
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 7182–7201
November 4-9, 2025 ©2025 Association for Computational Linguistics

EMBYTE : Decomposition and Compression Learning
for Small yet Private NLP

Shenglan Li* Jia Xu* *

Stevens Institute of Technology
Gateway Academic Center

601 Hudson St, Hoboken, NJ 07030
{sli155, jxu70}@stevens.edu

Mengjiao Zhang †

Microsoft
3940 159th Ave NE

Redmond, WA 98052
mengjiao_123@hotmail.com

Abstract

Recent breakthroughs in natural language pro-
cessing (NLP) have come with escalating
model sizes and computational costs, posing
significant challenges for deployment in real-
time and resource-constrained environments.

We introduce EMBYTE , a novel byte-level
tokenization model that achieves substantial
embedding compression while preserving NLP
accuracy and enhancing privacy. At the
core of EMBYTE is a new Decompose-and-
Compress (DECOMP) learning strategy that
decomposes subwords into fine-grained byte
embeddings and then compresses them via neu-
ral projection. DECOMP enables EMBYTE
to be shrunk down to any vocabulary size (e.g.,
128 or 256), drastically reducing embedding
parameter count by up to 94% compared to
subword-based models without increasing se-
quence length or degrading performance. More-
over, EMBYTE is resilient to privacy threats
such as gradient inversion attacks, due to its
byte-level many-to-one mapping structure.

Empirical results on GLUE, machine transla-
tion, sentiment analysis, and language model-
ing tasks show that EMBYTE matches or sur-
passes the performance of significantly larger
models, while offering improved efficiency.
This makes EMBYTE a lightweight and gener-
alizable NLP solution, well-suited for deploy-
ment in privacy-sensitive or low-resource envi-
ronments.

1 Introduction

Recent advances in natural language processing
(NLP) have yielded impressive performance across
a wide range of tasks. However, these gains come
at the cost of massive computational and memory
requirements, which make such models expensive,
slow, and impractical for deployment on resource-
constrained devices. Model compression is there-
fore essential to enable real-time applications, ex-

*Authors are listed alphabetically.
†Mengjiao Zhang was a PhD student at Stevens Institute

of Technology during this work.

pand accessibility, and reduce the environmental
impact of large-scale AI systems.

To this end, various compression techniques,
such as knowledge distillation (Hinton et al.,
2015), quantization (Jacob et al., 2018), and pa-
rameter sharing (Lan et al., 2019), have enabled
compact, efficient models with minimal accuracy
loss. Notable examples like ALBERT (Lan et al.,
2019), TinyBERT (Jiao et al., 2020), and Distil-
BERT (Sanh et al., 2019) demonstrate the success
of these approaches. However, each presents trade-
offs: distillation may miss subtle patterns, quantiza-
tion can hinder complex reasoning, and parameter
sharing may reduce model expressiveness.

Beyond architectural compression, advanced tok-
enization strategies, such as subword and byte-level
representations (Zhang and Xu, 2022), have also
improved efficiency and generalization. Subword
methods (Sennrich et al., 2015) shrink vocabulary
size and handle rare words effectively, especially
in morphologically rich languages. Yet, they often
lead to longer sequences, fragmented semantics,
and reduced domain robustness. Byte-level mod-
els, with their fixed 256-symbol vocabulary, offer
strong multilingual generalization and language
neutrality (Zhang and Xu, 2022), but at the cost
of slower training and limited semantic abstrac-
tion. Moreover, both approaches face challenges
in preserving privacy and providing secure, inter-
pretable representations, highlighting the need for
continued innovation in scalable and robust NLP.

To address above challenges, we introduce a
novel method, EMBYTE , that significantly shrinks
model size and provides privacy protections simul-
taneously. It combines the strengths of byte-based
NLP with architectural optimizations to deliver su-
perior performance across key dimensions.

We refer to this procedure as our Decompose-
and-Compress (DECOMP) learning strategy. It
follows a divide-and-conquer principle: first, it
decomposes subword representations into finer-
grained units to reduce model size and provide
privacy guarantees; then, it aggregates and com-

7182

Feature Word-Based Subword-Based Byte-Based EmByte-Based

Train Memory ✗Large embeddings ✓Smaller vocab ✓Tiny (256 vocab) ✓Tiny (256 vocab)
Infer Memory ✗Large softmax ✓Smaller softmax ✓Tiny softmax ✓Tiny softmax
Seq. Length ✓Short ✗Longer ✗✗Very long ✓Short
Embed Size ✗Very large ✓Smaller ✓Minimal ✓Minimal
Softmax Speed ✗Slow ✓Faster ✓Fastest ✓Fastest
Lang. Agnostic ✗No ✗Partially ✓Yes ✓Yes
Noise Robustness ✗Low ✓Moderate ✓High ✓High
Privacy ✗High risk ✓Moderate risk ✓Low risk ✓Low risk
Accuracy ✓High ✓High ✓Language generalization ✓Slightly higher

Table 1: Brief comparison of Word-, Subword-, Byte-, and our EmByte-Based NLP models.

presses these units to reduce the input length for
time efficiency.

As illustrated in Figure 1, EMBYTE employs a
neural network to project the aggregated byte-level
embeddings into a reduced-dimensional space. As
a result, EMBYTE maintains or even shortens
input lengths compared to subword-based models,
thereby preserving comparable training complexity.
This enables us to leverage a smaller vocabulary
without incurring the typical trade-off of increased
input sequence length.

Specifically, the procedure consists of four steps:

1. Decompose each subword by byte encoding.

2. Embed each byte.

3. Aggregate byte embeddings to form the em-
bedding for a subword.

4. Compress the subword embedding.

In the following, we provide further intuition on
how EMBYTE balances efficiency, privacy, and
accuracy in a unified framework.

Efficiency. As shown in Table 1, EMBYTE in-
herits the low memory footprint of byte-based mod-
els due to its fixed 256-token vocabulary and com-
pact softmax layer, making it ideal for low-resource
settings. Unlike conventional byte-level models
that suffer from long input sequences, EMBYTE
introduces a novel decomposition-compression
learning strategy that significantly shortens se-
quences while retaining semantic structure. More-
over, by treating the vocabulary size as a tunable hy-
perparameter, the number of unique embeddings is
drastically reduced, lowering the overall parameter
count. To further improve computational efficiency,
we project aggregated byte-level embeddings into a
lower-dimensional space, maintaining input length
and runtime comparable to subword-based models.

Privacy. Conventional subword models use a
one-to-one mapping between tokens and embed-
dings, leaving them vulnerable to gradient inver-
sion attacks (GIAs). In contrast, EMBYTE per-
forms byte-level decomposition, introducing a one-
to-many mapping where each subword corresponds
to multiple byte embeddings. This increases am-
biguity and makes it significantly harder to recon-
struct original tokens from gradients, thereby im-
proving resistance to GIAs and offering stronger
privacy guarantees than both subword and byte-
based baselines.

Accuracy. Despite its compact design, EMBYTE
matches or exceeds the accuracy of larger models.
The use of smaller vocabulary improves general-
ization and reduces overfitting. Furthermore, byte-
level decomposition captures fine-grained morpho-
logical patterns, such as suffixes (e.g., -s, -ed),
which subword tokenizers may fragment or over-
look. This leads to richer, more flexible representa-
tions that align better with linguistic structure.

Summary. Overall, EMBYTE offers a com-
pelling balance of performance, efficiency, and
privacy. It outperforms traditional byte-based mod-
els in speed and accuracy, provides stronger pri-
vacy protections than subword methods, and re-
mains language-agnostic and scalable, making it
suitable for deployment in privacy-sensitive and
low-resource NLP applications.

In summary, our main contributions are as fol-
lows:

1. We propose EMBYTE , a byte-level NLP model
that decomposes text into fine-grained units
through randomized byte mapping and embed-
ding. We demonstrate that our method achieves
up to a 94% reduction in embedding parameter
size compared to subword-based models, with-
out sacrificing representational power.

2. We introduce a novel learning paradigm, DE-

7183

Figure 1: An example of calculating EmByte by De-
Comp (Decomposition and Compress).

COMP, built on a neural compression strategy
that substantially reduces input sequence length,
enabling faster training and inference than con-
ventional byte-based approaches.

3. We show that our method offers strong privacy
guarantees against gradient-based data leakage
attacks, outperforming both byte- and subword-
level models in federated learning scenarios.

4. Extensive experiments show that our full system
consistently improves memory efficiency and
privacy while maintaining or slightly improving
accuracy on five tasks, offering a practical and
scalable solution for real-world deployment.

2 Background

Subword Model Subword models address key
limitations of word-level tokenization by splitting
words into frequent subword units, enabling bet-
ter handling of rare or unseen words and reducing
vocabulary size. Methods like Byte Pair Encod-
ing (BPE)!(Sennrich et al., 2015) and Sentence-
Piece (Kudo and Richardson, 2018) strike a balance
between character and word granularity, improving
generalization and efficiency. This makes subword

models, such as BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020), the standard in modern
NLP due to their strong performance and manage-
able memory footprint.

Byte Model Byte-level models process text di-
rectly as sequences of bytes, removing the need
for tokenizers and enabling true language agnos-
ticism. With a fixed 256-token vocabulary, they
handle rare words, noisy input, and multilingual
text uniformly. Models like CANINE (Clark et al.,
2022), ByT5 (Xue et al., 2022), and byte-level
mBART (Tang et al., 2022) show competitive per-
formance while improving robustness and privacy.
However, they incur longer input sequences and
higher computational costs due to learning from
lower-level representations.

Threat Models We consider a white-box adver-
sary aiming to recover at least one sentence from a
victim’s private training batch Bi using model pa-
rameters θt and gradients ∇θtLθt(Bi). This access
enables extraction of vocabulary V and embedding
matrix W, allowing identification of updated to-
kens. Repeated attacks can reveal a significant
portion of the dataset, violating federated learn-
ing privacy. We investigate two gradient leakage
attacks: (1) optimization-based attacks that recon-
struct inputs by minimizing the gradient difference
between dummy and real data (Zhu et al., 2019;
Deng et al., 2021; Wei et al., 2020); and (2) the
FILM attack (Gupta et al., 2022), which extracts
likely tokens from embedding gradients, generates
candidate sentences via beam search with a pre-
trained language model, and refines them by re-
ordering subwords. While defenses exist for the
first, FILM remains largely unmitigated.

3 EMBYTE

We introduce our method, Embedding Bytes of Sub-
words (EMBYTE), illustrated in Figure 1. The
approach converts input text into byte sequences,
retrieves corresponding byte embeddings, aggre-
gates them, and applies a low-dimensional projec-
tion to produce final subword byte embeddings.

Our objective is to develop a subword encod-
ing scheme that leverages a compact byte-level
embedding matrix to defend against gradient in-
version attacks, preserve subword boundaries for
time efficiency, reduce memory usage, and improve
prediction accuracy. This gives rise to three key
challenges: (1) how to represent subwords as byte
sequences, (2) how to compute effective embed-
dings from these byte-level representations, and
(3) how to project high-dimensional byte embed-

7184

dings into the same low-dimensional space used
for standard subword embeddings.

3.1 Decomposition of A Subword to Bytes

We encode subwords as fixed-length sequences of
bytes. Formally, let Vw be the subword vocabulary
and Vb = {0, 1, . . . , Vb − 1} the byte vocabulary.
We define a mapping M : Vw → (Vb)

n that as-
signs each subword a unique sequence of n bytes.
Each byte sequence is sampled uniformly at ran-
dom with replacement, and we ensure uniqueness
to avoid collisions. This enables a compact, fixed-
size representation for all subwords. For example,
with Vb = 64 and n = 4, a subword like “Hello”
may be mapped to (14, 3, 10, 4). The probabil-
ity of collision is negligible (e.g., < 10−17 when
Vb = 128 and n = 8), ensuring expressiveness.

A key advantage of the DeComp learning strat-
egy is that it preserves the original sequence length
as perceived by the downstream model. While a
subword is internally decomposed into a sequence
of n bytes, the compression projector (as shown
in Figure 1 and detailed in Section 3.4) aggre-
gates these byte embeddings and outputs a single
fixed-dimensional vector for each original subword.
For instance, after the subword ’dance’ is decom-
posed and its byte embeddings are aggregated and
projected, it is represented by one vector. Conse-
quently, the input to the main model (e.g., BiLSTM
or Transformer) has the exact same sequence length
m as in a standard subword-based model. This de-
sign avoids the significant computational overhead
associated with the much longer sequences found
in pure byte-level models (See Appendix B.3).

And the random mapping is intentionally chosen
over semantic clustering for two key reasons: (1)
it preserves privacy through unpredictable assign-
ments that resist gradient inversion attacks, and
(2) it improves performance by encouraging the
model to rely on contextual information. Seman-
tically diverse groupings prevent representational
ambiguity better than clustering similar words to-
gether, as demonstrated in our ablation studies (see
Section 4.1.2).

Algorithm 1 outlines the construction process
for this mapping, and the resulting subword em-
beddings are computed by aggregating the byte
embeddings. Unlike byte-level models that signifi-
cantly increase input length, we encode subwords
instead of characters, preserving subword bound-
aries and structural information while keeping byte
sequences compact and efficient.

Algorithm 1 Mapping Subword-to-Byte
Input :Byte vocab Vb, Subword vocab Vw, Bytes per sub-

word n
Output :MappingM : Vw → (Vb)n
for wi ∈ Vw do

repeat
for j = 1 to n do

Sample bij ∼ Uniform[0, Vb)
end

until (bi1, . . . , bin) /∈M
M[wi]← (bi1, . . . , bin)

end
returnM

Algorithm 2 Embedding Bytes
Input : Subword to byte sequence mapping M : Vw →

(Vb)n;
Subword sequence S = (w1, w2, . . . , wm);
A feed-forward network FFN;
Embedding matrix is B ∈ RVb×d;
Subword embedding dimension d′

Output :Subword embeddings E′ ∈ Rm×d′

for i← 1 to m do
(bi1, bi2, . . . , bin)←M[wi]

end
Byte sequence for S : (b11, . . . , b1n, . . . , bm1, . . . , bmn)

E ∈ Rmn×d ← retrieve (b11, . . . , b1n, . . . , bm1, . . . , bmn)
from B

Ẽ ∈ Rm×nd← reshape E (in a row-major order)
E′ = FFN(Ẽ) ∈ Rm×d′

return E′

3.2 Byte Embedding
Let the byte embedding matrix be B ∈ RVb×d,
where d is the embedding size. Given a text
S, we tokenize it into a subword sequence
(w1, w2, . . . , wm), map it to a byte sequence
(b11, . . . , bmn) using the mapping M, and retrieve
its byte embeddings E ∈ Rmn×d from B.

M(w1, w2, . . . , wm) = (b11, . . . , bmn)

Positional Embedding To capture subword em-
beddings, we add the byte representations for each
byte in E. To incorporate byte positions within
subwords, we concatenate positional information
for a better representation of the subword structure.

3.3 Aggregation of Byte Embeddings
We aggregate byte embeddings by summing sub-
word embeddings. Given a subword wi =
[bi1, bi2, . . . , bin], the aggregated embedding ai is:

ai =

n∑

j=1

Bbij :

where Bbij : is the bij-th element of B, and

7185

ai ∈ R1×d. Summing one-hot vectors or real-
valued embeddings is equivalent to applying the
embedding matrix to each byte and summing the
results. This process aggregates byte representa-
tions into subword embeddings, as shown in Algo-
rithm 2.

3.4 Compression
The resulting aggregated vector is then fed into our
projector Π. Given the retrieved n byte embed-
dings E ∈ Rm×d, we reshape E to Ẽ ∈ Rm×nd in
a row-major order, which is equivalent to concate-
nation. Then, an our projector is applied to project
Ẽ into the dimension d′ of the original subword
embedding for language models:

E′ = Π(Ẽ), (1)

where E′ ∈ Rm×d′ . Note that, the byte em-
bedding matrix B can be either a real-valued or
one-hot embedding matrix because the vocabulary
size is small for bytes.

We design the following compression models to
realize Π(·) in Equation 1:

1. FFN: A two-layer feedforward neural network
(FFN) with ReLU activation.

2. MLP: A Multi-Layer Perceptron (Rumelhart
et al., 1986) consisting of one linear layer with
ReLU and dropout applied to one-hot byte
embeddings, followed by a two-layer FFN
after concatenation.

3. Autoencoder: The encoder part of an autoen-
coder (Hinton and Salakhutdinov, 2006), com-
posed of two linear layers with a bottleneck,
ReLU activations, and dropout, pre-processes
the concatenated byte embeddings to learn a
compressed representation. This representa-
tion is then passed through a standard two-
layer FFN.

4. TF Autoencoder: A single Transformer En-
coder (Vaswani et al., 2017) layer processes
the sequence of individual one-hot byte em-
beddings. The output sequence is then con-
catenated and passed through a standard two-
layer FFN.

We compare the performance of these models
with baselines in Table 7 in Section 4.1.2.

4 Experiments

We conduct experiments to demonstrate the advan-
tages of EMBYTE in preserving privacy for NLP

Task model # Params Acc F1

MRPC Subwords 4.0M 0.684 0.812
EmByte 1.4M 0.691 0.813

RTE Subwords 1.9M 0.501
EmByte 1.0M 0.536

Table 2: EMBYTE vs. subwords on GLUE tasks.

models, slightly improving on model prediction
accuracy, reducing space complexity, and main-
taining time efficiency. In all experiments, we set
Vb = 256 and n = 8, to minimize the risk of reas-
signing two subwords to the same byte sequence.

Implementation and result details are deferred to
the Appendix B, with section numbers correspond-
ing (e.g., Section 4.1.1 → Appendix B.1.1).

4.1 Experiment on Performance
To provide a more comprehensive assessment of
our proposed technique, we conduct experiments
on two GLUE tasks, machine translation, sentiment
analysis, and Language Modeling (LM) tasks.

4.1.1 GLUE Tasks
We conduct experiments on two representative
tasks from the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018): Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005) for para-
phrase detection and Recognizing Textual Entail-
ment (RTE) (Dagan et al., 2006) for grammatical
acceptability.

Main Results As shown in Table 2, EMBYTE
consistently achieves competitive performance
across both tasks while significantly reducing the
number of parameters. Notably, EMBYTE outper-
forms the baseline with accuracy improvements
of 0.7% and 3.5% on MRPC and RTE, respec-
tively, while using 65% and 47% fewer parameters.
These results highlight EMBYTE ’s ability to de-
liver strong language understanding performance
with substantially improved parameter efficiency.

4.1.2 Sentiment Analysis
Dataset and evaluation metrics We use the
IMDb (Maas et al., 2011) and SST2 (Socher et al.,
2013) datasets from Hugging Face, and evaluate
performance using accuracy, following standard
practice in prior work (Minaee et al., 2019; Yenter
and Verma, 2017). There are 25000 training sam-
ples and 25000 testing samples for IMDb. We take
25% of the training data for validation and the rest
for training. For SST2, The training, validation,
and test examples in SST2 are 67349, 872, and

7186

good great funny bad worse boring

good 1 0.63 0.49 -0.58 -0.61 -0.58
great 0.63 1 0.40 -0.53 -0.33 -0.38
funny 0.49 0.40 1 -0.72 -0.61 -0.60
bad -0.58 -0.53 -0.72 1 0.72 0.85

worse -0.61 -0.33 -0.61 0.72 1 0.88
boring -0.58 -0.38 -0.60 0.85 0.88 1

Table 3: The cosine similarity of the subword embeddings
calculated based on EMBYTE .

good great funny bad worse boring

good 1 0.06 0.04 -0.01 -0.01 0.09
great 0.06 1.00 0.00 -0.08 0.00 0.01
funny 0.04 0.00 1.00 0.07 -0.01 0.00
bad -0.01 -0.08 0.07 1.00 0.03 0.00

worse -0.01 0.00 -0.01 0.03 1.00 0.04
boring 0.09 0.01 0.00 0.00 0.04 1.00

Table 4: The cosine similarity of baseline subword embed-
ding.

1821, respectively. The tokenizer is ”basic_english”
in the TorchText package. The minimum frequency
needed to include a token in the vocabulary is 5.
The maximum length of the sentence is 256.

Main results Table 3 and Table 4 demonstrate
that EMBYTE retains subword interpretability
through byte embeddings, grouping similar words
together and assigning negative correlations to
dissimilar ones, producing semantically intuitive
embeddings that align more closely with human
judgment than the subword baseline. In Table 3,
EMBYTE assigns high positive cosine similarity
scores to related words like ’good’ and ’great’
(0.74) and strong negative scores to antonyms like
’funny’ and ’boring’ (-0.70). In contrast, the base-
line subword embeddings (Table 4) fail to capture
these relationships, assigning near-zero similarity
to both synonyms (e.g., ’good’ and ’great’, 0.06)
and antonyms. This shows that the DeComp pro-
cess effectively preserves and even enhances se-
mantic structure.

Table 5 presents classification accuracy on the
SST-2 task, comparing EMBYTE with subword
embedding, gradient compression, and noisy gra-
dient defenses (Wainakh et al., 2022). While exist-
ing defenses offer protection against label-leakage,
they substantially degrade performance. In contrast,
EMBYTE provides strong resistance to gradient-
based privacy attacks while preserving high utility,
i.e., achieving higher accuracy than all baselines
and doubling the preservation of the privacy of
subword embeddings.

Table 6 shows the effect of varying the number

Method SST2 (%) IMDB (%)

Subword Embedding 79.2 85.6
Gradient Compression 53.5 48.9

Noisy Gradients 53.4 49.0
EMBYTE 84.1 85.8

Table 5: Comparison of accuracy of subword embedding and
baseline defense models on sentiment analysis.

M.# Bytes Accuracy Train Infer. # Params

Subword 0.814 120 19.4 5.93
EMBYTE 1 0.691 132 26.3 3.57
EMBYTE 2 0.816 129 15.9 3.60
EMBYTE 3 0.832 128 28.8 3.63
EMBYTE 4 0.817 129 18.6 3.67
EMBYTE 5 0.810 116 9.8 3.70
EMBYTE 6 0.823 126 18.0 3.73
EMBYTE 7 0.808 123 27.6 3.77
EMBYTE 8 0.832 116 19.7 3.80

Table 6: Experiment results for the baseline subword model
and various EmByte variants. M.#Bytes: Subword baseline or
EMBYTE model with different number of bytes per subword;
Train: Training time in seconds; Infer.: Inference time in
miliseconds per batch. #Pars: Parameter size in million.

of bytes (n) per subword in EMBYTE , for EM-
BYTE n (n = 1 to 8) on SST-2, compared to the
subword baseline. All EMBYTE variants reduce
parameter count significantly. While EMBYTE 1

performs poorly, accuracy improves with larger n,
with EMBYTE 3 and EMBYTE 8 outperforming
the baseline. Training and inference times vary
without a clear trend across n.

To validate our random mapping design choice,
we compared it with a semantically structured vari-
ant (Clustered EMBYTE) that groups similar sub-
words using k-means clustering. As shown in Ta-
ble 8, our random mapping consistently outper-
forms structured clustering across multiple bench-
marks, supporting our hypothesis that random map-
ping allows EMBYTE to generate more expres-
sive and information-rich representations, using
the same vocabulary size.

Compressor results Table 7 summarizes the per-
formance of various neural compression projector
architectures (Section 3.4) on SST-2, compared to
the Baseline and EMBYTE . All MLP models con-
sist of three layers, with the second layer having
128 dimensions and the third layer 256 dimensions.
We vary the input size of the first layer based on
the embedding size per byte. In MLP-256, each
of the eight byte embeddings has 32 dimensions,
resulting in a total input of 32×8 = 256. Similarly,
MLP-512 uses 64-dimensional byte embeddings
(64×8 = 512), and MLP-768 uses 96-dimensional
embeddings (96×8 = 768). In the AE-Enc models,

7187

EMBYTE Accuracy Train Infer. # Pars

Baseline 0.797 345 24.3 5.93
FFN 0.817 374 15.9 3.80
MLP-HD256 0.823 393 7.80 4.10
MLP-HD512 0.832 383 17.8 4.65
MLP-HD768 0.824 390 16.5 5.21
AE-Enc(512-256) 0.819 387 10.3 4.75
AE-Enc(1024-128) 0.813 417 9.00 5.78
TF-Enc-H4-FFN512 0.841 569 28.4 4.33
TF-Enc-H8-FFN1024 0.822 669 39.7 4.59

Table 7: Experiment results for EMBYTE with different
neural network for compression. Train: Training time in
seconds; Infer.: Inference time in milliseconds per batch; #
Pars: Parameter size in million.

Dataset Model Accuracy # Pars

SST-2 Clustered EMBYTE 80.88 3.80
SST-2 EMBYTE (Random) 84.10 3.80
IMDb Clustered EMBYTE 78.39 3.80
IMDb EMBYTE (Random) 85.80 3.80

Table 8: Random vs. Structured Mapping Performance

the autoencoder’s encoder consists of three layers:
an input layer of 2048 dimensions (8× 256), a sec-
ond layer with 512 dimensions, and a final layer
with 256 dimensions. Variants also include differ-
ent configurations of the second and third layers
while keeping the input fixed. Finally, TF-Enc-H-
FFN refers to Transformer encoder models with
varying numbers of attention heads and a single
feedforward network (FFN) of a specified output
dimension.

The compressor with FFN achieves 0.817 ac-
curacy with only 3.80M params, offering fast in-
ference and efficient training. Among MLP+FFN
variants, the best (MLP-512) reaches 0.832 accu-
racy with 4.65M params and 383s training time.
AE-Enc+FFN (dim-512→256) matches FFN with
0.819 accuracy and 4.75M params. Transformer
TF-Enc+FFN (H4, FFN-512) achieves the highest
accuracy of 0.841 using 4.33M params, but with
significantly higher training and inference time.
Overall, EMBYTE offers a strong balance, while
more complex projectors can improve accuracy at
a computational cost.

4.1.3 Machine Translation
Dataset and Evaluation Metrics We evaluate
on the medium-scale IWSLT14 (de→en) (Cettolo
et al., 2014) and large-scale WMT14 (en→de) (Bo-
jar et al., 2014) datasets, following the setups
of (Shaham and Levy, 2020; Zhang and Xu, 2022)
with Fairseq preprocessing (Ott et al., 2019). Eval-
uation uses case-sensitive SacreBLEU with the 13a
tokenizer (Post, 2018).

Datasets Embeddings # Params BLEU

IWSLT14

Subword 5.2M 34.54 ± 0.10
EMBYTE ar 4.3M 34.64 ± 0.15
EMBYTE cr 9.6M 35.32 ± 0.15
EMBYTE co 5.2M 35.44 ± 0.10

WMT14 Subword 22.3M 26.0
EMBYTE co 6.3M 26.0

Table 9: BLEU score of IWSLT14 and WMT14. EMBYTE
ar and EMBYTE cr: EMBYTE with added and concatenated
real-valued embeddings, respectively. EMBYTE co: EM-
BYTE with concatenated one-hot byte embeddings.

Parameters Perplexity

Subword 12.8M 38.65
EMBYTE co 10.5M 37.24

Table 10: Perplexity of language modeling for subword em-
bedding and EMBYTE .

Embedding Memory Time

Subword O(Vwd) O(m2d)
Byte O(Vbd) O(c2m2d)
EMBYTE (Ours) O((nd+ Vb)d) O(m2d)

Table 11: Complexity for conventional subword embeddings,
byte embedding, and our proposed EMBYTE .

Main Results Table 9 shows that EMBYTE cr

and EMBYTE co outperform subword baselines on
IWSLT14 and match them on WMT14, with EM-
BYTE co using fewer parameters. Concatenation
yields better performance than addition for byte ag-
gregation (Section 3.2). EMBYTE reduces embed-
ding size while preserving accuracy and enhancing
privacy.

4.1.4 Language Modeling
Dataset and evaluation metrics We use the
same data as Fairseq did for the language modeling
tasks. The dataset we use is WikiText-103. We use
the same preprocessing and training settings as the
official Fairseq does. The number of samples for
training, testing, and validation are 1801350, 3760,
and 4358 respectively. We evaluate the language
modeling performance with perplexity.

Main results For language modeling, EMBYTE
achieves lower perplexity with fewer parameters
(Table 10), demonstrating its efficiency and effec-
tiveness over traditional subword embeddings.

4.2 Complexity Analysis and Evaluation
Analysis For the efficiency, we compare the
space and time complexity of different embedding
methods in Table 11. Subword embeddings re-
quire large vocabularies (Vw > 104), while byte-

7188

Params Whole model Embedding BLEU

IWSLT14 37M 5.2M 34.54 ± 0.10
EMBYTE co 33M (↓ 12%) 0.7M (↓ 94%) 34.62 ± 0.12

SST2 5.9M 2.4M 81.2 ± 0.7
EMBYTE co 3.8M (↓ 36%) 0.8M (↓ 68%) 82.5 ± 0.7

IMDb 1.5M 1.5M 85.6 ± 0.5
EMBYTE co 0.4M (↓ 72%) 0.5M (↓ 80%) 85.8 ± 0.2

Table 12: Subword and EMBYTE numbers in machine
translation on IWSLT14 de-en, Sentiment analysis on
SST2, and Sentiment analysis on IMDb.

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM(a) Pre-trained

1 4 16 32
Batch Size

0

0.3

0.6

RO
UG

E-
1

(b) Fine-tuned

Figure 2: Attack recovery performance per batch size
on WikiText-103. Orange: Subword; Blue: EMBYTE .

based methods, including EMBYTE , use much
smaller dictionaries (Vb ≤ 256), reducing memory
to O((nd+Vb)d). Unlike byte embeddings, which
increase input length by a factor c ≈ 5 (Shaham
and Levy, 2020), EMBYTE preserves subword
boundaries and thus retains the same time complex-
ity as standard subword embeddings.

Empirical evaluation Table 12 shows model and
embedding sizes on IWSLT14 and SST2. For
IWSLT14 de→en, EMBYTE with 256 hidden
units achieves comparable performance to sub-
words. Values in “()” indicating percentage reduc-
tions by EMBYTE compared to subword models.
Across all tasks, EMBYTE co consistently reduces
model size, enabling efficient on-device training
in memory-constrained settings without sacrificing
performance.

4.3 Experiments on Privacy Protection
Datasets, attack task, and evaluation met-
rics We followed the settings in the LLG at-
tack (Wainakh et al., 2022) and FILM attack
(Gupta et al., 2022). The dataset is WikiText-
103 (Merity et al., 2016). For the attack task, we use
GPT-2 base (Radford et al., 2019) with 117M pa-
rameters to recover the input batches. The ROUGE-
1/2/L F-Scores (Lin, 2004) are used to evaluate the
similarity between the recovered and original text.

Quantitative analysis of defense Figure 3 il-
lustrates the defense performance in attack suc-
cess rate of EMBYTE and subword-based models
against the frequency-based Label-Leaking Gra-

12 4 8 16 32
Batch Size

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

Standard CNN
SEB-Input
SEB-Middle
SEB-Output

Figure 3: LLG attack defense: EMBYTE versus Subword
from different layers: input layer, middle layer, and output
head layer over various batch size.

dient (LLG) attack from different level of neural
network layers, the input, middle, and head layer.

Figure 2a shows FILM attack performance dur-
ing pre-training on WikiText-103 with varying
batch sizes. Due to the large subword vocabu-
lary, we sample 7,000 random subwords plus those
from the original text. ROUGE-1 scores, averaged
over 5 batches, show near-perfect recovery for sub-
word embeddings at batch size 1 (ROUGE-1 is
approaching to 1), while EMBYTE yields much
lower scores, indicating stronger defense.

Figure 2b shows that after fine-tuning with EM-
BYTE on pretrained subword model, EMBYTE
further reduces recovery performance across batch
sizes 1, 4, 16, and 32, outperforming the subword
baseline.

On the other hand, gradient inversion attacks
(e.g., FILM, LLG) are most effective at small batch
sizes due to reduced gradient averaging. Although
EMBYTE cannot eliminate all attacks at batch size
1 (the worst case), it provides substantial improve-
ments across all batch sizes, with increasing pro-
tection as batch size grows, particularly relevant
for real-world training scenarios where batch sizes
typically range from 16-1024.

5 Related Work

Memory efficient embedding models We com-
pare EMBYTE with several memory-efficient vari-
ants of BERT (Devlin et al., 2019), including
DistilBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2020), ALBERT (Lan et al., 2020), Mo-
bileBERT (Sun et al., 2020), and Quantized
BERT (Zafrir et al., 2019). While these models
offer comparable efficiency and minor decrease in
accuracy, they lack inherent privacy guarantees. In
contrast, our model is not only compact but also
designed with privacy in mind. A detailed compar-
ison is provided in Appendix B.8.

7189

Subword-level and byte-level models Subword
tokenization like BPE (Sennrich et al., 2015) is
widely used but limited by out-of-vocabulary is-
sues, language-specific tokenizers, and large em-
bedding matrices. Byte-level tokenization ad-
dresses these challenges (Shaham and Levy, 2020;
Zhang and Xu, 2022; Xue et al., 2022) using UTF-
8, which covers all languages and caps the vo-
cabulary at 256 bytes, enabling smaller, language-
agnostic embeddings. Building on this, we propose
EMBYTE , which improves accuracy, memory and
training efficiency with stronger privacy protection.

Subword-level model with character-/byte-level
fusion Character and byte models increase se-
quence length and computational cost. To mitigate
this, recent works fuse character/byte representa-
tions into subwords. CHARFORMER (Tay et al.,
2021) introduces a soft tokenization mechanism
that scores and aggregates subword blocks, fol-
lowed by downsampling. While efficient, it lacks
explicit subword boundaries, reducing interpretabil-
ity. And while CHARFORMER achieves higher
accuracy on some GLUE tasks, it lacks the privacy
guarantees and compression benefits that are cen-
tral to EMBYTE ’s contribution. LOBEF (Sreed-
har et al., 2022) preserves the word boundaries
by locally fusing bytes, but does not shorten the
sequences, limiting the efficiency of training and
inference. Our EMBYTE both preserves the sub-
word boundaries for interpretability and keep the
input length for efficiency. It significantly outper-
forms LOBEF (26.0 vs 21.5 BLEU on WMT14)
while maintaining subword-level inference speeds,
whereas LOBEF is approximately twice as slow.

Gradient attacks and defenses Defenses like
gradient encryption (Zhu et al., 2019; Deng et al.,
2021; Balunovic et al., 2022) can be costly and
ineffective against server-side leakage (Aono et al.,
2017; Huang et al., 2021; Fang and Qian, 2021).
Differential privacy (Zhu et al., 2019; Wei et al.,
2020; Yin et al., 2021; Li et al., 2021) can degrade
accuracy. While Zhang and Wang (2021) propose
a secure FL framework against gradient-based at-
tacks, it fails to prevent subword recovery from em-
bedding gradients (Gupta et al., 2022). As shown
in Table 5, EMBYTE outperforms defenses like
gradient compression and noise gradient (Wainakh
et al., 2022) on GIAs.

6 Conclusion

We present EMBYTE , a novel language represen-
tation method using DECOMP learning for effi-
cient, privacy-preserving training. By projecting

subword byte embeddings into lower dimensions,
EMBYTE reduces model size, improves accuracy,
and defends against gradient-based privacy attacks.

Acknowledgement

We gratefully acknowledge the partial support of
the eBay eRUPT Program and ACC-New Jersey
(Contract No. W15QKN-18-D-0040), whose in-
valuable support has greatly contributed to this
work.

7 Limitations

While EMBYTE shows strong performance across
diverse tasks, further evaluation on additional do-
mains remains future work: (1) evaluation on addi-
tional domains and languages beyond those tested,
(2) exploration of alternative privacy threats beyond
gradient inversion attacks, and (3) investigation of
learned or hybrid mapping strategies that might bal-
ance semantic structure with privacy preservation.

8 Ethical Considerations

We use AI to enhance grammar, conducting experi-
ments exclusively on public, non-sensitive datasets.
Our goal is to advance efficient and accurate NLP
while promoting secure and responsible model.

References
Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho

Moriai, et al. 2017. Privacy-preserving deep learn-
ing via additively homomorphic encryption. IEEE
Transactions on Information Forensics and Security,
13(5):1333–1345.

Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović,
and Martin Vechev. 2022. Lamp: Extracting text
from gradients with language model priors. Ad-
vances in Neural Information Processing Systems,
35:7641–7654.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

7190

https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign. In Proceed-
ings of the 11th International Workshop on Spoken
Language Translation: Evaluation Campaign, pages
2–17.

Jonathan H. Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2022. Canine: Pre-training
an efficient tokenization-free encoder for language
representation. In Transactions of the Association for
Computational Linguistics (TACL).

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177–190.
Springer.

Jieren Deng, Yijue Wang, Ji Li, Chenghong Wang, Chao
Shang, Hang Liu, Sanguthevar Rajasekaran, and Cai-
wen Ding. 2021. Tag: Gradient attack on transformer-
based language models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 3600–3610.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 4171–4186.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP).

Haokun Fang and Quan Qian. 2021. Privacy preserving
machine learning with homomorphic encryption and
federated learning. Future Internet, 13(4):94.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong,
Tianyu Gao, Kai Li, and Danqi Chen. 2022. Recov-
ering private text in federated learning of language
models. arXiv preprint arXiv:2205.08514.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li,
and Sanjeev Arora. 2021. Evaluating gradient in-
version attacks and defenses in federated learning.
Advances in Neural Information Processing Systems,
34:7232–7241.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig

Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2704–2713.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of EMNLP, pages 4163–4174.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71. Association for Com-
putational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. ICLR.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2021. Large language models can be
strong differentially private learners. arXiv preprint
arXiv:2110.05679.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Shervin Minaee, Elham Azimi, and AmirAli Abdol-
rashidi. 2019. Deep-sentiment: Sentiment analysis
using ensemble of cnn and bi-lstm models. arXiv
preprint arXiv:1904.04206.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

7191

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://www.aclweb.org/anthology/P11-1015

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2 Workshop.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Uri Shaham and Omer Levy. 2020. Neural machine
translation without embeddings. arXiv preprint
arXiv:2008.09396.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Makesh Narsimhan Sreedhar, Xiangpeng Wan,
Yu Cheng, and Junjie Hu. 2022. Local byte fusion
for neural machine translation. arXiv preprint
arXiv:2205.11490.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. In ACL, pages 2158–2170.

Yinhan Tang, Xavier Garcia, Alessandro Raganato,
Vishrav Chaudhary, and Jiatao Gu. 2022. An effi-
cient multilingual byte-to-byte model for sequence-
to-sequence tasks. In Findings of the Association for
Computational Linguistics: EMNLP 2022.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler.
2021. Charformer: Fast character transformers via
gradient-based subword tokenization. arXiv preprint
arXiv:2106.12672.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens
Keim, Carlos Garcia Cordero, Ephraim Zimmer, Tim
Grube, Kristian Kersting, and Max Mühlhäuser. 2022.
User-level label leakage from gradients in federated
learning. arXiv preprint arXiv:2105.09369.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow,
Mehmet Emre Gursoy, Stacey Truex, and Yanzhao
Wu. 2020. A framework for evaluating gradient leak-
age attacks in federated learning. arXiv preprint
arXiv:2004.10397.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Paul Barham, and
Colin Raffel. 2022. Byt5: Towards a token-free fu-
ture with pre-trained byte-to-byte models. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Alec Yenter and Abhishek Verma. 2017. Deep cnn-lstm
with combined kernels from multiple branches for
imdb review sentiment analysis. In 2017 IEEE 8th
Annual Ubiquitous Computing, Electronics and Mo-
bile Communication Conference (UEMCON), pages
540–546.

Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2021. A
comprehensive survey of privacy-preserving feder-
ated learning: A taxonomy, review, and future direc-
tions. ACM Computing Surveys (CSUR), 54(6):1–36.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
5th Workshop on Energy Efficient Machine Learning
and Cognitive Computing - NeurIPS.

Mengjiao Zhang and Shusen Wang. 2021. Matrix
sketching for secure collaborative machine learning.
In International Conference on Machine Learning,
pages 12589–12599. PMLR.

Mengjiao Zhang and Jia Xu. 2022. Byte-based multi-
lingual NMT for endangered languages. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 4407–4417, Gyeongju,
Republic of Korea. International Committee on Com-
putational Linguistics.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep
leakage from gradients. Advances in neural informa-
tion processing systems, 32.

7192

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.1109/UEMCON.2017.8249013
https://doi.org/10.1109/UEMCON.2017.8249013
https://doi.org/10.1109/UEMCON.2017.8249013
https://aclanthology.org/2022.coling-1.388
https://aclanthology.org/2022.coling-1.388

A Environmental Settings

All the programs in our work are implemented us-
ing Python 3.12, PyTorch 1.13.0, and CUDA 12.2.
For the hardware environment, we run all codes on
a machine with Intel i7-11700K CPU, 64G mem-
ory, and NVIDIA GeForce RTX 3080 GPU.

B Experimental Details and More
Results

B.1 Experiment on Performance

B.1.1 Glue Tasks
Dataset and evaluation metrics We used
four standard benchmark datasets for GLUE
tasks (Wang et al., 2018). The Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brock-
ett, 2005) manually annotated sentence pairs ex-
tracted from news sources to indicate whether the
sentences are semantically equivalent. The Quora
Question Pairs (QQP) contains over 400,000 po-
tential question duplicate pairs from the Quora
platform, labeled as duplicate or non-duplicate.
The Recognizing Textual Entailment (RTE) (Da-
gan et al., 2006) is to determine if a hypothesis
sentence can be inferred from a premise sentence.
The Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019) uses sentences from linguis-
tics publications with binary acceptability judg-
ments that indicate whether they are grammati-
cally correct. We measured performance following
standard evaluation protocols, using accuracy and
F1 score for MRPC and QQP, accuracy for RTE,
and Matthews Correlation Coefficient (MCC) for
CoLA. The MCC metric is particularly appropriate
for CoLA as it effectively handles the class imbal-
ance present in the dataset. For all experiments, we
used the officially provided train/validation splits.

Implementation Details For all GLUE tasks, we
implemented comparable neural network models
with either subword embeddings (Vaswani et al.,
2017) or our EMBYTE approach. Each model
used a 2-layer BiLSTMs, a hidden dimension of
256, and a dropout rate of 0.5 for regularization.
For sentence pair tasks (MRPC, QQP, RTE), we
encoded both sentences separately using the same
LSTM network and then concatenated their repre-
sentations before the final classification layer. For
the single-sentence task (CoLA), we directly used
the final hidden state of the LSTM for classifica-
tion. The subword embedding dimension is 300,
while for SEB the byte vocabulary size is 256 with
8 bytes per subword and the hidden dimension is
128. All models are trained using the Adam opti-

mizer with a learning rate of 5e-4 and weight decay
of 1e-4. For QQP, due to its larger size, we use a
batch size of 128. For MRPC, RTE, CoLA, we use
a batch size of 32 and trained on the full datasets.

B.1.2 Sentiment analysis
Dataset and evaluation metrics We use
IMDb (Maas et al., 2011) and SST2 (Socher et al.,
2013) datasets provided by Hugging Face. We
use the accuracy for evaluation which is a routine
in prior work (Minaee et al., 2019; Yenter and
Verma, 2017).

We further investigated the impact of the num-
ber of bytes (n) used to represent each subword in
our EMBYTE approach. Table 6 presents these
findings, comparing various EMBYTE n (n ranges
from 1 to 8) against the Subword baseline model on
the SST-2 sentiment analysis task. Our EMBYTE
variants consistently show a significant reduction
in parameters. In terms of accuracy, although EM-
BYTE 1 (using a single byte per subword) per-
formed poorly, increasing the number of bytes
quickly improved model performance. The high-
estighest accuracy was observed with EMBYTE 3

and EMBYTE 8, both exceeding the baseline of the
subword. Training times and the inference time per
batch varied without a clear trend related to n.

Implementation Details We use 2-layer BiL-
STMs for both IMDb and SST2 classification tasks.
We keep all model architectures the same for the
baseline models and models with our EMBYTE

co except for the embedding parts. The subword
embedding dimension is 64 and 256 for IMDb and
SST2. The hidden units are 64 and 300 for IMDb
and SST2. The hidden dimension of 2-layer FFN in
EMBYTE co is 128 for both datasets. We optimize
the model using Adam (Kingma and Ba, 2014) and
the learning rate is 5 × 10−4 for the baseline and
our method on both datasets. The best model pa-
rameters evaluated on validation data are applied
for testing.

Compression Models The compression exper-
iments comparing different projector architec-
tures for our Subword Embedding from Bytes
(EMBYTE) framework were carried out on the
SST-2 dataset. A Bidirectional LSTM (BiLSTM)
with 2 layers and a hidden dimension of 300 units
per direction was used as the base sentiment clas-
sification model. The final subword embedding
dimension fed into the BiLSTM was consistently
256. All models were trained for 15 epochs using
the Adam optimizer with a learning rate of 5×10-̂4
and a batch size of 64. A dropout rate of 0.4 was

7193

applied within the LSTM and to the output of the
embedding layer. For all SEB variants, n=8 bytes
were used to represent each subword, and these
bytes were initially represented as 256-dimensional
one-hot vectors. The specific configurations for the
tested projector architectures were as follows:

1. FFN: A two-layer Feed-Forward Network.
ReLU activation and dropout (0.4) were ap-
plied after the first hidden layer.

2. MLP-HD512: An additional MLP layer
(2048→512 with ReLU and dropout) was in-
serted before the original FFN. The main FFN
then became 512→128→256.

3. Attn-H4-D0.1: A multi-head self-attention
layer with 4 heads and an attention dropout of
0.1 operated on the sequence of 8 one-hot byte
vectors (each 256-dim). The output sequence
was then concatenated (to 8×256=2048 di-
mensions) and passed to the original FFN
(2048→128→256).

4. AE-Enc(512-256): An autoencoder-encoder
structure (2048→512 with ReLU/dropout
→256 with ReLU/dropout) processed the con-
catenated byte vectors. Its 256-dimensional
output was then fed into the original FFN
(256→128→256).

5. TFEnc-H4-FFN512-D0.1: A single Trans-
former Encoder layer processed the sequence
of 8 one-hot byte vectors. This layer had
4 attention heads, an internal FFN dimen-
sion of 512, and a dropout of 0.1. The
output sequence from the Transformer En-
coder was concatenated (to 8×256=2048 di-
mensions) and then passed to the original FFN
(2048→128→256).

Results of Compression Models Table 7 summa-
rizes the performance of variant projector architec-
tures (section 3.4) compared to a the Baseline tra-
ditional subword embedding model and EMBYTE
, all evaluated on the SST-2. Our EMBYTE model
using "FFN" improved accuracy to 0.817 while sub-
stantially reducing parameters to 3.80 million and
maintaining a comparable training time and faster
inference. Among the "MLP + FFN" variants, the
MLP with hidden-dimension of 512 yielded the
best accuracy of 0.832 with 4.65M parameters and
a training time of 383 seconds. The "Self-Attention
+ FFN" models generally underperformed that even
the best among them (Attention layer with 4 atten-
tion heads and dropout rate of 0.1) can only reach

an accuracy of 0.786.The "AE-Encoder + FFN"
model, specifically the Autoencoder-Encoder with
intermediate dimension of 512 and bottleneck di-
mension of 256, performed similarly to the original
FFN projector, achieving an accuracy of 0.819 with
4.75M parameters. Most notably, incorporating a
"TFEncoder + FFN" layer yielded the highest accu-
racy. The Transformer Encoder with 4 heads and
an internal FFN dimension of 512 achieved a top
accuracy of 0.841 using 4.33M parameters. How-
ever, this came at the cost of significantly increased
training time and a higher inference time compared
to the simple EMBYTE . These results suggest
that while the standard EMBYTE offers a strong
balance of accuracy and efficiency, more complex
projectors like a Transformer Encoder layer can
further enhance accuracy, although with increased
computational demands.

Results of Compression Models As our prior
results show, the Transformer consistently outper-
forms other models. Standalone attention per-
forms significantly worse than a Transformer be-
cause it lacks critical components—residual con-
nections, layer normalization, and positional encod-
ing—which are essential for stable training, deep
representation learning, and capturing sequence
order. A raw multi-head attention block, isolated
from these stabilizing elements, struggles to learn
effectively. To validate this, we conducted two ad-
ditional experiments to incrementally reconstruct a
full Transformer Encoder layer on top of our ‘Attn’
model (see Table 13):

1. Adding Positional Encoding: We first intro-
duced positional encodings to the byte vec-
tors before passing them to the attention layer.
This alone improved the accuracy of the ‘Attn-
H4-D0.2’ model substantially, raising it to
0.8080.

2. Adding Residuals and LayerNorm: Next,
we added residual connections and layer nor-
malization around both the attention and feed-
forward components, forming a full Trans-
former Encoder layer. This further boosted
accuracy to 0.8471, slightly surpassing our
original ‘TF-Enc-H4-FFN512’ projector.

These results lead to a clear conclusion: the ben-
efits of the more complex projector architecture
are only realized when the full, stabilized Trans-
former design is used. The simple FFN remains
a strong efficiency-performance baseline, while a
complete Transformer Encoder layer delivers the
highest accuracy. The failure of the standalone

7194

attention block highlights the importance of archi-
tectural completeness.

B.1.3 Machine Translation
Dataset and evaluation metrics In the trans-
lation task, we consider two datasets, one is
the medium-size IWSLT14 (Cettolo et al., 2014)
dataset and a large-scale dataset WMT14 (Bojar
et al., 2014). We follow the settings as prior
work (Shaham and Levy, 2020; Zhang and Xu,
2022) and translate German (de) to English (en) in
IWSLT14 (Cettolo et al., 2014). The translation of
WMT is English (en) to German (de) and the pre-
processing is the same as Fairseq (Ott et al., 2019).
We use SacreBLEU, case-sensitive, with the 13a
tokenizer (Post, 2018) as the evaluation metric.

Preprocessing Details For IWSLT14, there are
166K sentence pairs for training and validation and
5.6K for testing. The vocabulary shared by the
source and target languages is built by BPE (Sen-
nrich et al., 2015) with 10K tokens.

For WMT14, en-de contains 4.5M sentence
pairs. Newstest2013 is used for validation and
newstest2014 for testing respectively. The merge
operation is 32K for BPE and the dictionary is
shared by source and target.

Implementation Details The baseline we com-
pare is the transformer with subword embed-
ding (Vaswani et al., 2017). Our proposed method
only replaces the subword embedding with EM-
BYTE .

For IWSLT14, the encoder and decoder layers
are both 6 and have 4 attention heads. The hidden
dimension of attention is 512 and the dimension
of the feedforward layer is 1024. The optimizer
is Adam (Kingma and Ba, 2014) with an inverse
square root learning rate scheduler, and warm up
4000 steps. The learning rate is 5×10−4. The total
training epochs are 100, and we average the best 5
checkpoints for testing.

For WMT14, the encoder and decoder layers
are both 6 and have 8 attention heads. The hidden
dimension of attention is 512 and the dimension
of the feedforward layer is 2048. The optimizer
is Adam (Kingma and Ba, 2014) with an inverse
square root learning rate scheduler, and warm up
4000 steps. The learning rate is 5×10−4. The total
training epochs are 100 and we use the early stop
if the validation loss does not decrease in 5 epochs.
We average the best 5 checkpoints for testing.

B.1.4 Language modeling
Dataset and evaluation metrics We use the
same data as Fairseq did for the language modeling

tasks. The dataset we use is WikiText-103. We use
the same preprocessing and training settings as the
official Fairseq does. The number of samples for
training, testing, and validation are 1801350, 3760,
and 4358 respectively. We evaluate the language
modeling performance with perplexity.

Implementation Details In this experiment, we
also use a two-layer FFN in EMBYTE , which
has 4096 hidden units. The architecture is
transformer_lm in the Fairseq framework. We
share the input and output embedding in the en-
coder and the other hyperparameters and settings
are the same as Fairseq.

B.2 Complexity Analysis
To demonstrate the efficiency of the proposed EM-
BYTE , we summarize the space and time complex-
ity of each embedding method in Table 11. Here,
the column “Memory” represents the memory us-
age for each embedding, and the column “Time"
shows the time complexity in Transformer atten-
tion. For simplicity, we let d′ = d and use one
linear layer as FFN in EMBYTE which contains
nd2 parameters.

In terms of space complexity, subword embed-
dings typically have an exponentially large vocab-
ulary size Vw, exceeding 104, while the dictionary
size of byte embeddings is no more than 256. For
the proposed EMBYTE , the number of parameters
in embedding is O(nd2 + Vbd) = O((nd+ Vb)d),
including the FFN and byte embedding matrix. In
practice, nd + Vb ≪ Vw. As a result, both byte
embeddings and our proposed EMBYTE signif-
icantly reduce the memory cost required for em-
beddings. In 4.2, we show the analysis for space
complexity in our experiments. Regarding time
complexity, we analyze the attention in the widely
used Transformer (Vaswani et al., 2017). Given
the sequence length m, byte embedding is more
time-consuming since the input length is c times
longer than subword embedding. Here c is the
average ratio between the lengths of byte and sub-
word sequences. Based on the statistics (Shaham
and Levy, 2020), c is usually around 5. However,
our proposed EMBYTE maintains the same time
efficiency as conventional subword embeddings
because we preserve the subword sequence along
with its boundaries.

One may consider the frequency analysis in
cryptanalysis to get the original text if the attacker
also has information about the tokens used for the
text and the frequency of each byte. In Appendix C,
we discuss the frequency analysis is not applicable
to our proposed defense.

7195

Table 13: Performance comparison of different compression architectures with attention-based improvements.

Model Accuracy Train (s) Infer. (ms) # Params (M)

Baseline 0.797 345 24.3 5.93
FFN 0.817 374 15.9 3.80
Attn-H4-D0.1 0.786 444 23.1 4.06
Attn-H4-D0.2 0.734 141 10.5 4.06
Attn-H8-D0.1 0.745 470 9.0 4.06
Attn-H8-D0.2 0.779 458 14.6 4.06

Attn-H4-D0.2 (+PosEnc) 0.808 450 23.5 4.06
Attn-H4-D0.2 (+PosEnc +Res + LN) 0.847 575 28.6 4.33
TF-Enc-H4-FFN512 0.841 569 28.4 4.33

B.3 Sequence Length Preservation

In our Decomposition-Compression (DeComp)
learning framework, while the decomposition step
may initially increase the sequence length by break-
ing a token into multiple semantic components,
the subsequent compression phase reduces the
length by projecting those components into a lower-
dimensional representation.

To illustrate, suppose a token d has a direct em-
bedding of [2, 5, 6]. After decomposition, it is
represented by four semantic components (e.g., 14,
3, 10, 4), each of which is embedded into vectors
such as [1, 2, 5], [3, 4, 2], [3, 2, 4], and [6, 2, 9].
These higher-granularity embeddings are then com-
pressed into a single vector, e.g., [2, 3, 4], which
is of the same dimensionality as the original token
embedding. This means the final representation re-
mains aligned with the original embedding size, ef-
fectively preserving compatibility and model train-
ing and running time efficiency.

Importantly, our method allows for even more ag-
gressive compression. For instance, the final com-
pressed vector could be reduced to a smaller size
than the original token embedding, such as a scalar
[2], if desired. In the paper, we chose to maintain
the same dimensionality as the original embedding
(e.g., [2, 3, 4]) for simplicity and fair comparison,
not because of any technical limitation. In this way,
DeComp preserves the same sequence length as the
baseline subword embedding while requiring sig-
nificantly less memory, using embeddings over just
256 bytes instead of the entire subword vocabulary.

B.4 Privacy Results

The reason for that is the parameters of the conven-
tional subword embedding layer in BiLSTM take a
large portion of the model parameters, making the
model easily overfitting. In this experiment, EM-
BYTE co has smaller embedding parameters, which
can address overfitting. We show that EMBYTE
also learns the semantic meaning of subword

10 25 50 100 150
Bytes number

2

3

4

5

Av
er

ag
e

su
bw

or
ds

 n
um

be
r 1e4

Figure 4: The average coverage of subwords given a
random set of bytes with GPT-2 tokenizer.

B.5 Analysis for Memory Using

The Table 14 shows that, compared with the base-
line subword model, our EMBYTE (equivalent to
the FFN projector) demonstrated improved mem-
ory efficiency, requiring only 154.16 MB while
achieving a higher accuracy of 0.817. Adding an
MLP layer before the main FFN(MLP-HD512) re-
sulted in a modest increase in inference memory
to 168.51 MB, still below the baseline, and corre-
sponded with a notable accuracy of 0.832. Sim-
ilarly, the AE-Enc(512-256) model, which incor-
porates an autoencoder-encoder structure, showed
comparable memory usage at 170.14 MB with an
accuracy of 0.819. In contrast, projector archi-
tectures involving more complex attention mech-
anisms (Attn-H4-D0.1 and TFEnc-H4-FFN512-
D0.1) exhibited higher memory demands. These
results indicate that while the EMBYTE and its
MLP or AE-Encoder augmented variants offer re-
duced inference memory usage compared to the
baseline, the more powerful Transformer Encoder
layer, despite its accuracy benefits, yields a higher
memory cost during inference.

B.6 Parameter Reduction for Large Language
Models

To estimate the impact of EMBYTE on prominent
large language models (LLMs), we provide an an-
alytical calculation of the potential parameter sav-

7196

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM(a) ROUGE-1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM(b) ROUGE-2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM (c) ROUGE-L

Figure 5: Recovery performance for batch size 1, 2, 4, 8 on WikiText-103. Orange: Subword; Blue: EMBYTE .

1 4 16 32
Batch Size

0

0.3

0.6

RO
UG

E-
1

(a) ROUGE-1

1 4 16 32
Batch Size

0

0.3

0.6

RO
UG

E-
2

(b) ROUGE-2

1 4 16 32
Batch Size

0

0.3

0.6

RO
UG

E-
L

SEB
Baseline

(c) ROUGE-L

Subword
SEB(Ours)

Figure 6: Recovery performance for batch size 1, 4,
16, 32 on pretrained subword model and pretrained-
finetuned EmByte model.

Model Type Accuracy Infer GPU (MB)

Baseline Subword 0.7967 185.79
EMBYTE 0.8167 154.16
MLP-HD512 0.8315 168.51
Attn-H4-D0.1 0.7855 251.55
AE-Enc(512-256) 0.7967 170.14
TFEnc-H4-FFN512-D0.1 0.7967 232.68

Table 14: Memory usage of each compression model.

ings. The analysis uses the following formulas:

Ebaseline = V ×D

EEmByte = (256× n)×H +H ×D

∆ = Ebaseline − EEmByte

Where V is the subword vocabulary size, D is
the model’s hidden dimension, n is the number of
bytes per subword, and H is the FFN hidden layer
size in the EMBYTE projector.

The Table 15 shows the projected savings for
GPT-2 and LLaMA-7B, assuming n = 8 and H =
128.

As the analysis shows, for a model like GPT-2
small (117M), replacing its standard embedding
layer (approx. 38.6M parameters) with our EmByte

projector (approx. 0.36M parameters) would re-
duce the total model size by approximately 38.2M
parameters, a reduction of over 32%.

For a larger model like LLaMA-7B, the embed-
ding layer is proportionally smaller relative to the
total model size, but the absolute reduction remains
substantial. Replacing its embedding layer (approx.
131M parameters) with our EmByte projector (ap-
prox. 0.79M parameters) would reduce the model
size by approximately 130M parameters, repre-
senting a 1.9% decrease in total parameters. This
demonstrates EMBYTE’s significant compression
benefits even at a very large scale.

B.7 Analysis for Semantic Meaning
In this section, we will analyze whether the derived
subword embeddings from our method can truly
encode the meaning of the words in the embedding
space. To experiment on this aspect, we mainly
calculate the cosine similarity between two word
embeddings obtained based on our method EM-
BYTE . We list some examples in IMDb sentiment
analysis in Table 3.

The cosine similarity demonstrates that the sub-
word embedding of our proposed EMBYTE will
learn the semantic meaning from the task. For
example, positive words (good, great, and funny)
have positive and high-value similarities with each
other, which is also the same case for all nega-
tive words (bad, worse, and boring). However, all
the negative-positive pairs have negative similari-
ties, which means the subword embedding of our
proposed EMBYTE can automatically learn the
semantic meaning.

B.8 Comparison with BERT Models
Table 16 compares the memory, accuracy, and pri-
vacy properties of existing BERT models and EM-
BYTE . EMBYTE does not only reduce the mem-
ory footprint but also protect the privacy of the
models against gradient attacks.

B.9 Comparison with Gradient Prune Defense
We compare the defense method of gradient prun-
ing in the FILM attack for batch size = 8, 16, 32.

7197

Table 15: Projected parameter reduction for large language models using EMBYTE.

Model V D Baseline Params EmByte Params ∆ (Params Saved) ∆% of Full

GPT-2 small (117M) 50,257 768 38.6M 0.36M 38.2M 32.6%
GPT-2 medium (345M) 50,257 1,024 51.4M 0.39M 51.0M 14.8%
LLaMA-7B (7B) 32,000 4,096 131M 0.79M 130M 1.9%

Model Memory Reduction Accuracy Loss Good For Privacy
DistilBERT ∼ 40% Minimal General NLP tasks ✗

TinyBERT ∼ 50% Small Mobile, fast inference ✗

ALBERT ∼ 60% Minimal Pretraining & fine-tuning ✗

MobileBERT ∼ 50% None to small On-device applications ✗

Quantized BERT ∼ 50% Negligible Deployment, edge inference ✗

EMBYTE ∼ 20%− 90% Negligible Federated, memory-bound training ✓

Table 16: Comparison of training memory-efficient NLP models. Memory reduction refers to GPU/TPU memory
usage during training. EMBYTE offers significant memory savings and privacy benefits.

Tables 17,18, and 19 show the precision and recall
for gradient pruning and our method. Even without
pruning, our method has a very low recall com-
pared to FILM on subword embeddings when all
batch sizes we experimented on, which shows the
effectiveness of our defense.

Prune ratio Precision Recall

Subword SEB Subword SEB

0 1 1 1 0.003
0.9 1 1 1 0.003
0.99 1 1 1 0.003
0.999 1 1 0.53 0.003
0.9999 1 0.46 0.08 0.003

Table 17: Defense results on precision and recall for
batch size is 8.

Prune ratio Precision Recall

Subword SEB Subword SEB

0 1 1 1 0.005
0.9 1 1 1 0.005
0.99 1 1 1 0.005
0.999 1 1 0.49 0.005
0.9999 1 0.50 0.06 0.005

Table 18: Defense results on precision and recall for
batch size is 16.

C Discussion of Frequency Analysis

Frequency analysis is useful in cryptanalysis. For
simple substitution ciphers, there is a characteristic
distribution of letters that is roughly the same for
almost all samples of that language. Frequency
analysis uses the characteristic distributions of the
plaintext and ciphertext to guess the mapping be-
tween them.

Prune ratio Precision Recall

Subword SEB Subword SEB

0 1 1 1 0.009
0.9 1 1 1 0.009
0.99 1 1 1 0.009
0.999 1 0.99 0.51 0.009
0.9999 1 0.47 0.07 0.009

Table 19: Defense results on precision and recall for
batch size is 32.

In the scenario of the threat model and our pro-
posed method, the attacker only knows the gra-
dients, model parameters and the mapping from
subword to byte sequence. Based on these, the at-
tacker can only get the information about distinct
byte candidates which are updated in training. The
attacker cannot determine the frequencies of the
bytes based on the gradients.

To demonstrate the effectiveness of our method,
we further assume the attacker have the informa-
tion about the frequency of each byte. The goal of
the attacker is to get the plaintext, given the plain-
text to ciphertext mapping, and the characteristic
distributions of the ciphertext.

To infer the plaintext, the attacker needs to know
the order for combining all of the byte candidates
and then use the ciphertext to plaintext mapping to
obtain the original text. However, the attacker only
knows a bag of bytes without ordering. It is difficult
to infer the correct combination of the bytes as
possible combinations of bytes is extremely large.

D Statics of distribution

When the vocabulary sizes of subwords and bytes
are 50K and 256, the distribution of subword num-
ber, unique subword number, and unique byte num-

7198

Algorithm 3 Fixed-Output-Length Coding
Input: A word sequence
Parameter: base b
Output: A code sequence

1: L = ⌈log|V|b ⌉ where |V| is the vocabulary size
of the input word sequences, L is the code
length, and b is the parameter of the alphabet
size.

2: Generate all possible L-long code.
3: Shuffle the vocabulary words and assign one-

to-one mapping between each word and the
code.

4: for word in vocabulary do
5: Output its mapped code
6: end for
7: return

ber in batch sizes from 1 to 16 is shown in Figure 7.

E Subword-to-Byte Encoding Algorithm

Sensitivity analysis on FFN hidden units In
this experiment, we test the sensitivity of EM-
BYTE co on FFN hidden units, because it is
one of the major factors for embedding param-
eters. Here, we set different FFN hidden units
as {128, 256, 512, 1024, 2048, 4096}, with the to-
tal embedding parameter numbers of 0.3M, 0.7M,
1.3M, 2.7M, 5.2M, and 10.5M, respectively. The
number of embedding parameters and translation
BLEU scores are shown in the left of Figure 8.
When the numbers of hidden units are 256, 512,
and 1024, EMBYTE co can obtain better perfor-
mance with fewer parameters. Although the model
can still achieve better performance when hidden
units are larger than 2048, it does not have advan-
tages over the original transformer on model size.

Sensitivity analysis on Vb and n To investigate
the impact of the byte vocabulary size Vb and
number of bytes per subword n, we set Vb as
64, 128, 256 and n as 4, 8, 16. Based on the pre-
vious experiments, we set the hidden units in the 2-
layer FFN to 1024 in EMBYTE co, which provides
good performance with a small scale of parameters.
We first discuss the model size in terms of embed-
ding parameter numbers in Table 21. All settings
have smaller embedding parameter numbers than
the original Transformer. We further demonstrate
the translation performance under these settings in
Figure 8 (right). It indicates that increasing n leads
to better model performance for a fixed Vb. The

reason is increasing n results in more possible po-
sitions per byte token, providing more information
in the aggregated vector. Similarly, when we fix
n and increase Vb, the increased byte vocabulary
diversity makes the aggregated vector more expres-
sive. Therefore, increasing the byte vocabulary
size and the number of byte tokens per subword
can improve the model’s expressiveness, leading
to improved performance. Furthermore, Figure 8
(right) and Table 21 show that models with similar
amounts of parameters have similar performance.
As long as Vb and n ensure that EMBYTE co has
sufficient expressive ability, the model performance
is more related to the number of parameters than to
specific Vb and n.

Machine Translation Results For IWSLT14, we
run 5 trials and report the average performance with
the standard deviation. We show the translation re-
sults of Transformer with subword embedding and
EMBYTE in Table 9. The hidden dimension of
the two-layer FFN is 2048 for IWSLT because we
try to keep the total parameters of EMBYTE co

the same as the original Transformer. For WMT,
the hidden dimension of FFN is 4096. Here, we
test three variants of EMBYTE when aggregating
the byte embedding back to subword embedding:
added real-valued embedding (EMBYTE ar), con-
catenated real-valued embedding (EMBYTE cr),
and concatenated one-hot embedding (EMBYTE

co). In this experiment, the dimensions of real-
valued and one-hot vectors are 512 and 256. Table
9 shows that EMBYTE cr and EMBYTE co can
achieve better performances than subword embed-
ding. Concatenating the one-hot vectors yields
better results even with fewer model parameters
than concatenating byte embedding. Therefore, we
can conclude that EMBYTE is a better alternative
to using large subword embeddings. Additionally,
based on the comparison between EMBYTE ar and
EMBYTE cr, we find that concatenation is better
than the simple adding of byte embeddings. This
is expected as Section 3.2 because adding does not
consider the positional information of bytes. The
result of WMT14 shows the same performance as
the subword-based model but with a smaller size
of embedding parameters. It is important to em-
phasize that while privacy is improved, our model
achieves the same or better accuracy than the base-
line methods.

7199

(a) Batch size = 1 (b) Batch size = 4 (c) Batch size = 16

Figure 7: The distribution of subword number, unique subword number, and unique byte number in a batch when
batch size is 1, 4, 16. The vocabulary sizes of subwords and bytes are 50K and 256.

Original Sentence Best Recovered Sentence

Subword The historic rainfall caused several
dams to fill throughout northeast Mex-
ico.

The rainfall caused several historic dams to fill throughout north-
east Mexico.

EMBYTE Pujols is a highly regarded hitter who
has shown a "combination of con-
tact hitting ability, patience, and raw
power"

He is a professional who has a very high degree of ability, and
always takes great advice, without ever assuming power" ("Pivotal
Decision Making With Your Head". Retrieved 12 Dec 2007 16
Mar)

Table 20: The best recovered sentences by FILM using subword embedding and EMBYTE with batch size 1. Text
in green are successfully recovered phrases and words.

Byte Tokens
per Subword (n)

Byte Vocabulary Size (Vb)

64 128 256

4 0.79M 1.05M 1.57M
8 1.05M 1.57M 2.62M
16 1.57M 2.62M 4.72M

Table 21: Number of embedding parameters.

7200

subword
embedding

128 256 512 1024 2048 4096

Hidden dimension in FFN

0

2

4

6

8

10

Em
be

dd
in

g
pa

ra
m

et
er

s (
M

)

Embedding
parameters

33.5

34.0

34.5

35.0

35.5

36.0

BL
EU

 sc
or

e

34.00 ± 0.14

34.62 ± 0.12

35.00 ± 0.09
35.16 ± 0.10

35.44 ± 0.10
35.56 ± 0.15

BLEU score
of SWEBR

33.5

34.0

34.5

35.0

35.5

36.0

34.54 ± 0.10

BLEU score of
subword embedding

4 8 16
Number of Bytes for a Subword

34.2

34.4

34.6

34.8

35.0

35.2

35.4

BL
EU

 S
co

re

Vb = 64 Vb = 128 Vb = 256

Figure 8: Results on embedding parameters, vocabulary size, and number of bytes per subword. Left: The BLEU
scores versus hidden dimension in FFN and embedding parameters. Right: Comparison of mean BLEU scores for
different byte vocabulary sizes and different numbers of bytes per subword.

7201

