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Abstract

Chain-of-Thought (CoT) prompting enables
complex reasoning in large language models
(LLMs), including applications in information
retrieval (IR). However, it often leads to over-
thinking, where models produce excessively
long and semantically redundant traces with
little or no benefit. We identify two key chal-
lenges in IR: redundant trajectories that revisit
similar states and misguided reasoning that
diverges from user intent. To address these,
we propose State Machine Reasoning (SMR),
a transition-based reasoning framework com-
posed of discrete actions (REFINE, RERANK,
STOP) that support early stopping and fine-
grained control. Experiments on the BEIR
and BRIGHT benchmarks show that SMR im-
proves retrieval performance (nDCG@10) by
3.4% while reducing token usage by 74.4%. It
generalizes across LLMs and retrievers without
requiring task-specific tuning, offering a practi-
cal alternative to conventional CoT reasoning.1

1 Introduction

Chain-of-Thought (CoT) prompting (Wei et al.,
2022) has emerged as a powerful paradigm for
enhancing large language model (LLM) reason-
ing across complex tasks (Guo et al., 2025; Team,
2025) such as math and planning. This paper fo-
cuses on extending CoT-based reasoning to infor-
mation retrieval (IR) (Li et al., 2025b; Shao et al.,
2025), to better align retrieval with user intent for
improved query rewriting (Ma et al., 2023) and
document reranking (Sun et al., 2023).

Despite its strengths, CoT prompting often suf-
fers from overthinking (Chen et al., 2024; Liu
et al., 2024; Fan et al., 2025)—the generation of
semantically redundant or incorrect reasoning steps
that offer no benefit and may even be detrimental.

* Corresponding Authors
1The code and details are available at https://github.

com/ldilab/SMR.

(a) CoT Reasoning

(b) Compressed CoT Reasoning

(c) State Machine Reasoning (SMR)

What is an LLM?

[1] The user is asking about "LLM" — that's an acronym, so I should expand it.
[2] "LLM" stands for "Large Language Model."
[3] Maybe the user wants a deeper understanding, such as an expansion.
[4] I could try to rephrase the query to make it more informative.
[5] How about: "What is a Large Language Model?" — that’s clearer.
[6] But wait, in technical discussions, people commonly use "LLM" anyway.
[7] So returning to the original phrasing might be more natural.→ "What is an LLM?"

[1] Expand acronym → "Large Language Model."  
[2] User might want technical details → Clarify what LLM does.
[3] Rephrase for specificity → "What applications are available that leverage LLM?"
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Redundant Trajectories

Misguided Reasoning

Figure 1: Conceptual comparison between standard
CoT reasoning, compressed CoT reasoning, and our
proposed SMR framework. (a) Standard CoT performs
token-level generation in a single forward pass, often
leading to redundant intermediate states. (b) Com-
pressed CoT shortens trajectories via reinforcement
learning, at the risk of misaligned outputs. (c) SMR
decomposes reasoning into structured state transitions
(q,D) guided by IR-specific actions.

We identify two key IR-specific challenges arising
from this inefficiency that remain unaddressed by
current methods.

Redundant Reasoning Standard CoT prompting
generates reasoning at the token level, often revis-
iting semantically equivalent steps and continuing
unnecessarily even after reaching the answer. As
illustrated in Figure 1(a), CoT-based query rewrit-
ing frequently produces redundant paraphrases that
fail to introduce new evidence for retrieval, e.g.,
text shown in grey in the figure, which only inflate
with no gain in inference. A useful evidence that
is missing would be a passage mentioning LLM
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in a full name, to retrieve a higher recall results
including d3 and d4.

Misguided Reasoning In an attempt to compress
CoT trajectories using reinforcement learning (RL)
to shorten reasoning paths, as in O1-Pruner (Luo
et al., 2025), reasoning may misalign to user in-
tent in open-ended domain (Li et al., 2025a). As
illustrated in the bold text of Figure 1(b), such com-
pression can result in syntactically concise yet se-
mantically misaligned queries, e.g., retrieving LLM
“applications,” drifting from an original intention
of its “definition”. This misalignment causes the
retrieval of irrelevant documents such as d5 and d6.
Furthermore, compression requires task-specific
training and reward engineering, and thus limits
generalization.

To address these challenges, we propose State
Machine Reasoning (SMR), a transition-based rea-
soning framework based on structured state tran-
sitions that avoids token-level generation. Instead
of relying on autoregressive decoding or compress-
ing reasoning trajectories, SMR formulates reason-
ing as transitions between intermediate represen-
tation states. Inspired by decision-theoretic frame-
works (Liu et al., 2023), SMR represents each step
as a transition between states (q,D), where q de-
notes the current query, and D a ranked list of
retrieved documents. Figure 1(c) illustrates how
SMR reaches the goal. Our policy model first se-
lects the REFINE action to expand the acronym
“LLM,” followed by the RERANK action to reorder
the newly found document d3, which is the most
relevant. This policy model terminates when next
step produces no gains, by selecting STOP action.
This mechanism ensures that each state transition
yields a incremental gain and preserves the evolv-
ing context through structured state representations.
This formulation brings two key advantages.

Token Efficiency Our method avoids redundant
reasoning and achieves greater token efficiency by
operating over explicitly defined states. Each step
updates a structured state, allowing the system to
detect when it revisits an equivalent state. This
contrasts with token-level generation, which lacks
a mechanism to recognize semantic repetition.

Action Effectiveness By grounding each reason-
ing step in IR-relevant operations, SMR enables re-
trieval systems to make improvements through two
actions: REFINE for query rewriting and RERANK

for document reranking. These actions enable the

system to reissue queries when current results are
insufficient, or reorder documents when initial rank-
ings are suboptimal. This design supports incre-
mental retrieval improvements and offers precise
control over which component of the pipeline to ad-
just at each step. In contrast, token-level generation
lacks explicit validation of improvement at each
step, can resulting in outputs that diverge from user
intent.

We validate SMR on two benchmarks:
BEIR (Thakur et al., 2021), a widely-used bench-
mark for standard IR evaluation, and BRIGHT (Su
et al., 2024), which emphasizes reasoning-intensive
retrieval. SMR achieves up to 3.4% improvement
in nDCG@10 while reducing token usage by
74.7% on the BRIGHT benchmark, consistently
outperforming prior baselines across both retrieval
quality and efficiency metrics. SMR demonstrates
robustness across sparse/dense retrievers and
LLMs with and without reasoning. These results
validate the practicality and generalizability of our
approach, suggesting that SMR can be seamlessly
integrated into a wide range of retrieval systems
without requiring model-specific tuning.

2 Related Work

2.1 LLM-based Reasoning for IR

LLMs have recently been used to interleave rea-
soning with retrieval actions, enhancing retrieval
quality via query understanding and iterative re-
finement. While early neural retrievers relied on
static query-document matching (Karpukhin et al.,
2020; Nogueira and Cho, 2019), later approaches
incorporated reasoning modules into the retrieval
loop. These methods typically operate at the to-
ken level, relying on long reasoning traces that
are not always efficient or robust. ReAct (Yao
et al., 2023) pioneered interleaved reasoning and
acting for multi-hop QA, inspiring follow-up work
in CoT-based query rewriting (Li et al., 2025b) and
document reranking (Weller et al., 2025; Zhuang
et al., 2025). While ReAct interleaves reasoning
and tool use, it lacks task-specific structure and of-
ten relies on verbose traces, limiting its efficiency
in retrieval-focused tasks.

2.2 Overthinking in CoT Reasoning

Despite their effectiveness, CoT-based models of-
ten suffer from overthinking, unnecessarily long
reasoning sequences that offer no additional seman-
tic gain (Chen et al., 2024; Liu et al., 2024; Fan

7049



et al., 2025). In the context of IR, this manifests
as two distinct problems: (1) Redundant trajecto-
ries, where semantically similar steps are revisited
repeatedly, and (2) Misguided reasoning, where
shortened traces drift away from user intent or task
objectives. These issues increase inference cost and
degrade alignment with the user’s retrieval goal.

Recent work (Sui et al., 2025; Qu et al., 2025;
Wang et al., 2025) has investigated approaches
to mitigate overthinking by compressing CoT
traces or learning to generate shorter ones. O1-
Pruner (Luo et al., 2025) applies RL to shorten rea-
soning while preserving output correctness. Other
methods use value estimation (Shridhar et al., 2023)
or supervised distillation to train models to prefer
concise traces.

2.3 Our Distinctions
Compared to LLM-based reasoning like ReAct
(Section 2.1), our controlled action space enables
a principled transition-based control against over-
thinking, without incurring task-specific training
or reward engineering of existing work (Section
2.2). We are the first to generalize state machine,
beyond math and code (Liu et al., 2023) where ver-
ification is straightforward, to retrieval. We show
SMR is tuning-free, generalizable, and performs
consistently across retrievers and LLMs.

3 Proposed Method

Our framework can be viewed as a Markov Deci-
sion Process (MDP) with a discrete action space
and structured state representation. While we do
not explicitly learn a value function, our design
is inspired by decision-theoretic frameworks (Liu
et al., 2023), where each reasoning step corre-
sponds to a transition between abstract states.
Based on this formulation, we recast reasoning
as transitions over IR-specific states and actions,
rather than as token-level generation.

3.1 Structured State Representation
To address the first challenge (redundant trajecto-
ries), we propose representing the reasoning state
as a structured tuple (qt, Dt) at each step t, where
qt denotes the current query and Dt is a ranked list
of top-k retrieved documents:

st = (qt, Dt), Dt = {d1, d2, . . . , dk}. (1)

This representation serves as the foundation of
our transition-based reasoning by explicitly encod-

ing the query and its retrieved documents. Specifi-
cally, the query q preserves the user’s intent, while
the document list D encapsulates the retrieval con-
text that guides subsequent reasoning steps.

The initial state s0 = (q0, D0) is constructed
using the user-issued query q0 and the correspond-
ing retrieved documents D0 obtained from a static
retriever. Subsequent reasoning steps update either
the query or the document list, producing a trajec-
tory of structured states. This formulation guides
reasoning via IR-specific actions while maintaining
alignment with retrieval quality and intent.

Stop Decision To avoid redundant reasoning
and mitigate overthinking, SMR employs a stop-
ping mechanism that detects when the system has
reached an equivalent state. Instead of explicitly
comparing the current state st = (qt, Dt) with
all previously visited states {s0, s1, . . . , st−1}, we
assess whether the current state provides any mean-
ingful gain. Specifically, if the retrieved documents
are identical and the query remains unchanged from
the previous state st−1, then st is treated as equiv-
alent to st−1. This ensures that state transitions
reflect incremental improvements rather than re-
dundant cycles. Crucially, this mechanism allows
the model to determine whether it has gathered suf-
ficient information to stop reasoning, a capability
that conventional CoT-based methods lack. This de-
cision is primarily made by the policy model, which
selects the STOP action when it predicts that further
reasoning would yield no meaningful change.

3.2 IR-Specific Reasoning Actions
To address the second challenge (misguided reason-
ing), we replace token-level decoding with a set of
controllable reasoning actions. This action space
allows the system to updates the current reasoning
state based on its retrieval context, rather than rely-
ing on implicit generation dynamics that may drift
from user intent.

Our action space A consists of three discrete
actions:

A = {REFINE, RERANK, STOP}. (2)

Each action modifies the reasoning state to improve
retrieval quality or terminate the reasoning process.

Refine The REFINE action updates the query to
better reflect the user’s information need, guided
by the current retrieval context:

qt+1 = LLMREFINE(qt, Dt). (3)
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Action Selection Policy

Action Refine

Reason Using a full name

Action Rerank

Reason d3 looks the most relevant

Action Stop

Reason We have enough information

q What is an LLM?

q What is an LLM?

D [ d1, d2 ]

q What is a large language model?

D [ d1, d2, d3, d4 ]

q What is a large language model?

D [ d3, d1, d2, d4 ]

D [ d3, d1, d2, d4 ]

State Transition

Refine

Rerank

Stop

Initial Retrieval

IR-Specific Reasoning Actions

Result What is a large language model?

Result [ d3, d1, d2, d4 ]

+ retrieve [ d3, d4 ]

Figure 2: Illustration of our proposed reasoning framework (SMR). Beginning from an initial query and its retrieved
documents, SMR transitions through structured states via three actions: REFINE (query rewriting), RERANK
(document reordering), and STOP (termination). At each step, the LLM selects an action with justification, and the
document list is updated accordingly.

This enables the model to perform query rewriting
or expansion, conditioned on evidence from the
retrieved documents.

Following each REFINE action, we invoke the
retriever with the updated query qt+1 to obtain new
candidate documents. If any of the retrieved doc-
uments are not already present in Dt, they are ap-
pended to the end of the current list. This augmen-
tation strategy ensures meaningful evolution of the
retrieval state without discarding the existing con-
text. For further details on the REFINE action, refer
to Appendix A.1.

Rerank The RERANK action adjusts the ordering
of the document list without modifying the query:

Dt+1 = LLMRERANK(qt, Dt). (4)

It refines the document ranking when the initial
retrieval is imperfect, allowing better relevance es-
timation while keeping the query fixed.

To address potential hallucinations during
reranking, we impose structural constraints on the
output. Specifically, if the reranked list contains
documents that were not present in the original Dt,
we discard those entries and exclude them from the
updated state. This prevents spurious hallucinated
documents from contaminating the reasoning tra-
jectory. Conversely, if the reranked list omits any
documents from the original set, we re-append the

missing items to the end of the list in their original
order. This ensures that no context is inadvertently
lost during reranking, preserving the integrity of
the retrieval state across transitions.

Stop The STOP action terminates the reasoning
process, returning the current state st = (qt, Dt)
as the final output. This allows the system to avoid
unnecessary steps once sufficient retrieval quality
is achieved, promoting token efficiency and pre-
venting semantic drift.

In addition to semantic equivalence, we also im-
pose a hard cap on the total number of reasoning
steps to control inference cost. Specifically, we
set a maximum number of transitions, typically
max_steps = 16, beyond which the system au-
tomatically issues a STOP action. This provides
an upper bound on computation and ensures ro-
bustness in deployment scenarios with limited re-
sources. When compute budget permits, increas-
ing max_steps can yield improved retrieval perfor-
mance by allowing deeper reasoning.

By decoupling reasoning into these interpretable
transitions, our framework enables targeted im-
provements at each stage, supports early stopping,
and remains robust across diverse retrieval scenar-
ios without task-specific training.
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3.3 Action Selection Policy
At each reasoning step, the system selects one of
the three available actions based on the current state
(qt, Dt). Instead of relying on a fixed heuristic or
trained controller, we adopt a prompt-based strat-
egy where an LLM itself determines the next action.
In this setup, the LLM serves as a judge that evalu-
ates the current reasoning context and chooses the
most appropriate next step.

At each step, the system selects the next action
based on the current state using an instruction-
following LLM guided by a structured prompt. The
prompt describes the agent’s role as a decision-
maker responsible for improving the quality of re-
trieved results, and presents the current query and
its associated documents in a structured format.
The LLM is prompted to choose exactly one of the
three actions. The full prompt format is provided
in Appendix A.2.

Rather than relying on learned scoring or im-
plicit decoding dynamics, the action decision is
made through rule-grounded prompting that em-
beds heuristics into the LLM’s instruction space.
For example, the LLM is encouraged to choose
REFINE when the query appears vague or the re-
sults are unsatisfactory, and to prefer STOP only
when confident that no further improvement is pos-
sible. This design allows the decision process to
remain transparent, easily modifiable, and robust
to misalignment.

While the rationale is not used by the system for
downstream decisions, we retain it for transparency
and interpretability. This enables human inspection
of the model’s behavior and helps ensure that the
policy aligns with the intended design. Remaining
details of SMR are provided in Appendix A.3.

4 Results and Analysis

4.1 Experimental Setup
Datasets We evaluate our method on two re-
trieval benchmarks with differing reasoning com-
plexity. BRIGHT (Su et al., 2024) is a re-
cent benchmark designed to evaluate reasoning-
intensive retrieval scenarios. It consists of 12
subsets spanning diverse domains such as Stack-
Exchange forums, coding problems, and STEM
question-answering tasks, where queries often re-
quire domain-specific reasoning to identify relevant
passages. This serves as our primary benchmark,
enabling us to assess how well different methods
handle complex reasoning demands. For complete-

ness, we also evaluate on BEIR (Thakur et al.,
2021), a widely used benchmark comprising di-
verse domains (e.g., factoid QA, biomedical search,
and entity-centric retrieval). BEIR primarily mea-
sures general retrieval performance and helps vali-
date the effectiveness of our method in standard IR
settings.

Evaluation Metrics We report nDCG@10 as
the primary evaluation metric, following standard
IR practice. Additional ranking metrics such as
MAP and Recall are reported in the Appendix A.5
for completeness.

Baselines We compare SMR against the follow-
ing baselines:

• Retrievers: BM25 (Robertson et al., 2009) is
a traditional sparse retriever widely used in
IR. ReasonIR (Shao et al., 2025) is a state-of-
the-art dense retriever specifically trained for
general reasoning tasks, outperforming other
strong retrievers such as Contriever (Izacard
et al., 2021) and RankLLaMA (Ma et al.,
2024).

• Standard CoT: Rank1 (Weller et al., 2025)
and Rank-R1 (Zhuang et al., 2025) are CoT-
based reasoning models that represent the
state-of-the-art among fine-tuned and RL-
trained approaches. We select these mod-
els over ReAct (Yao et al., 2023) as they are
specifically adapted for IR and represent the
leading CoT-based reasoning in this domain.

• Compressed CoT: O1-Pruner (Luo et al.,
2025) is an RL-based method for compressing
reasoning trajectories while preserving answer
quality.

To ensure a fair comparison across LLMs with dif-
fering capabilities, SMR is implemented using two
backbone models: non-reasoning (Qwen2.5-32B,)
and reasoning (QwQ-32B) LLMs. This allows us
to isolate the effectiveness of the reasoning frame-
work from the inherent capabilities of the underly-
ing language model.

Implementation Details All baselines follow
public implementations provided in official repos-
itories, with necessary adaptations for our experi-
mental protocol. Hyperparameters not mentioned
here follow those in the original publications. See
Appendix A.4 for complete implementation details.

7052



4.2 Analysis

To further validate the effectiveness of SMR, we as-
sess whether our goals have been achieved through
the following three research questions.

4.2.1 RQ1: Does SMR Improve Retrieval
Effectiveness?

Overall Effectiveness To assess the retrieval ef-
fectiveness of SMR, we report the nDCG@10
scores of the final ranked documents on the
BRIGHT benchmark which is a recent suite of
tasks explicitly designed to evaluate retrieval perfor-
mance under reasoning-intensive scenarios. Eval-
uations on additional metrics such as MAP and
Recall are provided in Appendix A.5.

Table 1 and Table 2 compare our method against
a variety of baselines, including standard CoT-
based reranking approaches (Rank1, Rank-R1)
and a compressed variant (O1-Pruner), under both
sparse (BM25) and dense (ReasonIR) retrieval set-
tings. Across all 12 domains, SMR consistently
outperforms both standard and compressed CoT
baselines. Notably, both variants of SMR achieve
the highest average nDCG@10 gain of +5.4%
on sparse retriever and +2.1% on dense retriever,
demonstrating that our structured reasoning frame-
work remains highly effective in complex retrieval
scenarios, regardless of the underlying LLM.

Policy Effectiveness Table 3 analyzes how SMR
adapts its actions based on query type. Based
on the original category of BRIGHT (Su et al.,
2024), we categorize queries into three groups:
Theorem-based (ThoeT, ThoeQ, AoPS), Coding
(Pony, Leet), and Stack Exchange (others).

The model’s strategy changes with query diffi-
culty. For challenging queries (Theorem-based and
Coding), it favors the REFINE action, an “explore-
first” approach to discover relevant documents
through multiple trajectories. Conversely, for sim-
pler queries (Stack Exchange), it predominantly
uses the RERANK action, an “exploit” strategy to
finalize the ranking of already-found documents in
fewer trajectories. Full results for each dataset are
given in Appendix A.6.

This pattern correlates strongly with underlying
retrieval difficulty. Faced with limited initial ev-
idence, SMR adaptively runs multiple rounds of
query refinement, attempting to surface better docu-
ments before stopping. This behavior demonstrates
that our action policy is not based on simple rule-
based heuristics, but rather leverages contextual

cues to make informed decisions.
Moreover, we conduct an ablation study com-

paring SMR with several fixed or naive strategies
in Appendix A.7, demonstrating the effectiveness
of our prompt-based policy design. Specifically,
we compare our full policy with three simplified
baselines: one that uses only the REFINE action,
one that uses only RERANK, and one that selects
actions uniformly at random. SMR consistently
achieves the best performance among these, indi-
cating that our prompt-based policy design effec-
tively balances refinement and reranking to support
more accurate and efficient reasoning.

Intent Drift To verify that our iterative query
refinement does not suffer from intent drift, we
automatically evaluated the semantic alignment be-
tween the original and rewritten queries on the
BRIGHT benchmark. At each REFINE step (up
to 16 per query), we measured how well the rewrit-
ten query preserved the original intent. We use
GPT-4o-mini as the reference evaluator to compute
alignment scores. On average, across all datasets
and refinement steps, intent alignment consistently
remained above 0.9, indicating that the refined
queries retained strong fidelity to the user’s origi-
nal intent throughout the reasoning process. More
details are provided in Appendix A.8.

4.2.2 RQ2: Does SMR Enhance Token
Efficiency?

Datasets in BRIGHT

#
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Figure 3: Inference token usage across five representa-
tive datasets in the BRIGHT benchmark. SMR (green
bars) achieves significantly lower token consumption
than Rank1, Rank-R1, and O1-Pruner, while improving
retrieval performance. Full results including all datasets
are presented in Appendix A.9.

Token Efficiency To evaluate the token effi-
ciency of our method, we compare the total num-
ber of inference tokens used by each system on the
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Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT Avg

Retriever

BM25 18.9 27.2 14.9 12.5 13.6 18.4 15.0 24.4 7.9 6.2 10.4 4.9 14.5

CoT Reasoning

Rank1 (32B) 22.1 31.7 14.6 15.7 15.8 17.7 20.3 22.9 9.7 5.9 11.8 9.3 16.5

Rank-R1 (14B) 23.6 33.5 16.8 15.4 18.8 18.4 20.3 24.9 9.1 6.9 12.1 8.7 17.4

Compressed CoT Reasoning

O1-Pruner (32B) 23.6 31.9 17.7 18.0 17.2 20.0 19.8 24.2 8.4 6.6 10.7 7.0 17.1

Ours

SMR (Qwen2.5-32B) 28.7 34.9 20.4 20.7 20.9 20.8 19.2 22.1 6.3 6.3 18.0 20.3 19.9
SMR (QwQ-32B) 28.8 34.4 19.8 21.0 19.8 21.1 21.4 25.5 7.5 5.7 16.9 17.2 19.9

Table 1: Retrieval performance (nDCG@10) on BRIGHT benchmark using sparse retriever (BM25) as the
underlying retriever. All methods differ only in their reasoning strategy. Best scores per dataset are bolded.

Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT Avg

Retriever

ReasonIR 26.3 31.5 23.3 30.3 17.8 24.0 20.6 35.0 10.3 14.3 31.6 27.2 24.4

CoT Reasoning

Rank1 (32B) 32.0 30.0 22.3 31.1 16.7 25.8 22.4 31.4 15.5 12.1 27.8 26.3 24.5

Rank-R1 (14B) 33.0 34.1 24.2 33.5 20.2 25.4 22.8 33.5 14.1 10.7 30.3 27.8 25.8

Compressed CoT Reasoning

O1-Pruner (32B) 31.6 34.9 24.5 33.2 21.0 24.9 24.7 33.3 11.8 12.9 29.9 27.1 25.8

Ours

SMR (Qwen2.5-32B) 34.7 35.1 26.2 32.8 20.9 25.2 24.2 30.8 10.4 13.5 30.1 28.6 26.0

SMR (QwQ-32B) 35.2 35.5 27.0 33.7 19.4 25.9 23.4 31.6 11.3 14.1 30.8 29.8 26.5

Table 2: Retrieval performance (nDCG@10) on BRIGHT benchmark using dense retriever (ReasonIR) as the
underlying retriever. All methods differ only in their reasoning strategy. Best scores per dataset are bolded.

Query Type
Refine

Ratio (%)
Rerank

Ratio (%)
Average

Steps

Theorem-based 63.4 36.6 13.1

Coding 55.3 44.7 11.2

Stack Exchange 22.8 77.2 9.6

Table 3: Distribution of reasoning actions and average
steps by SMR on the BRIGHT benchmark, grouped by
query type.

BRIGHT benchmark. Notably, SMR executes both
the policy decision and the REFINE/RERANK steps
using a single LLM via prompt-based interaction,
without invoking any additional tools. As a result,
the total token count serves as a practical estimate
of real-world inference latency. Full results includ-
ing all datasets are presented in Appendix A.9.

As shown in Figure 3, SMR (green bars) consis-
tently consumes significantly fewer tokens across
five representative datasets (Bio, Earth, Econ, Pay,
Rob) compared to prior baselines including Rank1,

Rank-R1, and O1-Pruner. On average, SMR re-
duces inference token usage by 74.4% compared to
the CoT-based baselines, outperforming even CoT
compression methods such as O1-Pruner, which
achieve only marginal reductions under 5%.

While these baselines often perform redundant
reasoning steps, SMR minimizes such redundancy
by proposing structured states and terminating rea-
soning early when convergence is detected. This
allows our method to achieve superior retrieval per-
formance (see Table 1 and Table 2) while using
substantially less computational resources.

To demonstrate this efficiency, we have con-
ducted a cost analysis on an NVIDIA A6000 GPU
with vLLM to provide a holistic view. The average
number of REFINE actions per query was 2.97,
with each additional retrieval pass taking approx-
imately 1.5 seconds, resulting in an average over-
head of 4.46 = 2.97 × 1.5 seconds. In contrast,
SMR saves over 2,000 tokens per query versus
baselines like Rank1. Generating these tokens with
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a 32B LLM on the same GPU takes 166 seconds.
Since 166 ≫ 4.46, the token savings result in a
substantial net gain in computational efficiency and
a reduction in overall latency, confirming that the
benefits of SMR’s token efficiency win the minor
cost of iterative retrieval.
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Figure 4: Transition statistics of SMR on the BRIGHT
benchmark. The blue bars indicate the number of rea-
soning steps across all queries, computed cumulatively
per transition depth. The red curve shows the average
retrieval performance (nDCG@10) at each step.

Action Efficiency To evaluate how our policy
model selects actions efficiently for queries of
varying complexity, we analyze the distribution
of action lengths across all queries in the BRIGHT
benchmark, as shown in Figure 4. Each bar shows
the cumulative number of queries that reached that
reasoning step. For instance, a query that required
3 reasoning steps in total is counted in the bars for
steps 1, 2, and 3.

We observe that 25% of queries terminate within
3 steps, and 50% within 6 steps, indicating that our
system converges quickly. This validates our early
stopping mechanism and shows that many queries
can be resolved efficiently without overthinking.

At the same time, 25% of queries (green bar)
exhibit 12 or more actions, especially for complex
or ambiguous inputs, which benefit from additional
refinement and reranking. This illustrates the flexi-
bility of SMR which selectively allocates compu-
tation where needed. Examples of such queries
are provided in Appendix A.10. The examples
show how SMR successfully navigates these hard
queries, while the baselines fail to handle them.

Notably, the red curve in Figure 4 shows the aver-
age retrieval performance (nDCG@10) after each
transition step. Retrieval performance improves
steadily as reasoning progresses, demonstrating
that our policy model incrementally updates the

state with meaningful gains. While we enforce a
maximum of 16 steps due to computational con-
straints, the upward trend indicates that further im-
provements may be possible with extended actions,
highlighting our capacity for continued enhance-
ment when resources permit.

4.2.3 RQ3: Is SMR Generally Applicable?

DBpedia SciFact FiQA Avg

Retriever

GPL 36.1 66.5 32.9 45.2

CoT Reasoning

Rank1 (32B) 38.2 70.2 35.8 48.1

Rank-R1 (14B) 38.9 71.6 37.1 49.2

Compressed CoT Reasoning

O1-Pruner (32B) 32.6 71.9 36.0 46.8

Ours

SMR (Qwen2.5-32B) 37.6 73.1 38.7 49.8
SMR (QwQ-32B) 39.5 71.2 36.5 49.1

Table 4: Retrieval performance (nDCG@10) on BEIR
datasets. All methods use GPL (Wang et al., 2021) as
the retriever, varying only in reasoning strategy. Best
scores per dataset are bolded.

Generalizability To assess the general applica-
bility of SMR beyond reasoning-intensive scenar-
ios, we evaluate its performance on the BEIR
benchmark (Thakur et al., 2021), which covers
a broad range of standard IR tasks without ex-
plicit reasoning demands. Table 4 presents the
nDCG@10 results on three BEIR datasets (DBpe-
dia, SciFact, and FiQA).

Table 4 shows that SMR achieves the highest
average performance among all methods, outper-
forming both standard CoT and a compressed rea-
soning approach. This demonstrates that our struc-
tured reasoning approach is not specialized solely
for reasoning-intensive scenarios. Instead, its core
mechanism of identifying and refining information
gaps via a structured state appears to be a funda-
mental benefit that transfers effectively to standard
retrieval tasks.

Furthermore, Table 4 demonstrates that SMR de-
livers robust performance with both Qwen2.5-32B
and QwQ-32B backbones. Both variants achieve
results that are either comparable to or superior to
the strongest baselines. This indicates that the per-
formance gains stem from our structured reasoning
framework itself, rather than from the capabilities
of a particular underlying LLM.
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5 Conclusion

We presented SMR, a structured reasoning for re-
trieval by modeling reasoning as transitions over
discrete states, defined as queries and document
rankings. To mitigate overthinking, unlike prior
methods such as CoT prompting or ReAct relying
on token-level generation or tool calls, SMR takes
an action-driven approach constraining reasoning
to a set of IR-specific actions and grounding each
step in a well-defined state. SMR offers a compact
and controllable alternative to token-level reason-
ing with three key benefits: (1) improved retrieval
performance, (2) reduced token usage through early
stopping and redundancy checks, and (3) robust
generalization across retrievers and LLMs without
task-specific tuning. Experiments on the BRIGHT
and BEIR benchmarks validate these advantages,
with SMR outperforming strong baselines in both
complex and standard IR settings.

6 Limitation

While SMR offers a modular and token-efficient
alternative to conventional CoT reasoning, our cur-
rent state representation is limited to representing
the query and the top-k retrieved documents, and
does not incorporate user interaction signals such
as click-through rates or engagement metrics. In-
corporating such behavioral feedback could further
enhance state fidelity and reasoning quality. More-
over, while we restrict reasoning actions to REFINE,
RERANK, and STOP, the modular nature of our
framework allows integration of additional oper-
ations such as domain-specific retrieval modules,
document filters, or other tools without requiring
architectural changes.
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A Appendix

A.1 Details of Refine Action

We avoid fully replacing Dt with newly retrieved
results. Doing so risks erasing valuable signals
from earlier reasoning steps, which can mislead the
reasoning trajectory. On the other hand, omitting
retrieval altogether after a query refinement would
be redundant, as the refined query is intended to im-
prove document retrieval. By integrating retrieval
directly into the REFINE action, we ensure consis-
tency of reasoning and avoid unnecessary decom-
position into separate actions.

A.2 Policy Prompt

We provide the full prompt used to guide action
selection in our system, as shown in Table 5. The
prompt is designed to simulate the behavior of a
decision-making agent responsible for managing a
search process through discrete reasoning steps.

It describes three possible actions with their in-
put and output formats, decision conditions, and
justifications. The prompt is instruction-based and
free of task-specific training, enabling it to be ap-
plied across diverse retrieval scenarios without re-
configuration.
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A.3 Details of Policy
LLM behavior during decoding is sensitive to tem-
perature settings. A low temperature (e.g., T = 0)
yields deterministic outputs, promoting stability,
while higher temperatures increase diversity by al-
lowing exploration of alternative generations.

We use the zero temperature to ensure consis-
tency at default. However, if the model fails to
produce a valid output, such as malformed JSON
or empty responses, we incrementally raise the tem-
perature by 0.1 and retry. This strategy expands the
model’s output space just enough to recover from
failure without sacrificing control.

Importantly, our reasoning framework is de-
signed to tolerate such exploratory decoding. Be-
cause each action operates within a strict interface
and is validated at each step, the system remains
robust even under increased temperature. This al-
lows us to combine deterministic defaults with con-
trolled exploration for improved reliability.

A.4 Implementation Details
Rank1-32B is derived from Qwen2.5-32B1, and
Rank-R1-14B is derived from Qwen2.5-14B2.
Since the 32B version is not available in Rank-R1,
we experiment with the 14B model. Since O1-
Pruner is not originally designed for retrieval, we
apply our prompt to perform query rewriting and
document reranking using the model. O1-Pruner-
32B is derived from QwQ-32B-preview3. To en-
sure a fair comparison given the model origin, we
experiment with both particular non-reasoning and
reasoning LLMs (Qwen2.5-32B1, QwQ-32B4).

The token usage is computed by summing all
generated output tokens across reasoning steps. In-
put tokens are excluded to isolate the generation
cost. All experiments are run on a single NVIDIA
A6000 GPU. We set batch size, LLM temperature,
top-k retrieval, and the maximum number of rea-
soning steps for SMR as follows: batch_size =
8, temperature = 0.0, k = 10, max_steps = 16.
These hyperparameters are held constant across all
datasets and models unless otherwise stated.

A.5 Evaluation on Additional Metrics
To complement the main evaluation in terms of
nDCG@10, we report additional metrics to fur-
ther validate the robustness of our approach. Ta-

1Qwen/Qwen2.5-32B-Instruct
2Qwen/Qwen2.5-14B-Instruct
3Qwen/QwQ-32B-Preview
4Qwen/QwQ-32B

ble 6, and Table 7 show results on MAP@10
and Recall@10, respectively, evaluated on the
BRIGHT benchmark using BM25 as the base re-
triever. Across all metrics and datasets, SMR con-
sistently achieves top performance compared to
CoT and compressed CoT baselines.

A potential concern with our early stopping
mechanism is that it may prematurely terminate
the reasoning process, potentially reducing the re-
call of retrieved documents. However, our results
show that SMR consistently achieves higher recall
than all baselines. This indicates that the risk of
under-retrieval is either negligible or outweighed
by the benefits of our reasoning process.

A.6 Action Distributions

Datasets in BRIGHT
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Figure 5: Distribution of reasoning actions selected by
SMR on the BRIGHT benchmark. Red bars indicate the
proportion of REFINE actions, and blue bars indicate
RERANK actions.

To further investigate the behavior of SMR, Fig-
ure 5 presents the distribution of selected actions
across different datasets in the BRIGHT bench-
mark. Each bar represents the relative frequency of
the REFINE and RERANK actions issued during rea-
soning. The x-axis represents each dataset, sorted
in ascending order of initial retriever performance,
to examine how action distributions correlate with
retrieval effectiveness.

We observe that SMR does not follow a fixed
pattern or static heuristic. Instead, action selection
varies across tasks, reflecting the differing reason-
ing needs of each dataset. In domains where the
initial retrieval results are relatively informative
(e.g., Bio, Earth, Econ), the model predominantly
uses RERANK to adjust document ordering while
keeping the original query intact. In contrast, in
theorem and coding domains where the initial re-
trieval results are the lowest (green subset) such as
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TheoT, AoPS, Pony, TheoQ, and they exhibit much
higher proportions of REFINE actions, up to 70%
in some cases.

A.7 Ablation Study for Action Selection
Policy

We conduct an ablation study comparing SMR with
several fixed or naive strategies in Table 8, demon-
strating the effectiveness of our prompt-based pol-
icy design. Specifically, we compare SMR with
three simplified variants: one that removes the
REFINE action ([RERANK or STOP]), one that re-
moves the RERANK action ([REFINE or STOP]),
and one that randomly selects an action at each
step. We do not ablate STOP since it is essential for
termination, but instead test whether random policy
decisions degrade performance. SMR consistently
achieves the best performance among these, indicat-
ing that our prompt-based policy design effectively
balances refinement and reranking to support more
accurate and efficient reasoning.

A.8 Evaluation of Query Intent Preservation
During Refinement

To address concerns about potential query intent
drift during iterative refinement, we conducted an
automatic evaluation to quantify how well each
rewritten query preserves the user’s original intent.
Specifically, we evaluated queries generated during
each reasoning step of REFINE using the BRIGHT
benchmark.

We employed GPT-4o-mini as a reference evalu-
ator. For each reasoning step the model was shown
the original query, the current rewritten query, and
the retrieved documents used to generate. The
model was instructed to assign a continuous score
between 0 and 1, where 1 indicates perfect preser-
vation of the original intent and 0 indicates com-
plete divergence. The exact prompt used for this
evaluation is included in Table 9.

Table 10 shows the average alignment score
across all datasets within BRIGHT and over the
full trajectory of refinement steps (up to 16 per
query). The result shows that the average intent
alignment score remained above 0.9 at every step.
This suggests that, despite iterative rewriting, the
refined queries remain closely aligned with the ini-
tial user intent. We attribute this stability to the
fact that each refinement is grounded in both the
immediately preceding query and its associated re-
trieval context, which anchors the model’s genera-
tion. This evaluation provides quantitative evidence

that our modular REFINE step does not introduce
meaningful semantic drift, supporting the claim
that our reasoning procedure maintains alignment
with user goals throughout the refinement trajec-
tory.

A.9 Token Efficiency

SMR achieves substantial reductions in inference
token usage compared to all baseline methods
across the full BRIGHT benchmark. Table 11
shows the total number of tokens consumed by
each method across individual tasks, using BM25
as the underlying retriever.

Our method consistently outperforms Rank1,
Rank-R1, and O1-Pruner by large margins. While
baselines often produce long and redundant reason-
ing chains, SMR avoids such inefficiency through
its structured state representation and early stop-
ping mechanism. This result further supports our
claim that SMR can deliver better performance
with fewer computational resources.

A.10 Examples of Hard Queries

To concretely illustrate how SMR addresses the
two central challenges identified in Section 1,
we present an example drawn from the BRIGHT
benchmark involving a complex query. This case
also corresponds to the hard queries analyzed in
Figure 4, where longer reasoning is needed to re-
cover relevant evidence.

The query asks for the angular speed of a door
after a perfectly inelastic collision with a metal
ball. Although the problem is detailed and well-
structured, it includes distractor terms such as
game, toy, and door, which cause initial retrieval
to return irrelevant content, including passages on
chess and probability. This scenario serves as a
testbed for evaluating reasoning robustness under
lexical noise and semantic mismatch.

Rank1 (Redundant Reasoning) Rank1 (Ta-
ble 12) generates token-level CoT traces, and the
model enters a redundant loop. It repeatedly jus-
tifies why the chess passages are irrelevant, con-
suming over 2,500 tokens without progressing the
retrieval state. Although its judgment is eventually
correct, the system lacks a mechanism to recognize
semantic equivalence between states and continues
reasoning far beyond necessity. This exemplifies
the first challenge, redundant trajectories, where
the model revisits similar states without gaining
new information.
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O1-Pruner (Misguided Reasoning) O1-Pruner
(Table 13) aggressively compresses the reasoning
trajectory using reinforcement learning. It quickly
rewrites the query into a concise fragment: “cal-
culate angular speed after a collision using conser-
vation of angular momentum.” While technically
correct, this abstraction removes too much context
from the original problem, leading the retriever to
return generic physics content that fails to address
the door scenario. This case illustrates the second
challenge, misguided reasoning, where brevity is
achieved at the cost of alignment with the intent of
the user.

SMR (Ours) By contrast, SMR (Table 14) suc-
cessfully navigates this scenario using structured
state transitions. It first refines the query to in-
clude all necessary physics parameters, and then
reranks documents to surface the most relevant pas-
sages. Each updated state is checked for semantic
equivalence to prevent drift. Because actions are
discrete and grounded in context, SMR avoids mis-
alignment and redundant loops, achieving efficient
reasoning in IR.

A.11 Usage of AI Assistants
ChatGPT was employed to enhance the clarity and
grammatical accuracy of the text, offering sug-
gestions for sentence rephrasing and correction of
grammatical errors.
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You are a highly intelligent artificial agent responsible for managing a search system. Your role is to
either refine the given query or re -rank retrieved search results , thereby enhancing both recall and
precision of the search. You can output exactly one of the following operations , after which another
agent will execute it and return the results to you.

## Input Format
The input provided to you will have the following structure:

```
{
"query": "<current version of a query >",
"retrieved ": [

("<docid >", "document contents "),
("<docid >", "document contents "),
...

]
}
```

### Decision policy (check in order):

1. Query Refinement
Choose "refine query ." if any of the following are met:
- The query is ambiguous or generic
- The retrieved search results are unsatisfactory
- The query is short
- Key domain terms are missing in the query

2. Reranking
Only if the query already looks good and at least one retrieved document seems on topic.

3. Stop
Only when you are certain that no further improvement is possible.

## Possible Outputs (select exactly one)

### Query Refinement
You may refine the query by rewriting it into a clear , specific , and formal version that is better suited

for retrieving relevant information from a list of passages. Only return the document IDs (`docid `) in
the `reranked ` list. Do not include document contents. Output format:

```
{
"action ": "refine query",
"refined_query ": "<refined version of a query >",
"reason ": "<reason for this action >"
}
```

### Re-ranking
You may reorder the retrieved documents (do not remove non -relevant ones). The results should be sorted in

descending order of relevance. Output format:

```
{
"action ": "re-rank",
"reranked ": ["<docid >", "<docid >", ...],
"reason ": "<reason for this action >"
}
```

### Stop
You may stop this iteration when the results are satisfactory. Output format:

```
{
"action ": "stop"
}
```

Table 5: Full prompt used in our system.
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Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT Avg

Retriever

BM25 13.1 18.1 8.9 7.0 8.5 13.4 10.0 19.7 1.6 6.2 10.4 4.9 10.2

CoT Reasoning

Rank1 (32B) 16.1 23.0 7.9 11.3 10.5 12.3 16.2 17.6 2.2 3.1 10.4 8.6 11.6

Rank-R1 (14B) 17.7 25.0 10.3 10.7 14.1 13.1 16.1 20.2 2.1 4.0 10.8 7.7 12.7

Compressed CoT Reasoning

O1-Pruner (32B) 17.2 22.6 10.7 12.9 12.7 14.9 15.5 19.5 1.8 3.7 8.9 5.6 12.2

Ours

SMR (Qwen2.5-32B) 21.8 25.6 13.9 14.5 16.1 14.4 14.3 17.8 1.1 3.6 14.6 16.5 14.5

SMR (QwQ-32B) 22.0 25.7 13.6 15.4 15.0 15.5 16.6 21.0 1.6 3.1 14.1 15.2 14.9

Table 6: Retrieval performance (MAP@10) on BRIGHT benchmark using sparse retriever (BM25) as the
underlying retriever. All methods differ only in their reasoning strategy. Best scores per dataset are bolded.

Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT Avg

Retriever

BM25 21.7 31.9 16.8 15.6 19.6 21.3 21.3 29.5 4.1 6.0 8.6 9.2 17.1

CoT Reasoning

Rank1 (32B) 21.7 31.9 16.8 15.6 19.6 21.3 21.3 29.5 4.1 6.0 8.6 9.2 17.1

Rank-R1 (14B) 21.7 31.9 16.8 15.6 19.6 21.3 21.3 29.5 4.1 6.0 8.6 9.2 17.1

Compressed CoT Reasoning

O1-Pruner (32B) 23.8 34.4 20.2 19.8 19.6 21.3 21.5 29.5 2.3 6.0 12.9 10.3 18.5

Ours

SMR (Qwen2.5-32B) 25.3 33.0 19.5 21.7 21.4 24.6 21.6 26.6 3.6 6.1 20.9 24.8 20.8
SMR (QwQ-32B) 25.7 31.9 18.6 21.5 20.5 24.3 23.9 29.5 4.0 6.3 18.7 19.0 20.3

Table 7: Retrieval performance (Recall@10) on BRIGHT benchmark using sparse retriever (BM25) as the
underlying retriever. All methods differ only in their reasoning strategy. Best scores per dataset are bolded.

Bio Earth Econ Psy Rob Avg

SMR (Qwen2.5-32B) 28.7 34.9 20.4 20.7 20.9 25.1
[RERANK or STOP] 23.9 33.6 17.7 15.8 19.1 22.0

[REFINE or STOP] 26.8 29.5 14.4 20.9 12.4 20.8

[Randomly Selecting Action] 22.6 28.8 16.4 16.1 15.0 19.8

Table 8: Ablation study of policy choices for SMR (Qwen2.5-32B), measured by nDCG@10 across the first five
domains.

Please compare the second query aligns with the any intent of the first query and give a score from 0 to 1.
The first query is the original query , and the second query is the modified query.
The score should be based on how similar the two queries are. You must output the floating number score only

.
The first query is: "{ query_original }".
The second query is: "{ query }".

Table 9: The prompt used to get alignment score between the original and refined queries.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Alignment Score 0.98 0.97 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.91 0.91

Table 10: Average alignment scores across all datasets within BRIGHT.
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Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT Avg

CoT Reasoning

Rank1 (32B) 2,772 2,775 3,115 2,688 3,548 3,554 2,691 3,248 2,570 3,390 3,135 3,281 3,064

Rank-R1 (14B) 2,924 2,842 2,951 2,835 3,130 3,065 2,895 3,020 3,383 2,674 2,680 3,379 2,982

Compressed CoT Reasoning

O1-Pruner (32B) 2,259 2,595 2,771 2,457 2,568 2,818 2,492 6,187 2,870 4,126 2,520 2,375 3,003

Ours

SMR (Qwen2.5-32B) 551 666 663 741 552 794 598 982 780 1,063 914 996 775
SMR (QwQ-32B) 1,891 1,167 1,594 2,114 1,465 1,144 2,034 672 1,094 897 811 805 1,307

Table 11: Total number of tokens generated during inference on the BRIGHT benchmark. The lowest token counts,
indicating higher inference efficiency, are marked in bold.

Iter Field Content

Iter 0
Query (q0) Imagine you’re playing a game where you have a toy cannon that shoots small metal balls. You decide to aim at a lightweight

door that can swing open on its hinges. The door is 1 meter wide and weighs 15 kilograms. You shoot a metal ball weighing
10 grams at a speed of 400 meters per second straight at the middle of the door, and the ball sticks to it. What is the new
angular speed of the door after the ball sticks to it? (Unit: rad/s)

Document (D0) [d1], [d2](about chess), [d3](about Einstein’s equation) . . . , [dk]

Iter 1

Action RERANK

Query (q1) Imagine you’re playing a game where you have a toy cannon that shoots small metal balls. You decide to aim at a lightweight
door that can swing open on its hinges. The door is 1 meter wide and weighs 15 kilograms. You shoot a metal ball weighing
10 grams at a speed of 400 meters per second straight at the middle of the door, and the ball sticks to it. What is the new
angular speed of the door after the ball sticks to it? (Unit: rad/s)

Document (D1) [d1], [dk], ... [d2](about chess), [d3](about Einstein’s equation)

Reason [d1]: ...
[d2]: Okay, let’s see. The user is asking whether the passage is relevant to calculating the angular speed ...
There’s no overlap in subject matter here. ...
Even though both involve calculations, the context and required knowledge are completely different. ...
The chess passage is about combinatorics and game theory, while the query is a physics problem. ...
They cover completely different topics with no overlap in relevant concepts. ...
Therefore, the passage isn’t relevant to the query. ...
[d3]: ...
...

[number of tokens: 2542]

Table 12: A qualitative example of redundant reasoning in Rank1, where the model repeats semantically equivalent
steps.
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Iter Field Content

Iter 0
Query (q0) Imagine you’re playing a game where you have a toy cannon that shoots small metal balls. You decide to aim at a lightweight

door that can swing open on its hinges. The door is 1 meter wide and weighs 15 kilograms. You shoot a metal ball weighing
10 grams at a speed of 400 meters per second straight at the middle of the door, and the ball sticks to it. What is the new
angular speed of the door after the ball sticks to it? (Unit: rad/s)

Document (D0) [d1], [d2](about chess), [d3](about Einstein’s equation). . . , [dk]

Iter 1
Action REFINE

Query (q1) Calculate angular speed after a collision using conservation of angular momentum

Reason Alright, I’ve got this problem here about a toy cannon shooting a metal ball at a door,
and I need to find the new angular speed of the door after the ball sticks to it. . . .
It’s about angular speed after a collision. . . .
Specifically, it’s about conservation of angular momentum. . . .
Again, I need the angular speed once the ball sticks to the door. . . .
Again, conservation of angular momentum governs the result. . . .
Perhaps phrased as “calculate angular speed after a collision using conservation of angular momentum.” . . .

[number of tokens: 1153]

Iter 2

Action RERANK

Query (q2) Calculate angular speed after a collision using conservation of angular momentum

Document (D1) [d1], [dk], . . . , [d2](about chess), [d3](about Einstein’s equation)

Reason [d1]: Relevant ...
[d2]: Not relevant ...
[d3]: Not relevant ...
...

[number of tokens: 992]
[total number of tokens: 2143]

Table 13: A qualitative example of misguided reasoning in O1-Pruner, where compression produces a concise but
semantically misaligned query.

Iter Field Content

Iter 0
Query (q0) Imagine you’re playing a game where you have a toy cannon that shoots small metal balls. You decide to aim at a lightweight

door that can swing open on its hinges. The door is 1 meter wide and weighs 15 kilograms. You shoot a metal ball weighing
10 grams at a speed of 400 meters per second straight at the middle of the door, and the ball sticks to it. What is the new
angular speed of the door after the ball sticks to it? (Unit: rad/s)

Document (D0) [d1], [d2](about chess), [d3](about Einstein’s equation) . . . , [dk]

Iter 1
Action REFINE

Query (q1) How to calculate angular speed (rad/s) of a door after collision with metal ball using conservation of angular momentum?
Door width=1m, mass=15kg; ball:mass=0.01kg, velocity=400 m/s hits center and sticks.

Reason The original query is missing key physics concepts like ’conservation of angular momentum’ which are essential for
solving the problem. The retrieved documents include unrelated topics (e.g., Einstein’s equation, chess), so refining to focus
on angular momentum will improve precision.

[number of tokens: 47]

. . .

Iter 5

Action RERANK

Query (q5) How to calculate angular speed (rad/s) of a door after collision with metal ball using conservation of angular momentum?
Door width=1m, mass=15kg; ball:mass=0.01kg, velocity=400 m/s hits center and sticks.

Document (D5) [d1], [dk], . . . , [d2](about chess), [d3](about Einstein’s equation)

Reason The retrieved document ([d1]) include foundational content on angular momentum, units of mass and length relevant to
the problem’s parameters.
Document [dk] discusses angular velocity as a vector quantity which is essential for calculating direction-dependent
quantities like angular speed.
The other documents either discuss unrelated topics such as chess move counts or are less directly related. . . .

[number of tokens: 67]

Iter 6 Action STOP

[total number of tokens: 252]

Table 14: A qualitative example of SMR (QWQ-32B), demonstrating efficient reasoning in IR.
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