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Abstract

Selecting appropriate training data is crucial for
instruction fine-tuning of large language mod-
els (LLMs), which aims to (1) elicit strong capa-
bilities, and (2) achieve balanced performance
across different tasks. Influence-based methods
show promise in achieving (1), by estimating
the contribution of each training example to the
model’s predictions, but often struggle with (2).
Our systematic investigation reveals that this
underperformance can be attributed to an inher-
ent bias, where some tasks intrinsically have
greater influence than others. As a result, data
selection is often biased towards these tasks,
not only hurting the model’s performance on
others but also, counterintuitively, harming per-
formance on these high-influence tasks them-
selves. To address this, we propose BIDS, a
Balanced and Influential Data Selection algo-
rithm. BIDS first normalizes influence scores
of the training data, and then iteratively chooses
the training example with the highest influence
on the most underrepresented task. Experi-
ments with both Llama-3 and Mistral-v0.3 on
seven benchmarks spanning five diverse capa-
bilities show that BIDS consistently outper-
forms both state-of-the-art influence-based al-
gorithms and other non-influence-based frame-
works. Surprisingly, training on a 15% subset
selected by BIDS can even outperform full-
dataset training with a much more balanced
performance. Our analysis highlights the im-
portance of both instance-level normalization
and iterative optimization of selected data for
balanced learning of diverse capabilities.

1 Introduction

Instruction tuning plays a crucial role in eliciting
strong capabilities from LLMs. Typically, a pre-
trained LLM is finetuned on a mixture of differ-
ent instruction datasets, to learn to follow human
instructions and achieve strong and balanced per-
formance on a wide range of capabilities (Ouyang
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et al., 2022; Touvron et al., 2023; Dubey et al.,
2024; Jiang et al., 2023). The importance of data
quality for instruction tuning (Zhou et al., 2024)
has spawned many works on data selection (Cao
et al., 2023; Chen et al., 2023; Liu et al., 2024a).
Among them, influence-based methods, which es-
timate each training example’s influence on the
model’s prediction on a downstream task (Koh
and Liang, 2017; Pruthi et al., 2020), have shown
promise. Thanks to recent advances, they have
also been scaled to LLM-level computations and
demonstrated strong potential in selecting high-
quality instruction tuning data (Xia et al., 2024;
Choe et al., 2024; Yu et al., 2024).

However, influence estimation methods are typ-
ically designed to measure the data influence for
a single task (Koh and Liang, 2017; Pruthi et al.,
2020). In this study, we demonstrate that exist-
ing influence-based data selection algorithms (Xia
et al., 2024) struggle to balance capabilities across
diverse tasks, which is crucial in real-world ap-
plications.! Specifically, our analysis reveals that
the influence scores for some tasks can be larger
than others’ by several magnitudes. This can intro-
duce systematic biases in the data selection process
when cross-task influence scores are directly com-
pared, as done in many existing works (Yin and
Rush, 2025; Albalak et al., 2024). This leads to a
couple of pitfalls. First, biasing towards some tasks
hurts the model’s performance on others, making
it more challenging for LLMs to achieve balanced
capabilities. Second, perhaps counterintuitively,
it may even hurt the model’s performance on the
very task that the data is biased towards. These is-
sues call for an influence-based selection algorithm
designed for training LLLMs to achieve balanced
capabilities across diverse tasks.

BIDS, our proposed algorithm, addresses these

'E.g., it is desirable for a coding agent to faithfully follow
user instructions and perform complex reasoning.
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challenges with two key designs. Given a train-
ing dataset to select from and a validation dataset
representing diverse target tasks, we describe the in-
fluence pattern between them with a matrix, where
each column consists of the influence scores of dif-
ferent training examples on a specific validation
instance. BIDS first applies column-wise normal-
ization to this matrix, thus setting the influence
for different validation instances on the same scale.
Then, in contrast to prior methods that simply se-
lect instances with the highest influence values,
BIDS applies an iterative selection algorithm. At
each iteration, this algorithm compares the influ-
ence of each candidate with the average influence
of those already selected, and selects the one that
can provide the largest improvement for the current
selected subset. If the current dataset falls short in
influence on certain validation instances, then our
algorithm will intuitively favor training examples
that have high influence on the specific tasks repre-
sented by these validation data, and thus promotes
balanced multi-task learning.

We evaluate BIDS on Ultralnteract (Yuan et al.,
2024), a strong instruction tuning dataset suite,
with Llama-3-8B (Dubey et al., 2024) and Mistral-
7B-v0.3 (Jiang et al., 2023). Across seven tasks
spanning five capabilities including coding, math,
logical inference, world knowledge and instruction
following, BIDS consistently outperforms both
influence- and non-influence-based baselines. Sur-
prisingly, a 15% subset selected by BIDS even
outperforms full-dataset training in average perfor-
mance. Further analysis highlights the importance
of the key design choices of BIDS, and reveals
completion length as a potential factor for biased
influence. The contributions of this work include:
(1) Through systematic analysis, we identify in-
herent biases in current influence-based instruction
tuning data selection algorithms. (2) We propose
BIDS to address this issue and promote balanced
learning of multiple capabilities. (3) Extensive
experiments confirm the strong and consistent per-
formance of BIDS, and provide valuable insights
on what makes a balanced set of influential data.

2 Background and Preliminaries

Influence-based instruction tuning data selec-
tion. Estimating the influence of training exam-
ples on model predictions is critical for under-
standing model behavior. Traditional methods, in-
cluding retraining-based (Ghorbani and Zou, 2019;

Ilyas et al., 2022; Park et al., 2023) and gradient-
based (Koh and Liang, 2017; Pruthi et al., 2020)
ones, have proven effective but are computationally
prohibitive when scaling to LLMs, as they require
either retraining on a large number of subsets, or
computing at least a forward and backward pass
for each training example in order to obtain its
gradient (Hammoudeh and Lowd, 2024; Ko et al.,
2024). Several recent advances seek to address
these challenges by extending gradient-based ap-
proaches to scale more efficiently. Given a large
training dataset to select from and a validation set
representing certain targeted capability, LESS (Xia
et al., 2024) models the influence between each
pair of training and validation examples through
LoRA-based low-dimensional gradient similarity,
and then selects training points with the highest
influence on the validation set. LOGRA (Choe
et al., 2024) leverages a low-rank gradient projec-
tion algorithm to further improve the efficiency of
this process. MATES (Yu et al., 2024) formulates
the pointwise data influence between each training
point and the whole validation set, and uses a small
model to learn this pointwise influence.

Upon closer inspection, these LLM-scale
influence-based data selection methods share a sim-
ilar problem formulation. They all need a valida-
tion set to represent a targeted data distribution and
require pointwise data influence between pair of
training and validation instances. We aim to extend
this to more general-purpose instruction tuning,
where the model simultaneously learns multiple
diverse capabilities that may require training data
from drastically different distributions. Concretely,
since only LESS directly targets instruction tun-
ing among the three LLM-scale approaches, we
ground our study on the specific formulation of
LESS. But we emphasize that due to the highly
similar influence modeling patterns , the results of
our work should also provide useful insights for
other influence-based selection methods.

Problem Setup and Notations. Assume an in-
struction tuning dataset D, a validation dataset
V, which spans m diverse tasks that we want
to optimize the LLM’s performance for: V =
V1U- - -UV,,, and an influence estimation method
that can compute the influence of each training ex-
ample on each validation instance. We first com-
pute the influence score between each pair of train-
ing and validation data, yielding a |D| x | V| matrix
A. Each row of A corresponds to an individual
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Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

59 Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 434

v LESS 43.9 50.7 627 65.1 42.5 22.6 19.7 43.9

10% Random 47.8 50.6 65.0 64.9 439 24.0 17.8 44.9

7 LESS 44.7 51.3 62.0 64.7 44.6 24.3 19.3 444

15% Random 48.7 519  65.2 65.1 45.6 25.0 18.8 45.7

7 LESS 46.5 51.0 632 64.6 449 24.9 21.2 452

Table 1: Compared with the random baseline, LESS shows weak macro-average and unbalanced task-specific
performance, which suggests a potential bias in its selection process.

training example, and each column a validation
instance. Element A;; indicates the influence of
t-th example from D on j-th instance from V. We
dub A an Attribution Matrix (AM) as it reveals
the overall attribution pattern from the training set
to all target tasks, and each row A; the Influence
Distribution of the i-th training example.

Our goal is to design a data selection algorithm
that can effectively select a subset 7 from D with
size under a pre-defined budget, based on the infor-
mation presented in A. Finetuning the LLM on 7
is supposed to achieve strong and balanced perfor-
mance on all targeted tasks. The evaluation tasks
are specifically chosen to have minimal overlap in
terms of the capabilities they benchmark. The size
of validation set for each task is also kept the same
to avoid bias in the selection process.

3 Existing Influence-based Selection Fails
at Balancing Diverse Tasks

We first show that LESS leads to suboptimal and un-
balanced performance in general-purpose instruc-
tion tuning. This is quantitatively revealed by our
analysis framework, which identifies inherent bi-
ases in the scale of influence values across different
tasks. Insights drawn in this section pave the way
for the design choices of BIDS in §4.

Setting. In this section, we use Llama-3-
8B (Dubey et al., 2024) as the base model for
both influence estimation and evaluation of selected
datasets. For the instruction dataset to select from,
we use Ultralnteract (Yuan et al., 2024), a state-of-
the-art large-scale dataset designed to enhance di-
verse reasoning capabilities, including mathemati-
cal reasoning, coding, and general logical inference.
We also follow the evaluation setup of Yuan et al.
(2024), with seven datasets spanning five diverse
capabilities. We use HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) for coding, GSM-

Plus (Li et al., 2024) and MATH (Hendrycks et al.,
2021) for math, and BigBench-Hard (BBH) (Suz-
gun et al., 2022) for general logical inference. We
also use MMLU (Hendrycks et al., 2020) to assess
the model’s ability to understand world knowledge,
and IFEval (Zhou et al., 2023) for fine-grained
instruction-following ability. Appendix A.2 con-
tains more training and evaluation details.

We follow LESS for the influence estimation
method throughout this work, with an equal num-
ber of validation instances sampled from each of
the seven evaluation tasks to ensure fairness. In this
section, for the data selection algorithm, we also
start with the task-wise max algorithm (Appendix
A.3) used by LESS. For each training example, it
first computes the mean influence over validation
instances within the same task, followed by select-
ing training examples with the highest maximum
influence across different tasks. We compare this
algorithm against the random selection baseline.

LESS fails to balance different capabilities (Ta-
ble 1). LESS shows substantial imbalance and
variability in task-specific performance across dif-
ferent budgets. Although it consistently outper-
forms the random baseline in IFEval by more than
1.5%, it underperforms in BBH by 2-3%, and
shows no clear advantage in the remaining five
tasks. Moreover, with the increase of budget level,
LESS is gradually outperformed by the random
baseline in more tasks, leading to weaker macro-
average under both 10% and 15% budgets.

The underperformance of LESS may stem from
the fact that it is not designed for learning multiple
diverse capabilities. But given that the number
of validation instances was kept equal for each
task, it still suggests a potential inherent bias in the
influence values, which could skew the selection
towards certain capabilities. If the overall influence
on certain tasks is inherently higher, then the naive
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Figure 1: Unnormalized Average Influence Distribution
(AID) of the whole Ultralnteract dataset (Yuan et al.,
2024), showing great disparities in scale for inter-task
and intra-task influence.

task-wise max algorithm will naturally prioritize
them, possibly at the expense of others.

In what follows, we aim to answer the following
two questions: (1) whether influence values differ
across tasks and to what extent, and (2) whether
tasks with higher influence values receive more
performance improvements.

What causes the imbalance of LESS? We first
define two data analysis metrics:
* Average Influence Distribution (AID):

Zi»il A;/N, is the average of influence distribu-
tions of all the training examples. This vector
captures the overall influence pattern for all
validation data, and is helpful to answering (1).

* Task Frequency with Highest Influence (THI)
for a task ¢ is the number of selected examples
that have the highest average influence on ¢. Dis-
tribution of THI targets (2) in identifying high-
influence tasks for the selected subset.

Our Ultralnteract AID analysis (Figure 1) re-
veals discrepancies at both the task and instance
levels. Surprisingly, MMLU receives a substan-
tially higher average influence than BBH, despite
being more out-of-distribution for the training data.
Moreover, there are also significant disparities
within the same task. For example, for IFEval,
the gap between the highest and lowest instance-
wise influence is greater than 0.0025, 2.5 x larger
than the globally highest instance-wise influence
of 0.001. These results answer our question (1) by
confirming that the scales of influence values differ
significantly across various tasks.

Further, the THI analysis of LESS-selected data
(Figure 2) confirms that these scale differences
cause LESS to disproportionately favor certain
tasks over others. Specifically, MMLU is most
frequently identified as the most influential task,
consistent with the observations in Figure 1 where
MMLU has the highest task-level average influence.

10000
8000
6000
4000
2000

Figure 2: Task frequencies with Highest Influence (THI)
under the 10% budget. MMLU is obviously oversam-
pled in LESS-selected data.

However, this does not translate into proportionally
better performance—LESS frequently underper-
forms even the random baseline on MMLU. For
other in-distribution tasks with high THI, such as
MBPP, BBH, and GSM-Plus, LESS either con-
sistently underperforms or shows no clear advan-
tage. These observations suggest that while high-
influence tasks tend to have more examples in the
selected training data, they do not necessarily offer
greater room for performance improvement. Be-
sides, such biased sampling may hinder the learn-
ing of other capabilities. Thus, we answer question
(2) by concluding that the inherent difference in
the scale of cross-task influence values is indeed
a harmful bias, and can severely undermine the
performance of LESS-selected data.

4 BIDS: Selecting Influential Data for
Balanced Capability Learning

This section introduces BIDS to address the issues
identified in §3. BIDS has two key design choices.

Instance-level normalization. This technique
addresses the scale differences in influence values
across different validation instances, by applying a
column-wise normalization to the Attribution Ma-
trix. Specifically, for a validation instance v, the
influence of each training example ¢; is normal-
ized by A;}]()rm = (Aij - ,Uj)/(fj, where 1°% and 0j
are the sample mean and standard deviation of all
values in column j of A. This normalization en-
sures the influence scores across different columns
are comparable in scale. In other words, if two
influence scores of different columns have similar
intra-column rankings, then they should also have
similar values.

Iterative selection favoring underrepresented
tasks. We further propose an iterative greedy
selection algorithm (Figure 3 and Algorithm 1)
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Figure 3: Comparison between BIDS and the task-wise max algorithm used by LESS. For convenience, we
represent the training set D with its Attribution Matrix (AM), in which the i-th row is the |V|-dimensional Influence
Distribution of the i-th training example in D. BIDS differs from LESS, which naively selects top-B examples
with the highest task-wise max utility scores, in mainly two aspects. §4 contains a detailed walkthrough.

to promote the balance across different capabili-
ties. It begins with an empty set. In each itera-
tion, it first computes the average influence distri-
bution of the current selected subset 7, denoted

as Ar = ﬁ > Aj. Then it iterates through
kit €T
each training example ¢; in D \ T, and calculates

a component-wise difference between A; and A7
The utility A of candidate t; is then defined as
the largest component of A; — A7, and the candi-
date with the highest utility is selected.

Algorithm 1 BIDS: Iterative Selection
1: Input: D: the set of all training examples; V: the set of
validation examples; B: the number of examples to be

selected; A € RIPIXIVI: the Attribution Matrix between
D and V.

2: Initialization: 7 = @, D = {t,}|°!

3: while |7] < B do

4: A = max {A;; — & >
1<5<|V| ! I71 ke{k|t,eT}

argmax A®
ie{i|t;eD\T}

6: T=TU{ti}
7: end while
8: Return: 7 selected training examples.

Ay}

5: 7=

In other words, BIDS prioritizes training exam-
ples that maximize influence improvement for the
most underrepresented task in the selected data. It

fundamentally differs from LESS, which scores
each training example independently and selects
the top-ranked ones.

S Experiments

5.1 Experimental Setups

We follow the setup in §3, including the same
LLMs, datasets, and influence estimation imple-
mentation (Table 2, 4). To further validate the gen-
eralizability of BIDS, we also experiment with
base models from other model families (Table 3).

Baselines. In addition to (1) the random baseline
and (2) the original influence-based task-wise max
algorithm used by LESS (§3), we compare with
three strong non-influence-based methods to fur-
ther demonstrate the necessity of balanced data se-
lection: (3) Representation-based Data Selection
(RDS; Zhang et al., 2018; Hanawa et al., 2020;
Xia et al., 2024) is a targeted selection method
that also requires validation data representing the
targeted capabilities. It selects training examples
that are most similar to validation data based on
the model’s hidden representations. (4) S2L (Yang
et al., 2024) and (5) DEITA (Liu et al., 2024a)
are two state-of-the-art, general selection meth-
ods. They aim to select high-quality and diverse
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Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval
Random 435 489  64.8 64.9 41.5 22.5 18.1 434
Task-max (LESS) 43.9 50.7 62.7 65.1 42.5 22.6 19.7 439
5% RDS 45.6 52.7 62.2 65.0 34.5 17.2 15.5 41.8
S2L 404 49.0 64.3 65.0 41.8 23.5 16.5 429
DEITA 43.9 473 65.0 65.1 41.9 22.3 18.1 434
BIDS (ours) 45.6 51.0 643 64.9 42.1 229 214 44.6
Random 47.8 50.6 65.0 64.9 439 24.0 17.8 449
Task-max (LESS) 44.7 513  62.0 64.7 44.6 24.3 193 44.4
10% RDS 50.0 54.7 63.2 64.6 39.3 224 18.3 44.6
S2L 46.5 50.7 64.5 65.0 433 22.7 18.9 445
DEITA 51.8 49.9 65.6 65.0 43.1 24.5 17.5 453
BIDS (ours) 48.2 504  65.1 64.9 45.1 25.1 234 46.0
Random 48.7 519 652 65.1 45.6 25.0 18.8 45.7
Task-max (LESS) 46.5 51.0 63.2 64.6 449 24.9 212 452
RDS 50.0 53.9 63.7 64.5 41.1 23.5 18.1 45.0
15% S2L 51.8 50.7 654 64.8 447 242 16.9 45.5
DEITA 50.0 50.7 65.8 64.7 45.0 23.3 16.7 452
BIDS (ours) 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1
BIDS (ours; epochs=4) 50.0 53.0 64.4 64.7 47.0 26.9 234 47.1
100% Full (epochs=1) 52.6 53.6 65.5 64.1 472 27.9 17.5 46.9
Full (epochs=4) 48.2 544 59.2 63.1 51.5 32.3 17.9 46.7

Table 2: Comparison between BIDS and various influence-and non-influence-based selection algorithms, with
Llama-3-8B as the base model. The task-specific or macro-average performance is bolded if it ranks first under the
same budget, and underlined if it ranks second. “BIDS (epochs=4)" is compared with 100% full training.

5% 10% 15% 100 %
Random 40.2 41.0 41.4
Task-max (LESS) 41.0 41.4 41.8
RDS 38.5 39.6 41.0
SoL 39.5 410 40.7 43.0/43.2¢
DEITA 40.5 40.2 40.8
BIDS 41.0 425 42.6/43.34

Table 3: Macro-average with Mistral-7B-v0.3 as the
base model. Subscript ) denotes the result of training
for 4 epochs. BIDS shows generalizability to different
models. See Appendix A.6 for task-specific results.

data without knowing the target tasks beforehand.
Additionally, we compare to three other influence-
based intuitive variants (6) instance-wise max, (7)
sum, and (8) temperature-based sampling that
are applicable to the Attribution Matrix in Table 4.
Appendix A.3 includes more baseline details.

5.2 Results

Comparison under the same budget. As shown
in Table 2 and 3, across different budget levels and
models, BIDS consistently outperforms all base-
lines in terms of the macro-average across seven
benchmarks. On specific tasks, BIDS is frequently
among the strongest, ranking either first or sec-
ond on 4/7 benchmarks on average. These results

demonstrate that BIDS indeed achieves strong and
balanced performance across tasks. Finally, results
in Table 4 show the uniformly poor performance of
influence-based variants other than BIDS, suggest-
ing the necessity of going beyond simple Top-K se-
lection, and taking normalization and cross-sample
interactions into consideration.

Notably, all non-influence-based methods (RDS,
S2L, DEITA) consistently underperform the ran-
dom baseline across all budgets. Both RDS and
DEITA are significantly biased towards the cod-
ing tasks under the 10% and 15% budgets, at the
cost of serious performance drop on others, espe-
cially math and instruction-following. In contrast,
S2L shows a shifting trend in its performance bias,
from MATH under the 5% to HumanEval under
the 15%. These observations confirm the value
of BIDS, as existing works on both targeted and
general instruction data selection all fail to gener-
alize to the challenging setup of learning multiple
diverse capabilities simultaneously.

BIDS outperforms full-dataset training. As
shown in the last three rows of Table 2 and the
last two columns of Table 3, finetuning on a 15%
subset selected by BIDS over four epochs con-
sistently outperforms training on the full dataset.
Task-specific results further reveal that BIDS

7084



6000 600015441

4221
3205 ii
|

2

6049

BB 5330 5375

il Wi
74

0
‘(\0«\1‘2{\ PR mﬂ\\“qsmv\“ WK evd
e

17
4000 4000 ==" 3772

2000 2000

(a) —(Norm + Iter)

M as 3969
‘AN E=Y
0
“““\}2? PP ol qsmv\“ W gen?
e

(b) —Iter

6140
6000{ FE
4776 4456

4253

3827 II

4000

I BB 3239 3357
AN E3 R

2000

0
““‘L\Z{\ oPP ot mm\“qst\“ WA gev®
e

(c) BIDS

Figure 4: THI under the 10% budget with Llama-3-8B. Both —Iter and BIDS have more balanced task frequencies.
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Llama-3-8B Mistral-7B-v0.3
5% 10% 15% 5% 10% 15%
Task-max 439 444 452 41.0 414 418
Instance-max 44.2 450 450 39.7 41.1 42.0
Sum 442 446 449 399 402 412
Temperature 43.6 44.6 450 39.6 403 414
BIDS 44.6 46.0 46.1 41.0 425 42.6

Table 4: Macro-average of influence-based algorithms
with Llama-3-8B and Mistral-7B-v0.3. See Appendix
A.5 and A.6 for task-specific results.

achieves better performance by maintaining bal-
anced and strong performance across six reasoning-
related tasks while significantly improving general
instruction-following. These results demonstrate
that BIDS not only excels in selecting influential
and balanced data, but also that full-dataset training
may not always be optimal for LLMs to learn multi-
ple diverse capabilities, highlighting the efficiency
potential of selective instruction finetuning.

6 Ablation

This section presents ablation studies of the two
key components of BIDS, and analyzes their effects
on the composition of selected data.

Ablation. We compare BIDS with the —Iter
baseline to ablate iterative selection, and with
—(Norm + Iter) to further ablate normalization
(i.e., the instance-wise max algorithm in Appendix
A.3). Table 5 shows that both the iterative selection
and normalization consistently improve the overall
performance across all budgets.

Llama-3-8B Mistral-7B-v0.3
5% 10% 15% 5% 10% 15%
BIDS 44.6 46.0 46.1 41.0 425 426
—Iter 443 456 457 41.0 416 422
—(Norm+ Iter) 442 450 450 39.7 41.1 420

Table 5: Respective contributions of the two compo-
nents of BIDS. Results with both models uniformly
show a decreasing trend as more technical components
are ablated, substantiating their positive contributions.

Normalization balances THI. We then proceed
to explore how the two components affect the in-
fluence distribution of selected data, and whether
such effects can provide insights into how BIDS
advances balanced learning of diverse capabili-
ties. We replace task-wise average influence with
instance-wise influence in THI calculation, since
the three algorithms we are comparing are all built
upon the instance-wise max approach. Compar-
ing 4a with 4b, after normalization the task fre-
quency distribution becomes more balanced. Fre-
quencies for MMLU, GSM-Plus, MATH and IFE-
val all increase by a great extent, while those for
BBH and coding tasks decrease. 4b to 4c shows
a few mild adjustments made by the iterative se-
lection. This is intriguing when compared to the
task-specific results in Table 2, where BIDS ac-
tually shows superior performance in tasks with
both increased (HumanEval, IFEval) and decreased
(GSM-Plus, MATH) THI frequencies. This sug-
gests that a balanced selection may improve data
efficiency not only by allocating more budget for
underrepresented capabilities, but also reducing the
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Figure 6: Correlation between instance-level influ-
ence and completion length is especially intricate,
with a global correlation of only —0.083. There is
no clear negative correlation inside any task.

redundancy in over-represented ones.

Better performance comes with smaller influ-
ence discrepancies. We report influence values
after instance-level normalization for better com-
parisons. From 5a to 5b to 5c, we observe a pro-
gressive reduction in the disparity of average influ-
ence across tasks, which leads to the following two
interesting observations: (1) The maximums of
AID decrease. Despite generally lower influence
scores across the seven tasks, the performance of
BIDS improves consistently. This reveals a lim-
itation of the first-order linearity assumption by
the influence estimation method: simply selecting
high-influence points using a greedy algorithm in-
creases the average influence distribution on almost
all tasks, but their effectiveness doesn’t linearly add
up, thus not necessarily improving task-level or
overall performance. (2) The minimums of AID
increase, especially for validation instances with
exceptionally low influence, such as HumanEval
and MBPP. This again suggests the effectiveness
of BIDS’ key motivation: improving the model’s
overall performance by enhancing the capabilities
that are most underrepresented.

7 Completion Length as a Task-specific
Factor for Spurious Influence

This analysis aims to explain the counterintuitive
phenomenon identified in §3, where the perfor-
mance of high-influence tasks actually degrades
(e.g., MMLU). We focus on the completion length
of target tasks, which has been shown impor-
tant for gradient-based influence and data selection
(Wang et al., 2024; Liu et al., 2024a; Xia et al.,
2024). Ideally, if influence has a salient correla-
tion with a task-specific factor that is not strongly
correlated with downstream performance, then

Completion Length

Figure 7: Task-level influence has a strong negative
correlation (R = —0.769) with completion length
for 6/7 tasks. However, IFEval contradicts this corre-
lation pattern, suggesting other influencing factors.

this can be explained, as such spurious influence
no longer translates into better performance.

Figures 6 and 7 show instance- and task-level
correlations between influence and completion
lengths of validation data. On the task-level, there
is a strong negative correlation (R = —0.769)
for 6/7 tasks. The shortest completion length of
MMLU indeed translates into the highest average
influence. Only IFEval, the only task that does
not have a single objective answer, contradicts this
negative correlation, possibly suggesting other in-
fluencing factors. However, the instance-level cor-
relation pattern becomes more intricate, with a
global correlation of only —0.083. Even for tasks
that show strong negative correlations in Figure
7 such as MMLU, HumanEval, MBPP and GSM-
Plus, there is no similar trend for instances inside
the same task, not to mention IFEval, which even
shows a slightly positive correlation.

In summary, completion lengths can partly ex-
plain the counterintuitive phenomenon, and should
be considered for improving the fidelity of influ-
ence. But it is still far from the whole picture, sug-
gesting the potential impact of other task-specific
factors such as sample style or complexity (Liu
et al., 2024a), which are harder to quantify and
deserve more focused investigation in future work.

8 Related Work

Data Selection for Instruction Finetuning.
Since Zhou et al. (2024) showed the importance of
high quality instruction data curation, many works
have been exploring automatic data selection meth-
ods. Quality-guided selection defines the quality
for each data point using heuristic indicators based
on model embeddings or losses (Yang et al., 2023;
Ankner et al., 2025; Zhang et al., 2025b), ratings
from strong evaluators (Chen et al., 2023; Parkar
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et al., 2024; Pang et al., 2025), or principled met-
rics based on training dynamics (Kang et al., 2024;
Mekala et al., 2024; Xia et al., 2024; Lin et al.,
2025). Diversity-guided methods usually cluster
the training data based on informative represen-
tations (Yang et al., 2024; Zhang et al., 2025a),
and take inspiration from traditional core-set se-
lection approaches (Das and Khetan, 2023). Both
have been proved effective for instruction finetun-
ing of LLMs (Bukharin and Zhao, 2023; Liu et al.,
2024a; Qin et al., 2025), and BIDS takes both
quality and diversity into account by applying an
iterative selection algorithm to influence distribu-
tions. Additionally, there is also a line of work that
surveys how existing data selection techniques per-
form in compute-constrained scenarios (Yin and
Rush, 2025), under different experimental configu-
rations (Diddee and Ippolito, 2025), and for large-
scale datasets (Ivison et al., 2025).

Influence Estimation. Influence estimation is
generally classified into gradient-based and
retraining-based approaches (Hammoudeh and
Lowd, 2024; Ko et al., 2024). Gradient-based in-
fluence estimation focuses on the gradient trace
of each training point, and assesses the gradient
alignment between training and validation exam-
ples (Koh and Liang, 2017; Pruthi et al., 2020; Pan
et al., 2025). Retraining-based estimation trains a
large number of models on different subsets, and
then inspects how their performance changes when
a training example is added to these subsets (Ghor-
bani and Zou, 2019; Ilyas et al., 2022; Park et al.,
2023; Hu et al., 2025). Recently both lines of
works have been extended to LLM-scale applica-
tions, covering various aspects including pretrain-
ing (Engstrom et al., 2024; Yu et al., 2024; Choe
et al., 2024; Chang et al., 2025; Yu et al., 2025;
Wang et al., 2025) and instruction tuning (Xia et al.,
2024; Liu et al., 2024b; Pan et al., 2024). There
is also a popular line of work aimed at designing
efficient proxies for expensive gradient-based or
retraining-based estimation by taking inspiration
from in-context probing (Jiao et al., 2025) and un-
certainty estimation (Pan et al., 2025).

Gradient-induced Spurious Influence. Al-
though to the best of our knowledge, our work
is the first to systematically identify and address
the effect of spurious influence on LLM training
data selection, a few past works have also
offered theoretical or empirical discussions on
gradient-induced spurious influence in different

machine learning applications. Xia et al. (2024)
attribute spurious influence to the representation of
example-wise gradients, which is most often made
tractable by taking an average over the gradients of
all tokens inside each example. This likely leads to
the undesirable consequence that shorter training
examples (i.e., with fewer tokens) have inherently
higher influence values when the influence is
computed by gradient dot product, because the
norm of averaged token-wise gradients tends to
rapidly decay with the length of example. In this
work, we follow Xia et al. (2024) by adopting
cosine similarity-based (i.e., dot product with
length normalization) influence formulation, which
should ideally remove the length bias. However,
our empirical results in §7 suggest that the
correlation between influence values and example
length still remains for normalized gradients. One
possible reason is that taking the average over
token-wise gradients may incur systematic bias in
the direction of the resulting gradient as well.

Apart from the application of LLMs in natural
language generation tasks, past works have also
identified spurious influence for BERT (Devlin
et al., 2019) in traditional NLP tasks, and for diffu-
sion models in image generation. Yeh et al. (2022)
identify the bias of gradient norms across different
layers of a BERT model, and attribute this to a “can-
cellation effect” in certain weight parameters. Xie
et al. (2024) discover the bias of gradient norms
over different timesteps in the generation process
of diffusion models, where the loss function com-
ponent from later timesteps is more likely to have
a larger gradient norm. In light of these, we sug-
gest in-depth future efforts into the possible factors
that may systematically affect both the norm and
direction of example gradients.

9 Conclusion

We introduce BIDS, an influence-based instruc-
tion tuning data selection algorithm specifically
designed for learning multiple capabilities. Mo-
tivated by the observation of an inherent bias in
influence across different tasks, BIDS first applies
column-wise normalization to the Attribution Ma-
trix, and then an iterative selection algorithm favor-
ing underrepresented tasks. BIDS consistently out-
performs various baselines as well as full-dataset
training with much more balanced performance.
Our analysis provides insights into the properties
of an influential dataset with balanced capabilities.
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Limitations

We discuss the limitations of our work below.

1. Limitation to influence-based approaches.
While our work focuses on the imbalance issue
of influence-based data selection methods, re-
sults of non-influence-based methods (i.e., RDS,
D2L, DEITA) in Table 2 also show significant
bias towards the two coding tasks, at the cost of
severely degraded performance on others. These
observations suggest the possibility that the im-
balance of utility scores (Yin and Rush, 2025)
may generally exist for both influence- and non-
influence-based data selection approaches. In
Appendix A.7, we conduct a preliminary investi-
gation by applying the technical components of
BIDS to one of the non-influence-based meth-
ods, RDS, and find that the balancing techniques
of BIDS work well for RDS, which provides
a preliminary verification for our hypothesis
above, and also shows the broad applicability
of the underlying principles of BIDS. However,
the focus of this paper on influence-based ap-
proaches limits in-depth investigations into the
more general imbalance of utility scores for data
selection under a multi-capability learning setup.
We hope more analyses and technical solutions
can be discussed in future work.

2. More factors behind the influence bias. While
our work centers on identifying the problem of
imbalanced influence and proposing BIDS as
a remedy, probing the factors behind the influ-
ence bias is also beneficial for a thorough un-
derstanding of the counterintuitive phenomenon
identified in §3. In §7 we provide a preliminary
analysis on the completion length of validation
data as a potential factor. Though it can partly
account for the phenomenon above, it is still
far from a complete explanation, which requires
investigation into other task-specific factors that
are much harder to quantify. We hope future
work can shed light on this.
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A Appendix

A.1 Influence Estimation Pipeline of LESS

We briefly introduce the influence estimation
pipeline of LESS in this section. For more detailed
motivation and step-by-step mathematical deduc-
tion, we suggest referring to Xia et al. (2024).

Assume a model M which scores and selects
data, and another model M; which is trained on
the selected data. For a training dataset D and
validation dataset 1V, LESS formulates the pairwise
influence between each training example t; € D
and validation instance v; € V with the following
three steps.

Step 1: Warmup training with LoRA. LESS
first trains M on a random subset Dyarmup C D
for N epochs using the parameter-efficient finetun-
ing method LoRA (Hu et al., 2021), and check-
points the model after each epoch to store LoORA
parameters {6;} ;.

Step 2: Gradient computation and projec-
tion. For each checkpoint 8, of LoRA-trained
M, LESS computes the SGD gradient of valida-
tion instance v;, and further uses random projec-
tion (Johnson and Lindenstrauss, 1984; Park et al.,
2023) to project the gradient to a tractable lower
dimension. The resulting projected gradient is de-
noted as V/{(v;;6;) . LESS also computes and
projects the gradient of training example ¢;, but
uses the Adam gradient defined as follows:

mt+1

T(t;,0,)2
(3 /vt—‘rl + P

where m/*! and v**! are the first and second mo-

ments in the parameter update rule for Adam opti-

mizer.

Step 3: Gradient matching and influence cal-
culation. Finally, LESS employs the following
cosine-similarity-based approach to calculate the
alignment between the gradient of each training
and validation example, accumulated over all the
warmup training epochs:

A

Iandam tza 'U] =

7 cos(VE(vy;6;),T(t;,6))

||Mz

where 7; is the average learning rate in the ¢-th
epoch.

A.2 Details of Training and Evaluation Setups

Based on the LESS pipeline described above, we
further introduce the implementation details of the
training and evaluation setups in this work. All the
experiments are carried out on 2 H100 GPUs with
80 GB memories.

Training Details. We basically follow the same
set of hyperparameters as LESS when training both
M and M,. Specifically, a batch size of 128 is
used throughout all the training processes in this
work, along with a learning rate scheduler with
linear warm-up, cosine decay, and a peak learn-
ing rate of 2 x 10~°. For the influence estimation
pipeline, we consistently conduct the warmup train-
ing of M using four epochs and the full training
set. For gradient computation and projection, we
uniformly sample 50 validation instances from ei-
ther the validation or the test split (when there is
not a separate validation split) of each of the seven
evaluation tasks, leading to a total of 350 validation
instances. The projection dimension is set as 8192
for all the training and validation examples. For
training M; on the selected data, we consistently
train for two epochs if not otherwise specified. No-
tably, we report the average performance of two
sets of randomly selected data for all the random
baselines in this paper.

Both the warmup training for influence estima-
tion and the training on selected data are carried out
with LoRA (Hu et al., 2021). The configurations
of LoRA adapters are kept the same throughout the
experiments, with a rank of 128, an « value of 512,
a dropout rate of 0.1, and LoRA matrices being
applied to all the attention modules.

Evaluation Details. We follow the evaluation
convention of Ultralnteract (Yuan et al., 2024) by
using greedy decoding (i.e., temperature = 0) for
all the evaluation tasks except for IFEval, where we
use temperature = (.7 and take the median result
of three random seeds due to the high variability of
this task.

A.3 Details of Data Selection Baselines

In this section, we first specify the mathematical
definitions of the four influence-based selection
algorithms used in this work. They share the same
framework of first assigning an overall utility score
s; to each training example ¢;, and then greedily
selecting examples with the highest scores, or ran-
domly sampling from the score distribution.
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¢ Task-wise Max: S;
maxk:l,--~7m{zvjevk A} It first com-
putes the average influence over validation
instances within the same task, and then takes
the maximum influence across different tasks as
the utility score.

« Instance-wise Max: s; = max;_y y{Aij}-
It directly uses the maximum of influence val-
ues over all validation instances as the utility
score. Notably, instance-wise max is equivalent
to —(Norm + Iter) in §6.

e Sum: s; £ Z'}il A;;. It directly uses the sum
of influence values over all validation instances
as the utility score.

¢ Temperature-based Sampling: s; follows the
same definition as Task-wise Max. However,
instead of greedy selection, this algorithm trans-
forms these utility scores into a probability distri-
bution using temperature-scaled softmax (Ficler
and Goldberg, 2017; Zhang et al., 2024), and
samples training data from this distribution with-
out replacement. Compared with the determin-
istic greedy selection, this sampling-based ap-
proach increases the proportion of selected data
that show preference for low-influence tasks, thus
balancing the task distribution.

We then summarize the mechanisms and provide
the implementation details of the remaining three
non-influence-based selection methods.

* RDS (Zhang et al., 2018; Hanawa et al., 2020;
Xia et al., 2024). We follow the RDS implemen-
tation in Xia et al. (2024), which computes the
cosine similarity between training and validation
examples based on the final layer representation
of the last token in each example sequence. Train-
ing examples with the highest similarity to any
one of the validation examples are selected. In
order to ensure fair comparison, we use the same
model that computes gradient features in BIDS
to extract the final layer representations for RDS.

* S2L (Yang et al., 2024) first collects the training
loss trajectory for each training example using a
small reference model that belongs to the same
family as the final model, and then applies K-
means clustering to these trajectories. Finally,
an equal number of examples are sampled from
each cluster to train the final model, ensuring
the balance among clusters of different sizes.

Specifically, we use Llama-3.2-1B?as the refer-
ence model, which belongs to the Llama-3 family
and is much larger than the Pythia-70M (Bider-
man et al., 2023) used in Yang et al. (2024), thus
improving the fidelity of S2L’s performance. The
remaining hyperparameters follow the configura-
tions in Yang et al. (2024). We note that although
S2L performs selection with a small model, its
total computational cost is similar to LESS, as
the loss for each example needs to be computed
more frequently than the gradient along the train-
ing trajectory.

e DEITA (Liu et al., 2024a) first uses ChatGPT
(Achiam et al., 2023) to curate training data for
training a complexity scorer and a quality scorer.
Then with the trained scorers, it assigns a com-
plexity score and a quality score to each training
example and sorts the training dataset by their
product. Finally, it applies an iterative selection
algorithm to the sorted dataset based on the em-
bedding of each training example, with the aim of
promoting diversity. Specifically, we use the 7B
scorer models>#publicly released by the DEITA
team, and obtain example-wise embeddings us-
ing the final-layer hidden states of a pretrained
Llama-3-8B to align with the final evaluation.

A.4 Effect of Normal Standardization on the
Attribution Matrix

In §4 we introduce the instance-level normaliza-
tion technique of BIDS. One potential issue with
this normal standardization approach is that it may
not work sufficiently well when the distribution of
unnormalized influence scores differs much from
an approximate normal distribution. In this section
we aim to justify the application of normal stan-
dardization to the Attribution Matrix (AM). Specif-
ically, we randomly select five validation instances
(i.e., five columns in the AM) from each task, and
compare their empirical distributions after normal-
ization with a standard normal distribution. The
results show that almost all of the sampled columns
approximate a standard normal distribution after
the instance-level normalization, which justifies the
use of normal standardization as the normalization
method in BIDS.

https://huggingface.co/meta-1lama/Llama-3.
2-1B

3https://huggingface.co/hkust-nlp/
deita-complexity-scorer

4https://huggingface.co/hkust—nlp/
deita-quality-scorer
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Figure 8: The effect of normal standardization. Five AM columns are sampled for each task. Most of the columns
in the AM indeed approximate a standard normal distribution after normal standardization.

A.5 Complete Results with Llama-3-8B

In Table 6, we present the complete task-specific
results for Table 4 and 5 in the main text. Across all
three budgets, apart from the consistently strongest
macro-average, BIDS also ranks either first or sec-
ond on 4/7, 5/7, 4/7 benchmarks respectively, show-
ing its stronger and more balanced performance
than both simple influence-based variants and ab-
lated baselines. This further highlights the neces-
sity of going beyond the naive greedy Top-K selec-
tion or temperature-based random sampling, and
taking both normalization and interactions among
training examples into consideration, in order to
tackle spurious or biased cross-task influence.

A.6 Complete Results with Mistral-7B-v(.3

To further validate the generalizability of BIDS,
we compare with other baseline data selection al-
gorithms using Mistral-7B-v0.3 as the backbone
for both selection and training. The complete task-
specific results are presented in Table 7 and 8. The
two algorithms compared here, —(Norm + Iter)
and —Iter, follow the same definition in §6. And

the random baseline is also the average result of
two different random seeds.

Similar to the analysis framework in §3, we also
present the AID analysis of the whole Ultralnteract
dataset (Figure 9) and the THI analysis of LESS-
selected data (Figure 10). Then we follow the work-
flow in §6 to present both THI and AID anlyses for
the three progressive algorithms: —(Norm -+ Iter),
—Iter and BIDS (Figure 11, 12). The only differ-
ence here is that the selection model is Mistral-7B-
v(.3 instead of Llama-3-8B.

A.7 Applying BIDS to Other Data Selection
Methods than LESS

Theoretically, BIDS is applicable to any data se-
lection method that requires a validation set and
computes a score between each pair of training
and validation examples (i.e., produces a matrix A
where element A;; indicates the utility of -th train-
ing example on j-th validation instance). We empir-
ically apply the two techniques of BIDS, instance-
level normalization and iterative selection favoring
underrepresented tasks, to RDS, which computes
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Coding Logic Knowledge Math Ins-Following Macro Avg

Budget Method
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval
Task-max (LESS) 43.9 50.7 62.7 65.1 425 22.6 19.7 439
Sum 45.6 51.9 63.6 64.8 424 21.3 20.1 442
59 Temperature 44.7 476 642 65.0 42.4 23.7 17.7 43.6
BIDS (ours) 45.6 51.0 64.3 64.9 42.1 229 214 44.6
—Iter 45.6 52.1 62.5 64.8 42.5 225 20.1 44.3
—(Norm + Iter) 439 52.1 63.2 65.0 42.6 223 20.6 442
Task-max (LESS) 44.7 513  62.0 64.7 44.6 243 19.3 44.4
Sum 45.6 51.6 61.6 64.6 43.8 23.7 21.0 44.6
10% Temperature 44.7 504 64.4 64.9 44.9 242 18.9 44.6
BIDS (ours) 48.2 50.4 65.1 64.9 45.1 25.1 234 46.0
—Iter 47.4 484  64.6 65.1 454 25.2 23.0 45.6
—(Norm + Iter) 46.5 473  64.6 65.0 44.1 247 22.8 45.0
Task-max (LESS) 46.5 51.0 632 64.6 449 249 212 452
Sum 48.2 51.0 626 64.6 44.8 24.0 19.3 44.9
15% Temperature 45.6 52.1 65.1 64.7 45.5 23.6 18.7 45.0
BIDS (ours) 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1
—Iter 47.4 50.1 64.9 65.0 45.6 26.0 20.8 45.7
—(Norm + Iter) 474 48.1 63.2 65.0 45.8 25.1 20.3 45.0

Table 6: Complete results for Table 4 and 5 in the main text, with Llama-3-8B as the base model. Notably,
—(Norm + Iter) (§6; Table 5) is equivalent to the instance-wise max algorithm (Appendix A.3; Table 4).

Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval
Random 36.8 443 59.5 61.7 37.0 19.9 222 40.2
Task-max (LESS) 36.8 45.6 60.1 62.3 38.6 19.5 23.8 41.0
5% RDS 38.6 453 58.2 61.9 333 15.4 16.9 38.5
S2L 36.8 444 58.9 61.9 36.5 16.6 21.2 39.5
DEITA 43.0 456  59.5 62.0 36.1 17.2 19.8 40.5
BIDS (ours) 37.7 444 595 61.8 38.0 19.8 26.1 41.0
Random 37.7 44.8 59.8 61.8 40.0 212 22.0 41.0
Task-max (LESS) 39.5 438 60.3 62.0 39.7 20.0 24.6 414
10% RDS 43.9 450  57.8 61.7 35.6 14.9 18.1 39.6
S2L 36.8 44.7 59.9 61.7 39.2 22.0 224 41.0
DEITA 36.8 45.0  59.1 62.0 39.3 18.6 20.4 40.2
BIDS (ours) 40.4 46.1 60.5 61.7 40.5 21.0 271 42.5
Random 37.7 459 59.6 61.9 41.0 21.7 21.8 414
Task-max (LESS) 404 44.1 59.6 61.3 41.9 21.5 24.0 41.8
RDS 48.2 48.1 58.4 61.7 36.6 16.4 17.9 41.0
15% S2L 34.2 46.7 58.8 61.7 40.3 20.9 22.6 40.7
DEITA 37.7 46.1 58.5 61.5 40.1 20.3 21.6 40.8
BIDS (ours) 39.5 47.0  59.5 61.7 41.8 21.7 27.1 42.6
BIDS (ours; epochs=4) 40.4 47.0 58.9 61.1 44.1 235 28.1 43.3
100% Full (epochs=1) 404 49.6 58.8 60.8 452 25.4 20.8 43.0
Full (epochs=4) 41.2 49.3 54.6 59.4 48.1 30.1 19.6 43.2

Table 7: Complete results for Table 3 in the main text, with Mistral-7B-v(.3 as the base model. Under all three
budgets, BIDS still maintains the strongest macro-average performance, and ranks either first or second among
the six candidate selection methods on 5/7 benchmarks on average. The top 15% BIDS-selected subset again
outperforms full dataset training in macro average, by steadily improving on coding and math while maintaining its
remarkable general instruction-following ability.

pairwise scores using the cosine similarity between  servations in Table 2 that RDS-selected data also
hidden-layer representations of training and vali-  demonstrate significant bias towards coding-related
dation examples. The resulting method is dubbed  tasks and lead to overall poor performance. We
“RDS-BIDS”. This attempt is motivated by the ob-  maintain the same training and evaluation setup,
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Budget Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval
Task-max (LESS) 36.8 45.6 60.1 62.3 38.6 19.5 23.8 41.0
Sum 35.1 433 59.7 62.1 38.2 17.6 23.2 39.9
5% Temperature 342 424 599 61.8 37.2 19.7 21.8 39.6
BIDS (ours) 37.7 444 59.5 61.8 38.0 19.8 26.1 41.0
—Iter 36.8 44.1 59.1 61.5 38.2 19.6 27.5 41.0
—(Norm + Iter) 333 45.0 59.3 61.6 38.0 18.7 22.0 39.7
Task-max (LESS) 39.5 43.8 60.3 62.0 39.7 20.0 24.6 414
Sum 36.8 43.0 59.7 61.6 40.1 18.0 22.0 40.2
10% Temperature 35.1 456  60.0 62.0 39.1 18.4 222 40.3
BIDS (ours) 404 46.1 60.5 61.7 40.5 21.0 271 42.5
—Iter 377 45.0 59.7 61.6 40.2 20.2 26.7 41.6
—(Norm + Iter) 36.0 43.8 59.7 61.5 41.6 20.8 24.6 41.1
Task-max (LESS) 404 44.1 59.6 61.3 41.9 215 24.0 41.8
Sum 377 47.0 59.4 61.3 41.2 18.1 23.8 412
15% Temperature 37.7 47.9 60.5 61.7 39.7 18.4 24.2 41.4
BIDS (ours) 39.5 47.0 59.5 61.7 41.8 21.7 27.1 42.6
—Iter 38.6 46.4 59.8 61.6 41.8 20.9 26.1 422
—(Norm + Iter) 39.5 45.0  60.1 61.6 42.8 21.5 232 42.0

Table 8: Complete results for Table 4 and 5 in the main text, with Mistral-7B-v0.3 as the base model. Performance
improvements from —(Norm + Iter) to —Iter to BIDS are consistent with Llama-3-8B in §6.
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Figure 9: Unnormalized Average Influence Distribution
(AID) of the whole Ultralnteract dataset (Yuan et al.,
2024), with Mistral-7B-v(.3 as the base model. It still
shows great inter-task and intra-task scale disparities.
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Figure 10: Task frequencies with Highest Influence
(THI) of LESS-selected data under the 10% budget,
with Mistral-7B-v0.3 as the base model. In this case,
MMLU is even more obviously oversampled than prior
observations.
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Figure 11: THI under the 10% budget, with the base model being Mistral-7B-v0.3. Similar to prior observations
with Llama-3-8B, both —Iter and BIDS have more balanced task frequencies than —(Norm + Iter).

and show the comparison results across three bud-
gets in Table 9.

We can see that the balancing techniques
of BIDS work well for RDS-computed scores.
Across all three budgets, RDS-BIDS significantly
improves over the original RDS and consistently

outperforms the random baseline. In terms of
task-specific performance, RDS-BIDS also demon-
strates extensive and balanced improvements in
tasks other than coding, especially math and
instruction-following. This shows the necessity of
balancing various types of utility scores in general-
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Figure 12: Comparative analysis of normalized AID under the 10% budget, with the base model being Mistral-
7B-v0.3. Similar to prior observations with Llama-3-8B, from —(Norm + Iter) to —Iter to BIDS, the disparity
among different tasks and instances in AID gradually diminishes, with both decreasing maximums and increasing
minimums, although the degree of the original imbalance for Mistral-v0.3 is not as high as Llama-3.

Budget  Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 434

5% RDS 45.6 52.7 62.2 65.0 34.5 17.2 15.5 41.8
RDS-BIDS 50.9 53.0 64.1 65.0 41.0 19.7 20.0 44.8
Random 47.8 50.6 65.0 64.9 439 24.0 17.8 449

10% RDS 50.0 54.7 63.2 64.6 39.3 224 18.3 44.6
RDS-BIDS 47.4 53.6 63.2 65.2 43.6 24.1 21.6 45.5
Random 48.7 51.9 65.2 65.1 45.6 25.0 18.8 45.7

15% RDS 50.0 53.9 63.7 64.5 41.1 235 18.1 45.0
RDS-BIDS 48.2 53.0 63.8 64.8 45.1 24.2 214 45.8

Table 9: When the key technical components of BIDS (i.e., (1) instance-level normalization, and (2) iterative
selection favoring underrepresented tasks) are applied to the utility matrix of RDS, the resulting method, RDS-BIDS,
significantly improves over the original RDS and consistently outperforms the random baseline. These results are

obtained with Llama-3-8B as the base model.

purpose instruction tuning, in response to the Limi-
tations (§9) section in the main text, and validates
the broad applicability of the underlying princi-
ples of BIDS. However, as also stated in §9, the
focus of our work on influence-based approaches
limits detailed investigation into the more general
imbalance of data selection scores under a multi-
capability learning setup. We thus leave further
exploration in this direction to future work.

A.8 Generalizability of BIDS to Different
Evaluation Suites, Training Datasets, and
Model Sizes

In this section, we additionally validate the effec-
tiveness of BIDS under three different experimen-
tal setups that vary in evaluation suites, training
datasets, and size of the base model. Results in
this section show that the effectiveness of BIDS
is robust and generalizable across different experi-
mental configurations, thus further solidifying the
claims in the main text.

Different evaluation suites. First, we keep the
same training dataset (i.e., Ultralnteract), but drop
MMLU and BBH, the two tasks with highest and
lowest average influence respectively, from the
evaluation suite. In this way we investigate how
BIDS performs when the disparity of cross-task in-
fluence decreases. This evaluation setup also aligns
more with the practical use case where an Al agent
should not only have strong math and coding capa-
bilities but also faithfully follow user instructions.
From the results in Table 10, we find that despite de-
creased cross-task influence discrepancies, BIDS
is still effective in balancing and improving per-
formance across tasks. Notably, it advances the
performance of the original LESS-selected data in
all 5 evaluation tasks.

Different training datasets. Next, we investi-
gate how BIDS performs with a different training
dataset. For better comparison with prior work, we
adopt the original training mixture used in LESS,
which is composed of COT (Wei et al., 2022),
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Method Coding Math Ins-Following Macro Avg
HumanEval MBPP GSM-Plus MATH IFEval
Random 47.8 50.6 439 24.0 17.8 36.8
Task-max (LESS) 46.5 49.0 43.0 239 19.3 36.3
BIDS 46.5 49.9 44.5 25.3 24.6 38.2

Table 10: Results of Llama-3-8B, with the training set being Ultralnteract and the selection budget being 10%.
MMLU and BBH, the two tasks with highest and lowest average influence respectively, are dropped from the
original evaluation suite. This validates that the effectiveness of BIDS is not a special case under certain task
setup, and can generalize to different evaluation suites.

Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval BBH MMLU GSM-Plus IFEval
Random 40.4 40.0 65.5 12.2 33.8 38.4
Task-max (LESS) 44.7 243 65.0 16.9 38.1 37.8
BIDS 45.6 53.5 64.7 16.9 41.3 44.4

Table 11: Results of Llama-3-8B, with the training set being the original mixture used in Xia et al. (2024) (COT (Wei
et al., 2022), DOLLY (Conover et al., 2023), FLAN V2 (Longpre et al., 2023), and OPEN ASSISTANT 1 (Kopf
et al., 2023)), and the selection budget being 10%. This validates that the effectiveness of BIDS can generalize to

different training datasets.

Method Coding Logic Knowledge Math Ins-Following Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval
Random 30.7 39.5 48.6 56.6 25.2 14.1 12.0 324
Task-max (LESS) 28.9 40.7 46.9 56.1 23.6 13.5 14.7 32.1
BIDS 333 42.1 48.2 56.8 25.7 14.1 17.1 33.9

Table 12: Results of Llama-3.2-3B, with the training set being Ultralnteract and the selection budget being 10%.
This validates that the effectiveness of BIDS can generalize to models of different sizes.

DOLLY (Conover et al., 2023), FLAN V2 (Long-
pre et al., 2023), and OPEN ASSISTANT 1 (Kopf
et al., 2023), and has 270K examples altogether.
This training dataset is more general-purposed com-
pared with the reasoning focus of Ultralnteract,
thus suitable for testing the universal applicability
of BIDS. For the evaluation suite, we drop MBPP
and MATH, and evaluate on the remaining five
tasks to align with the general property of the new
training dataset. Table 11 still shows significant
improvements of BIDS over other baselines. No-
tably, we observe the similar counterintuitive phe-
nomenon for LESS to §3, where MMLU has the
highest average influence but does not show greater
room for performance improvements. We also in-
vestigate why LESS shows extremely poor perfor-
mance in BBH. It turns out that models trained on
LESS-selected data tend to stop generation right
after generating “Let’s think step by step”, which

is likely a consequence of training on imbalanced
data mixtures.

Different size of the base model. Moreover, to
verify that the effectiveness of BIDS is robust to
the size of the base model, we experiment with
Llama-3.2-3B using the same training and evalua-
tion setup as the Llama-3-8B and Mistral-7B-v0.3
experiments in the main text. Table 12 again vali-
dates that the effectiveness of BIDS can generalize
to modern smaller models. Notably, apart from
improved average performance, BIDS also outper-
forms the random baseline and the original LESS
in 6/7 and 7/7 tasks respectively, demonstrating the
generalizability of its balancing effect.

A.9 Discussion on the Computational Cost

In this section, we aim to discuss and show that
BIDS does not incur much memory or latency
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overhead, and can thus serve as an efficient plug-
and-play module. In our training and evaluation
setup, the | D| dimension for the Attribution Matrix
is about 288K (Yuan et al., 2024), and the |V| di-
mension is 350. Therefore, the memory cost for
storing the AM using FP64 precision is less than
800 MB. The latency cost for running the whole
BIDS algorithm is less than 1 minute with CUDA
acceleration of a single H100 GPU. More generally,
since many popular mixtures of instruction finetun-
ing data are maintained on the scale of hundreds of
thousands (Wang et al., 2023; Ivison et al., 2023;
Yuan et al., 2024; Yue et al., 2023), the memory
and latency cost of BIDS should be light for most
practical training setups.

A.10 Qualitative Analysis

In this section, we aim to demonstrate the follow-
ing two properties of BIDS with some qualitative
examples, and better illustrate its effectiveness:

1. Models trained on BIDS-selected data can in-
deed achieve a stronger balance between mas-
tering task-specific skills (e.g., math reasoning,
coding knowledge, etc.) and fully understanding
various types of instructions given by the user
(e.g., format-following, response style, etc.).

2. Such a stronger balance is indeed helpful to im-
proving the accuracy or human-perceived qual-
ity of model response.

Concretely, we present three sets of model re-
sponses in the task of coding (Table 13), math (Ta-
ble 14) and general instruction-following (Table 15)
respectively. Each set contains a correct response
by a Mistral-7B-v0.3 model trained on top-15%
BIDS-selected data, and a false response by the
same base model trained on the full (i.e., 100%)
Ultralnteract, both to exactly the same prompt. We
analyze how the BIDS-trained model correctly an-
swers all these prompts due to the greater balance
of capabilities it achieves.
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Table 13: For the example 1, the model trained on the full dataset fails to handle the corner case of numbers = [].
For the example 2, the full-trained model also fails at not adding the constraint of y != x in its sorting rule. In both
cases, BIDS-trained model returns the correct code completion because it better considers and handles corner cases.
It reflects that BIDS-trained model balances its capability in correct coding knowledge and comprehensive thinking
behavior.

HumanEval: Example 1

HumanEval: Example 2

Prompt

Prompt

def rolling_max(numbers):
# Write a Python function ‘rolling_max(numbers: List[int])
-> List[int]‘ to solve the following problem:
# From a given list of integers, generate a list of rolling
maximum element found until given moment
# in the sequence.
# >>> rolling_max([1, 2, 3, 2, 3, 4, 21)
# [1, 2, 3, 3, 3, 4, 4]

def find_closest_elements(numbers: List[float]) -> Tuple[float,
float]

# From a supplied list of numbers (of length at least two)
select and return two that are the closest to each other
and return them in order (smaller number, larger number).
# >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
# (2.0, 2.2)
# >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.01)
# (2.0, 2.0)

Wrong Completion: Full-trained model

Wrong Completion: Full-trained model

# Initialize the result list with the first element of the
input list
result = [numbers[0]]
# Initialize the maximum value with the first element of the
input list
max_value = numbers[0]
# Iterate through the input list starting from the second
element
for num in numbers[1:]:
# If the current number is greater than the maximum value,
update the maximum value and append the current number to
the result list
if num > max_value:
max_value = num
result.append(num)
# If the current number is not greater than the maximum
value, append the maximum value to the result list
else:
result.append(max_value)
# Return the result list
return result

closest_pair = min(numbers, key=lambda x: min(abs(x - y) for y
in numbers))

return closest_pair, min(numbers, key=lambda x: abs(x -
closest_pair))

Correct Completion: BIDS-trained model

Correct Completion: BIDS-trained model

if not numbers:
return []
n = len(numbers)
result = [numbers[0]]
for i in range(1, n):
result.append(max(numbers[i], result[-11))
return result

# Step 1: Sort the list of numbers in ascending order
numbers.sort()
# Step 2: Initialize the closest_numbers variable with the
first two elements of the sorted list
closest_numbers = (numbers[@], numbers[1])
# Step 3: Iterate through the list to find the two numbers that
are the closest to each other
for i in range(1, len(numbers) - 1)
# Step 4: Calculate the difference between the current
number and the next number
diff = abs(numbers[i] - numbers[i + 1])
# Step 5: If the difference is less than the difference
between the current closest numbers, update the closest
numbers
if diff < abs(closest_numbers[@] - closest_numbers[1]):
closest_numbers = (numbers[i], numbers[i + 1])
# Step 6: Return the two closest numbers in order (smaller
number, larger number)
return closest_numbers
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Table 14: For the example 1, BIDS-trained model understands the implicit condition contained in the question
that only after a whole number of years can a tree grow oranges for sale, and thus goes on to round the calculated
the calculation to integer (Step 7). For the example 2, the model trained on the full dataset fails to understand the
meaning of "a person was born 8 years before another" (Step 3) and thus performs the calculation in the wrong way.
In both examples, BIDS-trained model correctly answers the question because it balances its capability in math

reasoning and natural language understanding.

GSM-Plus: Example 1

GSM-Plus: Example 2

Question

Question

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final
answer as \boxed{ Your Answer}.

Carlos is planting an orange tree. The tree will cost $120 to plant.
Each year it will grow 10 oranges, which he can sell for $2 each.

It costs $4 a year to water and feed the tree. How many years will
it take before he starts earning money on the orange tree?

Solve the following math problem step-by-step.

Simplify your answer as much as possible. Present your final
answer as \boxed{ Your Answer}.

Raymond and Samantha are cousins. Raymond was born 8
years before Samantha. Raymond had a son at the age of 25.
If Samantha is now 35, how many years ago was Raymond’s
son born?

Wrong Response: Full-trained model

Wrong Response: Full-trained model

Step 1: To determine the number of years it will take for Carlos to
start earning money from the orange tree, we need to consider the
initial cost of planting the tree and the annual expenses associated
with watering and feeding it.

Step 2: The tree costs $120 to plant, and it incurs an annual
expense of $4 for watering and feeding.

Step 3: Each year, the tree produces 10 oranges, which he can sell
for $2 each.

Step 4: So, the total income from selling the oranges each year is
10 * $2 = $20.

Step 5: However, we need to subtract the annual expenses of $4
from the income to find the net profit from the oranges.

Step 6: Therefore, the net profit from the oranges each year is $20
- $4 = $16.

Step 7: To determine the number of years it will take for Carlos to
start earning money, we can divide the initial cost of planting the
tree by the net profit from the oranges each year.

Step 8: This gives us the number of years it will take for the tree
to start generating a positive return on investment.

Step 9: So, the number of years it will take before Carlos starts
earning money on the orange tree is $120/ $16 = 7.5$ years.

Answer:
\boxed{7.5}

Step 1: To solve this problem, we need to first understand the
given information and then work through the steps to find the
age of Raymond’s son.

Step 2: We’re given that Raymond was born 8 years before
Samantha, and Samantha is currently 35 years old.

Step 3: This means that Raymond was born 35 - 8 = 27 years
ago.

Step 4: Now, we know that Raymond had a son at the age of
25. So, we need to find out how many years ago Raymond’s
son was born.

Step 5: To do this, we can simply subtract Raymond’s age
when his son was born (27 years) from the current age of
Samantha (35 years).

Step 6: This gives us 35 - 27 = § years.

Step 7: Therefore, Raymond’s son was born 8 years ago.

Answer:
\boxed{8}

Correct Response: BIDS-trained model

Correct Response: BIDS-trained model

Step 1: To determine how many years it will take for Carlos to
start earning money from his orange tree, we need to consider the
costs involved in planting and maintaining the tree, as well as the
revenue generated from selling the oranges.

Step 2: First, we need to calculate the total cost of planting the
tree, which is $120.

Step 3: Each year, the tree will grow 10 oranges that can be sold
for $2 each, resulting in a total revenue of $20 per year.

Step 4: However, it also costs $4 per year to water and feed the
tree.

Step 5: Therefore, the net revenue from selling the oranges each
year is $20 - $4 = $16.

Step 6: To determine how many years it will take for Carlos to
start earning money, we can divide the total cost of planting the
tree by the net revenue each year. This gives us 120/ 16 = 7.5
years.

Step 7: Since we can’t plant a tree for half a year, Carlos will need
to wait 8 years before he starts earning money from the orange tree.

Answer:
\boxed{8}

Step 1: To solve this problem, we need to understand the
relationship between Raymond and Samantha, and then
calculate the age of Raymond’s son based on the given
information.

Step 2: Raymond is Samantha’s cousin, and he was born 8
years before her. This means that Raymond is 8 years older
than Samantha.

Step 3: Raymond had a son at the age of 25, so we need to
calculate Raymond’s age at that time. Since Raymond is 8
years older than Samantha, and Samantha is currently 35, we
can calculate Raymond’s age as 35 + 8 = 43.

Step 4: Now, we know that Raymond had his son at the age
of 25, so we can calculate the age of Raymond’s son by
subtracting 25 from Raymond’s age at that time, which is 43
-25=18.

Step 5: Therefore, Raymond’s son was born 18 years ago.

Answer:
\boxed{18}
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Table 15: For the example 1, the model trained on the full dataset ignores the explicit requirement of forming its
output as a single JSON block. It is especially overfit to the response format of Step X: . which is frequently
seen in the training data. In contrast, BIDS-trained model handles its CoT in a nifty way by expressing its thinking
process in the values of a JSON block. For the example 2, full-trained model not only fails to completely follow
the explicitly required format, but also hardly writes a poem, compared with the high-quality one generated by
BIDS-trained model. In both examples, BIDS-trained model generates content with significantly higher quality

due to the balance between strict format-following and flexible use of parametric knowledge.

IFEval: Example 1

IFEval: Example 2

Prompt

Prompt

Please provide the names of 5 famous moms in JSON format.
Please, use any interesting or weird tone. Your entire output
should just contain a JSON block, nothing else.

Write a poem about how I am missing my classes. The poem
must have 4 sections marked with SECTION X. Finish the
poem with this exact phrase: "Can I get my money back for
the classes I missed?"

Wrong Response: Full-trained model

Wrong Response: Full-trained model

Step 1: Let’s think of 5 famous moms who have made a
significant impact in their respective fields.

Step 2: Oprah Winfrey - Talk show host, media mogul,
producer, actress, philanthropist

Step 3: Angelina Jolie - Actress, filmmaker, humanitarian
Step 4: Michelle Obama - Former First Lady of the United
States

Step 5: Serena Williams - Professional tennis player

Step 6: Create a JSON block with the names of the 5 famous
moms.

T Tjavascript

/l Step 7: Create a JSON block with the names of the 5
famous moms.

[

"Oprah Winfrey",

"Angelina Jolie",

"Michelle Obama",

"Serena Williams"

]

Section 1:

I missed my first class today and I'm feeling quite disap-
pointed.

Section 2:

I really wanted to learn all the new material, but I had to stay
home due to illness.

Section 3:

I hope I can make up for the missed class by studying extra
hard for the next exam.

Section 4:

Can I get my money back for the classes I missed?

Answer:

"I missed my first class today and I'm feeling quite
disappointed.

I really wanted to learn all the new material, but I had to stay
home due to illness.

I hope I can make up for the missed class by studying extra
hard for the next exam.

Can I get my money back for the classes I missed?"

Correct Response: BIDS-trained model

Correct Response: BIDS-trained model

{

"Meryl Streep": "An American actress and filmmaker, known
for her versatile and powerful performances in films like
Kramer vs. Kramer, Sophie’s Choice, The Devil Wears Prada,
and many more.",

"Oprah Winfrey": "An American media mogul, talk show
host, actress, producer, and philanthropist. She is best known
for her talk show The Oprah Winfrey Show, which ran for 25
years.",

"Sarah Jessica Parker": "An American actress, producer, and
designer. She is best known for her role as Carrie Bradshaw
in the HBO series Sex and the City.",

"Jennifer Garner": "An American actress, producer, and en-
trepreneur. She is best known for her roles in films like 13
Going on 30, Juno, and Alias.",

"Angelina Jolie": "An American actress, filmmaker, and hu-
manitarian. She is best known for her work as a United
Nations Special Envoy and as a Goodwill Ambassador."

}

SECTION 1:

I’m sitting here feeling so lonely,

Missing my classes with all my friends,
Wishing I could be there with them,
Instead of sitting at home and mend.
SECTION 2:

I’m looking at my empty calendar,
Wondering what I’m missing out on,
Wishing I could join in on the fun,

Instead of staring at the screen and frown.
SECTION 3:

I’'m listening to the sound of silence,

While my friends are making memories,
Wishing I could join in on the laughter,
Instead of feeling left out and sadder.
SECTION 4:

I’'m staring at the clock, counting the minutes,
Until I can see my teachers and classmates,
Wishing I could just teleport there,

Instead of waiting for the next class to start.

Finish:
Can I get my money back for the classes I missed?

7102



