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Abstract

Open-ended text generation faces a critical chal-
lenge: balancing coherence with diversity in
LLM outputs. While contrastive search-based
decoding strategies have emerged to address
this trade-off, their practical utility is often lim-
ited by hyperparameter dependence and high
computational costs. We introduce GUARD, a
self-adaptive decoding method that effectively
balances these competing objectives through a
novel "Glocal" uncertainty-driven framework.
GUARD combines global entropy estimates
with local entropy deviations to integrate both
long-term and short-term uncertainty signals.
We demonstrate that our proposed global en-
tropy formulation effectively mitigates abrupt
variations in uncertainty, such as sudden over-
confidence or high entropy spikes, and pro-
vides theoretical guarantees of unbiasedness
and consistency. To reduce computational over-
head, we incorporate a simple yet effective
token-count-based penalty into GUARD. Ex-
perimental results demonstrate that GUARD
achieves a good balance between text diver-
sity and coherence, while exhibiting substan-
tial improvements in generation speed. In a
more nuanced comparison study across dif-
ferent dimensions of text quality, both human
and LLM evaluators validated its remarkable
performance. Our code is available at https:
//github.com/YecanlLee/GUARD.

1 Introduction

Neural text generation models based on the Trans-
former decoder (Vaswani et al., 2017) have revo-
lutionized natural language generation tasks such
as story creation (Fang et al., 2021), context com-
pletion (Leng et al., 2024), or dialogue generation
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* Corresponding author

(Su et al., 2021). Decoding strategies play a crucial
role in text generation with large language models
(LLMs), affecting both the quality of the gener-
ated text and the computational efficiency during
inference. The most commonly used strategies can
be broadly categorized in deterministic (Freitag
and Al-Onaizan, 2017; Carlsson et al., 2025) and
stochastic approaches (Fan et al., 2018; Nguyen
et al., 2025a; Aichberger et al., 2025). Determin-
istic approaches are likelihood-based techniques
that typically (over-)emphasize coherence at the
cost of diversity and are prone to producing repeti-
tive text, a phenomenon referred to as degeneration.
Stochastic approaches, on the other hand, aim to im-
prove the diversity of texts, potentially sacrificing
coherence and leading to semantic inconsistencies
(Welleck et al., 2020). This inherent coherence
vs. diversity trade-off (Garces Arias et al., 2025a)
has motivated recent work to develop decoding
strategies able to balance these two competing ob-
jectives. In particular, Contrastive Search (CS; Su
et al., 2022) introduced a weighted combination of
model confidence (favoring coherence) and a de-
generation penalty (promoting diversity) controlled
by fixed, tunable hyperparameters throughout the
generation. Adaptive Contrastive Search (ACS;
Garces Arias et al., 2024) addressed this hyperpa-
rameter dependence by dynamically adjusting them
based on the local uncertainty of the model. In do-
ing so, this approach still has its limitations as it
relies only on local uncertainty information, and it
substantially increases the computational overhead
at inference time. In this study, we aim to address
the following research questions (RQ):

1. RQ1: Can we improve text quality in open-
ended text generation compared to existing
approaches (§4.2)?
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2. RQ2: Can we smooth out abrupt entropy devi-
ations during generation without compromis-
ing statistical properties such as unbiasedness
and consistency (§3.1)?

3. RQ3: Can we substantially reduce the latency
and computational cost compared to (A)CS
(§4.2, "Generation Speed")?

To address the above questions, we introduce a
novel concept called "Glocal" uncertainty, which
combines global entropy estimates with local
entropy deviations to integrate long-term and
short-term uncertainty signals, thereby maintaining
robust decoding while ensuring statistical unbiased-
ness and consistency. Based on Glocal uncertainty,
we propose a novel decoding strategy, Glocal
Uncertainty-Aware Robust Decoding (GUARD),
which effectively balances the coherence and
diversity of the generated texts (RQ1), addresses
the smoothness of entropy estimates (RQ2), and
improves inference speed (RQ3).

Our Contributions can be summarized as follows:

1. We introduce "Glocal" uncertainty, which inte-
grates global entropy and instantaneous uncer-
tainty signals to smooth out strong deviations
in entropy, resulting in more robust decoding.
We provide statistical guarantees (unbiased-
ness and consistency) for the proposed global
entropy estimator, which is an integral part of
the Glocal uncertainty.

2. Based on Glocal uncertainty, we design
GUARD, a self-adaptive decoding strategy
that effectively and efficiently balances coher-
ence and diversity. Compared to (A)CS, it
reduces the computational cost remarkably by
incorporating a simple, yet effective, token
count penalty.

3. We evaluate GUARD through comprehensive
experimentation that spans diverse models,
datasets, and decoding configurations, com-
paring it against state-of-the-art (SOTA) de-
coding strategies. Our assessment employs au-
tomatic, human, and LLM evaluations, which
consistently show that GUARD represents a
high-performing decoding strategy.

2 Related work

Deterministic Strategies primarily rely on max-
imizing the sequence probability. Greedy Search
selects tokens based on pure maximum likelihood,

while Beam search (Freitag and Al-Onaizan, 2017)
improves upon this by maintaining multiple candi-
dates simultaneously, ultimately yielding the most
probable sequence. Further research (Vijayakumar
et al., 2018; Holtzman et al., 2020; Wiher et al.,
2022; Shi et al., 2024; Garces Arias et al., 2025b)
has demonstrated that this often results in text de-
generation and repetitive patterns. Recent develop-
ments, such as hyperfitting (Carlsson et al., 2025),
show promising solutions to this problem, even
within greedy search frameworks.

Stochastic Strategies based on sampling have
emerged as a response to the limitations of deter-
ministic approaches, particularly addressing text
monotony and degeneration. Temperature sam-
pling (Ackley et al., 1985) introduces a hyperpa-
rameter 7 that modulates the sharpness of the out-
put distribution, enabling control over generation
diversity. Top-k (Fan et al., 2018) and Top-p sam-
pling Holtzman et al. (2020) truncate the output
distribution to avoid sampling from less reliable
tail probabilities. Typical sampling (Meister et al.,
2023) constrains the sampling distribution to to-
kens whose negative log-probabilities fall within a
specific range of the model’s conditional entropy,
while min-p sampling (Nguyen et al., 2025a) in-
troduces dynamic truncation based on the model’s
confidence. Adaptive Decoding (AD, Zhu et al.,
2024) employs an entropy-based confidence met-
ric to optimize candidate selection. While these
sampling methods effectively reduce degeneration,
they risk inconsistency, compromising overall text
quality (Basu et al., 2021).

Contrastive Strategies typically aim at balanc-
ing coherence and diversity in text generation tasks.
Contrastive Decoding (CD, Li et al., 2023) lever-
ages the differential between expert and amateur
language models to select tokens that maximize
their log-likelihood difference. CS evaluates top-k
tokens using a combination of model confidence
and degeneration penalty to enhance output di-
versity. ACS builds upon CS by eliminating hy-
perparameters, addressing the unexplored impact
of hyperparameter selection on generation quality
(Garces Arias et al., 2025b), at the cost of addi-
tional computational overhead. However, its fo-
cus on immediate uncertainty overlooks temporal
fluctuations that could benefit from more robust-
ness. These limitations motivate GUARD, a novel
strategy that enables an efficient, self-adaptive
uncertainty-guided decoding.
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who were now looking over at me. My

_[Prefix: My eyes moved involuntary from the pages of the book that | was no longer reading, to the faces of the girls]

Reference: heart began to pound in my chest, and | could hear the blood rushing in my ears. | could feel the heat of
the color burning on my cheeks. | was embarrassed, no, | was furious.

Output | .
distribution | | weighting
Model eyes: 0.19 ; Global Entropy
[ ] heart: 0.10 | |
gaze : 0.05 |
) "

Instantaneous Entropy

Glocal Uncertainty-Aware Robust Decoding (GUARD)

!

Next !

token scoring | !

Token Count CS ‘
heart:0.31 |!

eyes : 0.29 ;

gaze : 0.15 !

Top-k, Normalization

Generation: heart beat faster as their gazes lingered upon me and, without even realising it myself, | was smiling
back, my cheeks flushed and my eyes shining with happiness.

Figure 1: GUARD leverages local and global Shannon entropy deviations as proxies for model uncertainty,
automatically adjusting CS parameters and incorporating a token count penalty for next-token selection.

3 Methodology

Figure 1 illustrates GUARD, which (a) leverages
global entropy Hgop, ¢ (Eq. (1)) to capture model
uncertainty fluctuations throughout the decoding
process and (b) introduces Glocal uncertainty (de-
nominator in Eq. (6)). It thus considers both long-
and short-term uncertainty fluctuations to enable
adaptive control over k; and oy during (A)CS for
the top-k; most semantically accurate tokens. The
method incorporates a simple yet effective token
count-based penalty for repeated tokens.

3.1 Global Entropy and Statistical Properties

In the related ACS strategy, the Shannon entropy
H(X) = ~Ypepple | @<)lnp(e | 2<) is
used to dynamically adjust hyperparameters at the
time step t. As is customary, X denotes a discrete
random variable with V referring to the tokens;
t € {1,...,T} denotes a single generation step,
limited to the maximum sequence length (e.g., T' =
256).

However, the Shannon entropy H (X ); only mea-
sures local uncertainty, i.e., the entropy at each gen-
eration time step ¢t € {1,...,T}. As illustrated in
Figure 2 (left, solid line), local entropy measure-
ments exhibit marked volatility. Addressing RQ2,
we investigate whether these abrupt “spikes” can
be effectively attenuated by a moving average of
instantaneous entropy values, which we define as
global entropy (dashed line, left part of Figure 2).
We define global entropy Hgjop, ¢ at time step ¢ in

Eq. (1) as the weighted average of the Shannon
entropies (measuring local uncertainty) throughout
the generation process:

S (AT H(X):)
Zgzl At

)

Hglob,t =

The parameter A € (0, 1] denotes a weighting
coefficient. We employ A!~ to reflect the temporal
evolution of model uncertainty over time (i.e., over
sequential generation steps), which can dynami-
cally adjust the contribution of each generation
step to Hgjob,t-

In the following, we will provide Proposition 1
to prove that Hyjop ¢ is an unbiased estimator of the
instantaneous entropy H (X );, irrespective of the
concrete choice of A € (0, 1]. In Proposition 2, we
further prove that Hgjqp ¢ is a consistent estimator of
H (X ); under reasonable assumptions. This tells us
that Hgop ¢ converges in probability, i.e., as ¢ — oo,
to the instantaneous entropy. Thus, it is not only
unbiased but also has diminishing variance when
the generation is sufficiently long. Detailed proofs
of both results can be found in Appendix A.

Proposition 1 (Unbiasedness). Assume that the
process { H (X ) }+>1 is stationary. Then,
E[Hgon,¢] = E[H (X)/] 2

forany A € [0,1).
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Prompt: A shiver ran through her and she walked back inside. There was a chill in the air and she was only wearing a t-shirt

and jeans. The

Generated story: house was warm, though. Her mother had probably turned on another heater while they were out.

Figure 2: Left: Local (solid) and global (dashed/interval) Shannon entropy over the time steps of the generation.
Right: Strong changes are smoothed to provide a robust entropy estimation before computing k and « over time,

leading to increased stability.

Sketch of Proof. The result directly follows from
the expectation’s linearity and { H(X); }+>1 being
stationary. Linearity gives

' »
E[Hyiont] = Z zt)\t;\ts E[H(X)] @)
=1 s=1
Stationarity implies
vte{l,....,T}: E[H(X)] = Hop,
from which the claim obviously follows. O

Proposition 2 (Consistency). Assume the pro-
cess {H(X)t}+>1 is stationary, ergodic and
bounded. Further assume that the covariances
Cov(H(X):, H(X)s) decay sufficiently fast as
|t — s| — oo. Then, as t — oo,

Hgop — E[H(X)] (5)

Sketch of Proof. We have that all H(X); are
bounded and their covariances decay sufficiently
fast as |t — s| increases. Moreover, the weights
form a convex combination. Under standard mix-
ing conditions, we show that

Var( glob) O(%),

where O is the Landau (“big O”) notation. Then,
by Chebyshev’s inequality, for any ¢ > 0 we have

Var ( glob)

3 —0

IED(‘FIglob - E[Hglob]’ > 6) < c

as t — oo, from which the claim follows. .

Brief Summary. In Proposition 1 and Proposi-
tion 2, we prove that Hgop ¢ 18 not only unbiased,
but also has diminishing variance when the gen-
eration is long enough. Such statistical properties
support that we can reasonably estimate the instan-
taneous entropy with Hyjop ¢. This answers RQ2 —
the intended smoothing of the uncertainty estima-
tion does not come at the price of losing statistical
validity. However, note that both results concern
our internal estimators of the entropy, not the infer-
ential properties of the final language model.

Interpretation. Our method employs A=) to
reflect the temporal evolution of model uncertainty.
Specifically, as the time step ¢ approaches the cur-
rent moment ¢, its contribution to Hgop increases.
Conversely, time steps distant from ¢ have diminish-
ing effects on Hyjqp. The A=) factor implements
a temporal decay mechanism, dynamically adjust-
ing each time step’s contribution to Hgop. We later
set A = 0.95, but recall that our method’s unbi-
asedness and consistency hold for any A € (0,1].!
Therefore, our Global entropy measure can effec-
tively estimate local uncertainties in a statistically
unbiased and consistent way.

'We experimentally verified that performance is relatively
insensitive to the chosen value of A (cf. Tab. 6, Appendix B)
and thus set A = 0.95 as an intermediate value.
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3.2 Glocal Uncertainty and Candidate Token
Set

To determine k;, that is, the selection of candi-
date tokens in CS, we introduce Glocal uncertainty.
It simultaneously considers both the global and
local uncertainty fluctuations in the token genera-
tion steps, denoted as d405 and 6y, respectively.
Specifically, we present Eq. (6) to automatically
derive k; for the Top-k; candidate tokens.

ki=10-(1— L +5 6
t ( cxp()\k<510C+(17)\k)<6g]0b)+1) ( )

dloc=g-arctanh ( H(X)s 7me‘i£’féf{>t—w:t—1) ) 7

med(H (X)¢_q:¢—1)—med( H,
§glob:q-arctanh< ( (X)t—w:t 1) ( glob,t)) (8)

In V]|
‘5loc|

= 9
‘5loc| + |6glob| +e€ ©)

Ak

where the constants 10 and 5 for the param-
eter k; define an effective range for exploration
(Garces Arias et al., 2024). ;o measures the
model’s instantaneous uncertainty fluctuation com-
pared to recent steps, i.e., the instantaneous un-
certainty at the current t*" step H(X); versus the
median uncertainty in the recent time window w,”
denoted as med (H (X )t—w:¢t—1). Oglob assesses the
overall variation between the median of the short-
term entropy med (H (X );—w:—1) and the median
of the long-term uncertainty trend up to the current
tth step med (H glob’t) 3\ refers to the dynamic
adjustment of local and global entropy during the
generation process. ¢ is an adaptive temperature
parameter influencing the dynamic adjustment mag-
nitude of k; and ;. It adaptively adjusts by inte-
grating changes in both current and global uncer-
tainties:
q=10+ Tchange 1 Tdifference (10)
Tchange Measures the rate of uncertainty change
ati:
|H(X): — H(X)-1]
H(X)t-1+e€

Y

Tchange =

2To select the optimal value for w, we conducted extensive
experiments, which are presented in Appendix B (Tables 8
— 14). We observe that w does not notably influence text
quality. Ultimately, we set w = 7, keeping it constant for our
experiments.

3The choice of median and arctanh was experimentally
validated. Our experiments compared different pairings, in-
cluding winsorized mean, mean, median, logarithmic map,
and arctanh, with detailed results shown in Table 7, Appendix
B.

T'difference assesses the difference between local
uncertainty within the current time window and the
overall trend:
|med(H (X );—w:t—1) — med(Hgiob,)|

med(H (X)¢—w:it—1) + €

Tdifference =

(12)
When repange OF Tifference 18 large, ¢ increases,
causing djoc and dgjop to be amplified. Ay and A,
dynamically allocate weights based on their ratio to
adjust k; and o, which are part of the token count
penalty. When uncertainty is high, k; increases,
potentially introducing repetitive candidate words,
but also oy increases, amplifying the degradation
penalty and counteracting the effect of a higher k.
Conversely, a decrease of k; and o results in out-
puts that favor high-confidence candidate words.

Rationale of Glocal Uncertainty. In Eq. (6), the
denominator Cum = exp (A - oc + (1 — k) - dglob)
can be regarded as an alternative to perplexity (Je-
linek et al., 1977), since the latter is the exponen-
tial of the total uncertainty in the prediction up to
the current t* step, where Glocal uncertainty cal-
culates the variations between the instantaneous
entropy at the t** step with respect to short-term
median entropy, as well as the short- vs. longer-
term entropy variations. Similar to perplexity, a
lower Cyyn, value is preferred. When pronounced
uncertainty variations occur, higher perplexity is
indicated, suggesting we should select a larger k;
value to expand the candidate token set, accommo-
dating model instability. Conversely, when varia-
tions are minimal, a smaller k; value suffices, as
the model demonstrates stability, allowing us to
evaluate fewer candidate tokens.

Once k; is determined, we select the adequate
Top-k; candidate tokens Vo) | then design a to-
ken count penalty strategy to increase the diversity
of the generated texts by reducing repetitiveness.
Rather than employing a cosine-similarity-based
penalty as in (A)CS, GUARD (as defined in Eq.
(13)) circumvents the over-penalization of seman-
tic similarity, leads to a more effective reduction
of repetitions (and hence increased diversity), and
accelerates the generation speed:

token counts(v
Plncot)=argmaxs po(ole<p,) x 0L ©)

vev(kt)
degeneration penalty

(13)

where «; is the penalty coefficient and
token counts(v) denotes the frequency of the can-
didate v in the previously generated sequence. To
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dynamically determine «;, we reuse the core of Eq.
(6), replacing |V| with k; in Eq. (7) and (8):

1
exp (Ak - O1oc + (1 — M) - Ggion) + 1
(14)
When V%) is small, each repetitive token in
V(ke) will receive a very light penalty, and vice
versa. Appendix C illustrates the entire algorithm
as pseudo-code to facilitate understanding of its
flow. In Figure 2, we demonstrate that fluctuations
can be smoothed to ensure a robust entropy estima-
tion (left) when using our technique in determining
ki and oy over time (right). Our experiments show
that the token count-based penalty strategy can sub-
stantially reduce repetitions, therefore increasing
the diversity of the text outputs while enhancing
text generation speed compared to using cosine
similarity.

Qtzl

Self-Adaptive Design of GUARD. GUARD
achieves self-adaptivity for all quality-determining
hyperparameters in CS methods; while it exhibits
hyperparameters A and w, extensive testing (Ap-
pendix B) confirms that specific choices have neg-
ligible impact on generation quality, unlike other
decoding methods (Garces Arias et al., 2025b).

4 [Experiments

4.1 Experimental Setup

This section will introduce the metrics and datasets
used in our experiments, as well as the baseline
decoding strategies we use for reference and the
LLMs we employ.

LLMs. We employ six LLMs: Qwen2.5-7B
(Qwen, 2024), Deepseek-1lm-7B-base (DeepSeek-
Al et al., 2025), Mistral-v0.3 (Jiang et al., 2023),
Llama-3 (Grattafiori et al., 2024), Llama-2 (Tou-
vron et al., 2023), Gemma-7B (Team et al., 2024).

Evaluation Metrics. We employ the following
five commonly used metrics to automatically as-
sess generation quality: Diversity (Su et al., 2022),
MAUVE (Pillutla et al., 2021), Coherence (Su et al.,
2022), BERTScore (Zhang et al., 2019). Formulas
are provided in Appendix D.

Human Evaluation. To evaluate the quality of
the generated text, human evaluators assessed two
key aspects: semantic coherence and fluency. Four
native English speakers evaluated 600 pairs of com-
peting text continuations, which were uniformly

distributed across the three datasets. We measured
inter-rater agreement using Fleiss” Kappa and per-
formed exact binomial tests to determine statis-
tically significant differences between ACS and
GUARD. Further details on the evaluation are pro-
vided in Appendix E.

LLM Evaluation. We employ LLM-as-a-judge
(judge: GPT-4) to systematically evaluate the qual-
ity of the generated text on n = 150 continuations,
uniformly distributed across the three datasets.
This method aims to approximate the evaluation
process of human experts on a large scale. For
this, we measured six core metrics: fluency, coher-
ence, factuality, informativeness, interestingness,
and story development. The prompt is provided in
Appendix F.

Datasets and Baselines. We focus on three
datasets for open-ended text generation from dif-
ferent domains: Wikinews (n = 2000), Wikitext (n
= [314; Merity et al., 2016), and BookCorpus (n
= 1947; Zhu at al., 2015). We compare GUARD
to SOTA LLM decoding methods from three cate-
gories: Deterministic (greedy search, beam search
with B € {3,5,10,15,20,50}), stochastic (tem-
perature sampling with 7 = 0.9, top-k sampling
with £ € {3,5,10,15,20,50}, top-p sampling
with p € {0.60,0.70,0.80,0.90,0.95}, typical
sampling with 7 = 0.2, adaptive decoding), and
contrastive approaches (CD, CS with k € {5, 10},
a = 0.6, and ACS with ¢ = 1). Across all exper-
iments, we used a maximum token length of 256
tokens for the text generations.

Hardware. We used NVIDIA 4090 (24GB mem-
ory) and NVIDIA H100 (80GB memory).

4.2 Results

Automatic evaluation results. The automatic
evaluations of different methods, based on diversity,
MAUVE, and coherence, are presented in Table 1.
We observe that, in general, GUARD outperforms
all other competing strategies in both diversity and
coherence. In terms of MAUVE, it is roughly
on par with the best competing methods on each
dataset. More importantly, it achieves results clos-
est to human references without relying on specific
hyperparameter choices. We observe that GUARD
generally performs well according to BERTScore,
which, however, is not very discriminative. Fur-
thermore, we further validate the robustness of our
method for other model architectures (cf. Appendix
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Wikitext (n = 1314)

Wikinews (n = 2000)

BookCorpus (n = 1947)

Strate;

& Div. = MAUVE Coh. BERT-Sc. Div. ZMAUVE Coh. BERT-Sc. Div. MAUVE Coh. BERT-Sc.
Greedy 16.97 48.28 —0.78 81.45 28.13 74.91 —0.90 82.51 4.07 17.99 —0.65 79.92
Beam (5) 14.42 26.39 —-0.77 81.20 24.94 54.31 —0.87 83.23 5.39 18.69 —0.56 80.03
Temp. (0.9) 84.81 92.85 -2.43 81.86 92.71 96.29 —-2.41 83.16 89.58 85.54 —-2.33 81.78
Top-k (50) 82.69 88.97 —1.98 80.64 92.13 94.52 —-2.01 83.17 91.54 93.24 —2.52 81.29
Top-p (0.95)  82.47 86.37 —2.11 81.50 91.47 96.09 —2.15 82.84 88.92 94.81 —2.29 81.31
Typical 69.54 81.57  —1.78 81.34 82.31 95.66 —1.83 83.86 96.29 88.58 —3.68 80.06
CD 72.70 79.76 —2.61 81.72 75.28 76.20 —2.36 82.57 76.00 72.10 -2.53 81.51
AD 87.19 92.20 —2.51 81.83 91.49 94.38 —2.35 82.52 90.70 94.49 —2.49 81.82
CS (5,0.6) 72.08 80.52 —1.43 81.53 87.47 91.47 -1.31 83.01 68.26 87.92 —1.24 81.20
CS (10,0.6)  78.68 73.50 —1.69 80.57 91.38 90.49 —1.57 83.09 82.60 75.53 —1.57 81.22
ACS(¢g=1) 81.57 78.82 —1.95 80.00 92.79 91.23 —1.72 81.50 87.86 78.32 —1.52 79.79
GUARD 92.86 90.82 —2.61 81.90 95.20 93.60 -2.38 83.16 96.18 92.59 -2.53 81.83
Human 93.84  100.00 —2.43  100.00 93.50  100.00 —2.86  100.00 94.98  100.00 —2.99  100.00

Table 1: Averaged automatic evaluation results for Qwen2.5-7B. Hyperparameters for competing strategies chosen
based on experimental evaluation (Appendix G, Tables 18, 19, 20) or based on the original paper (CS, ACS). Scores

closest to human highlighted in bold .

Human Evaluation

Dataset
(n =200 Sem. Coh.* (%)  Fluency** (%)T
each) ACS GUARD ACS GUARD
Wikitext 37.50 62.50 43.75 56.25
Wikinews 40.00 60.00 45.25 54.75
BookCorpus 48.75 51.25 52.50 47.50
All 42.00 58.00 47.00 53.00

Table 2: Human evaluation: Share of human evalua-
tors favoring a strategy w.r.t. perceived semantic coher-
ence and fluency. P-values for the exact binomial test:
*Dsem. Coh. = 2.875e — 06, **pFluency = 0.01819. Best

results are highlighted in bold .

G, Tables 16 — 17). Notably, GUARD is well-suited
for decreasing the repetitive use of single tokens,
as indicated by the high diversity values across all
three benchmark datasets. While one might sus-
pect that this improvement comes at the cost of co-
herence, our experiments show that GUARD also
consistently exhibits coherence values that are very
close to those of the human-written completions,
suggesting a stronger calibration towards human
production (Garces Arias et al., 2025¢).

Human evaluation. We only compare ACS and
GUARD for the sake of practicability and since
both show strong performance (cf. Table 1. The re-
sults of this study are summarized in Table 2: Over-
all, GUARD demonstrates superior performance
compared to ACS in terms of both semantic coher-
ence and fluency, with the sole exception of flu-
ency on the BookCorpus dataset. Specifically, hu-
man preferences indicate that GUARD outperforms

ACS on average by approximately 6% in semantic
coherence and 16% in fluency across all datasets.
Both differences are statistically significant at the
a = 0.05 level. The inter-rater reliability (Fleiss’
= (0.41) shows moderate agreement among evalua-
tors. In Appendix H, we include a small case study
for the interested reader that further substantiates
these findings. Overall, the human evaluation com-
prehensively addresses RQ1, confirming that both
automatic metrics and human judgments favor our
approach over alternative methods.

LLM evaluation. We include LLM evaluation
as an approximation of human judgments, compar-
ing GUARD to its natural baseline ACS, as well
as Top-k and Top-p. The evaluation focuses on
the six dimensions described in the experimental
setup. The results (cf. Table 3) demonstrate that
GUARD outperforms all three competitors in five
out of six metrics (except factuality), where ACS
has a slight edge, and comparison to the other two
strategies results in a tie. When comparing human
to LLM judgments for coherence and fluency (cf.
Table 4), results (a) demonstrate strong agreement
and (b) show that human evaluators indicate an
even stronger preference for GUARD’s coherence
compared to LLM-judges.

Generation speed. In Table 5, we compare
GUARD to CS and ACS in terms of the average
generation speed. Based on 30 generation samples,
all three methods produce generations of compa-
rable lengths. CS spends 11.6 seconds per story,
ACS takes an even longer, from 15.7 seconds to
16.3 seconds (across different temperature settings),
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Metric GUARD wins ACS wins  Tie ‘ GUARD wins  Top-k wins Tie ‘ GUARD wins  Top-p wins Tie
Overall 34.3 30.6 35.1 65.8 17.5 16.7 49.2 34.2 16.7
Fluency 40.7 353 24.0 76.7 233 0.0 56.7 433 0.0
Sem. Coh. 40.7 34.0 25.3 80.0 20.0 0.0 58.3 41.7 0.0
Factuality 4.0 10.0 86.0 0.0 0.0 100.0 0.0 0.0 100.0
Informativeness 40.0 353 24.7 78.3 21.7 0.0 60.0 40.0 0.0
Interestingness 40.0 34.7 253 80.0 20.0 0.0 60.0 40.0 0.0
Story Development 40.7 34.0 253 80.0 20.0 0.0 60.0 40.0 0.0

Table 3: Win shares (%) of GUARD vs. ACS/Top-k/Top-p for LLM evaluation for n = 150 continuations. Best

results are highlighted in bold .

. Human Evaluation LLM Evaluation

Metric Dataset Agree?
(n = 50 each) GUARD (%) ACS (%) Ties (%) GUARD (%) ACS (%) Ties (%)
Wikitext 44.0 19.0 37.0 42.0 32.0 26.0 v
Wikinews 43.5 23.5 33.0 40.0 34.0 26.0 v

Sem. Coh.
BookCorpus 38.0 355 26.5 40.0 36.0 24.0 v
Overall (n = 150) 41.8 26.0 32.2 40.7 34.0 253 v
Wikitext 23.0 10.5 66.5 42.0 32.0 26.0 v
Wikinews 21.5 12.0 66.5 40.0 40.0 20.0 X

Fluency
BookCorpus 13.0 18.0 69.0 40.0 34.0 26.0 X
Overall (n = 150) 19.2 13.5 67.3 40.7 353 24.0 v

Table 4: Win shares (Human and LLM evaluation) w.r.t. coherence and fluency of GUARD and ACS. Best results

are highlighted in bold .

Method sec/story #tokens/sec #tokens/story
CS (10, 0.6) 11.6 22.0 249.7
ACS (g=1) 15.7 16.3 255.7
ACS (¢=2) 15.9 16.1 255.8
ACS (g=38) 16.3 15.3 255.8

GUARD 4.42 28.3 255.9

Table 5: Average generation speed (n = 30) of GUARD
with CS and ACS (g € {1, 2,8}). Bestresults in bold .

while GUARD only needs 4.42 seconds per story.
We measure the average number of tokens decoded
per second, and observe that CS decodes on aver-
age 21.98 tokens/second, ACS between 15.35 and
16.29, and GUARD decodes 28.3 tokens/second on
average. This answers RQ3, since the generation
speed of CS-based approaches can be substantially
increased using GUARD.

5 Discussion

Stationarity Assumption. The strict stationar-
ity assumption might be a strong idealization in
real, dynamic text generation processes. However,
the main purpose of introducing the stationarity as-
sumption here is to provide a theoretical guarantee
of unbiasedness for our H g, ¢ estimator (Proposi-

tion 1). This theoretical result aims to show that,
under ideal conditions, our weighted average de-
sign does not introduce systematic bias. It is worth
noting that the core advantage of our work does
not entirely rely on this strict assumption. The key
role of our design (i.e., the exponentially weighted
moving average in Eq. (1)) in practice is to smooth
out drastic fluctuations in entropy. The presence
of the decay factor A makes it more sensitive to
recent entropy values, while gradually “forgetting”
older ones. This mechanism allows Hgjop¢ to dy-
namically adapt to local changes in the entropy
process, providing a locally stationary and robust
long-term trend estimate, even if the overall process
is non-stationary. As shown in Figure 2, H;op ; ef-
fectively smooths out local entropy, illustrating that
our method remains effective even in the presence
of entropy fluctuations (non-stationary conditions).

Self-Adaptiveness. While we rightfully adver-
tise our method’s ability to dynamically adjust core
decoding hyperparameters (k, «, and ¢) without
manual tuning, GUARD still relies on A and w.
Nevertheless, our experiments suggest that neither
of them substantially influences performance, and
can be kept at their default values.
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6 Conclusion

We introduce GUARD, a self-adaptive decoding
strategy that adaptively balances text coherence
and diversity by responding to fluctuations in long-
term and short-term uncertainty. By integrating
a token frequency penalty into CS, GUARD re-
duces repetitive outputs and computational over-
head while maintaining context fidelity. Theoreti-
cal analysis confirms that our estimation of global
entropy preserves key statistical properties, such
as unbiasedness and consistency. Comprehensive
experiments across multiple open-source models,
datasets, metrics, human and LLM evaluations
demonstrate improvements in coherence, fluency,
diversity, efficiency, informativeness, interesting-
ness, and story development over established de-
coding methods. Overall, GUARD offers a robust
approach for improving open-ended text generation.
Future work will extend our method to additional
text-generation tasks. We believe that investigating
its integration with supervised fine-tuned models
and exploring its performance in multilingual and
low-resource settings might yield valuable insights.

Limitations

While our proposed method demonstrates improve-
ments in open-ended text generation quality, sev-
eral limitations warrant acknowledgment:

(1) Our evaluation focuses exclusively on open-
ended text generation tasks. The transferability of
our approach to other NLP applications, such as
summarization, machine translation, and classifica-
tion, remains to be investigated.

(2) The empirical evaluation is confined to
English-language datasets, leaving questions about
cross-lingual generalizability, particularly for low-
resource languages, unanswered.

(3) While we demonstrate effectiveness across var-
ious open-source models, we have not evaluated
our method on proprietary language models, which
may exhibit different behaviors.

(4) Our experiments are limited to base models.
The impact of our approach on supervised fine-
tuned models represents an important direction for
future research.

(5) Finally, our setting was limited by a maximum
length of 256 tokens, and the behaviour in long-text
generation scenarios is yet to be explored.
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Appendix
A Proofs
For ease of exposition, we restate all claims before proving them.

A.1 Proof of Proposition 1
Proposition (Unbiasedness of Hgop) Assume that the process { H (X);}¢>1 is stationary. Then,

E[Hglob] =E[H(X)/]

forany A € [0,1).

Proof 1 Define the normalized weights

w; =

A\(t=1) t
S ) such that Z w; = 1,
Dy AT i=1

forany X € [0,1). Then we can write the estimator (1) as

t
Heop = Y _w; H(X);.
=1

Taking expectation and using linearity together with the stationarity assumption, we obtain

t

E[Hgo) =Y wiE[H(X);] =) w; Hy = Hy.
i=1 1=1

Since under stationarity, the instantaneous entropy’s expectation at t is E[H(X):] = Hy, the claim
immediately follows:
E[Hgop| = E[H(X)q].

A.2 Proof of Proposition 2
Proof 2 We show that the variance of Hyg,p, vanishes as t — oo, so that by Chebyshev’s inequality the

estimator converges in probability to E[H (X)] under the following assumptions

(1) Stationarity and Ergodicity: The sequence { H (X );}+>1 is stationary and ergodic with
Vte {1,...,T}: E[H(X)t] — Hy.

(2) Boundedness: There exists a constant M < oo such that

|H(X)| <M forallt.

(3) Decaying Covariances: The covariances COV(H (X)), H(X )S) decay sufficiently fast as |t — s|
increases.

Decaying covariances can be ensured by, e.g., strong mixing of the sequence { H(X ).} with mixing

coefficients «(n) satisfying
(o)

a(n)ﬁ/(2+§) < 00

n=1
for some § > 0.
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The argument is as follows. Define the normalized weights

t

)\tfi
w; = ———, such that w; = 1,
Dy A ;

forany X\ € ]0,1).
Since .

Hglob,t = Z Wy H(X)ta

i=1
its variance is given by
t ot
Var(Hyope) = > wiwy Cov (H(X)i, H(X)s) .
i=1 s=1

Per assumptions, we have that all H(X ), are bounded by M and their covariances decay sufficiently
fast as |t — s| increases. Moreover, the weights form a convex combination. Under standard mixing
conditions (see, e.g., Bingham (1973)), one can show that

1
Var(Hgl{,M) = O(E)’
where O is the Landau (“big O”) notation. Then, by Chebyshev’s inequality, for any € > 0 we have

Var (Hglob) N

P(’Hglob - E[Hglob]’ > 6) < 2

where as t — oo.
Together with Proposition 1, this implies

P
Hglob,t — E[H(X)t]
as t — oo. Thus, Hgjop ¢ is a consistent estimator.

B Further (Design Choice) Experiments

Optimal )\ Selection. We further investigate how different values of A influence the quality of text
generations. We find that model performance remains stable for A € {0.91,0.93,0.95,0.97,0.99}, thus
we select A = 0.95 as our default parameter. This experiment is based on the GPT-2 XL model (Radford
et al., 2019) to balance computational expenses.

Method Wikitext Wikinews BookCorpus

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh.
A=091 9525 83.64 -2.60  95.86 89.39 234 9641 83.43 -2.61
A=093 9522 81.39 -2.60  96.31 92.79 -234  96.39 81.55 -2.61
A=095 95.64 85.55 -2.62  96.19 90.61 235 96.35 85.83 -2.62
A=097  96.00 79.27 -2.63  96.28 92.32 -236  96.60 82.79 -2.63
A=099 9595 80.48 -2.67  96.46 90.35 -239  96.75 79.73 -2.65

Table 6: Evaluation of performance across three datasets for A values in (0.91, 0.99).

Median Aggregation and Arctanh. To validate our design choices of Median aggregation and Arc-
tanh mapping, we conducted statistical significance testing across multiple aggregation and mapping
combinations. Bootstrap analysis with 95% confidence intervals demonstrated that our chosen Median
+ Arctanh method achieves significantly superior MAUVE scores (93.60 [92.71, 94.48]) compared to
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all alternative approaches (p < 0.001,¢ = 4.98). The effect sizes for these MAUVE improvements are
consistently large (all Cohen’s d > 1.75), with percentage improvements ranging from 3.61% to 6.39%
over alternatives. While other combinations achieve better Diversity scores and certain alternatives show
marginal improvements in Coherence, we follow common practices to guide these choices (Hewitt et al.,
2022; Zhu et al., 2024; Nguyen et al., 2025b; Yu et al., 2024; Meister et al., 2023). The Friedman test
across all metrics (x? = 9.10) indicates no statistically significant differences in overall performance
across methods, suggesting that trade-offs exist between optimization targets.

Aggregation Mapping Diversity MAUVE Coherence Notes
Winsorized mean Logarithmic map 95.22 88.44 -2.42 -
Median Logarithmic map 95.71 90.16 -2.48 -
Winsorized mean Arctanh 94.49 87.98 -2.35 -
Mean Logarithmic map 95.75 88.91 -2.35 -
Mean Arctanh 97.15 90.34 -2.61 -
Median Arctanh 95.20 93.60 -2.38 GUARD (Ours)

Table 7: Evaluation of different value assignment strategies and function mappings using the Wikinews dataset.

Optimal Locality Window Selection. We evaluated the performance of various locality window sizes,
w € {2,3,4,5,6,7,8,9}, with the results summarized in Table 8. The analysis indicates that a window
size of w = 7 yields good performance, while other choices in that range also display similar scores.
To further validate this finding, we conducted additional experiments using multiple models, including
Qwen2.5-7B, Llama2, Deepseek-1lm-7B-base, Llama-3, Mistral-v0.3, Gemma-7B, and GPT2-xI. Detailed
results for these experiments are provided in Tables 8, 9, 10, 11, 12, 13, and 14.

Method Wikitext Wikinews BookCorpus
div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh. (%)
GUARD (w=2)  93.56 87.89 -2.57  94.64 94.20 -235 9594 91.25 -2.52
GUARD (w=3)  94.06 88.87 -2.67  96.17 94.29 241 96.89 90.43 -2.61
GUARD (w=4) 93.11 89.32 -2.57 9473 94.83 -2.32 9555 93.58 -2.46
GUARD (w=5) 92.97 87.26 -2.61  96.05 93.56 -2.39  96.51 92.30 -2.54
GUARD (w=6) 9292 86.85 -2.57  96.05 93.56 -2.34  95.69 93.57 -2.45
GUARD (w=7)  92.86 90.82 -2.61 9520 93.60 -2.38  96.18 92.59 -2.52
GUARD (w=8) 92.51 88.29 -2.57 9445 93.66 -2.32 9548 91.56 -2.46
GUARD (w=9)  92.82 89.78 -2.61 9494 94.53 -2.38  96.14 89.96 -2.52

Table 8: Qwen2.5-7B: The performance under different datasets and w values shows that w = 7 is an appropriate
locality window. As the value of w increases, the data value decreases; hence, no further experiments are conducted.

Method Wikitext Wikinews BookCorpus

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh.
GUARD (w=2)  95.49 90.59 -2.67  96.19 93.21 -2.25  96.21 93.08 -2.62
GUARD (w=3) 96.73 91.46 -2.87  97.18 95.33 -236  97.10 92.76 -2.61
GUARD (w=4) 94.73 91.27 -2.64  96.20 92.90 -2.26 96.89 91.97 -2.64
GUARD (w=5) 95.82 87.91 -2.77 9691 92.85 -2.33  95.59 92.46 -2.59
GUARD (w=6)  94.50 90.00 -2.66  96.45 93.41 -2.24  96.15 92.78 -2.71
GUARD (w=7)  95.60 89.52 =275  96.76 93.34 -2.31  96.21 93.08 -2.62
GUARD (w=8) 94.74 87.78 -2.66 96.48 90.41 -2.25  96.10 92.78 -2.49
GUARD (w=9)  95.38 90.78 -2.74  96.54 94.12 -2.31  95.98 92.12 -2.59

Table 9: Llama-2: The performance under different datasets and w values shows that w = 7 is the appropriate
locality window.
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Wikitext Wikinews BookCorpus

Method

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh.
GUARD (w=2) 95.62 89.45 -2.65 96.56 96.50 221 96.32 90.36 -2.58
GUARD (w=3) 97.21 88.12 -2.74  97.55 93.36 -233  97.34 91.93 -2.68
GUARD (w=4) 9541 84.49 -2.54 96.64 94.31 -2.20  96.09 90.43 -2.50
GUARD (w=5) 96.82 89.74 -2.68 97.24 94.32 229  97.02 89.17 -2.61
GUARD (w=6) 95.64 83.35 -248  96.59 93.77 -220  96.34 89.46 -2.52
GUARD (w=7)  96.55 88.96 -2.65 97.14 94.84 -2.23  96.86 90.07 -2.61
GUARD (w=8) 95.70 91.09 -2.56  96.71 94.27 -221 96.23 88.95 -2.52
GUARD (w=9)  96.52 85.69 -2.65 97.08 94.24 -2.27  96.90 91.80 -2.61

Table 10: Deepseek-1lm-7B-base: The performance under different datasets and w values shows that w = 7 is the
appropriate locality window.

Method Wikitext Wikinews BookCorpus

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh.
GUARD (w=2)  95.47 89.85 -2.57  96.16 94.88 -2.15  96.02 91.20 -2.49
GUARD (w=3)  96.65 89.74 -2.66  97.25 95.49 -2.24 96.84 91.52 -2.57
GUARD (w=4) 94.94 89.98 -245  95.82 96.12 -2.12 95.75 90.13 -2.41
GUARD (w=5)  95.95 88.72 -2.56  96.67 93.44 -2.21  96.39 92.50 -2.52
GUARD (w=6)  94.88 90.74 -2.47  95.58 94.51 -2.14  95.73 91.14 -2.44
GUARD (w=7)  95.84 91.25 -2.55 9645 94.94 -2.20  96.21 92.09 -2.50
GUARD (w=8)  94.77 90.92 -247  95.95 93.90 -2.15  95.82 91.11 -2.43
GUARD (w=9)  95.62 89.44 -2.55  96.59 92.31 -2.20  96.04 91.50 -2.48

Table 11: Llama-3: The performance under different datasets and w values shows that w = 7 is the appropriate
locality window.

Method Wikitext Wikinews BookCorpus

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh.
GUARD (w=2)  94.87 92.52 -2.58  96.68 91.68 -220  96.25 90.89 -2.60
GUARD (w=3)  96.57 93.39 -271  97.49 91.89 -231 97.29 91.02 -2.70
GUARD (w=4)  95.10 91.64 -2.53  96.73 92.45 -2.19  96.10 91.26 -2.54
GUARD (w=5)  95.70 91.43 -2.66  97.32 89.66 -2.29  96.82 91.52 -2.65
GUARD (w=6) 94.97 91.14 -2.54  96.61 91.50 -221  96.20 91.57 -2.55
GUARD (w=7)  95.69 90.58 -2.63  96.85 90.49 -2.27  96.78 94.56 -2.64
GUARD (w=8)  95.05 89.26 -221  96.56 92.41 -221  96.20 92.64 -2.57
GUARD (w=9)  95.57 92.42 -2.63  97.07 93.88 -226  96.65 89.73 -2.62

Table 12: Mistral-v0.3: The performance under different datasets and w values shows that w = 7 is the appropriate
locality window.

Method Wikitext Wikinews BookCorpus

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh.
GUARD (w=2)  95.32 89.45 -2.65  96.71 87.45 -2.16  96.28 89.39 -2.35
GUARD (w=3)  96.81 90.16 -2.62  97.53 91.44 -2.27  95.46 90.41 -2.43
GUARD (w=4)  95.86 88.22 -247  96.60 89.90 -2.14  96.88 89.43 -2.56
GUARD (w=5)  96.65 88.47 -2.56  97.33 89.22 -2.22 95.26 91.65 -2.67
GUARD (w=6) 9546 90.56 -2.46  96.70 92.74 -2.15  96.44 90.16 -2.52
GUARD (w=7)  96.54 88.16 -2.55  97.23 90.76 -2.22 96.97 91.29 -2.65
GUARD (w=8)  95.59 87.81 -2.49  96.71 91.62 -2.15  96.30 91.09 -2.35
GUARD (w=9)  96.20 89.79 -2.54  97.09 88.50 -2.22 95.69 90.98 -2.64

Table 13: Gemma-7B: The performance under different datasets and w values shows that w = 7 is the appropriate
locality window.

7218



Wikitext Wikinews BookCorpus

Method

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh.
GUARD (w=2) 96.64 84.21 279 96.79 91.26 -248  97.29 84.71 -2.76
GUARD (w=3) 96.64 84.21 -2.79  96.79 91.26 248  97.29 84.71 -2.76
GUARD (w=4) 94.39 83.56 249 9586 87.44 -2.25 95.56 83.13 -2.51
GUARD (w=5) 96.28 83.06 -2.66  96.49 89.83 236  96.66 83.37 -2.64
GUARD (w=6)  94.60 79.72 -2.50 9592 91.78 -2.26  95.69 81.43 -2.52
GUARD (w=7) 95.64 85.55 -2.62  96.19 90.61 -2.35 96.35 85.83 -2.62
GUARD (w=8)  94.69 84.25 -2.53 9550 90.60 -2.55  95.68 82.50 -2.53
GUARD (w=9)  95.56 78.64 =262 96.17 89.35 235 96.24 80.30 -2.61

Table 14: GPT2-xl: The performance under different datasets and w values shows that w = 7 is the appropriate
locality window.

C Pseudo Code Design

Algorithm 1 GUARD Algorithm

Input:
Prompt, Model, MaxTokens, w (window size), A (decay factor)
Output:
Generated text continuation
1: function GENERATETEXT(Prompt, Model, MaxTokens, w, \)
2 Output < Prompt
3 entropy_history < [];  tokencounts «— {}; e+ le—6
4 for t = 1to MaxTokens do
5: distribution < Model.getDistribution(Output)
6: V' < distribution.size
7.
8
9

Hjoc <— — > (distribution = log(distribution)) // Eq. 2
entropy_history[t] < Hioc

: if ¢ < w then
10: Ogiobar <— arctanh((H;o. — med(entropy_history))/log|V|) //Eq. 9
11: O1oc — 0
12: else
13: T « len(entropy_history)
14: numerator < S (A\T™" x entropy_historyli])
15: denominator Z?Zl(AT_i)
16: Hyiop, 7 + numerator/denominator //Eq. 1
17: med_H _recent < median(entropy_history|T — w : T])
18: med_dif f < med_H_recent — med(Hgiob,T)
19: Tchange < |Hioe — entropy_history|T — 1]|/(entropy_history[T — 1] + ¢€)
20: Tdif f < |med_diff|/(med(Hglob,T) + E)
21: q < 1.0 + Tchange + Taiy s //Appendix B
22: Otoc < ¢ * arctanh((Hjoc — med_H_recent)/log|V]) //Eq. 8
23: Ogiobal < q * arctanh(med_dif f / log|V|) //Eq. 9
24: end if
25: Ak — |5loc|/(|§loc| + ‘6global| + 5) //Eq 10
26: ksignal — GXP(Ak * 5l0c + (]- - >\k) * 5gl0bal)
27: ki < 10 % (1 — 1/(ksignai + 1)) + 5 //Eq. 7
28: ksignalia — eXp()\k(Sloc log‘kt| + (1 - )\k)(sglobal 10g|kt‘)
29: ar — 1 —1/(Ksignato + 1) /Eq. 12
30: candidates < Select top-k; candidates
31: scores + {}
32: for each token v in candidates do
33: count < tokencounts.get(v, 0)
34: scores(v] < distribution[v] * (™) //Eq. 11
35: end for
36: next_token < argmax(scores)
37: tokencounts[next_token] + tokencounts.get(next_token, 0) + 1
38: Output < Output + next_token
39: end for

40: return Output[len(Prompt):]
41: end function
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D Metrics

Diversity

This metric aggregates n-gram repetition rates:

DIV — ﬁ | unique n-grams (Xcon ) |
o L1 total n-grams (Xcont ) |

A low diversity score suggests the model suffers from repetition, and a high diversity score means the
model-generated text is lexically diverse.

MAUVE

MAUVE (Pillutla et al., 2021) is a metric designed to quantify how closely a model distribution () matches
a target distribution P of human texts. Two main types of error contribute to any discrepancy between ()
and P:

* Type I Error: () assigns high probability to text that is unlikely under P.

e Type II Error: Q fails to generate text that is plausible under P.

These errors can be formalized using the Kullback—Leibler (KL) divergences KL(Q || P) and KL(P ||
Q). If P and @ do not share the same support, at least one of these KL divergences will be infinite. To
address this issue, Pillutla et al. (2021) propose measuring errors through a mixture distribution

Ry = AP + (1-))Q with A € (0,1).
This leads to redefined Type I and Type II errors given by
KL(QHR)\) and KL(PHR,\),
respectively.

By varying A and computing these two errors, one obtains a divergence curve
C(PQ) = {(exp(—cKL(QHR)\)), exp(—cKL(PHRA))) t Ry=AP+(1-X2)Q, X € (0, 1)} ,
where ¢ > 0 is a hyperparameter that controls the scaling.

Finally, MAUVE(P, Q) is defined as the area under the divergence curve C(P, Q). Its value lies between
0 and 100, with higher values indicating that () is more similar to P.

Coherence

Proposed by Su et al. (2022), the coherence metric is defined as the averaged log-likelihood of the
generated text conditioned on the prompt as:

||
Coherence(z, x) = @l ZlogpM (& | [x: <))
T
i=1
where x and & are the prompt and the generated text, respectively; [:] is the concatenation operation
and M is the OPT model (2.7B) (Zhang et al., 2022).

BERTScore

BERTScore has shown positive correlations with human judgements (Zhang et al., 2019), therefore, we
propose using it as an additional metric for evaluating the quality of the generated texts by each generation
method with respect to the corresponding reference texts provided by human experts. By using contextual
embeddings, BERTScore (Zhang et al., 2019) computes a similarity score for each token in the candidate
sentence with each token in the reference sentence.
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E Human Evaluation

To reflect the share of human raters favoring each decoding strategy, as depicted in Table 15 in the main
paper, we apply the following scoring approach:

Score B #(ACS is better ) + 0.5 x #( tie )
ACS ™ JL(ACS is better ) + #( tie ) + #( GUARD is better )

Score cyarp = 100 — Score acs.

Dataset Coherence Fluency

ACS is better ACS and GUARD are similar GUARD is better ACS is better ACS and GUARD are similar GUARD is better
Wikitext 19% 37% 44 % 11% 67% 23%
Wikinews 24% 33% 44% 12% 67% 22%
BookCorpus 36% 27% 38% 18% 69% 13%
All 26% 32% 42% 14% 67% 19%

Table 15: Human evaluation results for ACS vs. GUARD across different datasets. Text generations are rated based
on their semantic coherence and fluency.

Further, we measure the inter-rater agreement by computing Fleiss’ kappa:

RFleiss = 0.41

which reflects a moderate agreement across the human evaluators.
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F Prompt design for LLM-as-a-judge

Instructions

You are a language evaluation specialist tasked with conducting pairwise comparisons of machine-
generated texts. You will compare outputs from two different decoding methods (A and B) that
were generated using the same input prompt.

Evaluation Process

For each text pair, assess which version demonstrates superior quality according to six specific
metrics. Your evaluation should result in one of three judgments for each metric:

* Method A is better
¢ Both methods are similar
¢ Method B is better

Important Note The underlying decoding methods are randomized in their labeling as “Method
A” or “Method B” across different evaluations. Do not attempt to identify patterns based on these
labels, as they are arbitrarily assigned for each comparison.

Evaluation Metrics

1. Fluency Measures how natural, smooth, and grammatically correct the text reads. Evaluates
whether the language flows naturally without awkward phrasing, grammatical errors, or unnatural
constructions.

2. Coherence Assesses logical connection between ideas and overall text organization. Evaluates
whether the text maintains consistent themes, follows logical progression, and avoids contradictions
or non-sequiturs.

3. Factuality Measures accuracy and truthfulness of factual claims. Evaluates whether informa-
tion presented is correct and free from errors, fabrications, or misrepresentations.

4. Informativeness Assesses the substantive content and value of the information provided.
Evaluates whether the text delivers meaningful, relevant content rather than being vague, repetitive,
or content-poor.

5. Interestingness Measures how engaging, compelling, or captivating the text is. Evaluates
whether the content holds attention through creativity, unique insights, or engaging stylistic
elements.

6. Story Development Assesses how effectively the narrative unfolds and progresses (where
applicable). Evaluates character development, plot progression, pacing, and overall narrative

structure in story-based texts.
- J
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G Further Comparative Experiments

Different Models We examine the impact of different models on the quality of generated text, such
as Llama-2, Gemma-7B, Llama-3.1, Mistral-v0.3, and Deepseek-1lm-7B-base across three datasets:
Wikinews, Wikitext, and BookCorpus. The results are detailed in Table 16 (diversity, MAUVE, and
coherence) and Table 17 (BERTScore) reveal notable differences between the models.

Diversity MAUVE Coherence
Dataset Model
CS ACS GUARD CS ACS GUARD CS ACS GUARD
Gemma-7B 68.99 4799 96.54 85.05 6845  88.16 -1.50  -1.33  -2.55
Wikitext Llama-3.1 9.0 81.17 9584 27.05 7597 91.25 -0.74  -152  -2.55
Mistral-v0.3 97.26 89.82  96.59  85.19 81.59  90.58 -2.09 -1.56  -2.63
Deepseek-base-7B  77.43  32.14  96.55  56.26 46.92  88.96 249 -123  -2.66
Gemma-7B 83.73 7281 9723 8726 8634  90.76 -1.52 -129 =222
Wikinews Llama-3.1 46.84 89.66 96.45 8236 69.44  94.94 -1.25  -1.66  -2.20
Mistral-v0.3 98.25 9342 96.85 83.89 80.75  90.49 -1.92  -1.63  -2.27
Deepseek-base-7B 94.13 6196  97.14 61.34 7339 94.84 -3.69 -1.66  -2.23
Gemma-7B 65.65 39.76 9697 86.65 70.59  91.29 -1.55  -1.13  -2.65
BookCorpus Llama-3.1 1645 8486 96.21 5294 78.09  92.09 -1.00 -1.64  -2.50
Mistral-v0.3 97.27 90.74  96.78  79.03 7550  94.56 -229  -1.69  -2.64

Deepseek-base-7B 62.33  42.61 96.86 62.96 47.28  90.07 241 -1.24 -2.61

Table 16: Comparing GUARD with CS (k = 10, @« = 0.6) and ACS (¢ = 1) across datasets and models of varying
size. In Table 17, we also report the results of the influence of model architectures. Best results in bold .

In Table 17, we also investigate the influence of model architectures on the performance of representative
contrastive-search-based decoding methods.

Dataset Model €S ACS GUARD
BERTScore (%) BERTScore (%) BERTScore (%)
Llama-2 81.13 80.59 81.50
Gemma-7B 81.76 81.61 81.73
Wikitext Llama-3.1 80.89 80.98 81.76
Mistral-v0.3 81.14 81.25 81.84
Deepseek-base-7B 80.00 80.02 81.30
Llama-2 82.00 82.23 83.39
Gemma-7B 83.54 83.72 83.34
Wikinews Llama-3.1 83.89 82.25 83.76
Mistral-v0.3 82.76 83.08 83.52
Deepseek-base-7B 77.28 80.03 83.32
Llama-2 79.74 81.36 81.92
Gemma-7B 81.17 80.82 81.61
BookCorpus  [lama-3.1 81.12 81.07 81.93
Mistral-v0.3 81.56 81.43 81.83
Deepseek-base-7B 79.87 80.04 81.72

Table 17: Comparison of CS (k = 10, « = 0.6), ACS (¢ = 1), and GUARD in terms of BERTScore across different
architectures/LLMs of varying sizes. Best results in bold .
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Hyperparameter Choice for Competing Decoding Strategies We validate our choice of hyperparame-
ters for the competing methods (Beam search, Top-k/Top-p sampling) in Tables 18, 19, and 20.

Method Wikitext Wikinews BookCorpus

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh.

B=3 15.24 32.26 -0.81  25.78 58.02 -0.91 5.48 20.23 -0.59

B=5 14.42 26.39 -0.77 2494 54.31 -0.87  5.39 18.69 -0.56
B=10 12.88 23.26 -0.72  19.28 40.24 -0.77  4.02 14.17 -0.49
B=15 12.23 20.30 -0.70  16.89 34.88 -0.72 332 11.93 -0.46
B=20 11.52 17.63 -0.67 1545 34.71 -0.69 294 10.68 -0.44
B=50 8.28 13.93 -0.61 9.7 22.19 -0.58 224 7.60 -0.45
GUARD (Ours)  92.86 90.82 -2.61 9520 93.60 -2.38  96.18 92.59 -2.52

Table 18: Averaged automatic evaluation results for Qwen2.5-7B for beam search (with GUARD) with different
beam-widths.

Method Wikitext Wikinews BookCorpus

div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh.

k=3 59.01 82.40 -1.33 7421 91.46 -1.38  47.18 87.86 -1.44

k=5 70.69 89.23 -1.5 82.74 94.65 -1.52 67.99 90.42 -1.72
k=10 77.30 82.91 -1.68  88.18 93.40 -1.69  82.67 91.36 -2.01
k=15 79.66 88.95 -1.77  89.83 95.30 -1.78  85.99 94.87 -2.17
k=20 81.62 89.73 -1.84  90.17 94.11 -1.84  88.14 92.96 -2.56
k=50 82.69 88.97 -1.98  92.13 94.52 -2.01  91.54 93.24 -2.53
GUARD (Ours)  92.86 90.82 -2.61  95.20 93.60 -2.38  96.18 92.59 -2.52

Table 19: Averaged automatic evaluation results for Qwen2.5-7B for Top-k sampling (with GUARD) with different
k.

Method Wikitext Wikinews BookCorpus
div. (%) MAUVE (%) coh. div. (%) MAUVE (%) coh. div.(%) MAUVE (%) coh.
p=0.60 5243 79.56 -143  69.02 90.38 -1.54  38.21 80.55 -1.34
p=0.70 64.30 83.92 -1.60  77.56 93.74 -1.65  56.81 85.18 -1.58
p=0.80 73.80 83.80 -1.77  84.98 96.08 -1.83  72.88 90.73 -1.81
p=0.90 79.72 88.62 -1.97  89.96 96.67 -2.02  84.76 93.30 -2.12
p=0.95 82.47 86.37 -2.11 9147 96.09 -2.15  88.92 94.81 -2.29
GUARD (Ours)  92.86 90.82 -2.61  95.20 93.60 -2.38  96.18 92.59 -2.52

Table 20: Averaged automatic evaluation results for Qwen2.5-7B for Top-p sampling (with GUARD) with different
D.
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H Case Study: Generation Examples

Prompt Returning to Australia, Headlam became Deputy Chief of the Air Staff ( DCAS ) on 26 January 1965. He
was appointed a Companion of the Order of
Reference the Bath ( CB ) " in recognition of distinguished service in the Borneo Territories " on 22 June. His

tenure as DCAS coincided with the most significant rearmament program the Air Force had undertaken
since World War II, and with manpower shortages stemming from this expansion and from Australia’s
increasing involvement in the security of South East Asia.

CS St Michael and St George ( CMG ) in the 1966 New Year Honours. What is the sentiment of this tweet?
To determine the sentiment of this tweet, I will analyze the content and context of the information
provided.

ACS St Michael and St George ( CMG ) on 26 June 1965. Promoted to Air Commodore on 1 July 1965,

Headlam relinquished his appointment as DCAS on 15 July 1965. He was appointed Air Officer
Commanding RAAF Base Amberley on 15 July 1965, a position he held until his retirement on 15 July
1967.

GUARD the Bath ( CB ) in the 1965 New Year Honours. In May 1967, he moved to London as Chief Executive
of the Civil Air Lines Branch, Department of Transport. Headlam became Air Commodore-in-Chief on
30 June. On 8 November, he assumed his third and last staff command when appointed Commander-in-
Chief, Far East Region. His last appointment in July—August 1970 was the appointment as Chairman
and Chief Executive Officer at Qantas Airways.

Table 21: Text continuations based on prompts from the Wikitext dataset. Deviations from the context are highlighted
in red. The results reveal that GUARD generates contextually relevant and fluent narratives, whereas the CS method
deviates from the intended context and ACS exhibits repetitive patterns. When combined with the automatic
evaluation results.

Prompt Two people have died as the result of a road traffic accident involving a truck and a car in Devon,
England. The emergency services were called to the scene of
Reference a collision involving a Vauxhall Corsa and a DAF lorry at 0830 GMT on Saturday. Both occupants of

the Vauxhall, a man and a woman, were pronounced dead at the scene of the collision, which was on the
A361 road in the town of Knowstone, near South Molton.

CS the accident, which took place on the A379 at 1.30 p.m. Police are appealing for witnesses to come
forward and help with their investigation. Anyone who saw the accident or has any information is asked
to contact Devon and Cornwall Police on 101, quoting log number 466 of 20/07/2019.

ACS the accident at Bovey Tracey, Torquay, at 13:30 (14:30 CEST) on Saturday. Devon and Cornwall Police
said the driver of the car, a 24-year-old man, was pronounced dead at the scene.
GUARD the accident on 8§ October, near Okehampton in north Devon. Both occupants of the car, which had

collided with the back of the truck, have since died.

Table 22: Text continuations based on prompts from the Wikinews dataset.

Prompt My eyes moved involuntarily from the pages of the book that I was no longer reading, to the faces of the
girls who were now looking over at me. My

Reference heart began to pound in my chest, and I could hear the blood rushing in my ears. I could feel the heat of
the color burning on my cheeks. I was embarrassed, no I was furious.

CS heart skipped a beat as I realized that they were looking at me with a mix of curiosity and confusion.

ACS eyes caught sight of one of the girls, and I couldn’t help but stare. "Excuse me," one of the girls said,
"but what are you looking at?" I looked up at her, and then back down at the book.

GUARD heart beat faster as their gazes lingered upon me and, without even realising it myself, I was smiling
back, my cheeks flushed and my eyes shining with happiness.

Table 23: Text continuations based on prompts from the BookCorpus dataset.
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