10 or Recall@1) instead of accuracy.

• We replace the originally used MSE loss with the InfoNCE loss [15]. The latter is better fitted for
retrieval tasks. Following this, we skip generating negative query-document pairs as our InfoNCE
loss inherently utilized in-batch negatives. We use the same temperature (0.1) as Sec. C.3.

• We normalize the projected embeddings with the L2 normalizer. Our experiments showed that this
normalization is crucial for the stability of the InfoNCE loss.

A 1024 × 4096 matrix is used to project the pre-trained embeddings from 1024 dimensions to 4096
dimensions. This follows the recommendation in the cookbook that higher dimensionality yields better
results. The matrix is randomly initialized from standard normal distribution. During training, we used
the same hyperparameters given in the cookbook: a dropout fraction of 0.2, a batch size of 100 and a

3https://cookbook.openai.com/examples/customizing_embeddings
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learning rate of 100. Same as other fine-tuning methods, the synthetic dataset is split into training and
validation sets with an 80/20 ratio. Matrix selection is based on the checkpoint that achieved the highest
validation retrieval performance.

D Additional experiments

D.1 SQUARE with various base LLMs

To further ensure SQUARE works with different LLMs, we test it using Gemini-2.0-Flash-001 to create
synthetic query-answer pairs, in addition to our previous experiments with Gemini-1.5-Flash-002 and
Claude 3.5 Sonnet v2. We then use Search-Adaptor to fine-tune Google’s Gecko-004 embedding models
with the SQUARE-generated and filtered synthetic data. As shown in Table 9, different base LLM
models yielded high-quality synthetic queries, leading to improved retrieval performance compared to the
zero-shot baseline. This validates SQUARE’s generalizability across diverse LLMs.

Datasets Zero SQUARE

Gemini-1.5-Flash Gemini-2.0-Flash

Biology 0.4035 0.4941 0.4932
Earth-Science 0.4377 0.4931 0.4852

Economics 0.2673 0.3233 0.3080
Psychology 0.3641 0.4208 0.3993

Robotics 0.1746 0.2091 0.1943
Stackoverflow 0.2716 0.2969 0.3055

Sustainable living 0.1687 0.2493 0.2529
Pony 0.0259 0.0218 0.0206

Average 0.2642 0.3136 0.3074

Table 9: Retrieval performance with BRIGHT short datasets in terms of nDCG@10 using two different versions
of Gemini (Gemini-1.5-Flash-002 & Gemini-2.0-Flash-001).

D.2 Quantitative evaluation of synthetic query quality

To demonstrate the superior quality of the generated synthetic queries, we propose a strategy that leverages
pairwise embedding similarities as a set of quantitative metrics. The objective of this analysis is to show
the resemblance between the synthetically generated queries and the original queries. Specifically, we
evaluate two key measurements: (i) we calculate the similarity among the original query embeddings
themselves, establishing a baseline, (ii) we measure the similarity between the original query embeddings
and the synthetic query embeddings. A close alignment between these two sets of similarity scores would
provide robust evidence to support our claim that the synthetic queries effectively replicate the intrinsic
characteristics of the original query set. Additionally, we also compute the Wasserstein distance between
the distribution of original query embeddings and that of the synthetic query embeddings.

Datasets Embedding similarities Wasserstein distance
Among original queries btw original & synthetic queries

Wikim-QA 0.3448 ± 0.0999 0.2650 ± 0.0771 1.0668
QMSum 0.4560 ± 0.1398 0.4100 ± 0.1216 0.8656

Summ screen FD 0.4230 ± 0.0824 0.3462 ± 0.0560 1.0255
Narrative-QA 0.3344 ± 0.0654 0.2881 ± 0.0606 1.0743

Table 10: A quantitative analysis of the quality of the generated synthetic queries compared with the original
queries.

Table 10 obtained with LongEmbed datasets shows that the embedding similarities among the original
queries fall within a range of one standard deviation of the embedding similarities between the synthetically
generated queries and the original queries. In addition, Wasserstein distance between the original and
synthetic query embeddings is approximately 1.0. We interpret this low distance and the close alignment
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of similarity scores as strong indicators of the high quality of the generated synthetic queries and their
strong resemblance to the original queries.

D.3 SQUARE with more complex prompt
In the main manuscript, we show the proposed simple prompt in Appendix A achieved consistent
performance improvements across the various datasets. We think the proposed SQUARE framework is
not sensitive on the prompt. To further demonstrate this point, we provide below more complex prompts
along with their corresponding performance metrics.

You are given a short document about a specific topic. Your ultimate goal is to generate de-
scriptive query and answer pairs based on the document. Please follow the tasks below step by step.

Step 1: analyze what this document is about.

Step 2: based on the document analysis in Step 1, brainstorm a few non-trivial questions with
different intents that may be answered after referencing this document and reasoning about it.

Step 3: for the questions in Step 2, provide answers that are grounded in the given document.
Explain relevant information and show how it directly relates to the questions. Include supporting
data or references directly from the document as needed.

Step 4: combining output above, formulate a synthetic query and answer.

The output format should be: @@@ query @@@ answer. Make sure both the query and answer
are descriptive (around 5 sentences respectively) and have sufficient context.

Document: <Given Document>

Figure 3: More complex prompt for synthetic query-answer pair generation. Text in black provides basic instruc-
tion; blue text describes output format; and red text is interchangable across different samples.

The results presented in Table 11 and 12 demonstrate that the complex prompt exhibits improved
performance on LongEmbed datasets. Conversely, a slight decrease in performance is observed when
applied to the BRIGHT-short datasets. It is important to emphasize that both prompts, including the
complex one, consistently demonstrate substantial performance improvements when compared to the
established zero-shot baselines. This observation strongly suggests that the performance gains observed
are not solely attributable to the specific prompt engineering techniques employed, but rather originate
from the holistic framework that we have proposed in its entirety.

Datasets Zero Current prompt Complex prompt

Biology 0.4035 0.4941 0.4789
Earth-Science 0.4377 0.4931 0.4803

Economics 0.2673 0.3233 0.3163
Psychology 0.3641 0.4208 0.4151

Robotics 0.1746 0.2091 0.2225
Stackoverflow 0.2716 0.2969 0.2927

Sustainable living 0.1687 0.2493 0.2490
Pony 0.0259 0.0218 0.0073

Average 0.2642 0.3136 0.3078

Table 11: Retrieval performance with BRIGHT short datasets in terms of nDCG@10 using two different prompt.
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Datasets Zero Current prompt Complex prompt

Wikim-QA 0.7288 0.7642 0.8434
QMSum 0.3830 0.4824 0.4828

Summ screen FD 0.9328 0.9542 0.9747
Narrative-QA 0.3267 0.4050 0.4918

Average 0.5928 0.6515 0.6982

Table 12: Retrieval performance with LongEmbed datasets in terms of nDCG@10 using two different prompt.

D.4 Using different LLMs to generate synthetic queries and their corresponding answers
In the main manuscript, Equation (1) illustrates a method where a single LLM call is employed to
concurrently generate both the synthetic query and its corresponding answer. In other words, we leverage
a single LLM for the generation of both the synthetic query and its associated answer. To explore the
potential benefits of using two distinct LLMs, we propose a modification to the process by dividing
Equation (1) into a two-stage approach. In the initial stage, a synthetic query is generated based on
the provided document. Subsequently, in the second stage, both the original document and the newly
generated synthetic query are used to generate the answer. Here, we have implemented this two-stage
approach and, as demonstrated below, the observed difference in performance is minimal. We use Gemini-
1.5-Flash for synthetic query generation and Claude 3.5 Sonnet v2 for answer generation based on both
documents as well as generated synthetic queries.

Datasets Zero Query: Gemini-1.5-Flash-002

Answer: Gemini-1.5-Flash Answer: Claude-3.5-Sonnet-v2

Wikim-QA 0.7288 0.7642 0.7608
QMSum 0.3830 0.4824 0.4714

Summ screen FD 0.9328 0.9542 0.9557
Narrative-QA 0.3267 0.4050 0.4086

Average 0.5928 0.6515 0.6491

Table 13: Retrieval performance with LongEmbed datasets in terms of nDCG@10 using the combination of two
LLM models for generating synthetic queries and corresponding answers (Gemini-1.5-Flash-002 & Claude-3.5-
Sonnet-v2).

Table 13 shows that the two-stage model, in which the synthetic query and answer are generated
separately using distinct LLMs, achieves similar performance compared to the one-stage model utilizing
Gemini-1.5-Flash-002. Note that the application of unsupervised tuning to both the one-stage and
two-stage models yields a substantial improvement in performance relative to the zero-shot baselines.
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E Full experimental results

E.1 SQUARE with OpenAI-3-small retriever

BRIGHT-Short BRIGHT-Long

Dataset Zero SQUARE Dataset Zero SQUARE

Biology 0.3799 0.4148 Biology 0.3625 0.3867
Earth-Science 0.4777 0.4807 Earth-Science 0.3958 0.4332

Economics 0.2674 0.2951 Economics 0.1942 0.2767
Psychology 0.3351 0.3774 Psychology 0.2673 0.3960

Robotics 0.1525 0.1873 Robotics 0.0891 0.1584
Stackoverflow 0.2374 0.2394 Stackoverflow 0.1496 0.2137

Sustainable living 0.2229 0.2729 Sustainable living 0.2843 0.3356
Pony 0.0343 0.0338 Pony 0.0402 0.0082

Average 0.2634 0.2877 Average 0.2229 0.2761

LongEmbed MTEB-Law

Dataset Zero SQUARE Dataset Zero SQUARE

Wikim-QA 0.6208 0.6605 AILA-casedocs 0.3357 0.3455
QMSum 0.3312 0.4780 AILA-statutes 0.3035 0.3314

Summ screen FD 0.8586 0.9282 Consumer contracts 0.8004 0.8112
Narrative-QA 0.2830 0.3313 Corporate lobbying 0.9356 0.9389

Legal summary 0.6868 0.6941

Average 0.5234 0.5995 Average 0.6124 0.6242

Table 14: nDCG@10 retrieval performance (Recall@1 for BRIGHT-Long) across four benchmark datasets using
the OpenAI-3-small retriever. We fine-tune the retriever using the Search-Adaptor framework.
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E.2 SQUARE with GTE-Large retriever

BRIGHT-Short BRIGHT-Long

Dataset Zero SQUARE Dataset Zero SQUARE

Biology 0.2317 0.2686 Biology 0.4037 0.4353
Earth-Science 0.3283 0.3563 Earth-Science 0.3815 0.4749

Economics 0.2108 0.2321 Economics 0.2524 0.2702
Psychology 0.2571 0.2649 Psychology 0.2297 0.3584

Robotics 0.1114 0.1206 Robotics 0.1436 0.1485
Stackoverflow 0.1518 0.1608 Stackoverflow 0.1709 0.2222

Sustainable living 0.1651 0.1997 Sustainable living 0.2403 0.2943
Pony 0.0374 0.0323 Pony 0.0059 0.0095

Average 0.1867 0.2044 Average 0.2285 0.2767

LongEmbed MTEB-Law

Dataset Zero SQUARE Dataset Zero SQUARE

Wikim-QA 0.4917 0.5623 AILA-casedocs 0.3049 0.2825
QMSum 0.3056 0.3307 AILA-statutes 0.2323 0.2668

Summ screen FD 0.2241 0.2951 Consumer contracts 0.7424 0.7110
Narrative-QA 0.6490 0.7603 Corporate lobbying 0.9146 0.9279

Legal summary 0.6364 0.6453

Average 0.4176 0.4871 Average 0.5661 0.5667

Table 15: nDCG@10 retrieval performance (Recall@1 for BRIGHT-Long) across four benchmark datasets using
the GTE-Large retriever. We fine-tune the retriever using the Search-Adaptor framework.

E.3 Fine-tuning with LoRA using SQUARE datasets

BRIGHT-Short BRIGHT-Long

Dataset Zero SQUARE Dataset Zero SQUARE

Biology 0.2317 0.2366 Biology 0.4037 0.3252
Earth-Science 0.3283 0.3393 Earth-Science 0.3815 0.3772

Economics 0.2108 0.2027 Economics 0.2524 0.2508
Psychology 0.2571 0.2156 Psychology 0.2297 0.3251

Robotics 0.1114 0.1198 Robotics 0.1436 0.1188
Stackoverflow 0.1518 0.1531 Stackoverflow 0.1709 0.2009

Sustainable living 0.1651 0.2035 Sustainable living 0.2403 0.2356
Pony 0.0374 0.0182 Pony 0.0059 0.0072

Average 0.1867 0.1861 Average 0.2285 0.2301

LongEmbed MTEB-Law

Dataset Zero SQUARE Dataset Zero SQUARE

Wikim-QA 0.4917 0.3178 AILA-casedocs 0.3049 0.2844
QMSum 0.3056 0.1893 AILA-statutes 0.2323 0.3341

Summ screen FD 0.2241 0.2506 Consumer contracts 0.7424 0.7019
Narrative-QA 0.6490 0.5972 Corporate lobbying 0.9146 0.9225

Legal summary 0.6364 0.6115

Average 0.4176 0.3387 Average 0.5661 0.5709

Table 16: nDCG@10 retrieval performance (Recall@1 for BRIGHT-Long) across four benchmark datasets using
the GTE-Large retriever. We fine-tune the retriever using LoRA.
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E.4 Fine-tuning with OpenAI cookbook using SQUARE datasets

BRIGHT-Short BRIGHT-Long

Dataset Zero SQUARE Dataset Zero SQUARE

Biology 0.2317 0.2456 Biology 0.4037 0.4523
Earth-Science 0.3283 0.3431 Earth-Science 0.3815 0.3987

Economics 0.2108 0.1950 Economics 0.2524 0.1990
Psychology 0.2571 0.2453 Psychology 0.2297 0.2376

Robotics 0.1114 0.0945 Robotics 0.1436 0.0891
Stackoverflow 0.1518 0.1408 Stackoverflow 0.1709 0.1752

Sustainable living 0.1651 0.1735 Sustainable living 0.2403 0.2403
Pony 0.0374 0.0550 Pony 0.0059 0.0020

Average 0.1867 0.1866 Average 0.2285 0.2243

LongEmbed MTEB-Law

Dataset Zero SQUARE Dataset Zero SQUARE

Wikim-QA 0.4917 0.4842 AILA-casedocs 0.3049 0.3164
QMSum 0.3056 0.2683 AILA-statutes 0.2323 0.2473

Summ screen FD 0.2241 0.3233 Consumer contracts 0.7424 0.7500
Narrative-QA 0.6490 0.6699 Corporate lobbying 0.9146 0.9276

Legal summary 0.6364 0.6240

Average 0.4176 0.4364 Average 0.5661 0.5731

Table 17: nDCG@10 retrieval performance (Recall@1 for BRIGHT-Long) across four benchmark datasets using
the GTE-Large retriever. We fine-tune the retriever based on the OpenAI cookbook.
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F Synthetic query examples

Original query Synthetic query

What is ’protein’ in food? I know that proteins perform a
lot of functions and as a result there are a lot of different
types of proteins in our bodies. When I eat food that has
x grams of ’protein’, what is this? A homogenous mix of
proteins? A heterogenous one? Is it specific set of them that
are general enough to be used by my body despite coming
from a different organism? How can it be sure that my body
can use the kind of protein in the food?

What are the metabolic processes involved in the utilization
of dietary protein in animals, and how does this process differ
under conditions of nutrient scarcity? How does the body
utilize amino acids obtained from food, and what alternative
pathways are employed when dietary intake is insufficient to
meet energy demands? What are the key enzymes involved
in amino acid synthesis, and why are some amino acids
considered essential for certain organisms? Finally, what
are the consequences of insufficient or poor-quality protein
intake in animals?

What is the evolutionary advantage of red-green color blind-
ness? Red-green colorblindness seems to make it harder for
a hunter-gatherer to see whether a fruit is ripe and thus worth
picking. Is there a reason why selection hasn’t completely
removed red-green color blindness? Are there circumstances
where this trait provides an evolutionary benefit?

What are the different classifications of color blindness based
on the severity of the condition and what are the key charac-
teristics of each classification? Furthermore, how common
are these different classifications, and are there any notable
differences in their symptoms or impact on daily life? Fi-
nally, are there any specific genetic factors associated with
these different classifications?

We know (think?) that Earth has three Hadley cells per
hemisphere, but from observing gas giants such as Jupiter,
we see that they have many more cells. According to a link
from a comment in this question, Titan might have one cell
going from north to south poles. What factors affect the
number of cells a planet has, and how? Or to put it another
way, given a hypothetical planet with atmosphere, what facts
would you need to know in order to guess at how many cells
it has?

How does the Hadley circulation contribute to the Earth’s
overall thermal equilibrium, considering the uneven distribu-
tion of solar radiation across different latitudes? Describe the
mechanisms involved in this heat redistribution, and explain
how this process prevents extreme temperature differences
between the equator and the poles. What role do pressure
gradients play in driving this circulation? Finally, discuss
the significance of latent heat release in this process.

Can GDP ever be negative? Imagine that in an economy we
only produced a toy and that cost us 10 dollars. We don’t
sell this toy in year 1. Then this goes under Investment as
+10 and GDP is +10. But say the only thing we do in year 2
is sell this toy for a loss at 8 dollars. Then investment is now
-10 but consumption is +8 so GDP in year 2 is -2. Is this a
valid example of negative GDP?

How does the change in private inventories impact the Gross
Domestic Product (GDP), considering different scenarios
of inventory accumulation and decumulation over consec-
utive periods? Explain the three possible ways an increase
in GDP can occur due to changes in the level of private in-
ventories, providing examples of how inventory levels might
shift to cause these increases. What are the key accounting
principles involved in measuring these changes?

Why can’t MEG distinguish EPSPs and IPSPs? I see this
fact stated in many places that discuss the basis of the MEG
signal but it’s never been made completely clear why MEG
can’t distinguish IPSPs and EPSPs. Please could someone
elaborate?

What are the challenges in surgical treatment of epilepsy,
and how can non-invasive brain imaging techniques con-
tribute to improving surgical outcomes and minimizing risks
to patients undergoing such procedures? The need to pre-
cisely identify the seizure origin is crucial to avoid damaging
healthy brain tissue during surgery. What role does advanced
neuroimaging play in this process, and how does it compare
to traditional invasive methods? How might this technology
potentially reduce the need for invasive procedures?

Comparing navigation algorithms I am new to Nav2 stack
and currently there are a bunch of navigation plugins to
choose from (https://navigation.ros.org/plugins/index.html).
I am interested in how to choose available algorithms from
those in "Planners" and "Controllers" sections. For example,
how to know pros and cons of NavFn planner compared
with SmacPlanner. How to know pros and cons of DWB
controller against TEB controller. Is there any site clarify
something like this?

Imagine a scenario involving a high-speed robot tasked with
delivering packages. What sophisticated planning techniques
are employed to ensure the robot avoids obstacles, main-
tains path smoothness, and prevents accidents like tipping
over or dropping its load, especially considering the robot’s
speed and the potential for centripetal forces to destabilize
it? Describe the methods used to optimize the robot’s path
planning and the benefits of these methods. Finally, discuss
how the planning system addresses the challenges posed by
high-speed movement and the need for safe navigation.

Table 18: The table shows examples of a relevant query and a synthetic query generated by SQUARE for the
same document. These examples allow for a qualitative assessment of SQUARE’s generated queries, specifically
examining their similarity to the original query.
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