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Abstract

Supervised fine-tuning (SFT) is a widely used
and highly effective method for adapting Large
Language Models (LLMs) to specific tasks.
However, it often suffers from overfitting, caus-
ing models to excel on fine-tuned data but
struggle with unseen or rare real-world in-
puts. While recent methods like Reinforce-
ment Learning from Human Feedback (RLHF)
and Reinforcement Learning with Al Feedback
(RLAIF) aim to align LLMs with human val-
ues and tasks, they face challenges such as the
high cost of human labeling or instabilities and
biases inherent in using LLMs as judges. To
address these issues, we propose a novel ap-
proach called Reinforcement Learning from
supervised Alignment (RLA), which constructs
a supervised alignment to train the reward
model for reinforcement learning. Using only
100,000 MS MARCO samples, our method out-
performs RLAIF by a relative margin ranging
from +5.38% to +131.8%. It also significantly
enhances the baseline Llama3 LLM, achieving
up to +55% improvement on in-domain tasks
and up to +16% on out-of-domain tasks. While
RLA slightly underperforms supervised fine-
tuning (SFT) on in-domain benchmarks, it sur-
passes SFT by up to 50x on out-of-domain and
cross-task evaluations, demonstrating strong
generalization capabilities.

1 Introduction

Supervised Fine-Tuning (SFT) is a crucial tech-
nique for adapting Large Language Models (LLMs)
to specific tasks to enhance their accuracy, which
is widely applied to many downstream applications
such as text processing and analysis. However, SFT
is prone to overfitting when the model adapts too
closely to the fine-tuning dataset, losing its ability
to generalize. This results in a model that performs
well on familiar data but struggles with new, un-
seen, or more varied real-world scenarios.
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To address these challenges, there have been
methods proposed to enhance SFT generaliza-
tion (Krueger et al., 2021; Ye et al., 2025; Gupta
etal., 2025). However, these methods either require
capable base models that can follow user instruc-
tions, or may decrease their effectiveness under
more complex tasks or restricted time constraints.

Reinforcement learning with human alignment
in InstructGPT (Ouyang et al., 2022) combined
with RAG (Gao et al., 2023) have significantly
improved model responses’ factuality and align-
ment with user intentions. However, human
alignment faces three main challenges: the time-
consuming and costly nature of labeling human
instructions, the complexity and potential bias in
human values and intentions, and the inconsistency
in individual labelers’ interpretations. These is-
sues have led researchers to explore Al feedback
(RLAIF) approaches, such as RAIN (Li et al.,
2023), second thoughts (Liu et al., 2022), and self-
rewarding (Yuan et al., 2024), which use LLMs
for reward modeling. While these methods address
some human alignment limitations, they introduce
new concerns, including instability and error prop-
agation due to the lack of verified truth integration
in the learning process.

Our study presents a novel Reinforcement Learn-
ing with supervised Alignment (RLA) that auto-
mates the alignment process, eliminating the need
for human intervention or LLM-as-judge. RLA
utilizes an existing dataset as its foundation. For
each sample within the dataset, our target LLM
(to be improved on) is queried to generate a set of
responses. Subsequently, the semantic similarity
between each response and the sample’s label is
measured. The underlying hypothesis posits that
the semantic similarity value correlates positively
with response quality, such that higher similarity
indicates superior responses.

Following this assessment, the responses are sub-
jected to pairwise ranking based on their similarity
scores. This ranking process facilitates the gen-
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eration of training data, which is then employed
to train a reward model. This automatically de-
rived reward model serves as a substitute for the
conventional human-aligned reward typically used
in RLHF. This innovative approach potentially en-
hances the efficiency and scalability of the LLM
alignment process, while keeping its verifiability.

Formally, our method is composed of the follow-
ing three procedures as illustrated in Figure 1:

1. Supervised Alignment A First, we construct
a preference-based dataset, we call supervised
alignment, based on an existing linguistic
dataset D = {X, Y'"“¢}, with pairs of queries
X = {;}", and true responses V"¢ =
{yfrue}n | . We input queries to our target LLM
T4,., and generate K distinct responses. Then,
we compute the cosine similarity Cy;r, (Yik, Vi)
between the embeddings of each response and
its label, using this similarity as a proxy for pref-
erence to organize the K responses into (%)
"chosen" and "rejected" pairs. Each response
pair with its query is added to the supervised
alignment dataset (A). The procedure is de-
scribed in Algorithm 1.

2. Reward Model X A: Then, we train the reward
model (X) on the target LLM (7y f) using
A constructed in (1), which predicts how likely
a candidate response is the right output of an
input query.

3. Reinforcement Learning Framework RLA
Finally, we optimize the policy network ( 7y)
initialized by 7y, , using Proximal Policy Opti-
mization (PPO) and XA from (2).

Our major contributions are mainly from the
following aspects:

1. We introduce a novel learning method RLA that
improves the LLM generalization, i.e., accuracy
on out-of-domain data and few-shot and zero-
shot cross-tasks.

2. RLA does not require manual effort for human
alignment in RLHF but automatically construct
it using existing datasets.

3. RLA uses a small training set without needing
any other LLM than the target LLM in the pro-
cess as in RLAIF, thus is more stable.

4. Our method outperforms SFT experimentally.
Our experiments demonstrates significant im-

provements in QA accuracy on in-domain dataset
and consistent improvements on out-of-domain
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Figure 1: Methodology Workflow

and zero-shot/few-shot tasks, offering an effective

method to enhance the generalization of LLMs.
We will give details on related work, methods,

experiments, and conclusion as follows.

2 Related Work

Our method inherits the RLHF framework and su-
pervised learning’s data observation and aim to
improve them in the following perspectives:

SFT: Both SFT (Zhang et al., 2024; Wei et al.,
2021; Brown et al., 2020; Radford et al., 2021;
Chung et al., 2024; Wei et al., 2022) and our
method aim to maximize the likelihood of sam-
ple labeling in existing datasets. However, our
method achieves better generalization than SFT by
leveraging the RLHF framework, where the Gen-
eralized Advantage Estimation (GAE) (Schulman
et al., 2015) algorithm and trusted region policies
provide more stable and generalized results com-
pared to applying gradient ascent directly on the
training data, by addressing temporal dependen-
cies and credit assignment, and reducing variance
and overfitting in gradient estimates, leading to
noise resilience and low variance. Additionally, the
clipping mechanism in Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) prevents drastic
shifts in the learned distribution, reducing the risk
of converging to local optima. Lastly, the ranking
strategy in reward dataset construction mitigates
numerical instability by focusing on relative dif-
ferences among candidates, making the learning
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process more robust.

RLHF: We replace human alignment in
RLHF (Ouyang et al., 2022) with our supervised
alignment method, offering three main advantages:
(1) It is cost- and time-efficient, enabling rapid,
low-budget scalability; (2) Leveraging existing
verified datasets introduces reliable, linguistically
grounded guidance and reduces bias from environ-
mental variability; (3) Fixed datasets and metrics
improve reproducibility, ensuring more consistent
and stable development.

RLAIF: Recent work in language model align-
ment explores methods that reduce or eliminate re-
liance on human feedback, including RLAIF (Bai
etal., 2022), RLCD (Yang et al., 2023), ReST (Gul-
cehre et al., 2023), RAIN (Li et al., 2023), and
Self-Rewarding LMs (Yuan et al., 2024). Other
strategies involve direct reward model parameteri-
zation (Rafailov et al., 2023), zero-shot critics (Gal-
lego, 2023), and SECOND THOUGHTS (Liu
et al., 2022). More recent approaches include
DLMA (Liu et al., 2024), which leverages con-
trastive prompts, and FLAME (Lin et al., 2024),
which focuses on factual alignment.

Our RLA approach differs from RLAIF by us-
ing verified datasets, addressing core RLHF align-
ment challenges: (1) RLA improves reliability
and transparency through grounded sources, while
RLAIF risks spreading misinformation or bias if
unchecked; (2) RLA mitigates error propagation
and reduces bias and hallucination tied to LLM-
generated rewards; (3) RLAIF lacks stability and
reproducibility due to variability in outputs from
opaque coach LLMs. In contrast, RLA’s direct
use of verified data ensures greater stability, inter-
pretability, and factual accuracy.

System Baselines of QA/FFV w./w.o. RAG Re-
cent advancements in Question Answering (QA)
and Retrieval-Augmented Generation (RAG) in-
cludes but not limited to (Yang et al., 2014; Zhang
et al., 2018; Iyyer et al., 2014; Yih et al., 2015; De-
vlin, 2018; Brown et al., 2020; Raffel et al., 2020;
Izacard et al., 2023; Lewis et al., 2020; Gao et al.,
2024b; Thorne et al., 2018). In this work, we take
these work as our system baselines to improve on
by training our RLA using RAG on QA in-domain
dataset MS-MARCO and test on other datasets and
tasks such as Fact and Fairness Verification (FFV)
UniLC (Zhang et al., 2023), both with and without
the search function.

3 Methods

Our method automatically generates the alignment
by computing the similarity of our query responses
and its labels in the existing dataset. In following,
we will describe its three main components: the
supervised alignment A , the reward model (3a),
and the reinforcement learning framework RLA.

3.1 Supervised Alignment A

In this section, we describe how to construct Super-
vised Alignment A as the training dataset to build
the reward model XA that will be introduced in
Section 3.2. Our assumption is that given a dataset,
its labels are ground-truth, and for every sample,
the closer a candidate hypothesis to the label, the
better quality the hypothesis is.

We input the queries and web contexts (we call
them as queries for simplicity) from the given
dataset (e.g., QA dataset) into the pre-trained LLM
that we shall improve on, along with a simple sys-
tem prompt provided in Appendix D. For each
query sample, we generate K distinct responses.
We then compute the cosine similarity between
each response and its label, using this similarity as
a proxy for preference to organize the K responses
into (g ) "chosen" and "rejected"” pairs.

We formalize the given training data as a set of
sentence pair after embedding D = {X, Yirue},
where X = {z;}I' ; and Y'"ve = {ylrueln . x;
is a sentence input. n is the training set size. For
each x; € X (e.g., question query in QA), its cor-
responding label is given as y!"“¢ (e.g., response).

The complete algorithm to generate the super-
vised alignment dataset is shown in Algorithm 1.
Given an LLM to improve on, we call it “target
LLM", denoted as 7y, , (that will be updated as
the policy network 7, in PPO) with its initial pa-
rameters ¢y, we apply the LLM 7, . on each
of the query input z; and get a list of response
outputs {y;x}=_,, where K is the number of LLM
generated candidate responses:

{yitic: = 7o, (x1) (1)

true

For each y;""¢, we pair it with y;,, where k €

{1,---, K}, and measure the cosine similarity of
a candidate response with the true response:

/
Coim ik, Y'ik) = 7071 2
N ([T
K K

Here, V = {yzk}?kzl and V' = {ylik}Zkzlv

where ¢/, = y!™¢. We use a sentence Transformer

model (Reimers and Gurevych, 2019a) to compute

the cosine similarity Cly;, (vik,y';) between the
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embeddings of each k;;, generated response v;;, and
the original dataset’s ground truth y{™ over all 4y,
samples in the data.

Cosine similarity was chosen for its scalabil-
ity, interpretability, and ability to capture seman-
tic alignment in normalized embedding spaces,
offering a more flexible alternative to surface-
form metrics like BLEU or ROUGE (Sidorov
et al., 2014). Embedding-based methods such as
BERTScore, which rely on cosine similarity, have
shown stronger correlation with human judgments
(Zhang et al., 2020), and embedding-enhanced
ROUGE variants further improve evaluation ro-
bustness (Ng and Abrecht, 2015). Its stability
across different sentence encoders also supports
reliable, large-scale reward construction (Reimers
and Gurevych, 2019b), making it well-suited for
our alignment framework.

We compare all candidate responses ;i pair-
wise for each 7 and assume that the one with
higher cosine similarity Cg;,(-) to the true re-
sponse y',;. = y*""¢, is accepted yjccemed, while the
lower one is rejected 3//9°“*?. Each pair of candi-
dates with their ranking (32", /9°°*d) together
with their input query x; is added to the supervised
alignment A that we will use to train our reward
model X A in Section 3.2.

true

3.2 Reward Model XA

For any input query x; and an output response (),
our reward model XA (x;, y;x ) predicts whether
is an accepted response or a rejected one.

To build our reward model XA, we first initialize
it with a pre-trained LLM, for example, here we pre-
train on Llama3-8B (Dubey et al., 2024). After that,
we further train our reward model XA on super-
vised alignment A constructed in Algorithm 1 in
Section 3.1, analogously to InstructGPT (Ouyang
et al., 2022). This is a Supervised Fine-Tuning
(SFT), and the objective loss function to train >
follows Bradley-Terry (Ouyang et al., 2022):

Lya == By ypyn~a [
(3)
log (0 (Xa (@i, y') — Xal®i,y;)))

where:
* Ly, isthe ¥ loss.
¢ 0 denotes the parameters of the Y.
* 0 is the sigmoid function.
* z; is the ¢-th input query.
* Y a(w;,y;) is the reward model’s score for the

Algorithm 1: Construct Supervised Align-
ment A

Input:

LLM 7y,

Queries {x;}!" ;.

Ground Truth Responses {y{™}""_,,

Output: Supervised Alignment A
1 foreach query x; in {z;}?_, do

2 for k = 1 to K (response generations)
do
3 Generate response y;x
4 L using Tess [Eq.1]
5 Compute cosine similarity
Csim (yik:a y/ik); [Eq.2]
6 Rank responses {yix }X_;
7 | Create (12{ ) pairs of ""accepted" and
""rejected" responses, where
Csim (y?ccepted’ y;rue) >
Csim (ylr‘ejected’ ygme);
8 Add entry (x;, y?ccepted, yiejeCted) to A ;

9 Return A ;

accepted response y;' given x;.
Finally, we create an extra classification head at
the last layer of 2 A that computes log-probabilities
for accepted and rejected input pairs.

3.3 Reinforcement Learning Framework RLA

Our method aims to optimize a target LLM 74 us-
ing reinforcement learning with the reward model
YA in Section 3.2 trained on our supervised align-
ment A in Section 3.1. This section describes the
reinforcement learning framework.

The series of LLM 74 updates can be viewed
as a sequential decision-making process and can
be modeled by a Markov decision process (MDP),
consisting of four elements: a set of states S, a set
of actions A, a transition function P : Sx AxS —
[0, 00), and a reward function R : § — R. Given
an MDP (S, A, P, R), the goal of a reinforcement
learning system, or an agent, is to learn an optimal
policy function 7, which is a mapping from the set
of states S perceived from the environment to a set
of actions A, or formally 7 : § — A (Uc-Cetina
etal., 2021).

In our training context, the MDP elements
(S, A, P, R) are specified as follows:

o S € REXE representing my(w;) for {z;}1 ;.
Note that R denotes real-valued embeddings and
E the embedding dimension. Throughout the

7168



Algorithm 2: PPO Training Algorithm
Input: Target LLM to improve 7y,
Reward Model X,
Queries {z;}!" ;

1 Initialize 7y < 7y,

o Vi <= XA, 01
2 foreach epoch in n_epochs do

3 foreach batch do
4 (D Generate response
5 y; from 7y (z;); [Eq. 4]
6 @ Compute reward
7 Ea(wi, yi); [Eq. 5]
8 3 Compute values
9 Voo (s, i) [Eq. 6]
10 @ GAE
1 fort =T —11t00do
12 L Compute Advantage A;; [Eq. 7]
13 foreach minibatch in batch do
14 Generate response
15 y; from 7y (z4);
16 ) Compute Loss
17 Liotals [Eq. 13]
18 ® Gradient Ascent on Lo to
update 7y and V,,; [Eq. 14]
19 11+ m;
20 1+ 1;

21 Return 7y;

paper, we use "textual embedding" and "text"
interchangeably—e.g., x; and y; represent the
embeddings of the textual query and response,
respectively.

« A € RIVIXE representing the probability dis-
tribution over the next token output in response
over the vocabulary with a size of |V].

* ‘P, which governs token generation dynamics and
is defined by Algorithm 2.

* R, our reward model XA trained on our super-
vised alignment A.

Algorithm 2 describes the details of the rein-
forcement learning procedure. The goal is to it-
eratively improve the target LLM, i.e., the policy
network 7y, which is initialized with 7y, e We
train 7, using the given query data {x;};"; and
the previously trained reward model > A in Equa-
tion 3. ¢ is the counter going through each of the
query sample, and the value network V/,, is initial-
ized with our reward model X A, which is frozen
during RLA training. Algorithm 2 is composed of

six steps sequentially:

Step 1: Generating Responses For each query
¢; in the batch, the policy network 74 generates a
response y; and produces its token-level log probs:

Yi = me(T5)- 4)

Step 2: Reward Evaluation The reward model
YA evaluates each query-response pair (x;, y;) ap-
plying a negative KL term Dy (-||-) to prevent the
policy 7y from moving too far from the reference
model 7y,

Easiy = log Py, (vilzi)— (5)
B - Dxi(logPr, (yilzi) || logPr,  (yilzi)))

To simplify our notation, we use s;; to denote the
state that contains the ¢-th query and the response
output generated up to the ¢-th token (z;, yf), and
s;7 means the query and the full response (x;, y;).

Step 3: Value Function To estimate the expected
return of a query-response pair, we learn a value
function V,,, where w represents the trainable pa-
rameters of the value function. Here, we initialize
V., with our reward model XA :

szit ~ EAsit + V/wsit (6)

V’ us;, is computed in the beginning of each batch
as a reference and denotes the past prediction of
the future reward, which is calculated through roll-
outs as shown in A. At the token level, the value
head provides an estimate of the return for each
token position in y;. These estimates are then com-
pared against the actual returns (computed from
the observed rewards) to produce the value loss as
formalized in 10.

Step 4: GAE for Advantage We use GAE
function to compute Advantage A; for all ¢ €

{1,--, T} tokens of each response y; using Equa-
tion 15 and 16 in Appendix A as follows:
As,, = GAE(XAsy,, Visy,) (N
We compute the return value as:
Ry, = Asyy + Vs, )

Step 5: Loss Functions We compute three PPO
loss over mini-batches with multiple epochs:

Policy Loss Lppo: We use the clipped PPO
surrogate function:

1 i T '
Lppo = W Z tzz; E [ min (T¢Sit ASit?

i

®
clip(rgs;, 1 — €, 1+ ¢€) Asitﬂ ,
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P7T¢ (yl’xz)

Tgg, = — .
P P, (yilz;)

where 7¢(¢) is the divergence ratio, and m is mini-
batch size. ¢ is overloaded as a counter the sample
and its own range. Thus, the sum over ¢ ranges
from the counter 7 in Algorithm 2 to ', and for the
brevity of equations, we seti’ =i +m — 1.

Value Loss Ly ,: We implement value-
function clipping, combining both the standard
value loss and the clipped variant, defining the final
loss as the maximum of the two:

Ly = &;ZE{(RSH — szuﬂ (10)

i T
Ly, = % > > E[(R,, — clip
t=1

i

(1)
/ / 2
(szit’ V wsiz — €v, V wsiz T Gv)) }

i T
Lvia = % Z ZE[maX(ﬁv, E‘/clip):| (12)
i t=1

V' s, stands for the value in the former step, m
is the mini-batch size, and R; the return at token
level t.

Total Loss Liota1: The overall loss is

(13)

where ¢, serves a hyper-parameter, scaling the
value loss’s contribution to the total loss.

Liotal = Lppo + ¢y - Ly,

Step 6: Gradient Ascent In the mini-batch, we
update the policy parameters ¢ and value parame-
ters w by gradient ascent on Loy

(¢7 (,U) — (¢a LU) +n v(¢,w)£totala

where 7 is the learning rate.

Summarizing the whole process, each epoch is
subdivided into multiple batch, and each batch into
mini-batches for efficiency. During each batch step,
we compute the forward pass of the policy g
and value function Vs, and over the mini-batches
compute loss forward then perform a backward
pass in 7y, V., and then apply gradient ascent.

(14)

4 Experiments

4.1 Training

Training Dataset We perform model training on
MS-MARCO (Bajaj et al., 2016) QA dataset with
Algorithm 1 and 2 in Section 3.1, 3.2, and 3.3. This
dataset offers both mixed short open-ended and

span label formats, where each sample consists of
a query with web context information provided in
the form of links and their respective text snippets
(x;), and the corresponding sample label response.

Parameter Settings We initialize w4 with
Llama3-8B (Dubey et al., 2024) and V,, with XA
and set hyper-parameters as follows (please refer to
Appendix B for detailed information on optimiza-
tion):

Supervised Alignment A: We use Algorithm 1
to construct the dataset, setting the number of gen-
erations n per sample to 3, the temperature of the
model to 1, the nucleus sampling parameter top-
p to 0.9 and the maximum number of generated
tokens to 32. We use the all-MiniLM-L6-v2 check-
point of Sentence Transformer.

Reward Model XA: The model is trained for 2
epochs with a batch size of 4 and gradient accumu-
lation steps of 8. We use Brain Floating Point 16b:t
format (bf16) to feed tensors and set the learning
rate to 1.0x 10~*. For LoRA, a rank decomposition
of 64 and LoRA scaling factor of 16, using a Nor-
malized 4bit floating-point (n f4) quantization to
load the model such as implemented by (Dettmers
et al., 2024). Note that for all training and inference
stages, for all models, we use Parameter-Efficient
Fine-Tuning (PEFT) (Han et al., 2024).

RLA (Policy 74 and Value V,): We conduct
the PPO fine-tuning stage in bf16 format using
DeepSpeed Zero2, setting 80, 000 training episodes
(equivalent to 1 epoch), a batch size of 4 per GPU,
and a learning rate of 3x 10~%. The number of PPO
epochs was fixed at 1, and the penalty for missing
end of sequence tokens is set to 1.0. For LoRA,
we also load in n f4 quantization and adapters with
rank decomposition of 32 and LoRA scaling factor
set to 16.

Hardware At each training stage, utilize Deep-
Speed Zero2 Stage Optimization (Rajbhandari
et al., 2020) for efficiency, replicating the mod-
els through eight NVIDIA H200 GPUs connected
via NVLink, each with 141 GB of memory. Our
server contained 208 cores of INTEL(R) XEON(R)
PLATINUM 8558 processors.

4.2 Evaluation

We evaluate RLA’s performance across four dif-
ferent tasks: open ended QA, Multiple Choice
QA, Fact and Fairness Checking. While evaluat-
ing in different tasks, we adapt the system prompt
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Model | Csim | R-L R-1 [ BLEU
Without Search
Llama3 51.49 21.56 24.72 19.53
SFT 57.70 25.56 27.29 21.88
RLAIF 51.77 21.89 24.78 18.94
RLA-CE 50.86 20.13 23.27 18.60
RLA 56.84 24.87 26.69 19.96
+% L. +10.4 +15.4 +7.99 +2.24
+% SFT -1.49 -2.70 -2.20 -8.78
+% RLAIF | +9.79 +13.61 +7.71 +5.38
With Search

Llama3 52.03 24.72 28.41 21.62
SFT 64.81 39.54 41.50 34.96
RLAIF 45.25 16.60 19.11 14.85
RLA-CE 52.07 24.53 28.08 21.21
RLA 64.26 38.48 40.50 29.71
+% L. +23.5 +55.7 +42.5 +37.4
+% SFT -0.85 -2.68 -2.41 -15.04
+% RLAIF | +42.01 | +131.81 | +111.93 | +100.07

Table 1: Accuracy[%] of Llama3, SFT, RLA-CE, and
RLAIF on in-domain MS-MARCO test set measured
by cosine similarity, F1 Scores (ROUGE), and BLEU
with and without web search context. R.-L denotes
ROUGE-L. +% Llama3/SFT/RLAIF: RLA’s relative
improvement over Llama3/SFT/RLAIF.

for each case, as in Appendix D. We utilize four
kinds of evaluation metrics (Bajaj et al., 2016): co-
sine similarity, Exact Match (EM), ROUGE:s (Lin,
2004), and BLEU (Papineni et al., 2002).

Baselines We include three baselines: (1) the pre-
trained target LLM Tpres of Llama 3; (2) a SFT
of the same Llama3 base-checkpoint with the MS-
MARCO dataset; (3) the SotA RLAIF implemen-
tation (Lee et al., 2023) also using MS-Marco to
train the Reward Model. We set the temperature to
0.2 across all tasks.

4.2.1 In-Domain: QA on MS-MARCO

Dataset: We evaluate on in-domain test set MS-
MARCO using the original test set provided by the
dataset of MS-MARCO. This dataset offers both
mixed short open-ended and span label formats,
along with web-context snippets and corresponding
source URLs, that we treat as part of query x;.

Results: Table 1 reports the mean precision
across test samples. For MS-MARCO queries
with multiple reference answers, we use the high-
est score among them to ensure fair comparison.
While RLA performs comparably to the SFT base-
line, it clearly outperforms both the base LLM
(LLaMA 3) and the RLAIF model trained on the
same data. We attribute this to RLA’s direct re-
ward modeling approach, which leverages intrinsic
data similarities instead of relying on an untrained

LLM-as-a-Judge. To assess the role of cosine sim-
ilarity, we conduct an ablation replacing it with
cross-entropy (RLA-CE) during the reward mod-
eling stage. RLA-CE consistently underperforms,
reinforcing the effectiveness of cosine similarity
for alignment.

4.2.2 Out-of-Domain: QA on TriviaQA

Dataset: TriviaQA (Joshi et al., 2017) is another
open QA task composed of multiple subsets. Com-
pared to MS-MARCO, two key differences are that
the average label length is shorter, and the dataset
does not provide web context information for each
query. So, each query contains only URLSs and
corresponding text snippets additionally.

Results: During evaluation, we use LM-
evaluation-harness (Gao et al., 2024a) to generate
responses for each query and collect metrics
against the labels, both with and without Web
Context. Table 2 shows that SFT exhibits reduced
performance on this out-of-domain test set, with
a more significant drop when Web Context is not
provided. In contrast, our method performs well
in both scenarios, with a notable improvement
when Web Context is included, indicating strong
out-of-domain generalization.

4.2.3 Cross-Task Few Shots: MCQA on
TruthfulQA

Dataset: As Few-Shot cross-task evaluation, we
use a variant of open-ended QA, Multiple-Choice
QA (MCQA) presents a question and a set of
choices to select. The system prompt in this task is
very different than the QA tasks. Truthful QA (Lin
et al., 2021) is specifically designed to evaluate
performance on adversarial questions, rendering it
well-suited for assessing our method’s ability to fil-
ter out misleading information from the Web. The
benchmark comprises multiple tasks; we focus on
MCI for a single correct answer and MC2 for mul-
tiple correct selections. Truthful QA also does not
provide Web-based context.

Results: Table 4 presents the consolidated results
for both conditions: with and without Web context,
alongside the system prompt. Both in MC1 and
MC2, RLA stays on par with the baseline LLM,
specially when provided with search results, while
SFT significantly underperforms both in MC1 and
MC2, with a slight improvement when using search.
This instability is likely due to the overfitting.
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Model | Cyum | EM [ ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU | Avg.
Without Search
Llama3 78.05 57.14 65.42 28.57 65.31 61.98 59.41
SFT 27.92 1.16 8.26 1.83 7.89 6.47 8.92
RLA 78.87 59.63 66.32 28.18 66.24 63.57 60.47
+% Llama3 +1.05 +4.36 +1.38 -1.37 +1.42 +2.56 +1.78
+% SFT +182.56 | +5042.24 +702.66 +1440.44 +740.04 +882.68 | +578.21
With Search
Llama3 83.84 66.90 76.87 38.68 76.72 69.27 68.71
SFT 74.76 53.31 62.61 28.26 62.45 59.24 56.77
RLA 91.16 77.36 85.91 42.00 85.81 78.00 76.71
+% Llama3 +8.72 +15.64 +11.76 +8.58 +11.85 +12.60 | +11.64
+% SFT +21.99 +45.19 +37.25 +48.63 +37.41 +31.69 +35.15

Table 2: Accuracy [%] of Llama3, SFT+, and RLA on 3-shot out-of-domain TriviaQA dataset. EM: Exact Match.

Model | Metric | Climate | PubHealth | Fact Avg. | HSD | SBIC | Fairness Avg. [ All Avg.

Without Search
Llama3 Acc 77.40 77.40 77.40 75.10 | 81.28 78.19 77.80
F1 58.24 69.58 63.91 79.45 | 87.04 83.25 73.58
+SFT Acc 67.36 73.15 70.26 78.66 | 75.36 77.01 72.64
F1 50.67 64.24 57.46 80.23 | 81.29 80.76 69.62
RLA Acc 77.73 78.01 77.87 76.57 | 80.71 78.64 78.26
F1 57.20 68.87 63.04 80.00 | 86.28 83.14 73.09
With Search
Llama3 Acc 75.74 86.12 80.93 71.76 | 80.09 75.93 78.43
F1 62.84 80.62 71.73 76.27 | 86.49 81.38 76.56
+SFT Acc 42.11 72.75 57.43 55.86 | 73.29 64.58 61.01
F1 47.34 71.59 59.46 68.92 | 83.96 76.44 67.95
RLA Acc 77.51 85.92 81.72 72.80 | 79.83 76.32 79.02
F1 63.70 79.77 71.74 76.53 | 85.99 81.26 76.50

Table 3: Accuracy [%] of Llama3, +SFT, and RLA-LLM Across Datasets in the Zero-Shot UniLC Benchmark.

Model Without Search With Search
MC1 MC2 MC1 MC2
Llama3 37.33 | 54.39 40.88 | 60.38
SFT 31.09 | 47.07 36.6 51.31
RLA 37.33 54.2 41.37 | 59.68
+% Llama3 | 0.00 -0.35 +1.19 -1.16
+% SFT +20.08 | +15.15 || +13.02 | +16.32

Table 4: Accuracy [%] of Llama3, SFT, and RLA on
6-shot Multiple-Choice TruthfulQA, MC1 and MC2.

4.2.4 Cross-Task Zero Shot: Fact and
Fairness Verification on UniLC

Dataset: Fact and Fairness Verification (FFV)
presents the greatest challenge in our experi-
ments due to its divergence from the training
domain of 74 and task. UniLC contains multi-
ple FV datasets. Specifically, it uses subsets of
Climate-FEVER (Diggelmann et al., 2020), Health-
PUB (Kotonya and Toni, 2020), Hate Speech Detec-
tion (HSD)(de Gibert et al., 2018), and SBIC(Sap
et al., 2019), adopting a binary classification of
’SUPPORTED’ and 'NOT SUPPORTED.’

Results:  As shown in Table 3, 74 slightly outper-
forms 7y . in accuracy across most metrics, both
with and without search. In contrast, SFT strug-
gles to generalize, particularly when provided with
search results. Overall, RLA demonstrates general-
ization capability in fact-checking performance.

5 Conclusion

We introduce RLA that trains the Reward Model
used in reinforcement learning leveraging a exist-
ing labeled dataset. Our approach improves the
accuracy of the QA across data sets in the domain
and out of the domain and in cross-tasks few-shot
and zero-shot scenarios, resulting in a more gener-
alizable learning method.
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Limitations

Our method excels across QA tasks, generaliz-
ing well with web search and across domains but
has limitations. It may inherit biases from MS-
MARCO, particularly in underrepresented areas
like complex fact-checking. Reliance on web
search risks amplifying misleading snippets, and
dataset labels, treated as ground truth, may not
always reflect factual correctness. Future work in-
cludes refining retrieval, expanding training dataset
for scalability, and improving fine-tuning. To bal-
ance cost and efficiency, we optimized our ap-
proach to achieve competitive performance while
spending a total of 1, 500 on training and evalua-
tion, accounting for the need to train both a reward
model and a fine-tuned policy, unlike standard su-
pervised fine-tuning, which requires only a single
model.

Ethics Statement

This work leverages large language models (LLMs)
and web-sourced data, which inherently risk prop-
agating inaccuracies or cultural biases from their
training material. Practitioners should apply these
models thoughtfully and for research purposes, par-
ticularly in sensitive areas like healthcare or so-
cietal decision-making. Transparent reporting of
performance and limitations remains important for
accountability. Our experiments aim to advance
more reliable and aligned LLMs, but overseeing is
necessary to ensure their responsible use and broad
societal benefit. We have used LLM to improve the
grammar.

In this paper, we uphold ethical principles by
utilizing a small dataset as verifiable resource with
100, 000 samples to achieve performance on par
with costly human labeling and large, black-boxed
LLMs. Our method aims to enhance the general-
ization performance of LLMs while being more
cost-effective and resource-efficient. We place a
strong emphasis on transparency and explainability,
ensuring that our model’s decision-making process
is interpretable and accessible, in contrast to the
opaque nature of larger models. For all generation
tasks, we report the maximum metric score across
five independent trials to ensure robustness and fair
comparison. Ethical considerations are central to
our approach, including the responsible sourcing
of data, safeguarding privacy, and acknowledging
the limitations and potential biases inherent in our
methodology. We utilized Copilot code genera-
tors to assist in writing certain code components,

acknowledging their efficiency while remaining
mindful of potential biases or inherited patterns in
the generated code. The search data mined from
the web is used strictly for research purposes and
should be treated carefully. While we took mea-
sures to anonymize any non-public figures, users
should remain aware of potential privacy consider-
ations when working with web-sourced data. By
improving generalization performance in a more
transparent way, we aim to make LL.Ms more ac-
cessible and accountable, ultimately contributing
to the responsible development and deployment of
Al systems.
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A Generalized Advantage Estimation
(GAE)

Generalized Advantage Estimation (GAE) (Schul-
man et al., 2015) provides a bias-variance trade-off
mechanism to compute advantages efficiently, espe-
cially when dealing with variable-length sequences,
such as tokens in natural language. Let ¢ denote a
discrete time step, typically corresponding here to
successive tokens in the generated response. De-
fine the temporal-difference (TD) error at each time
step ¢ as:

6 = A, + Y Vi(sta1) — Vio(se)

where:
* v € (0,1) is the discount factor, controlling
how much future rewards contribute to current
value estimates;

15)

* X, is the reward obtained at time step ¢;

e s; is the "state" the value model sees at the
t-th token (or t-th step in a rollout), which typ-
ically includes both the query and the partial
response generated so far.

* V,,(s¢) is the value estimate at time step ¢.

Then, GAE recursively computes the advantage A;
by smoothing these TD errors:

Ap =0 + YA Ay (16)

where A € (0,1) is a hyper-parameter controlling
the balance between bootstrap (high A) and imme-
diate TD error (low A). At a high level, GAE relies
on partial rollouts—here across tokens—so that the
advantage at each token step captures how much
better or worse the model performed compared to
its baseline value.

B Training Analysis

In addition to the performance evaluations in the
final NLP tasks, we exhibit training analysis across
the experiments for both Reward Modelling and
PPO RL.

B.1 Reward Modelling

Figure 2 illustrates the training loss and evaluation
accuracy over the course of global_steps, which
can be calculated through (per_gpu_batch_size
* n_gpu * n_gradient_steps),  where
per_gpu_batch_size stands for how many
samples fit into a single GPU during each forward
pass; n_gpu, being the number of used GPUS
and n_gradient_steps for how many forward
passes are accumulated before applying a step
optimization.

train/loss

0.7
0.68
0.66

0.64

0.62

500 1k 1.5k

eval/accuracy
0.62

0.6
0.59
0.58

ol train/global_step

200 400 600 800 1k 1.2k 1.4k 1.6k

Figure 2: Reward Model Training Loss and Evaluation
Accuracy over global training steps.

for 2 epochs. As training progresses, the loss
consistently decreases, suggesting that the model
is effectively learning to choose the ’chosen’ re-
sponse from the input pair. Although the observed
fluctuations are typical due to the stochastic nature
of the optimization process, their magnitude also
increases over time. This movement correlates with
how the grad_norm also behaves during training,
increasing over time from the 800th global step
and suggesting that the gradient updates are no
longer consistent.

The accuracy increases steadily, suggesting that
the model is generalizing well to unseen data. Af-
ter observing the first significant decrease in the
evaluation accuracy, we halt the training and use
the model with the best value.

B.2 RL-PPO Training

Figure 3 illustrates key metrics during PPO train-
ing, including the score adjusted by the KL diver-
gence, the KL divergence itself, and the Average
Value Loss over the global_steps.

The left plot of Figure 3 shows the metric that we
gave more attention during training, the difference
between the score and the scaled KL divergence,
which increases over time, indicating policy im-
provement while maintaining stability. The middle
plot displays the KL divergence, which decreases,
suggesting that the new policy remains progres-
sively closer to the old policy, ensuring stable up-
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Figure 3: PPO Model Training Analysis on Rewards (Reward Score - 8 * KL), KL divergence and Value Loss

across global_steps
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Figure 4: PPO Model Hyper-parameter optimization trials over cosine similarity acheived on evaluation dataset

split.

dates. The right plot presents the average value loss,
which gradually decreases, demonstrating that the
value function is indeed learning how to predict the
reward.

Config parameter Importance ® Correlation

Runtime s sm— o |
lam - o
missing_eos_penalty - G
KI_coef a —
learning_rate a s
cliprange ( |

num_ppo_epochs

Figure 5: Correlation and importance of PPO Model
Hyper-parameter metrics obtained during optimization

Figure 4 shows the results of a hyper-parameter
optimization over cosine similarity achieved on the
validation split (2% of traininf data) of the MS-
MARCO dataset. The following metrics were op-
timized: (1) cliprange , € (0.2) present at 9; (2)
kl_coef, 8 5 (0.05); (3) lambda, A (0.95) 16; (4)
learning_rate, 1 14; (5) missing_eos_penalty (1),
4.1; num_ppo_epochs 4.1 (1). The optimization
used Bayesian Primer (Dewancker et al., 2015)
algorithm to efficiently select the next candidate
parameters. For the remaining hyper-parameters in-
cluded in the official PPO algorithm, we use default

configurations of Huggingface main implementa-
tion. Even though on the validation set we see
slight improvements over the achieved cosine sim-
ilarity, no significant improvement was achieved
on the test-set after using the best hyperparameters.
Looking at Figure 5, which shows the correlation
and importance of each parameter in influencing
the cosine similarity, we observe that runtime has
a substantially pronounced participation. We then
theorize that experiments spanning a higher run-
time could improve even further RLA results.
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C Variables and Notation Map

Variable Description Equation
K Number of distinct responses generated per sample when building | —
the preference-based reward dataset

T The i-th query in the dataset 1,1,1,3,2,4
5

St The "state" the model sees at the t-th token 6,7,8,9

Y The i-th response generated by the LLM 1,2,

ys and y; The ith accepted (or chosen) and rejected generated response pair | 3

Csim(yik, ') Cosine Similarity between ith, kth,generated response and ith 2

A
XA
¢
7T(/z)mf
s

B

EAsiT

KL [my]76,]
Viosi

V/wsit

Ot
ol
R

Sit

Ay

Ly
Lppo
T¢sit

‘chlip
Etotal

Cy

label

The Supervised Alignment Data

Reward model aligned with A

Parameter set of the trainable policy (LLM)

Reference (pre-trained) policy kept fixed to constrain divergence
Last updated policy

KL penalty coefficient controlling divergence from the reference
policy

Scalar reward predicted by the reward model for response y;
KL divergence measuring how far the policy 7y is from 7y,
Value estimate at time step t

Value estimate at time step t for last updated Value Function
Temporal-Difference (TD) error at time step ¢

Discount factor (0 < v < 1) controlling contribution of future
rewards

Return at time step ¢

GAE parameter (0 < A < 1) controlling the bias-variance
trade-off in advantage estimation

Advantage at time step ¢

Bradley-Terry ranking loss used to train the reward model
PPO policy loss (clipped surrogate objective)

Probability distribution ratio between new and old policy for
token ¢

Value loss, comparing V, to observed returns

Mini batch size for ppo updates

Clipped version of the value loss used in PPO

Overall PPO loss function combining policy and value losses
Scaling coefficient for the value loss term in the total loss
Learning rate for gradient-based optimization

, 8,10, 11

AN N L

15, 16
15, 16

15,8
16

16, 8,9

9,13
10

10, 13
6,9
11

13

13

14
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D Prompts used for Training, Inference
and Evaluation

Task System Prompt User Prompt
MS- "You are a helpful online Assistant | "User Question:"
MARCO that received Information from the

(Reward Web to ground your response. Given a

Dataset, Query and some pieces of information

PPO Train- | that you have just retrieved from the

ing, Evalua-
tion)

web, you should provide a very short
and concise reply to the user question
using the information retrieved from
the web. Just answer the question, do
not provide any other information.

WEB INFORMATION: context"

Truthful QA | "You are a helpful assistant that answers | "Given a question and multiple answer

MC1 questions such as the user instructs." choices, select the only correct answer.
The model’s selection is the answer
choice to which it assigns the highest log-
probability of completion following the
question, independent of the other answer
choices.
The following are examples of correct an-
SWers.
golden_inputs
Output ’1°, °2°,°3’,°4°,°5’ etc. (number
in front of answer choice). Full answer not
needed."

TruthfulQA | "You are a helpful assistant that answers | "Given a question and multiple answer

MC2 questions such as the user instructs." choices, select all correct answers.
The following are examples of correct an-
SWers.
golden_inputs
Output the indices of all correct answers as
a python list (e.g. ’[1, 3, 4]’). Full answers
are not needed."

CLIMATE- | "You are a language safety checker as- | "Someone said: claim

FEVER, sistant. If the Claim is unfactual or bi- | Question: Is it fair to say that?

PUB- ased, the answer is no. If the claim is | Answer:"

HEALTH, factual and respectful, the answer is yes.

HSD, SBIC | Just answer with yes or no."

TriviaQA "You are a helpful assistant. Given | "golden_input + question”

some examples of how to answer a ques-
tion, answer the last question and noth-
ing else:"
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E Cherry Picked Examples of Base
Llama 3 and RLA Generations

tory

a violation is a
breach of a law
or of a code of
behavior.

formation, a violation is
defined as “a breach of a
law or of a code of behav-
ior” and can also be re-
ferred to as an infraction,
transgression, or offense
against the public welfare.
(0.9463)

Question Label PPO Generation (Cos | Base Model (Cos Similarity)
Similarity)

Traits that are derived | Homologous Homologous. (0.9715) Derived characters. (0.2054)

from a common ances-

tor are said to be

Violation definition his- | The definition of | According to the web in- | According to Wikipedia, the

concept of probation first de-
veloped in the United States
in 1841 when John Augustus,
a Boston cobbler, persuaded
a judge to give him custody
of a convicted offender for a
brief period and then helped
the man appear rehabilitated
by the time of sentencing.
(0.0796)

The lungs contain alve-
oli and air sacs true or
false

true

TRUE (1.0000)

TRUE. The small air sacs
in the lungs where gas ex-
change occurs are called alve-
oli. (0.0437)
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