
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 7239–7255
November 4-9, 2025 ©2025 Association for Computational Linguistics

FinGEAR: Financial Mapping-Guided Enhanced Answer Retrieval
Ying Li1 Mengyu Wang1 Miguel de Carvalho1,2

Sotirios Sabanis1,3,4 Tiejun Ma1,5

1The University of Edinburgh, UK
2University of Aveiro, Portugal

3National Technical University of Athens, Greece
4Archimedes/Athena Research Centre, Greece

5The Artificial Intelligence Applications Institute, The University of Edinburgh, UK
{sunnie.y.li, mengyu.wang, miguel.decarvalho, s.sabanis, tiejun.ma}@ed.ac.uk

Abstract

Financial disclosures such as 10-K filings
pose challenging retrieval problems because
of their length, regulatory section hierarchy,
and domain-specific language, which standard
retrieval-augmented generation (RAG) models
underuse. We present FinGEAR (Financial
Mapping-Guided Enhanced Answer Retrieval),
a retrieval framework tailored to financial doc-
uments. FinGEAR combines a finance lexicon
for Item-level guidance (FLAM), dual hierar-
chical indices for within-Item search (Summary
Tree and Question Tree), and a two-stage cross-
encoder reranker. This design aligns retrieval
with disclosure structure and terminology, en-
abling fine-grained, query-aware context selec-
tion. Evaluated on full 10-Ks with the FinQA
dataset, FinGEAR delivers consistent gains in
precision, recall, F1, and relevancy, improv-
ing F1 by up to 56.7% over flat RAG, 12.5%
over graph-based RAGs, and 217.6% over prior
tree-based systems, while also increasing down-
stream answer accuracy with a fixed reader. By
jointly modeling section hierarchy and domain
lexicon signals, FinGEAR improves retrieval
fidelity and provides a practical foundation for
high-stakes financial analysis.

1 Introduction

Financial disclosures such as 10-K filings are key
for investment analysis, regulatory monitoring, and
risk assessment. They are long (often 100+ pages)
and organized by SEC-mandated Items, for exam-
ple, Item 1 (Business), Item 1A (Risk Factors),
Item 7 (Management’s Discussion and Analysis),
and Item 8 (Financial Statements). These sections
mix narrative text, tables, and footnotes. Many fi-
nancial NLP tasks, including sentiment analysis,
trend detection, entity extraction, risk detection,
and question answering, depend on first retrieving
the right passages from these filings. Retrieval is
difficult because relevant evidence may be spread
across multiple Items or years, and domain syn-

onyms (e.g., “sales” vs. “revenue”) and cross-
references are common. Therefore, retrieval re-
mains a major bottleneck for current work (Reddy
et al., 2024; Edge et al., 2024; Asai et al., 2023;
Guo et al., 2024).

Recent efforts such as DocFinQA (Reddy et al.,
2024) underscore the difficulty of applying ques-
tion answering to full-length financial filings. Yet
these systems typically treat retrieval as a sepa-
rate external step and rely on fixed-size chunks or
off-the-shelf retrievers, without aligning it to the
SEC Item hierarchy and the terminology used in
financial reports. This reveals a broader limitation:
current retrieval methods struggle with hierarchi-
cal organization, domain terms, and the need for
precise evidence in financial analysis. FinGEAR
directly addresses this gap by redefining retrieval
as a first-class objective, tailored to the realities of
regulatory filings and their analytical use cases.

Recent advances in Large Language Models
(LLMs) (Achiam et al., 2023; Dubey et al., 2024;
Wu et al., 2023) and Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2021) have enabled
progress in financial document analysis by ground-
ing outputs in retrieved evidence. Our analysis
identifies three core limitations in current retrieval
pipelines that constrain downstream performance
across financial NLP tasks: (1) Lack of structure
awareness: fixed-size segmentation discards the
logical hierarchy of disclosures, leading to mis-
aligned context retrieval; (2) Lack of financial speci-
ficity: generic retrievers fail to distinguish nuanced
but crucial concepts (e.g., “net income” vs. “oper-
ating income”); (3) Dense-only retrieval is hard to
control and explain: pure vector similarity offers
limited interpretability in evidence-heavy settings.

To address these issues, we present FinGEAR,
Financial Mapping-Guided Enhanced Answer
Retrieval, a retrieval-centric framework designed
for long, professionally authored, semi-structured
disclosures. FinGEAR treats retrieval as the core

7239

problem, aiming to surface content that is struc-
turally coherent, financially grounded, and useful
across tasks.

FinGEAR introduces three key contributions: (1)
Document–Query hierarchical alignment, which
captures the structural layout of financial docu-
ments via a Summary Tree and enables query-
sensitive retrieval through a structurally mirrored
Question Tree; (2) Financial Lexicon-Aware Map-
ping (FLAM), which steers retrieval using domain-
specific term clusters and lexicon-weighted scor-
ing; (3) Hybrid dense–sparse retrieval, which in-
tegrates sparse keyword anchoring with dense em-
bedding similarity to balance interpretability and
relevance.

Evaluated on full 10-K filings, FinGEAR
achieves up to 138% higher retrieval F1 than flat
RAG, up to 28% over graph-based baselines (e.g.,
LightRAG), and up to 263% over prior tree-based
systems. Ablation studies confirm that these gains
derive from the combined design of its structural
and domain-aware modules. While FinGEAR does
not directly optimize for reasoning tasks, down-
stream experiments confirm that enhanced retrieval
leads to better answer accuracy, reinforcing re-
trieval quality as the foundation of financial docu-
ment understanding.

To our knowledge, FinGEAR is the first retrieval-
first system tailored to financial disclosures. It of-
fers a principled and modular foundation for struc-
tured, explainable, and task-flexible financial NLP.

2 Related Work

2.1 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2021) augments language models by fetch-
ing relevant context from external corpora, re-
ducing the need for full-model fine-tuning (Guu
et al., 2020; Ram et al., 2023). Advanced variants
such as Self-RAG (Asai et al., 2023) and Adap-
tive RAG (Jeong et al., 2024) improve coordina-
tion between retrievers and generators but still use
fixed-size chunks. This makes it hard to preserve
document structure and can introduce drift in long
documents, as seen in long-form QA benchmarks
like ELI5 (Fan et al., 2019). Recent work addresses
context-length limits with longer-context models
(e.g., Transformer-XL (Dai et al., 2019)), retrieval-
aware chunking (Zhong et al., 2025), and studies
of position bias (Liu et al., 2023). These efforts
mainly target input length and do not solve struc-

tured retrieval in financial domains.

2.2 Hierarchical and Graph-Based Retrieval

Hierarchical methods such as RAPTOR (Sarthi
et al., 2024) and HiQA (Chen et al., 2024) represent
documents as trees and retrieve recursively from
higher-level summaries. Graph-based systems, in-
cluding GraphRAG (Edge et al., 2024) and Ligh-
tRAG (Guo et al., 2024), model relations between
entities and sections to support multi-hop reason-
ing. In particular, GraphRAG builds local–global
graphs over LLM-extracted entities and commu-
nity summaries and retrieves via community-level
traversal, while LightRAG performs dual-level
query decomposition with lightweight neighbor-
hood expansion over section-aligned segments.
Longtriever (Yang et al., 2023b) targets long-
context retrieval by combining local and global se-
mantics at the block level. These graph approaches
differ from retrieval that uses section hierarchies
(e.g., SEC Items), so we include GraphRAG as a
representative graph baseline for community-level
traversal. Many graph/tree systems also depend on
LLM-generated summaries, which may hallucinate
content (Maynez et al., 2020; Li et al., 2023).

2.3 Financial NLP and Domain-Specific
Retrieval

Financial NLP supports applications such as senti-
ment analysis (Zhang et al., 2023; Wang and Ma,
2024), event prediction (Li et al., 2024; Wang et al.,
2024), and hybrid QA (Chen et al., 2021; Zhu
et al., 2021), often using domain-adapted mod-
els like FinBERT-QA (Yuan et al., 2021) and Fin-
GPT (Yang et al., 2023a). These models improve
semantic understanding but usually assume that
relevant context is provided and therefore lack re-
trieval. DocFinQA (Reddy et al., 2024) evaluates
QA over full filings but relies on an oracle retriever,
leaving retrieval design unaddressed. As a result,
prior work does not fully model retrieval architec-
tures that reflect hierarchical layouts, domain termi-
nology, and section-specific semantics. FinGEAR
addresses this gap by treating structure-aware re-
trieval as a core objective in financial document
understanding.

2.4 Guided and Interpretable Retrieval for
Financial Documents

In high-stakes settings like finance, retrieval should
be both relevant and interpretable because results
support regulatory or analytical decisions (Yu et al.,

7240

Financial

Terms from

FinRAD

Weighted Lexicon Mapping

Financial

Lexicon-Aware

Mapping

(FLAM)

Semantic

Clustering

Lexicon Clustering and Mapping

Assign key terms to disclosure sections

using financial lexicon-tuned embeddings.

Score semantic similarity to the Items based

on relative frequency across filings.

Item 1,w
1

= 0.22

Item 1A, w
2

= 0.14

Item 7, w
3

= 0.48

…

Structure

Extraction

a. Embed item-level content with financial semantics

b. Cluster into latent disclosure topics

c. Build summary hierarchy over topic clusters

d. Construct question-guided tree from summary tree

SEC Disclosure Tree

Parsed

10-K Filing

FLAM: Global Knowledge Lexicon Mapping

Lexicons are mapped to disclosure Items

and assigned weights (w ∈ [0, 1]) based on

their relative frequency across filings.

Specifically, financial terms (lexicons) are

clustered into latent themes using domain-

specific embeddings fine-tuned on FinRAD.

Hierarchical

Expansion

Dual-Tree

Generation

Dual-Tree Index (Summary + Question)

Summary Tree (Disclosure-Level Indexing);

Question Tree (Query-Driven Retrieval)

Expanded Hierarchies via Financial Topic Clustering
One disclosure tree is built

for each Item, with nodes

encoding the semantics of

page-level segments.

Figure 1: Pre-retrieval. From parsed 10-K filings, FinGEAR performs structure extraction and lexicon mapping
(FLAM). FLAM clusters domain terms and assigns Item weights; topic clustering builds a Summary Tree and a
mirrored Question Tree for each Item.

Identify the query’s closest

financial keyword using FLAM,

then retrieve disclosure items

weighted by lexicon relevance.

Financial Keyword Navigation
Query

Question

Dual-Tree

Ranking Reranked

Retrievals

Generate

Answer

Traverse Summary and Question

Trees within each Item to locate

both sparse and dense semantically

aligned passages.

Disclosure-Aware

Structure Traversal

Item 1,w
1

= 0.22

Item 1A, w
2

= 0.14

Item 7, w
3

= 0.64

…

“What was JPMorgan

Chase & Co.’s CET1

ratio in 2008?”

I. Within-Group

(FLAM)

II. Within-Item

(tree traversal)

Cross-rank top-k

candidates from both

trees by relevance,

then merge across

items to select highly

relevant evidence.

Figure 2: In-retrieval. FLAM allocates the budget across Items (Within-Group). Within each Item, the Summary
and Question Trees are traversed (Within-Item). Candidates are jointly reranked and merged across Items. Example
query: CET1 ratio in 2008.

2024). Flat, dense-only pipelines can obscure why
passages were selected. Structured methods (hier-
archical and graph-based) reviewed above improve
traceability by encoding document structure and
relations, and they typically outperform flat chunk-
ing in both quality and transparency. However,
most remain domain-agnostic. For 10-Ks, where
a standardized section layout and stable terminol-
ogy are available, integrating domain signals (e.g.,
a finance lexicon and disclosure Item hierarchy)
can further align retrieval with analyst intent. Fin-
GEAR follows this principle by combining lexicon-
guided global navigation with Item-aligned hierar-
chical indexing, providing interpretable, section-
aware evidence selection tailored to financial dis-
closures.

3 Methodology

FinGEAR is a modular retrieval framework de-
signed to align with the structure and terminology
of long financial filings. It is motivated by the

observation that 10-K reports embed rich domain-
specific signals, such as SEC Item headings, disclo-
sure hierarchy, and financial terms. These signals
can be extracted and used for improved retrieval.
Rather than relying on flat chunking or dense-only
similarity, FinGEAR builds hierarchical represen-
tations and uses a financial lexicon to guide search
with hybrid matching, enabling retrieval with struc-
tural fidelity and domain specificity.

3.1 Pre-Retrieval Pipeline

Before retrieval, FinGEAR builds indexing struc-
tures for context-aware navigation: (1) structure
extraction to model disclosure hierarchy, and (2)
Financial Lexicon-Aware Mapping (FLAM) to steer
search toward financially salient content. Figure 1
summarizes this pre-retrieval stage, showing dual-
tree construction (Summary/Question Trees) along-
side FLAM’s lexicon-to-Item weighting that will
drive per-Item budgets used later (Section 3.2).

7241

Figure 3: Global navigation with FLAM. Lexicon clus-
ters map query terms to disclosure Items and assign
weights w ∈ [0, 1] based on relative frequency across
filings; these weights determine per-Item budgets k∗i
used for traversal.

3.1.1 Structure Extraction
FinGEAR extracts fine-grained structure within
each 10-K Item. While SEC-mandated itemiza-
tion provides a high-level layout (Alberg, 1970),
each Item can span dozens of pages and include
heterogeneous content. To support retrieval at mul-
tiple granularities, FinGEAR builds semantic trees
within each Item using topic-based clustering. This
hierarchical organization is depicted in Figure 1
as the Summary/Question Tree index built during
pre-retrieval.

Chunking and Encoding Each Item is seg-
mented into approximately 2,000-token chunks
with a 100-token overlap (see Appendix F, Table 6).
We encode each chunk with sentence embeddings
fine-tuned on financial data, yielding a domain-
aligned representation space.

Hierarchical Expansion via Topic Clustering
We then build the hierarchy bottom–up: UMAP is
first applied for dimensionality reduction, followed
by Gaussian Mixture Models (GMM) for soft clus-
tering. Leaves correspond to the original chunks;
each internal node represents a soft cluster and
is summarized to guide top-down traversal. The
result is a content hierarchy that captures themes
from coarse to fine granularity (hyperparameters in
Section 5.1; schematic in Figure 1). An example
of the resulting hierarchy is shown in Figure 4.

Summary and Question Trees (Outputs) Struc-
ture extraction yields two structurally identical
hierarchical indices. The Summary Tree stores

node summaries at internal nodes and the original
text chunks at leaves. The Question Tree mirrors
the same topology but stores LLM-generated sub-
questions (embedded in the same query space) at in-
ternal nodes; its leaves point to the same chunk IDs
as the Summary Tree. We derive the Question Tree
by generating sub-questions for each Summary-
Tree node and embedding them with a FinQA-
aligned encoder. Sharing topology while differ-
ing in node content enables hybrid sparse–dense
traversal during retrieval. Fine-tuning and further
construction details appear in Appendix D.

3.1.2 Financial Lexicon-Aware Mapping
(FLAM)

FLAM provides domain-aware guidance by weight-
ing Items before traversal. Candidate terms
are extracted using a rule-based method (Singh,
2017) from a curated subset of the FinRAD lexi-
con (Ghosh et al., 2021), and then clustered with
sentence embeddings fine-tuned on financial lan-
guage (Appendix D). Each relevant term is as-
signed a weight using Relative Frequency:

weight(ki) =
count(ki)∑
j count(kj)

,

chosen for its interpretability and robustness across
heterogeneous filings. (Ablations appear in Sec-
tion 5.2 and Section 5.2.4.)

FLAM vs. structure extraction. FLAM oper-
ates at the corpus level: it clusters lexical terms
(FinRAD-tuned embeddings) and converts them
into per-Item weights that allocate the global re-
trieval budget. Structure extraction operates within
each 10-K Item: it clusters text chunks (FinQA-
tuned embeddings) to build local trees used for
traversal. In short, FLAM decides where to look
across Items, while structure extraction decides
how to search within an Item.

3.2 In-Retrieval Pipeline

At query time, FLAM first identifies Items that are
likely to contain relevant content. Within these
Items, dual-tree traversal retrieves candidate pas-
sages: the Summary Tree provides sparse, high-
level routing; the Question Tree provides dense,
query-specific refinement. Figure 2 illustrates this
process for an example FinQA query: “What was
JPMorgan Chase & Co.’s CET1 ratio in 2008?”.

7242

Key Performance (#docs=0, #qn=5)
Revenue Trends (#docs=0, #qn=5)
YoY growth (#docs=3, #qn=5)
Segment revenue (#docs=4, #qn=5)

Capital Ratios (#docs=0, #qn=5)
CET1 ratio (#docs=2, #qn=5)
Tier 1 capital (#docs=3, #qn=5)

Figure 4: Example tree printout. Internal nodes are
summaries; leaves are retrievable chunks. “#qn” is the
number of sub-questions stored at the corresponding
Question Tree node.

3.2.1 Global Navigation
Global Navigation selects which SEC Items to
search before any tree traversal. Using FLAM,
we (i) expand the query into clusters of related fi-
nancial terms, (ii) measure how strongly each Item
is associated with those clusters to obtain normal-
ized weights wi, and (iii) convert the weights into
per-Item retrieval budgets k∗i such that

∑
i k

∗
i = k.

Items with k∗i = 0 are skipped; the rest proceed to
within-Item traversal.
Procedure.
1. Term detection and expansion. Extract salient

financial terms from the query (e.g., CET1, cap-
ital ratio) and expand them using FLAM’s lex-
icon clusters (FinRAD-tuned embeddings) to
capture close variants.

2. Map terms to Items. For each expanded term
cluster, count its occurrences in each SEC Item
across the recovered filings and aggregate these
counts per Item. Convert counts to normalized
Item weights

wi =
freqi∑
j freqj

,
∑

i

wi = 1, wi ∈ [0, 1].

3. Allocate the budget. Given a total retrieval bud-
get k, assign an Item-level budget

k∗i = round
(
k · wi

)

(with a final adjustment so that
∑

i k
∗
i = k; ties

are broken by larger wi).

4. Handoff to traversal. For each Item with k∗i > 0,
pass the Item and its budget to the within-Item
search over the Summary and Question Trees.

Item weights wi (e.g., w1, w1A, w7) are illustrated
in Figure 3 to match the notation used in Sec-
tion 3.2. For example, with k=10: Item 7 receives
k∗=6, Item 1 k∗=2, and Item 1A k∗=2.

3.2.2 Within-Item Search
Within each selected Item, we traverse two trees
with identical topology, the Summary Tree and
the Question Tree. The structure (parent–child
layout and leaf set) is the same; what differs is
the node content used for scoring during traver-
sal: Summary-Tree nodes carry summaries, while
Question-Tree nodes carry LLM-generated sub-
questions embedded in the query space. Leaf nodes
in both trees reference the same chunk IDs, so leaf
hits are merged and deduplicated into a single can-
didate pool.

• Summary-based retrieval (sparse): nodes are
matched to the query using a bag-of-words
scorer over node summaries. This favors sec-
tions dense in relevant financial terms and
headings.

• Question-based retrieval (dense): nodes are
matched using cosine similarity between
the query embedding and LLM-generated
sub-questions stored at each node (financial
QA–tuned embeddings).

Scoring and stopping. The two trees are traversed
independently. In the Summary Tree, nodes are
scored with BM25 over node summaries (sparse
signal). In the Question Tree, nodes are scored
by cosine similarity between the query and each
node’s sub-questions (dense signal). At each inter-
nal node we expand only the top b children by that
node’s score (default b=3 in all experiments). This
per-node child limit is separate from the per-Item
budget k∗i . We continue descending until leaves.
Because the trees are built with depth at most 2
(Section 5.1), traversal reaches leaves in at most
two steps. All leaves visited across both trees form
the Item’s candidate pool, from which we select up
to k∗i evidence chunks.

Reranking. Stage 1 (cross-tree): merge and
rerank candidates from the Summary and Ques-
tion traversals with a cross-encoder (BAAI/bge-
reranker-large, XLM-R-Large, 560M).
Stage 2 (cross-Item): rerank the top spans across
different Items to prioritize globally informative,
coherent answers. This two-stage reranking sharp-
ens precision while preserving coverage for down-
stream QA.

Finally, we select up to k∗i highest-scoring
unique chunks for that Item and pass them to
reranking.

7243

4 Dataset and Evaluation

4.1 Datasets

To evaluate our retrieval capabilities, we use the
FinQA dataset (Chen et al., 2021), a benchmark
designed for financial question answering. FinQA
contains 8,281 question–answer pairs derived from
10-K filings, requiring numerical reasoning and
domain expertise. The dataset is split into training
(6,251), validation (883), and testing (1,147) sets.

While the FinQA dataset provides ground-
truth question–answer pairs, it only includes
pre-extracted context passages. To enable full-
document retrieval evaluation, we recover the orig-
inal 10-K filings corresponding to each FinQA in-
stance. Using SEC EDGAR records1, we match
company names to ticker symbols and Central In-
dex Keys (CIKs), resulting in a corpus of 720 full-
length 10-K filings (we refer to these as our recov-
ered 10-K filings).

These documents span a diverse set of indus-
tries—including technology, healthcare, financial
services, consumer goods, and energy—and cover
companies listed in the S&P 500 index between
1999 and 2019. Filings are converted from PDF
to structured Markdown format, preserving origi-
nal SEC itemization. This setup ensures FinGEAR
retrieves from complete, uncurated documents, re-
flecting real-world retrieval challenges.
Dataset breadth. FinQA dataset includes both nu-
merical and categorical questions and covers single-
step and multi-hop reasoning. We use this typology
in our evaluations (see Section 5.2 and Table 10),
underscoring that FinQA dataset is a multifaceted
dataset rather than a narrowly scoped benchmark.

4.2 Evaluation Framework

We evaluate FinGEAR’s retrieval performance us-
ing the RAGAS framework (Es et al., 2023), which
provides component-level RAG evaluation metrics.
Specifically, we report:
Precision. The proportion of retrieved passages
that are relevant to the query.
Recall. The proportion of all relevant passages that
are successfully retrieved.
F1 Score. The harmonic mean of precision and re-
call. This serves as our primary retrieval metric, as
it best isolates retrieval quality without conflating
it with downstream generation performance.
Relevancy. A semantic alignment score based on

1https://www.sec.gov/search-filings

LLM evaluations, measuring how well retrieved
passages support the query’s intent.

Retrieval is evaluated at multiple depths, includ-
ing Top-5, Top-10, and Top-15, to capture trade-
offs between precision and coverage. All metrics
are reported per depth and averaged to provide a
comprehensive assessment.

In addition to retrieval metrics, we report final
answer accuracy, defined as the correctness of a
fixed reader model’s response given the retrieved
context (reader details in Section 5.1). While not
a direct measure of retrieval quality, it reflects the
downstream utility of the system for real-world
financial question answering and analytical tasks.

To improve transparency, we also report token-
level statistics in Appendix F, including average to-
kens per passage, total input length by depth, aver-
age tree depth, and maximum context constraints.

5 Experiments

5.1 Experimental Setup

Baselines. We benchmark against General
RAG (Lewis et al., 2021), Self-RAG (Asai
et al., 2023), LightRAG (Guo et al., 2024),
GraphRAG (Edge et al., 2024), and RAP-
TOR (Sarthi et al., 2024). LightRAG is run in its
“mix” mode (keyword+dense with local neighbor-
hood expansion). GraphRAG follows the official
local–global community summary traversal (com-
munity construction and inference-time community
propagation). Unless noted, baselines use default
settings with text-embedding-ada-002 for dense
similarity. (Full baseline configurations are sum-
marized in Appendix C.)

Reader model. All results use GPT-4o-mini as a
fixed reader with default settings; only the retriever
varies across systems. It was chosen for being a
strong, cost- and latency-efficient reader at the time
of this study. Crucially, the reader choice is inde-
pendent of the retrieval pipeline and algorithmic
design as our conclusions target retrieval quality.

Model and index settings (promoted from ap-
pendices). BM25: Lucene; k1=1.5, b=0.75; to-
kenizer: PyStemmer (eng).
Dense embeddings: BAAI/bge-base-en-v1.5
(d=768); fine-tuned FinRAD & FinQA variants
with MultipleNegatives + Matryoshka; learning
rate 2×10−5; batch size 32. Empirical gains from
the embedding fine-tuning are summarized in Ta-
ble 5.

7244

https://www.sec.gov/search-filings

Table 1: Retrieval performance comparison across baseline models. Results are reported at retrieval depths
k = 5, 10, 15, where k denotes the number of retrieved passages. The best score for each metric is shown in bold,
and the second-best is underlined.

Model Precision Recall F1 Score Relevancy
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

General RAG 0.37 0.37 0.30 0.24 0.26 0.28 0.29 0.30 0.29 0.40 0.43 0.47
Self-RAG 0.74 0.60 0.55 0.27 0.28 0.31 0.39 0.38 0.40 0.30 0.31 0.33
LightRAG 0.88 0.85 0.85 0.39 0.42 0.47 0.54 0.56 0.60 0.38 0.37 0.39
GraphRAG 0.88 0.89 0.87 0.56 0.55 0.55 0.67 0.66 0.66 0.17 0.16 0.17
RAPTOR 0.69 0.65 0.62 0.11 0.14 0.22 0.19 0.23 0.32 0.38 0.41 0.45
FinGEAR 0.79 0.76 0.72 0.61 0.62 0.65 0.69 0.68 0.68 0.50 0.64 0.62

Cross-encoder reranker: BAAI/bge-reranker-
large (default inference settings).
UMAP+GMM: UMAP dim=10 (cosine); GMM
max components=50; threshold=0.1; max tree
depth=2 (fan-out rationale from Item sizes).
Chunking: ∼2,000 tokens with 100-token overlap.

Retrieval Pipeline. We use BM25s (Lù, 2024)
for sparse matching and FinLang domain-specific
sentence embeddings (FinLang, 2025) for dense
similarity. The embeddings are fine-tuned on
FinQA (question–passage) and FinRAD (lexi-
con–sentence) objectives (Appendix D). Candi-
date financial terms are extracted with spaCy’s
PhraseMatcher to drive FLAM’s term clustering
and Item weighting. Unless noted otherwise, all ex-
periments use this BM25s+FinLang configuration;
hierarchical indexing and reranking are detailed in
Section 3.

Retrieval Settings. Retrieval performance is re-
ported at depths k = 5, 10, 15, reflecting trade-offs
between retrieval quantity and contextual precision.
All models are evaluated using identical traversal
logic and input constraints to ensure comparability.
Additional configuration details, including chunk
size, overlap settings, and node budget, are reported
in Appendix F, Table 6.

Ablation Settings. To assess the contribution of
FinGEAR’s core components, we conduct a series
of ablation studies. We begin by disabling individ-
ual modules, the Summary Tree, Question Tree, and
FLAM, to measure their impact on retrieval F1 and
Relevancy. We then perform multi-component ab-
lations by jointly removing pairs of modules to ana-
lyze interaction effects between structural and lexi-
cal guidance (Appendix I). In addition, we evaluate
alternative lexicon weighting strategies within the
FLAM module, including Relative Frequency, Ex-
ponential Scaling, and Softmax Weighting. These

modules affect Item prioritization during retrieval.
Ablation results are presented in Section 5.2.

5.2 Results

We evaluate FinGEAR’s performance on four core
retrieval metrics—precision, recall, F1 score, and
relevancy—alongside ablation studies and lexicon-
weighting variants. While FinGEAR is retrieval-
first, we also report answer accuracy to assess how
improved retrieval supports downstream tasks.

5.2.1 Retrieval Performance Across Baselines

Table 1 compares FinGEAR with five baselines:
General RAG, Self-RAG, LightRAG, GraphRAG,
and RAPTOR. Across all retrieval depths and eval-
uation metrics, including precision, recall, F1 score,
and relevancy, FinGEAR consistently outperforms
the baselines, demonstrating its effectiveness for
structure-aware retrieval over disclosures.

Recall. FinGEAR achieves the highest recall
at every depth, reaching 0.65 at k=15, ahead of
LightRAG (0.47), Self-RAG (0.31), and General
RAG (0.28). RAPTOR lags behind, highlighting
limited adaptability to the standardized section hi-
erarchy and terminology of 10-Ks. Strong recall
indicates that FinGEAR reliably recovers the rea-
soning spans dispersed across long documents.

F1. FinGEAR also leads on F1 at all depths, re-
flecting a balanced trade-off between precision and
coverage. The combination of FLAM-guided Item
selection and dual-tree traversal yields candidate
sets that are both relevant and diverse—important
in high-stakes financial analysis.

Relevancy. FinGEAR delivers the most semanti-
cally aligned results at all depths, peaking at 0.64.
Retrieved passages are not only topically related
but also faithful to the specific intent of the query.
By contrast, General RAG and RAPTOR return
more diffuse or off-target content.

7245

Table 2: Ablation study on the impact of removing individual components from FinGEAR. We evaluate the effect of
disabling the Summary Tree, Question Tree, FLAM modules and Reranker. Results are reported at retrieval depths
k = 5, 10, 15 and averaged across metrics. Bold indicates the best-performing configuration.

Ablation Setting Precision Recall F1 Score Relevancy
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

Full FinGEAR 0.79 0.76 0.72 0.61 0.62 0.65 0.69 0.68 0.68 0.50 0.64 0.62
No Summary Tree 0.41 0.61 0.58 0.33 0.36 0.40 0.37 0.46 0.47 0.29 0.57 0.63
No Question Tree 0.43 0.62 0.57 0.35 0.37 0.40 0.39 0.47 0.47 0.29 0.56 0.63
No FLAM Module 0.42 0.61 0.58 0.34 0.35 0.42 0.38 0.44 0.49 0.29 0.58 0.63
No Reranker 0.51 0.44 0.36 0.37 0.30 0.31 0.43 0.36 0.34 0.45 0.55 0.58

System k = 5 k = 10 k = 15

General RAG 29.8% 30.3% 30.5%
Self-RAG 28.7% 29.8% 27.4%
LightRAG 35.7% 58.8% 36.5%
GraphRAG 28.4% 29.1% 29.4%
RAPTOR 34.0% 20.9% 37.3%
FinGEAR (Ours) 49.1% 49.7% 50.0%

Table 3: Final answer accuracy with GPT-4o-mini as
reader. Accuracy is reported for each retrieval depth.

LightRAG. LightRAG attains the highest preci-
sion in isolation (e.g., 0.88 at k=5), but this comes
with reduced recall and F1, reflecting a narrower
candidate set after entity/relation hops. FinGEAR
maintains competitive precision while substantially
improving recall and F1, yielding a more balanced
profile for long, heterogeneous filings.2

GraphRAG. GraphRAG shows high precision
and strong recall (0.56/0.55/0.55), yielding second-
best F1 (0.67/0.66/0.66). However, its relevancy
is lowest (0.17/0.16/0.17), and its final answer ac-
curacy is also low (Table 3: 28.4–29.4%). In our
setting, FinGEAR achieves higher F1 and much
higher relevancy at all depths, aligning with its
stronger downstream accuracy.

5.2.2 Evaluating QA as a Downstream Task:
Answer Accuracy

To assess downstream utility, we measure final
answer accuracy with the fixed reader introduced
above. FinGEAR achieves the strongest accuracy
at k=5 and k=15 (49.1% and 50.0%), and remains
competitive at k=10 (49.7%), where LightRAG
shows a one-off spike (58.8%) but degrades at the
other depths (35.7% at k=5, 36.5% at k=15). Gen-
eral RAG and GraphRAG hover near 30% across
depths, and RAPTOR is unstable, dropping from

2In LightRAG, each retrieval combines entities, relations,
and vector text, which can inflate precision but requires approx-
imately fifteen times the runtime of FinGEAR per document.

34.0% at k=5 to 20.9% at k=10, then rebounding
to 37.3% at k=15. Overall, FinGEAR’s accuracy
is consistently high and increases with k, mirroring
its recall/F1 trends and indicating that it surfaces
numerically faithful, context-grounded evidence
for fact-sensitive financial QA.

5.2.3 Analysis of Retrieval Depths
FinGEAR maintains strong retrieval quality across
all evaluated depths. At k = 5, it achieves a high
precision of 0.79 and F1 score of 0.69, indicating
strong early-stage retrieval performance. As re-
trieval depth increases, recall steadily improves,
reaching 0.65 at k = 15, while precision and F1
remain consistently high. This stability reflects
FinGEAR’s ability to scale retrieval scope without
sacrificing semantic accuracy or contextual fit.

Relevancy scores follow a similar pat-
tern—peaking at 0.64 at k = 10 and holding at
0.62 at k = 15, showing that even as the system
retrieves more passages, it continues to surface
content that is contextually faithful to the query.
These trends suggest that FinGEAR balances depth
and alignment effectively, making it suitable for
long-context applications where both coverage and
interpretability are critical.

In contrast, baselines exhibit more pronounced
trade-offs. LightRAG shows strong precision at
shallow depths but plateaus in recall and F1. Self-
RAG and RAPTOR struggle to maintain perfor-
mance as retrieval depth increases, reflecting lim-
ited adaptability to structured disclosures. Fin-
GEAR’s consistent gains across all depths demon-
strate its robustness and domain alignment in re-
trieval from complex financial documents.

5.2.4 Ablation Study
We now report the outcomes of the ablations de-
fined in Section 5.1. We conduct single-component
ablations: (1) removing the Summary Tree, which
supports hierarchical sparse abstraction; (2) remov-

7246

Table 4: Ablation study of lexicon weighting strategies in FLAM. We compare three methods for computing
weights from financial terminology: Relative Frequency, Logarithmic Weighting, and Softmax Weighting. Scores
are reported at retrieval depths k = 5, 10, 15 and averaged across all metrics. Bold indicates the best-performing
configuration.

Weighting Strategy Precision Recall F1 Score Relevancy
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

Relative Frequency 0.79 0.76 0.72 0.61 0.62 0.65 0.69 0.68 0.68 0.50 0.64 0.62
Logarithmic Weighting 0.70 0.66 0.63 0.47 0.45 0.45 0.56 0.53 0.52 0.50 0.60 0.60
Softmax Weighting 0.70 0.68 0.66 0.47 0.44 0.44 0.56 0.53 0.53 0.48 0.59 0.63

ing the Question Tree, which enables dense query
alignment; and (3) disabling the FLAM module,
which provides lexicon-driven domain targeting.
As shown in Table 2, all components are critical
to retrieval quality—particularly at lower depths
(k = 5), where removing the Summary Tree alone
reduces F1 from 0.69 to 0.37. These results confirm
that FinGEAR’s performance arises from the inter-
play of structural, semantic, and domain-specific
signals, rather than any isolated component.

We further assess the impact of lexicon weight-
ing strategies within FLAM. Table 4 compares
three approaches: Relative Frequency, Logarith-
mic Weighting, and Softmax Weighting. Relative
Frequency consistently delivers the strongest per-
formance, with an F1 of 0.69 and relevancy scores
of 0.50, 0.64, and 0.62 at k = 5, k = 10, and
k = 15, respectively. Logarithmic Weighting
downweights frequent but meaningful terms, re-
ducing recall to 0.45 at k = 15, while Softmax
Weighting slightly improves relevancy at k = 15
(0.63) but lowers F1 by over-concentrating on dom-
inant keywords. These results affirm Relative Fre-
quency as the most robust and interpretable default
strategy within FLAM.

Multi-component ablations in Appendix I (Ta-
ble 8) reveal compounded degradation when two
modules are removed. In particular, eliminating
both FLAM and the Question Tree results in the
steepest drops in F1 and relevancy, underscoring
their complementary roles in domain grounding
and query sensitivity. Removing FLAM also in-
creases variance across depths, highlighting its sta-
bilizing role and the complementarity of the three
modules. These findings reinforce that FinGEAR’s
effectiveness and stability stem from the coordi-
nated integration of all three core modules.

Question-type breakdown. We also report per-
formance by Numerical vs. Categorical and Simple
vs. Complex (multi-hop) questions; full results are
in Appendix J (Table 10). At k=10, FinGEAR at-

tains F1 = 0.68 (Numerical) vs. 0.81 (Categorical),
and 0.70 (Simple) vs. 0.67 (Complex).

Two patterns are observed. (1) Categorical ques-
tions achieve higher F1, likely because answers are
stated directly (e.g., presence/absence) and require
less aggregation; by contrast, relevancy is higher on
Numerical queries (0.64 vs. 0.48 at k=10), reflect-
ing tighter alignment around figures and units. (2)
Complex (multi-hop) questions trail Simple ones
in F1 yet show comparable or higher relevancy at
larger k (e.g., 0.65 at k=10, 0.67 at k=15), indicat-
ing that dual-tree traversal helps surface distributed
evidence; the remaining F1 gap is consistent with
broader evidence requirements.

Overall, this breakdown shows that FinQA con-
tains diverse question types, such as discrete (cat-
egorical) and quantitative (numerical), single-step
and multi-hop, providing a comprehensive testbed
for retrieval. It also indicates that FinGEAR’s gains
are not confined to a particular question class; im-
provements hold across categories, suggesting the
method is broadly applicable.

6 Conclusion

We present FinGEAR, a retrieval-first framework
for 10-K filings that integrates a finance lexicon
(FLAM) for Item-level mapping and dual trees for
within-Item indexing. Using full 10-Ks aligned
with FinQA queries, FinGEAR demonstrates im-
proved retrieval quality across depths compared
with flat, graph-based, and prior tree-based RAG
baselines, and yields higher downstream answer
accuracy. Ablation studies show that each module
is necessary for overall performance. We focus on
10-Ks for their length, standardized section hier-
archy, and regulatory importance. The design is
modular: FLAM enables global navigation across
Items, while the dual trees index and traverse lo-
cal content. This supports adaptation of FinGEAR
to other semi-structured documents by enhancing
domain lexicons to reflect evolving terminology.

7247

7 Limitations

FinGEAR is a structured retrieval framework de-
signed for financial filings, but its performance and
applicability are subject to several limitations.

Domain specificity. FinGEAR is developed and
evaluated primarily on U.S. 10-K reports, which
follow standardized regulatory structures. While
the framework is not hard-coded to SEC formats, it
assumes the existence of segmentable content with
hierarchical or pseudo-hierarchical cues. Its gen-
eralizability to unstructured financial documents
(e.g., earnings calls) or reports from different ju-
risdictions remains untested and requires further
adaptation.

Lexicon dependence. The system relies on sta-
ble financial terminology across filings. While this
holds for regulatory disclosures, emerging financial
language or sector-specific terms may weaken the
quality of keyword mapping and clustering, impact-
ing retrieval alignment over time.

Parsing sensitivity. FinGEAR assumes that
documents are accurately parsed and structurally
consistent. Severe formatting inconsistencies (e.g.,
OCR errors or HTML-to-text misalignments) could
affect the quality of tree construction and retrieval,
especially in noisy or historical filings.

Limited reasoning. FinGEAR focuses on se-
mantic retrieval and does not perform explicit fi-
nancial reasoning or computation (e.g., ratio calcu-
lation, time-series forecasting). Retrieved evidence
supports qualitative assessments, but numerical un-
derstanding remains out of scope.

Evaluation coverage. The evaluation is con-
ducted on a specific dataset (FinQA) with a limited
number of annotated gold spans. As FinQA only
labels one relevant span per query, retrieval perfor-
mance may be underestimated. Broader assessment
across multiple QA datasets or real-world analyst
workflows is needed for a fuller view of utility.

Source bias. Although FinGEAR does not in-
troduce new biases, it inherits those embedded in
financial documents and lexicons. If companies
omit, downplay, or frame certain disclosures, the
retrieved content will reflect those reporting biases.

Despite these limitations, FinGEAR offers a
modular, interpretable foundation for structure-
aware retrieval in financial analysis. Future work
should explore its generalization to more diverse
corpora, integration with lightweight reasoning
modules, and robustness to document parsing
noise.

Acknowledgments

We acknowledge support from the Centre for In-
vesting Innovation at the University of Edinburgh.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tom A Alberg. 1970. Sec disclosure requirements for
corporations. Bus. Law., 26:1223.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
Preprint, arXiv:2310.11511.

Xinyue Chen, Pengyu Gao, Jiangjiang Song, and Xi-
aoyang Tan. 2024. Hiqa: A hierarchical contextual
augmentation rag for massive documents qa. arXiv
preprint arXiv:2402.01767.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, et al.
2021. Finqa: A dataset of numerical reasoning over
financial data. arXiv preprint arXiv:2109.00122.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
Preprint, arXiv:2404.16130.

Shahul Es, Jithin James, Luis Espinosa-Anke, and
Steven Schockaert. 2023. Ragas: Automated evalua-
tion of retrieval augmented generation.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
Long form question answering. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3558–3567. Association
for Computational Linguistics.

FinLang. 2025. Finance embeddings investo-
pedia. https://huggingface.co/FinLang/
finance-embeddings-investopedia. Accessed:
2025-02-14.

7248

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2309.15217
https://arxiv.org/abs/2309.15217
https://doi.org/10.18653/v1/P19-1346
https://doi.org/10.18653/v1/P19-1346
https://huggingface.co/FinLang/finance-embeddings-investopedia
https://huggingface.co/FinLang/finance-embeddings-investopedia

Sohom Ghosh, Shovon Sengupta, Sudip Naskar, and
Sunny Kumar Singh. 2021. FinRead: A transfer
learning based tool to assess readability of defini-
tions of financial terms. In Proceedings of the 18th
International Conference on Natural Language Pro-
cessing (ICON), pages 658–659, National Institute of
Technology Silchar, Silchar, India. NLP Association
of India (NLPAI).

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao
Huang. 2024. Lightrag: Simple and fast retrieval-
augmented generation. Preprint, arXiv:2410.05779.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

Peter Henderson, Justin Gilmer, Rishabh Agarwal, Guil-
laume Bouchard, David Belanger, Gaurav Tomar,
and Yann Dauphin. 2023. Matryoshka representation
learning. arXiv preprint arXiv:2305.17137.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C. Park. 2024. Adaptive-rag:
Learning to adapt retrieval-augmented large lan-
guage models through question complexity. Preprint,
arXiv:2403.14403.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

Haohang Li, Yupeng Cao, Yangyang Yu, Shashid-
har Reddy Javaji, Zhiyang Deng, Yueru He, Yuechen
Jiang, Zining Zhu, Koduvayur Subbalakshmi, Guo-
jun Xiong, et al. 2024. Investorbench: A benchmark
for financial decision-making tasks with llm-based
agent. arXiv preprint arXiv:2412.18174.

Huaxia Li, Haoyun Gao, Chengzhang Wu, and Mik-
los A. Vasarhelyi. 2023. Extracting financial data
from unstructured sources: Leveraging large lan-
guage models. Forthcoming in the Journal of In-
formation Systems. Available at SSRN: https://
ssrn.com/abstract=4567607 or http://dx.doi.
org/10.2139/ssrn.4567607.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin
Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Xing Han Lù. 2024. Bm25s: Orders of magnitude faster
lexical search via eager sparse scoring. Preprint,
arXiv:2407.03618.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. arXiv preprint
arXiv:2005.00661.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Preprint, arXiv:2302.00083.

Varshini Reddy, Rik Koncel-Kedziorski, Viet Dac Lai,
Michael Krumdick, Charles Lovering, and Chris Tan-
ner. 2024. Docfinqa: A long-context financial rea-
soning dataset. Preprint, arXiv:2401.06915.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh
Khanna, Anna Goldie, and Christopher D. Manning.
2024. Raptor: Recursive abstractive processing for
tree-organized retrieval. In International Conference
on Learning Representations (ICLR).

Vikash Singh. 2017. Replace or retrieve keywords in
documents at scale. Preprint, arXiv:1711.00046.

Mengyu Wang, Shay B Cohen, and Tiejun Ma.
2024. Modeling news interactions and influence
for financial market prediction. arXiv preprint
arXiv:2410.10614.

Mengyu Wang and Tiejun Ma. 2024. Mana-net: Mit-
igating aggregated sentiment homogenization with
news weighting for enhanced market prediction. In
Proceedings of the 33rd ACM International Confer-
ence on Information and Knowledge Management,
pages 2379–2389.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
Preprint, arXiv:2303.17564.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan
Wang. 2023a. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031.

Junhan Yang, Zheng Liu, Chaozhuo Li, Guangzhong
Sun, and Xing Xie. 2023b. Longtriever: a pre-trained
long text encoder for dense document retrieval. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
3655–3665. Association for Computational Linguis-
tics.

Tan Yu, Anbang Xu, and Rama Akkiraju. 2024. In
defense of rag in the era of long-context language
models. Preprint, arXiv:2409.01666.

Bit Yuan et al. 2021. Finbert-qa: Financial question
answering with pre-trained bert language models.
https://github.com/yuanbit/FinBERT-QA. Ac-
cessed: 2025-04-29.

Boyu Zhang, Hongyang Yang, Tianyu Zhou, Ali Babar,
and Xiao-Yang Liu. 2023. Enhancing financial senti-
ment analysis via retrieval augmented large language
models. Preprint, arXiv:2310.04027.

Zijie Zhong, Hanwen Liu, Xiaoya Cui, Xiaofan
Zhang, and Zengchang Qin. 2025. Mix-of-
granularity: Optimize the chunking granularity for

7249

https://aclanthology.org/2021.icon-main.81
https://aclanthology.org/2021.icon-main.81
https://aclanthology.org/2021.icon-main.81
https://arxiv.org/abs/2410.05779
https://arxiv.org/abs/2410.05779
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://ssrn.com/abstract=4567607
https://ssrn.com/abstract=4567607
http://dx.doi.org/10.2139/ssrn.4567607
http://dx.doi.org/10.2139/ssrn.4567607
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2005.00661
https://arxiv.org/abs/2005.00661
https://arxiv.org/abs/2302.00083
https://arxiv.org/abs/2302.00083
https://arxiv.org/abs/2401.06915
https://arxiv.org/abs/2401.06915
https://arxiv.org/abs/1711.00046
https://arxiv.org/abs/1711.00046
https://arxiv.org/abs/2303.17564
https://doi.org/10.18653/v1/2023.emnlp-main.223
https://doi.org/10.18653/v1/2023.emnlp-main.223
https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2409.01666
https://github.com/yuanbit/FinBERT-QA
https://arxiv.org/abs/2310.04027
https://arxiv.org/abs/2310.04027
https://arxiv.org/abs/2310.04027
https://arxiv.org/abs/2406.00456
https://arxiv.org/abs/2406.00456

retrieval-augmented generation. arXiv preprint
arXiv:2406.00456.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. arXiv preprint arXiv:2105.07624.

A Potential Risks

FinGEAR restricts retrieval strictly to 10-K filings,
thereby reducing the risk of hallucinated content
in high-stakes financial applications. Nonetheless,
two primary risks remain.

First, the system may occasionally fail to re-
trieve the most relevant disclosure due to semantic
drift, ambiguous query interpretation, or traversal
limitations. While this challenge is not unique to
automated systems—human readers are similarly
affected—it underscores the importance of improv-
ing query-to-structure alignment.

Second, although FinGEAR effectively retrieves
relevant context, it does not constrain the gener-
ation behavior of downstream language models.
As a result, models may still produce incorrect or
speculative reasoning based on retrieved evidence,
potentially leading to confirmation bias if users do
not critically assess generated answers.

FinGEAR is intended to serve as a retrieval-first
component within broader financial QA workflows.
Its outputs should be interpreted in conjunction
with the retrieved content, and human verification is
recommended to ensure decision-making accuracy
in professional settings.

B Implementation Details

Baselines. All baseline systems are based on pub-
licly available implementations. General RAG3

and Self-RAG4 are based on the LangChain imple-
mentations. RAPTOR5 and LightRAG6 use official
GitHub repositories.

API Costs. FinGEAR uses external APIs for
LLM access, while financial embeddings are com-
puted locally without cost. Using gpt-4o-mini,
the estimated one-time cost to construct Fin-
GEAR’s index for a 127-page 10-K filing (76,114

3https://python.langchain.com/docs/tutorials/
rag/

4https://langchain-ai.github.io/langgraph/
tutorials/rag/langgraph_self_rag/

5https://github.com/parthsarthi03/raptor/tree/
master

6https://github.com/HKUDS/LightRAG

words) is approximately $0.11: $0.057 for Sum-
mary Tree construction and $0.029 for Question
Tree construction. Answering a FinQA query
costs approximately $0.00048 (Top-5 retrieval),
$0.00076 (Top-10), and $0.00100 (Top-15).

C Baseline Configurations

All baseline models are evaluated under consis-
tent retrieval settings with Top-k ∈ {5, 10, 15}.
Each baseline retrieves from the same pool of re-
covered full 10-K filings (Section 4) or uniformly
segmented chunks, without curated summaries. All
systems—including FinGEAR and baselines—use
the same reader model (gpt-4o-mini) for answer
generation to isolate retrieval effects.

General RAG. Vanilla BM25 + dense retrieval
(default LangChain recipe).7 Dense encoder:
text-embedding-ada-002 unless noted.

Self-RAG. Self-evaluation guided retrieval using
the LangGraph implementation.8 Default settings
for critique and selection.

RAPTOR. Hierarchical summarization and tree
retrieval using the official repository.9 Default
depth policy; flat chunking inputs; no domain pri-
ors.

LightRAG. Official implementation in “mix”
mode (keyword + dense with lightweight neigh-
borhood expansion).10 Default neighborhood ex-
pansion; entity/relation indexing as released.

GraphRAG. We use the official local–global
community summary traversal with default com-
munity construction and inference-time community
propagation settings.

D Embedding Fine-Tuning Details

FinGEAR fine-tunes sentence embeddings for
two key financial retrieval tasks using the base
finance-embeddings-investopedia model
from FinLang (FinLang, 2025):
Lexicon-based Fine-Tuning: Trained on Fin-
RAD (Ghosh et al., 2021) (public) by pairing finan-
cial lexicons with disclosure sentences that contain

7https://python.langchain.com/docs/tutorials/
rag/

8https://langchain-ai.github.io/langgraph/
tutorials/rag/langgraph_self_rag/

9https://github.com/parthsarthi03/raptor/tree/
master

10https://github.com/HKUDS/LightRAG

7250

https://arxiv.org/abs/2406.00456
https://arxiv.org/abs/2105.07624
https://arxiv.org/abs/2105.07624
https://arxiv.org/abs/2105.07624
https://python.langchain.com/docs/tutorials/rag/
https://python.langchain.com/docs/tutorials/rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_self_rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_self_rag/
https://github.com/parthsarthi03/raptor/tree/master
https://github.com/parthsarthi03/raptor/tree/master
https://github.com/HKUDS/LightRAG
https://python.langchain.com/docs/tutorials/rag/
https://python.langchain.com/docs/tutorials/rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_self_rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_self_rag/
https://github.com/parthsarthi03/raptor/tree/master
https://github.com/parthsarthi03/raptor/tree/master
https://github.com/HKUDS/LightRAG

or exclude them. This optimizes embedding align-
ment for lexicon-based indexing.
Hierarchical Tree Fine-Tuning: Trained on
FinQA (Chen et al., 2021) using question-passage
pairs to improve semantic clustering and navigation
within the Summary and Question Trees.

Evaluation Metrics. We use cosine-based Pear-
son and Spearman correlations for FinRAD, mea-
suring embedding similarity between financial
terms and disclosure sentences. For FinQA, we
apply NDCG@10 to assess ranked retrieval perfor-
mance per query.

Loss Functions. We use Matryoshka Representa-
tion Learning (Henderson et al., 2023) (dim=768)
and MultipleNegativesRankingLoss to support
semantically rich representations across both clus-
tering and ranking stages.

Hardware. All embedding are fine-tuned (Fin-
RAD and FinQA) on a machine with a NVIDIA
A100-SXM4-80GB GPU. Training details can be
found in Section K.

Dataset Metric Baseline Fine-Tuned

FinRAD
Pearson Cosine 0.1082 0.4063

Spearman Cosine 0.0904 0.3655

FinQA NDCG@10 (Cosine) 0.0282 0.2902

Table 5: Embedding evaluation before and after fine-
tuning on FinRAD and FinQA. Metrics reflect task-
specific objectives: similarity alignment for FinRAD,
and ranked retrieval quality for FinQA.

E FLAM Clustering Configuration

The FLAM (Financial Lexicon-Aware Mapping)
module utilizes a clustering pipeline to group se-
mantically related financial terms, facilitating more
robust and lexicon-guided retrieval. The config-
uration follows three key stages: (1) Embedding
Encoding is performed using sentence embeddings
that have been fine-tuned on financial QA datasets
to capture domain-specific semantic similarity; (2)
Dimensionality Reduction is applied via UMAP,
reducing embeddings to a 10-dimensional space
using cosine similarity as the distance metric to
preserve neighborhood structure; (3) Clustering is
conducted using Gaussian Mixture Models (GMM)
with a maximum of 50 clusters and a convergence
threshold set to 0.1, enabling soft assignments of
terms into semantically coherent groups.

F Token-Level Statistics

To balance retrieval efficiency with financial con-
text fidelity, FinGEAR applies a fixed-length
chunking strategy prior to indexing. Each chunk
contains approximately 2,000 tokens with a 100-
token overlap to maintain contextual continuity,
which is same across all baseline. Tree-based in-
dexing is then applied to support structure-aware
retrieval.

“Tokens per summary node” refers to the aver-
age length of high-level disclosure summaries used
in the Summary Tree, while “tokens per page node”
refers to the full-length segments prior to hierarchi-
cal expansion. For latency and deployment details,
refer to Appendix G.

Statistic Min Mean Max

Tree depth (max) 2 3.14 4
Tree depth (mean) 1.22 1.43 1.80
Total node count 27 254.86 1322
Internal node count 0 17.84 85
Leaf node count 27 237.02 1237
Page count 84 168.89 555
Document count 184 1342.77 7078
Tokens per document 291.98 331.03 382.23
Tokens per summary node 634.72 657.78 687.46
Tokens per query 16.16 17.27 18.60
Tokens per page node 598.71 2129.56 7021.38

Table 6: Token-level and structural statistics across the
FinGEAR indexing pipeline.

Under this configuration, the total retrieval vol-
ume scales linearly with depth k as:

Total tokens retrieved ≈ 2000× k.

G Practical Deployment Details

G.1 System Integration
FinGEAR is designed as a modular retrieval layer
that integrates into RAG pipelines with minimal
configuration effort. It exposes a unified retriever
interface supporting both sparse and dense retrieval
strategies, along with hybrid reranking. These
strategies are fully configurable by depth k, re-
trieval type, and domain specificity.

The system supports hierarchical retrieval via
two independent traversal mechanisms: the Sum-
mary Tree, which provides disclosure-level naviga-
tion based on financial document structure, and the
Question Tree, which guides retrieval using query
semantics through sub-question expansion. This
separation enables controlled traversal of financial
disclosures at varying levels of abstraction.

7251

FinGEAR is compatible with vector store back-
ends such as FAISS for indexing and searching
over domain-tuned embeddings, and its reranking
modules are cross-encoder based for contextual pre-
cision. While optimized for structured regulatory
disclosures like 10-K filings, its traversal and re-
trieval logic can be extended to semi-structured cor-
pora—such as earnings calls or ESG reports—by
replacing FLAM with unsupervised segmentation
or alternative indexing methods. The system op-
tionally integrates with FAISS for dense indexing
and LangChain for pipeline orchestration, though
these components are modular and replaceable.

G.2 Latency Statistics

All evaluations were conducted on a MacBook
Pro with an M3 Max chip and 64GB of RAM.
FinGEAR demonstrates practical deployability on
standard enterprise hardware, maintaining tractable
inference latency suitable for real-world financial
workflows.

H Error Analysis Examples

Table 7 presents paired examples of successful and
imperfect retrievals from FinQA-aligned questions,
illustrating how FinGEAR handles both precise
matching and interpretable failure cases. For ex-
ample, in response to the question “What is the
company’s debt-to-equity ratio?”, FinGEAR suc-
cessfully surfaces the “Balance Sheet” section dis-
closing the necessary financial figures. In contrast,
a failure case retrieves a “Capital Management”
section that is conceptually related but lacks nu-
meric content—highlighting a mismatch between
strategic language and quantitative requirements.

Similarly, for “What litigation is the company
currently facing?”, the system initially retrieves
generic “Risk Factors” content due to shared le-
gal phrasing, but the reranker recovers the correct
“Legal Proceedings” section, demonstrating partial
recovery. In other cases, such as the misretrieval of
a “Commodity Risk” section when asked about for-
eign exchange exposure, errors stem from keyword
ambiguity across structurally distinct topics.

These examples underscore the role of Fin-
GEAR’s hybrid architecture in surfacing relevant
content while also providing interpretable signals
for tracing failure modes. The system’s trans-
parency allows users and developers to adjust lex-
icon weights, reranking sensitivity, or structural
traversal logic—enabling more robust deployment

and auditability in financial applications.

I Multi-Component Ablation Study

To evaluate the interdependence of FinGEAR’s
core modules, we conduct a multi-component
ablation study by disabling pairs among FLAM,
the Summary Tree, and the Question Tree. This
setup allows us to assess how retrieval quality de-
grades under partial configurations and whether
FinGEAR’s performance stems from isolated com-
ponents or coordinated design.

Findings. Disabling multiple modules results in
substantial, compounded performance drops across
all retrieval metrics, consistently observed at depths
k = 5, 10, 15. The largest declines in F1 score and
relevancy occur when both FLAM and the Question
Tree are removed, revealing their complementary
roles in guiding retrieval semantically and contex-
tually. When both FLAM and the Summary Tree
are ablated, precision and recall drop sharply, indi-
cating that lexical anchoring and hierarchical struc-
turing are jointly essential for balancing coverage
and specificity. Furthermore, these ablations intro-
duce instability across depths—particularly in pre-
cision and recall—suggesting that without FLAM’s
lexicon-targeted control, the traversal process be-
comes overly uniform and sensitive to document
variation. This leads to inconsistent candidate selec-
tion and noisier retrieval. These results confirm that
FinGEAR’s performance emerges from the coor-
dinated integration of financial mapping, semantic
indexing, and query-aware guidance—rather than
from any individual module in isolation.

J Question-Type Ablation

To support analysis in Section 5.2.4, we provide the
full per-question-type retrieval results in Table 10.

K Runtime and Preprocessing Analysis

Embedding Fine-Tuning. FinGEAR employs
dense retrieval powered by sentence embeddings
fine-tuned on financial data. We train two embed-
ding models: one on FinQA for question–answer
alignment, and one on FinRAD for lexicon-level
semantic proximity. Both models are trained for 50
epochs. FinQA training (6,251 train / 1,147 test ex-
amples) completes in approximately 1,972 seconds,
while FinRAD training (17,300 train / 5,190 test,
sampled across filings) takes roughly 3,607 sec-
onds. Training is performed on a single NVIDIA

7252

Query Successful Retrieval Failure Case Interpretation

What is the debt-to-equity
ratio in 2022?

“Consolidated Balance Sheets”
showing total debt and equity.

“Liquidity and Capital Re-
sources” discussing debt repay-
ment but omitting equity.

Partial match—missed
denominator compo-
nent due to narrative
emphasis.

What was the YoY rev-
enue growth for Q4?

“Results of Operations” sec-
tion with quarterly revenue
breakdown.

“Management Overview” with
general trends but no figures.

High-level commen-
tary lacks granular-
ity—numeric context
lost.

How much did R&D ex-
penses increase year-over-
year?

“Operating Expenses” table
with line items for R&D across
periods.

“Business Overview” noting in-
vestment in innovation but not
amounts.

Lexical match on
“R&D” misaligned
with quantitative query
intent.

What percentage of rev-
enue came from the US?

“Segment Reporting” with rev-
enue by geography.

“Market Strategy” outlining in-
ternational expansion plans.

Structural mismatch: re-
trieved future projec-
tions instead of current
data.

What is the gross margin
for 2021?

“Income Statement” showing
gross profit and revenue.

“Risk Factors” discussing cost
pressures without figures.

Terminology overlap
led to non-numerical
section—filtered out
post-reranking.

Table 7: Examples of FinGEAR’s retrieval outcomes for representative FinQA-style queries. Failure cases illustrate
interpretable mismatches from lexical ambiguity, structural misalignment, or contextual drift—often mitigated by
reranking.

Table 8: Multi-component ablation results. Disabling pairs of modules leads to compounded performance degrada-
tion, underscoring the synergistic design of FinGEAR and the importance of coordinated retrieval.

Ablation Setting Precision Recall F1 Score Relevancy
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

Full FinGEAR 0.79 0.76 0.72 0.61 0.62 0.65 0.69 0.68 0.68 0.50 0.64 0.62
No FLAM + No Summary Tree 0.48 0.59 0.51 0.40 0.30 0.33 0.44 0.40 0.40 0.25 0.34 0.34
No FLAM + No Question Tree 0.48 0.58 0.52 0.40 0.31 0.36 0.44 0.40 0.43 0.26 0.34 0.34

Metric Value (seconds)

Retrieval Latency (k = 5) 12.05
Retrieval Latency (k = 10) 18.28
Retrieval Latency (k = 15) 22.42

Average Retrieval Latency 17.58(a)

Table 9: Latency statistics for FinGEAR deployment.
(a) Includes tree traversal, FLAM scoring, and reranking
averaged across depths.

A100-SXM4-80GB GPU. These embeddings are
applied throughout the retrieval pipeline, includ-
ing document chunking, hierarchical traversal, and
candidate scoring.

Preprocessing Pipeline. The full preprocessing
workflow comprises: (1) keyword mapping, (2)
keyword tree construction, and (3) hierarchical
clustering for the Summary and Question Trees.

Keyword Mapping, implemented using spaCy’s
PhraseMatcher, identifies relevant domain terms
and runs between 53.5 and 434.6 seconds per docu-

ment (mean: 248.9 seconds). Keyword Tree Con-
struction is fast, requiring an average of 7.6 sec-
onds per company. Hierarchical Clustering and
Summarization, including UMAP-based dimen-
sionality reduction and GMM clustering, builds
the Summary and Question Trees. Across 10 fil-
ings, total runtime ranges from 243.2 to 602.6
seconds per document, with a mean of 408.2 sec-
onds—primarily driven by the Summary Tree’s
iterative summarization.

Deployment Considerations. All preprocessing
steps are one-time operations per document and
can be cached for repeated use. FinGEAR supports
dual-tree traversal and modular re-indexing, mak-
ing it scalable for real-world financial workloads.
Runtime remains stable across filings of similar
size, and preprocessing cost is amortized across
multiple downstream queries.

7253

Table 10: Categorical = yes/no answers, Numerical = numeric answers, Simple = one reasoning step, Complex =
multiple reasoning steps

Question Type Precision Recall F1 Score Relevancy
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

Numerical 0.79 0.76 0.71 0.61 0.62 0.64 0.69 0.68 0.68 0.50 0.64 0.63
Categorical 0.83 0.92 0.87 0.71 0.72 0.82 0.77 0.81 0.86 0.46 0.48 0.49

Simple 0.79 0.76 0.73 0.62 0.64 0.67 0.70 0.70 0.70 0.51 0.62 0.58
Complex 0.78 0.76 0.72 0.59 0.59 0.61 0.67 0.67 0.66 0.48 0.65 0.67

L Glossary of Terms and Notation

This appendix consolidates the terms, symbols, and
procedure names used throughout the paper for
quick reference. It denotes definitions for the Fin-
GEAR components (e.g., traversal logic, and scor-
ing functions). Unless stated otherwise, scalars are
in italics (e.g., k, wi), vectors are in bold, and Item
labels follow SEC notation (Item 1, Item 1A, Item
7). For mechanics in the pipeline, see Sections 3
and 3.2; the table below serves as a concise lookup.

M Prompt Design

All prompts are used in zero-shot mode unless oth-
erwise stated. Structured examples may be incor-
porated in future versions to enhance control and
reproducibility. Here are three specialized prompts:

M.1 Summarization Prompt
The content provided below is a subset of a
10-K filing. The 10-K report is a comprehensive
document outlining the company’s financial
performance, including revenue, expenses, and
profits. Your task is to generate a detailed
summary using only the provided content, without
embellishment. Summarize main topics, key insights
(5–7), and unusual observations (1–2). Use clear
paragraphs and Markdown headings.

M.2 Title Generation Prompt
Generate a title for a subsection of a 10-K report
based on the provided summary.

M.3 Question Generation Prompt
Suppose you are a financial analyst. Generate
{num_questions} questions based on the provided
summary, focusing on financial aspects and factual
details.

7254

Term / Symbol Definition

UMAP Dimensionality reduction used before clustering; preserves local neighborhoods for tree
construction. We use cosine distance with output dimension 10 (see Section 5.1).

GMM Gaussian Mixture Models used for soft clustering over UMAP embeddings to form internal
tree nodes; max components 50; convergence threshold 0.1.

FLAM Financial Lexicon-Aware Mapping. Clusters financial terms corpus-wide and computes
Item weights to guide global allocation (Section 3.2). Default weighting: Relative Fre-
quency.

Summary Tree Content hierarchy within an Item. Internal nodes are summaries of clustered chunks;
leaves are original text chunks (Section 3.1.1).

Question Tree Mirrors the Summary Tree topology; nodes store LLM-generated sub-questions embedded
in the same space as user queries; leaves reference the same chunk IDs (Section 3.1.1).

k Total retrieval budget per query (Top-k evaluation).
k∗ Per-Item budget after FLAM weighting;

∑
i k

∗
i = k (Section 3.2).

Semantic traversal Top-down navigation of a tree: score parent’s children, select the best, and descend until
leaves or max depth (2).

Hybrid scoring Within-Item node scoring that combines BM25 over summaries (sparse) and cosine
similarity over embeddings (dense).

Reranking (Stage 1) Cross-tree reranking that jointly scores candidates from Summary and Question Trees
using BAAI/bge-reranker-large.

Reranking (Stage 2) Cross-Item reranking over the pooled top spans from all Items to prioritize globally
informative answers.

Table 11: Glossary of key components, symbols, and procedures used in FinGEAR.

7255

