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Abstract

Language confusion—where large language
models (LLMs) generate unintended languages
against the user’s need—remains a critical chal-
lenge, especially for English-centric models.
We present the first mechanistic interpretabil-
ity (MI) study of language confusion, com-
bining behavioral benchmarking with neuron-
level analysis. Using the Language Confu-
sion Benchmark (LCB), we show that confu-
sion points (CPs)—specific positions where lan-
guage switches occur—are central to this phe-
nomenon. Through layer-wise analysis with
TunedLens and targeted neuron attribution, we
reveal that transition failures in the final layers
drive confusion. We further demonstrate that
editing a small set of critical neurons, identified
via comparative analysis with a multilingual-
tuned counterpart, substantially mitigates con-
fusion while largely preserving general com-
petence and fluency. Our approach matches
multilingual alignment in confusion reduction
for many languages and yields cleaner, higher-
quality outputs. These findings provide new
insights into the internal dynamics of LLMs
and highlight neuron-level interventions as a
promising direction for robust, interpretable
multilingual language modeling. Code and
data are available at: https://github.com/
ercong21/lang_confusion.

1 Introduction

Current Large Language Models (LLMs), such
as GPT-4 (Achiam et al., 2023), PaLM 2 (Anil
et al., 2023), and Llama 3 (Grattafiori et al., 2024),
have demonstrated exceptional linguistic compe-
tence across a wide range of complex tasks that
require abstract knowledge and reasoning (Dong
etal., 2024; Wei et al., 2022; Nie et al., 2025; Wang
et al., 2025b). Early LLMs were predominantly
trained on massive amounts of English text data,
with some limited exposure to other languages, re-
sulting in initially constrained multilingual capa-
bilities (Touvron et al., 2023). Recent advances,
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Figure 1: Language Confusion in LLMs. (a) An exam-
ple of the language confusion phenomenon. (b) Visu-
alization of internal model dynamics using TunedLens,
highlighting how the confusion point emerges during
generation. (c) Benchmarking results of three Llama
models on the LCB benchmark across 5 languages.

such as multilingual continued pretraining and in-
struction tuning, have substantially extended these
models’ ability to support multiple languages (Zhu
et al., 2023; Tan and Monz, 2023; Shaham et al.,
2024; Kew et al., 2024; Wang et al., 2025¢). As a
result, contemporary English-centric LLMs have
become foundational tools for multilingual com-
munication, multilingual content generation, and
cross-lingual applications (Nie et al., 2023; Bang
et al., 2023; Ahuja et al., 2023; Li et al., 2023; Asai

690

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 690-706
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/ercong21/lang_confusion
https://github.com/ercong21/lang_confusion

et al., 2024). However, despite their impressive
capabilities, a persistent and underexplored limi-
tation remains: LLMs can fail to generate text in
the user’s intended language, even when explicitly
instructed—a phenomenon termed language confu-
sion (Marchisio et al., 2024). Language confusion
manifests as full-response, line-level, or word-level
switches into unintended languages, severely un-
dermining user experience and model reliability,
especially for non-English speakers (Figure 1a).

Recent work by Marchisio et al. (2024) provides
the first systematic characterization of language
confusion, introducing the Language Confusion
Benchmark (LCB) and associated metrics to quan-
tify this phenomenon across a diverse set of lan-
guages and models. Their evaluation revealed that
even state-of-the-art LLMs are susceptible to lan-
guage confusion, with English-centric LLMs such
as Llama2, Llama3, and Mistral exhibiting partic-
ularly high rates of unintended language switch-
ing, especially in the absence of targeted multilin-
gual alignment (Figure 1c). While Marchisio et al.
(2024) propose several mitigation strategies, includ-
ing decoding adjustments, prompting techniques,
and multilingual fine-tuning, these approaches re-
main largely surface-level, offering limited insight
into the internal mechanisms that give rise to lan-
guage confusion.

A key observation from prior work is the identi-
fication of confusion points—specific positions in
the generation process where the model abruptly
switches to an unintended language. However, the
model’s internal dynamics leading to these confu-
sion points and their causal role in language con-
fusion remain largely unexplored. This gap is par-
ticularly salient given the parallels to human bilin-
gual code-switching, where switch points between
languages are cognitively significant as extensively
studied in psycholinguistics (Solorio and Liu, 2008;
Bullock and Toribio, 2009). Further discussions on
the relationship between code-switching in human
communication and language confusion in LLM
text generation are provided in Appendix A.

In this work, we move beyond behavioral eval-
uation to open the black box of LLMs, leveraging
mechanistic interpretability (MI) methods (Conmy
et al., 2023; Rai et al., 2024; Saphra and Wiegreffe,
2024; Sharkey et al., 2025) to investigate the in-
ternal representations and neuron-level processes
underlying language confusion. We first empiri-
cally demonstrate that confusion points are critical
drivers of language confusion: targeted replace-

691

ment at these points can substantially reduce con-
fusion across languages. Building on the CP token,
we employ MI tools such as TunedLens (Belrose
et al., 2023) to trace the evolution of language rep-
resentations through the model’s layers, revealing
that confusion typically arises from transition fail-
ures in the final layers, where latent conceptual
representations are mapped to surface forms in the
target language (Figure 1b). To further elucidate
the mechanism, we conduct a neuron-level analy-
sis, identifying specific neurons in the last layers
whose activity is predictive of successful or failed
language transitions at confusion points. Inspired
by recent advances in neuron attribution and edit-
ing, we show that targeted manipulation of only
100 neurons can effectively mitigate language con-
fusion, offering a novel, model-internal approach
to improving multilingual reliability. Our findings
provide the first mechanistic account of language
confusion in LLMs, bridging the gap between be-
havioral benchmarks and internal model dynamics.
By highlighting the central role of confusion points
and their neural mechanisms, we lay the ground-
work for more robust, interpretable, and cognitively
informed multilingual language models.

Our work makes the following contributions:
(1) We provide the first mechanistic interpretabil-
ity study of language confusion in English-centric
LLMs, revealing the central role of confusion
points in unintended language switching; (2) We
employ layer-wise and neuron-level analyses to
trace the internal dynamics leading to language
confusion and identify critical late-layer neurons
responsible for transition failures; (3) We propose
and validate a principled neuron selection and edit-
ing strategy that effectively mitigates language con-
fusion and preserves the model’s general compe-
tence and output quality.

2 Related Work

Mechanistic Interpretability Methods Mech-
anistic interpretability (MI) seeks to reverse-
engineer neural networks by decomposing their
computations into human-understandable compo-
nents (Stolfo et al., 2023; Wang et al., 2024;
Men et al., 2024). A central technique in MI
is the projection of intermediate representations
into the vocabulary space, as implemented by
tools such as LogitLens (Nostalgebraist, 2020) and
TunedLens (Belrose et al., 2023), which enable
researchers to track how information and predic-



Dataset Data Source Language Prompt Example
Aya Human-generated ar, en, pt, tr, zh R MR A ET R -
(Singh et al., 2024) TR Briefly introduce the poet Li Bai.
. Dolly MT post-edited ar, es, fr, hi, ru Q}J’est.—ce qui §st plus important, I’'inné ou ‘l’acquis?
(Singh et al., 2024) What is more important, nature or nurture?
Native Human-generated es, ft, ja, ko TAES AR WEA R
(Marchisio et al., 2024) R What is concrete made of?
Okapi ar, en, pt, zh,it, Schreib einen Aufsatz von 500 Wortern zum Thema KI.

(Laietal, 2023)  Synthetic+MT

fr, de, id, es, vi

Write a 500-word essay on Al

Table 1: Overview and Prompt Example of the LCB Benchmark (monolingual part). The number of examples per

language is 100 in each dataset.

tions evolve across layers (Dar et al., 2023; Pal
et al., 2023). In addition to layer-wise analysis,
recent work has focused on identifying, attribut-
ing, and intervening on important neurons—those
whose activations are strongly correlated with spe-
cific linguistic functions or behaviors (Bau et al.,
2020; Geva et al., 2022; Yu and Ananiadou, 2024b;
Tan et al., 2024). Methods for neuron selection
and editing, as well as circuit-level analysis (El-
hage et al., 2021; Wang et al., 2023), have proven
effective for uncovering the internal structure un-
derlying phenomena such as factual recall (Meng
et al., 2022; Geva et al., 2023), reasoning process-
ing (Yu and Ananiadou, 2024a), and now, as in our
work, language confusion. By leveraging these MI
techniques, we aim to provide a granular, causal
understanding of how and why language confu-
sion arises in multilingual LLMs, and to identify
actionable intervention points for mitigation.

Multilingual Interpretability Recent research
has begun to probe the internal representations of
English-centric and multilingual LLMs to under-
stand how they process and transfer information
across languages (He et al., 2024; Zhao et al., 2024,
Kojima et al., 2024; Zhang et al., 2024). Wendler
et al. (2024) show that models like Llama2 often
rely on English as an internal pivot language and
can disentangle language and conceptual represen-
tations in controlled tasks. Fierro et al. (2025)
examine how mechanisms identified in monolin-
gual contexts generalize to multilingual settings.
Wang et al. (2025a) investigate the internal causes
of crosslingual factual inconsistencies, revealing
how multilingual models transition from language-
independent to language-specific processing. How-
ever, prior work has not systematically connected
these internal mechanisms to language generation
errors such as language confusion.

3 Revisiting Language Confusion:
Benchmark Insights

3.1 Recap of Language Confusion Benchmark

The Language Confusion Benchmark
(LCB) (Marchisio et al., 2024) provides a
systematic framework for evaluating the ability
of LLMs to generate text in the user’s intended
language. The benchmark covers 15 typologically
diverse languages and uses a diverse set of prompts
sourced from human-written, post-edited, and
synthetic datasets to evaluate models, ensuring
coverage of a wide range of domains and linguistic
structures (Table 1). In this work, we focus
on the monolingual setting of LCB, where the
prompt and expected response are in the same
language. This setting is particularly relevant
for mechanistic interpretability research, as it
isolates language confusion phenomena from the
additional complexities of explicit cross-lingual
transfer.

To quantify language confusion, we adopt two
key metrics from LCB: line-level pass rate (LPR)
and line-level language accuracy (Acc). LPR
measures the percentage of model responses in
which every line is in the correct language. Acc
reflects the proportion of individual lines across all
responses that are correctly generated in the target
language. Both metrics rely on automatic language
identification using the fastText classifier (Joulin
et al., 2016, 2017), which efficiently detects the
language of each line in the generated output.

We conducted preliminary benchmarking exper-
iments on LCB with three instruction-tuned LLMs:
Llama3-8B (English-centric, no multilingual in-
struction tuning), Llama3-8B-multilingual (mul-
tilingually instruction-tuned) (Devine, 2024), and
Llama3.1-8B (multilingually optimized). As shown
in Figure 1c, Llama3-8B exhibits substantial lan-
guage confusion, with frequent line-level switches

692



Model Metric ar en pt tr zh es fr hi ru ja ko de id it vi avg
Llama3 LPR 330 995 710 330 193 73.0 593 80 280 140 230 190 220 340 11.0 36.5
(original) Acc 3377 998 745 375 234 771 641 151 282 17.1 236 230 273 398 148 399
Llama3 LPR 710 99.0 93.0 50.0 57.3 943 84.0 370 786 50.0 450 600 67.0 860 62.0 689
(replace) Acc 748 99.6 954 555 64.1 953 865 47.6 831 553 486 623 777 875 66.1 733
Llama3 LPR 983 985 99.0 958 88.8 983 959 97.0 100.0 93.5 100.0 100.0 88.8 100.0 979 96.8
(multilingual)  Acc 98.7 99.5 99.8 969 93.8 993 969 97.5 100.0 958 100.0 100.0 942 100.0 979 98.0

Table 2: Impact of Confusion Point Replacement on Language Confusion Metrics. Line-level pass rate (LPR)
and line-level accuracy for original Llama3-8B, multilingual Llama3-8B, and Llama3-8B with confusion point

replacement, reported by language.

to unintended languages (mostly English). In con-
trast, both Llama3-8B-multilingual and Llama3. -
8B achieve near-perfect line-level accuracy, demon-
strating the effectiveness of multilingual instruction
tuning and targeted optimization for multilingual
dialogue.

Given these findings, our work centers on un-
derstanding and mitigating the language confusion
observed in English-centric Llama3-8B. By lever-
aging mechanistic interpretability methods, we aim
to uncover the internal causes of confusion and de-
velop interventions that can bring its performance
closer to that of explicitly multilingually-tuned
models. In the following subsection, we delve
deeper into the significance of confusion points
as critical junctures in the generation process.

3.2 Significance of Confusion Points

A confusion point (CP) is the position in a model’s
output where the first token of an unintended lan-
guage abruptly appears, marking the onset of lan-
guage confusion (Marchisio et al., 2024). This
concept is inspired by psycho- and neurolinguistic
research on code-switching, where the precise lo-
cation of a language switch—known as a switch
point—is central to understanding bilingual lan-
guage production and processing (Blanco-Elorrieta
and Pylkkinen, 2017; Suurmeijer et al., 2020). To
empirically assess the role of CPs in LLM lan-
guage confusion, we conduct a replacement ex-
periment on Llama3-8B. For each instance of lan-
guage confusion, we identify the CP using the
fastText language detector. We then replace the
token at the subword-level CP with the correspond-
ing token generated by Llama3-8B-multilingual,
which achieves near-perfect language accuracy, un-
der the same prompt. This approach is motivated
by the psycholinguistic observation that, in hu-
man code-switching, the choice at the switch point
strongly influences the subsequent language trajec-
tory (Moreno et al., 2002; Lai and O’Brien, 2020).

Our results, summarized in Table 2, show a sub-
stantial reduction in language confusion after CP
replacement, even though our method does not rep-
resent an oracle upper bound. These findings high-
light the centrality of confusion points in the emer-
gence of language confusion and motivate us to
base the subsequent mechanistic analysis and tar-
geted interventions on the generation of the token
at the CP position.

4 Mechanistic Analysis of Language
Confusion Points

4.1 Analyzing Layer-wise Language
Transition

A central question in understanding language con-
fusion is where and how the model’s internal repre-
sentations fail to transition from a shared concep-
tual space to the intended target language. Moti-
vated by recent findings that English-centric LLMs
process information in a latent, often English-
biased, conceptual space before converting it to
the target language in the final layers (Wendler
et al., 2024; Wang et al., 2025a), we conduct a de-
tailed layer-wise analysis of this transition using
TunedLens (Belrose et al., 2023).

We employ TunedLens, the more reliable variant
of LogitLens (Nostalgebraist, 2020), to unembed
the hidden states of Llama3-8B at each layer into
the vocabulary space. With this, we inspect every
layer of the model and extract the top 10 predicted
tokens with the largest logits at the position im-
mediately preceding the confusion point (CP) (for
confusion cases) or the output token (for correct
cases). For each layer, we compute the average
number and summed probabilities of English and
target language tokens among the top-10 predic-
tions, using fastText for language identification.
Our analysis focuses on four typologically diverse
languages (Arabic, Portuguese, Turkish, Chinese)
from the LCB benchmark. We separate samples
into two groups: (1) Correct—where the model
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Figure 2: Average token counts and probabilities for English and target language tokens among the top-10 predictions
at each layer, shown for both correct and confusion samples across four languages from Aya.

generates the intended language throughout, and
(2) Confusion—where the model switches to an un-
intended language at a CP. For confusion samples,
we analyze the model’s state up to the token before
the CP.

Figure 2 presents the evolution of language to-
ken counts and probabilities across layers for both
groups. In early and middle layers, English to-
kens dominate the top-10 predictions for all lan-
guages, reflecting the English-centric latent con-
ceptual space of Llama3-8B. This is consistent with
prior work showing that LLMs encode information
in a shared, language-agnostic space in interme-
diate layers. In the final layers, a sharp transition
emerges. For correct samples, the number and
probability of target language tokens rise steeply,
overtaking English tokens in the last few layers—
indicating a successful transition to the target lan-
guage surface form. In contrast, for confusion sam-
ples, this transition fails: English tokens remain
dominant or even increase, while target language
tokens lag behind. This failure to shift from the
latent conceptual space to the target language at the
critical moment leads to CPs and erroneous output.

Our layer-wise analysis with TunedLens reveals
that the transition to the target language occurs in
the final layers, and that failures in this process are
tightly linked to language confusion. These find-
ings provide direct evidence that language confu-
sion in Llama3-8B is primarily caused by transition
failures in the last few layers, motivating our sub-
sequent neuron-level investigation to pinpoint and

intervene on the specific components responsible
for these failures.

4.2 Localizing Critical Neurons at Confusion
Points

A key step toward understanding and mitigating
language confusion is to identify which neurons are
most responsible for the emergence of confusion
points. Building on recent advances in neuron-level
attribution (Geva et al., 2022; Yu and Ananiadou,
2024b), we adopt a static, efficient method to lo-
cate and analyze the most influential feed-forward
network (FFN) neurons in Llama3-8B.

Methodology In the inference pass in decoder-
only LLMs, for a given input sequence, each layer
output hé (layer [, token position ¢) is a sum of the
previous layer’s output hi_l, the attention output
At and the FFN output F}':

hl=h"t 4 AL F (1)

The FFN output Fl-l is calculated by a non-linear o
on two MLPs Wi, € RV*% and W}, € RN

Fl = Whoo(Wia (K1 +4D)) (@)

Following Geva et al. (2021), the FFN layer out-
put Fil can be represented as a weighted sum over
neuron subvalues:

N
Fj =Y miy- fe2 3)
k=1
miy, = o(fell - (B + AL) (4)
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where f chlC is the k-th column of W} 9> and mi i 18
derived from the inner product between the residual
output (W1 + Ab) and fell, the k-th row of W}Cl.

Geva et al. (2022) and Dar et al. (2023) project
FFN neuron subvalues with unembedding matrices
to compute the token probability distribution. To
quantify the importance of each neuron for gener-
ating a specific token (e.g., at a confusion point),
we adopt the log probability increase method of Yu
and Ananiadou (2024b). For a neuron in the /-th
FFN layer ¢!, its importance score is defined as
the increase in log probability of the target token
when ! is added to the residual stream A! + h!~1,
compared to the baseline without v':

Imp(ot) = log(p(w|o! + A+ h~)—

5
log(p(w\Al + hl_l) ®

This approach efficiently identifies neurons whose
activations most strongly influence the model’s pre-
diction at a given position.

(@) Individual Case
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Figure 3: Distribution of Important Neurons Associated
with Confusion Points in Llama3-8B. (a) Distribution of
the top 300 most important FFN neurons across layers
for an individual Chinese prompt “V5 IR AR 5 #h 7
BHIR R o (Please explain 7 R 5N H5E)” from
Aya. (b) Aggregated distribution of important neuron
scores across all Chinese test samples in Aya.

Experimental Observations We apply this
method to Llama3-8B on confusion samples from
the LCB benchmark, focusing on the token posi-
tion immediately preceding each confusion point.
For each sample and language, we compute the im-
portance scores for all 14,336 FFN neurons in each

layer of Llama3-8B, rank them, and select the top
300 most important neurons per sample. We then
analyze the distribution of these critical neurons
across layers, both for individual samples and ag-
gregated over all samples in a language. Our anal-
ysis reveals a striking concentration of important
neurons in the final layers, as visualized in Figure 3.
This pattern holds both at the single-sample level
and when aggregating across samples, indicating
that the emergence of confusion points is primarily
driven by late-layer FFN activity. We further rank
neurons by their frequency of appearance in the top
300 sets across samples, finding that a subset of
neurons consistently recurs as highly influential for
confusion points.

To understand the effect of multilingual align-
ment, we repeat the analysis on Llama3-8B-
multilingual using the same set of prompts. Af-
ter multilingual instruction tuning, language con-
fusion is nearly eliminated. Comparing neuron
importance scores between the two models (Fig-
ure 4), we observe that most neurons critical for
confusion in the Llama3-8B become much less im-
portant in its multilingual counterpart, suggesting
that multilingual alignment suppresses the activity
of confusion-inducing neurons. However, a small
number of neurons remain important or even in-
crease in importance, likely reflecting their role in
encoding general semantic information rather than
language-specific transitions.

Neuron Rank Comparison

—=- y=x 04438
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W1 5088 Total dots: 64
400 1 @6.5738 14 M50
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3 _
E. 300
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Figure 4: Neuron rank comparison between original

Llama3 and multilingual Llama3. Results of Chinese
test samples in Aya.

These findings reinforce the conclusion from our
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ar pt tr zh es fr hi ru ja ko de id it vi Avg.
original 3344 7426 3755 24.04 77.15 63.16 1647 2820 17.44 2350 23.00 2733 39.83 1479 35.73
freq 31.75 75.10 36.51 22.09 76.29 6698 18.66 27.70 19.29 23.08 2225 27.83 3945 13.58 35.75
score 7697 9341 67.61 80.63 9122 7477 60.00 5032 53.50 33.25 4027 53.58 96.00 67.56 67.08
comparative 8545 97.12 57.27 89.39 9220 83.17 82.74 8943 4995 4033 80.82 7894 9525 66.50 77.75

Table 3: Confusion mitigation performance of different selection strategies. Line-level accuracy is reported.

layer-wise analysis: language confusion is tightly
linked to the activity of specific FFN neurons in
the final layers. The suppression of these neurons
through multilingual alignment provides a mech-
anistic explanation for the effectiveness of such
tuning. Moreover, the identification of a small set
of persistent, semantically important neurons sug-
gests that targeted neuron-level interventions could
mitigate confusion without harming overall model
performance. These insights directly inform our
subsequent strategies for neuron-based mitigation
of language confusion.

5 Mitigating Language Confusion via
Neuron Editing

A central challenge in mitigating language confu-
sion via neuron editing is to identify a set of neu-
rons whose intervention effectively reduces confu-
sion without degrading the model’s general compe-
tence or fluency. Insights from our previous mech-
anistic analysis indicate that language confusion is
primarily driven by a subset of late-layer FFN neu-
rons. However, indiscriminate deactivation of im-
portant neurons risks harming the model’s overall
performance. Thus, a principled neuron selection
strategy is essential.

token_num token_prob fluency acc_ood xnli senti
Original 1.96 24.5 25.8 39.9 464 984
Edited 343 36.8 21.8 7425 449 982
Diff 147 12.3 -4.0 344 -1.5 -02

Table 4: Results of generalization and robustness of
neuron editing. Average performance across languages
is reported. Detailed results in Appendix B.

5.1 Neuron Selection and Intervention

We compare three neuron selection strategies: (1)
Frequency-Based Selection: Selects the neurons
most frequently identified as important across all
confusion samples for a given language. (2) Ag-
gregate Importance Selection: Ranks neurons by
the sum of their importance scores across all con-
fusion samples, selecting those with the highest
cumulative influence. While this method captures

the overall impact, it may still include neurons es-
sential for general language competence. (3) Com-
parative Importance Selection: Inspired by Yu and
Ananiadou (2024a), this strategy identifies neurons
whose importance scores for confusion points de-
crease most substantially after multilingual align-
ment. Specifically, for each neuron, we compute
the difference in importance score between orig-
inal Llama3-8B and Llama3-8B-multilingual on
the same input. Neurons with the largest drop are
prioritized for intervention, as they are likely to
be specifically implicated in language confusion
rather than general semantic processing.

For each strategy, we select the top 100 neurons
and intervene by setting their activations to zero
during generation. We evaluate the impact of each
method on the LCB benchmark. Our results (Ta-
ble 3) demonstrate that Comparative Importance
Selection achieves the most effective reduction in
language confusion, substantially outperforming
both frequency-based and aggregate importance
methods. Frequency-based selection yields mini-
mal benefit, while aggregate importance provides
moderate improvement but still lags behind our
proposed comparative approach. Notably, the com-
parative strategy selectively targets neurons impli-
cated in confusion, minimizing collateral impact
on general model competence.

5.2 Generalization and Robustness of Neuron
Editing

To further validate the effectiveness and safety of
our Comparative Importance Selection strategy, we
conduct a comprehensive evaluation across mul-
tiple metrics and experimental setups. Our goal
is to ensure that neuron editing not only mitigates
language confusion but also preserves the model’s
general competence, fluency, and robustness across
domains (Table 4). Details of the experimental
setup for the generalization and robustness experi-
ments are provided in Appendix C.

Language Confusion Mitigation We first assess
the impact of neuron editing on language confu-
sion using the LCB benchmark. In addition to
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standard metrics (line-level pass rate and line-level
accuracy), we analyze the internal output distribu-
tions by reporting (1) the number of target language
tokens among the top-10 candidates in the final out-
put token logit, and (2) the total probability mass
assigned to target language tokens in the top-10.
These metrics provide a deeper view of how neu-
ron editing shifts the model’s internal preference
toward the intended language, beyond surface-level
accuracy.

Robustness on General Tasks To evaluate
whether neuron editing affects the model’s gen-
eral capabilities, we test the edited model on
widely used multilingual benchmarks, including
XNLI (Conneau et al., 2018) and multilingual sen-
timent analysis (Keung et al., 2020). We also as-
sess output fluency by measuring the perplexity of
generated responses using the multilingual model
facebook/xglm-564M (Lin et al., 2022). Across
all these metrics, the edited model maintains perfor-
mance comparable to the original Llama3-8B, in-
dicating that our neuron intervention method does
not degrade general language understanding or gen-
eration quality.

Out-of-Domain Generalization We further ex-
amine the generalization of neuron editing by ap-
plying neurons selected from one data source (e.g.,
Aya) to out-of-domain test sets (e.g., Okapi) for
the same language. The edited model continues to
demonstrate strong mitigation of language confu-
sion, suggesting that the identified neurons capture
robust, domain-independent mechanisms underly-
ing confusion points.

5.3 Comparison with Multilingual Alignment

To contextualize the effectiveness of neuron edit-
ing, we compare the performance of the edited
Llama3-8B model with that of the multilingual-
tuned Llama3-8B. Quantitative results show that
neuron editing yields confusion mitigation compa-
rable to multilingual instruction tuning for many
languages, despite requiring no additional data or
retraining. This demonstrates that targeted neuron
intervention can match the benefits of extensive
multilingual instruction tuning for confusion reduc-
tion. However, for languages with limited pretrain-
ing exposure, multilingual supervised fine-tuning
can achieve stronger performance.

Beyond aggregate metrics, qualitative analysis
reveals further advantages of the neuron editing
approach. Through case studies, we observe that

the edited Llama3-8B not only generates fluent
and accurate responses in the intended target lan-
guage, but also avoids certain artifacts introduced
by multilingual alignment. For example, in several
instances (Figure 5), the multilingual Liama3-8B
produces outputs containing HTML tags or format-
ting patterns reminiscent of its instruction tuning
data, reflecting the influence of imperfect or noisy
multilingual datasets. In contrast, the neuron-edited
model consistently produces clean, well-structured,
and contextually appropriate responses, free from
such extraneous formatting.

Case 1 (aya-zh, id1)

Input: BB FRARIBIOEEBR, Please explain “#7 715
A1

Before Neuron Editing: English Translation: "To tear down the
eastern wall to repair the western wall" - Meaning: To solve a
problem by creating a new one, or to fix one issue by making
another one worse.

After Neuron Editing: “IF AR IE#NO IS 2 P E G R — A RIS
. EMERRMROBNGESHEROBENRIR - MAZE
B RMRARARENSR", \n ...

Multilingual Llama3: 2023-03-23 14:34:23 FZREE#MNEER
BREEATBREN R ARAENEANGE, RS
EIERROEARS, ..

Case 2 (okapi-zh, id5)

Input: BE—ERXBRAREEMNFREXE.

Before Neuron Editing: English Translation: "To tear down the
eastern wall to repair the western wall" - Meaning: To solve a
problem by creating a new one, or to fix one issue by making
another one worse.

After Neuron Editing: SEE(EM\nfZERIXERIEENM: 28l
NE? \nESSHEET, BREIXEEEMANMIBESE
ETH—ED. A, ERRRIREEABIAER?

Multilingual Llama3:
1(https://www.zhihu.com/question/34614445) \n[40a]
EREEETEIFRSREIRS

18? 1(https://www.zhihu.com/question/34614445)

Figure 5: Case study of neuron editing.

These findings highlight a key strength of mecha-
nistic neuron editing: it directly addresses the inter-
nal causes of language confusion without introduc-
ing side effects from large-scale data-driven align-
ment. By preserving the original model’s seman-
tic competence and output quality, neuron editing
offers a more targeted and interpretable solution.
This suggests that, beyond traditional multilingual
instruction tuning, mechanistic interpretability-
driven interventions can provide a promising path
toward high-quality, robust multilingual language
models.
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6 Conclusions

This work provides the first mechanistic inter-
pretability account of language confusion in
English-centric LLMs. By tracing confusion points
to failures in late-layer transitions and localizing
the critical neurons responsible, we demonstrate
that targeted neuron editing can robustly mitigate
language confusion without sacrificing general
competence or fluency. Our approach achieves
results comparable with multilingual-tuned mod-
els for many languages, while preserving cleaner
output quality, though multilingual SFT remains
stronger for some low-resource cases. These find-
ings highlight the promise of neuron-level interven-
tions for more reliable and interpretable multilin-
gual language modeling.

Limitations

While this work provides the first mechanistic in-
terpretability account of language confusion in
English-centric LLMs, several limitations remain.
Our analysis primarily focuses on the monolingual
setting; cross-lingual contexts, which may involve
distinct mechanisms and challenges, are left for
future research. Additionally, neuron editing inter-
ventions are evaluated on selected benchmark tasks
and may require further validation across broader
domains and model architectures. Lastly, while our
approach identifies and mitigates language confu-
sion, fully understanding how these mechanisms
interact with other multilingual phenomena war-
rants further investigation.
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A Further Discussion on Code-Switching
and Language Confusion

Code-switching as a Linguistic Phenomenon
Code-switching, the practice of alternating between
languages within a single conversation or utterance,
is a well-studied natural phenomenon in bilingual-
ism and psycholinguistics (Gardner-Chloros, 2009).
Code-switching is typically intentional, often re-
flecting speakers’ identities, social relationships,
and contextual adaptation (Treffers-Daller, 2009;
Yim and Clément, 2021). In NLP, code-switching
has been explored through evaluating model per-
formance on code-switched data for tasks such as
sentiment analysis, machine translation, summa-
rization, and language identification (Khanuja et al.,
2020; Dogruoz et al., 2021; Winata et al., 2023).
Code-switching is a natural, contextually appro-
priate strategy in human communication, whereas
language confusion, on which our work focuses, is
an unintended and erroneous switch to an incorrect
language in LLMs (Marchisio et al., 2024). Though
related to code-switching, language confusion is
an unnatural phenomenon that arises from model
failures rather than communicative intent.

Language Confusion and Confusion Points in
LLMs Language confusion has been observed in
various multilingual NLP settings, such as “source
language hallucinations” in zero-shot cross-lingual
transfer (Li and Murray, 2023; Pfeiffer et al., 2023;
Chirkova and Nikoulina, 2024) and “off-target
translation” in machine translation (Sennrich et al.,
2024). In LLMs, this manifests as abrupt, unex-
pected switches to the wrong language during gen-
eration, even under explicit instructions. This issue
is particularly prevalent in English-centric mod-
els lacking robust multilingual alignment (Zhong
et al., 2024). A key concept in recent work is the
confusion point—the specific position in genera-
tion where the model transitions to an unintended
language. Inspired by the importance of code-
switching points in human bilingualism, confusion
points are central to understanding and diagnosing
language confusion in LLMs (Guzzardo Tamargo
et al., 2016). Unlike natural code-switching, these
points reflect internal model failures. Recent bench-
marks (Marchisio et al., 2024) systematically char-
acterize confusion points at response, line, and
word levels, revealing their widespread impact and
motivating deeper mechanistic investigation, as pur-
sued in this work.

B Full Experimental Results

Table 5 presents the full benchmarking results. Ta-
ble 6 shows the full results of the CP replacement
experiment. Tables 7 and 8 present the full results
of robustness and generalization experiments.

C Detailed Experimental Setup

C.1 Models

We primarily use three variants of the Llama3 fam-
ily for our experiments:

* Llama3-8B: The baseline English-centric
model without multilingual instruction tuning.

* Llama3-8B-multilingual: The multilingual
instruction-tuned version, as described in
(Devine, 2024).

* Llama3.1-8B: An improved model optimized
for multilingual dialogue.

All models are used in their publicly released forms
unless otherwise stated. For neuron editing experi-
ments, we intervene on Llama3-8B using the strate-
gies described in Section 5.

C.2 Datasets and Tasks

Language Confusion Benchmarking and Re-
placement Experiments We use the Language
Confusion Benchmark (LCB) (Marchisio et al.,
2024) for all language confusion detection and mit-
igation experiments. LCB covers 15 typologically
diverse languages and comprises several monolin-
gual and cross-lingual datasets:

* Monolingual sources: Aya (human-
generated), Dolly (post-edited), Native
(human-generated), and Okapi (synthetic +
machine translated).

* Languages: Arabic, English, Portuguese,
Turkish, Chinese, Spanish, French, Hindi,
Russian, Japanese, Korean, German, Indone-
sian, Italian, Vietnamese.

All main benchmarking and confusion point re-
placement experiments are run on the monolingual
portions of LCB, using 100 prompts per language
per dataset as described in Table 1.
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Robustness and Generalization Experiments
To assess the robustness and generalization of neu-
ron editing, we evaluate on:

* XNLI (Conneau et al., 2018): Cross-lingual
natural language inference in 15 languages.

* Multilingual Sentiment Analysis: Standard
multilingual sentiment datasets (including
German, Spanish, French, Japanese, and Chi-
nese). It is a binary classification task de-
rived from the multilingual Amazon review
dataset (Keung et al., 2020).

* Out-of-domain LCB evaluation: For each
language, neurons are selected from one LCB
source (e.g., Aya), then tested on a different
source (e.g., Okapi) to assess generalization.

C.3 Metrics

Language Confusion Metrics
mary metrics from LCB:

We adopt two pri-

* Line-level Pass Rate (LPR): Percentage of
responses where every line is in the correct
language.

* Line-level Accuracy: Proportion of lines gen-
erated in the correct language.

Language identification for these metrics is per-
formed using the fastText classifier (Joulin et al.,
2016).

Internal Model Metrics We further report:

* Target Language Token Count: Number of
target language tokens among the top-10 out-
put logits in the final layer.

* Target Language Token Probability: Total
probability mass assigned to target language
tokens in the top-10 output logits.

Generalization and Fluency Metrics

* XNLI and Sentiment Accuracy: Standard
classification accuracy on XNLI and multilin-
gual sentiment analysis tasks.

* Fluency (Perplexity): Perplexity of gener-
ated outputs, measured using the multilin-
gual facebook/xglm-564M model (Lin et al.,
2022).

C.4 Implementation Details

All experiments are run on NVIDIA A100 GPUs.
Prompt formatting and decoding settings follow
the LCB benchmark defaults. Neuron interven-
tions are implemented at inference time via custom
hooks in PyTorch, zeroing out selected neuron acti-
vations layer-wise as described in Section 5.1. For
TunedLens analysis, we use the public implemen-
tation from Belrose et al. (2023).
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metrics: acc

Monolingual
source ar en pt tr zh es fr hi ru ja ko de id it \ avg
aya 55.55 100.00 86.90 37.69 42.23 - - - - - - - - - - 64.47
dolly 33.00 - - - - 75.77 60.49 19.05 34.45 - - - - - - 44.55
Llama3 native - - - - - 91.47 79.17 - - 18.05 25.92 - - - - 53.65
okapi 22.00 99.67 63.12 - 9.08 67.75 55.03 - - - - 2525 27.83 39.83 15.41 42.50
avg 36.85 99.83 75.01 37.69 25.65 78.33 64.90 19.05 34.45 18.05 25.92 25.25 27.83 39.83 15.41 41.60
aya 98 98.93 99.83 96.93 92.35 - - - - - - - - - - 97.21
dolly 98.99 - - - - 98.15 93.03 97.50 100.0( - - - - - - 97.53
ﬂ‘:ﬂ‘i‘;’iﬁ;ual native e - - - 9975 9787- - 9583 1000C- - - - 9836
okapi 98.97 100.00 99.83 - 95.20 100.0C 99.80 - - - - 100.0C 94.23 100.0C 97.87 98.65
avg 98.65 99.47 99.83 96.93 93.78 99.30 96.90 97.50 100.0C 95.83 100.0C 100.0C 94.23 100.0C 97.87 98.02
aya 93.35 99.50 97.82 98.98 96.21 - - - - - - - - - - 97.17
dolly 97.94 - - - - 98.00 97.84 99.50 98.99 - - - - - - 98.45
Llama3.1 native - - - - - 98.8 99.75 - - 97.82 100 - - - - 99.09
okapi 97.31 100.00 99.50 - 97.28 100.0C 100.0C - - - - 100.0C 97.08 100.0C 99.67 99.08
avg 96.20 99.75 98.66 98.98 96.75 98.93 99.20 99.50 98.99 97.82 100.0C 100.0C 97.08 100.0( 99.67 98.77
Table 5: Full benchmarking results on LCB.
metrics: Ipr
Monolingual
source ar en pt tr zh es fr hi ru ja ko de id it vi avg
aya 53 100 83 33 31.63 - - - - - - - - - - 64.47
dolly 30 - - - - 68 54 8 28 - - - - - - 44.55
Llama3-ori  native - - - - - 88 72 - - 14 23 - - - - 53.65
okapi 16 99 59 - 7 63 52 - - - - 19 22 34 11 42.50
avg 33.00 99.50 71.00 33.00 19.32 73.00 59.33 8.00 28.00 14.00 23.00 19.00 22.00 34.00 11.00 36.48
aya 83.67 98 91 50 65.66 - - - - - - - - - - 77.67
dolly 65.66 - - - - 94 76 37 78.57 - - - - - - 70.25
Llama3-re  native - - - - - 97 86 - - 50 45 - - - - 69.50
okapi 63.54 100 95 - 49 92 90 - - - - 60 67 86 62 76.17
avg 70.96 99.00 93.00 50.00 57.33 94.33 84.00 37.00 78.57 50.00 45.00 60.00 67.00 86.00 62.00 68.95
aya 98 96.97 99 95.83 84.69 - - - - - - - - - - 97.17
dolly 97.98 - - - - 95.96 91.84 97 100 - - - - - - 98.45
Llama3-multi native - - - - - 99 96.81 - - 93.48 100 - - - - 99.09
okapi 98.97 100 99 - 92.93 100 99 - - - - 100 88.78 100 97.87 99.08
avg 98.32 98.49 99.00 95.83 88.81 98.32 95.88 97.00 100.0C 93.48 100.0C 100.0C 88.78 100.0C 97.87 96.79
metrics: acc
Monolingual
source ar en pt tr zh es fr hi ru ja ko de id it vi avg
aya 53.75 100 86.4 37.5 39.46 - - - - - - - - - - 64.47
dolly 30.75 - - - - 73.45 59.99 15.05 28.2 - - - - - - 44.55
Llama3-ori  native - - - - - 91.05 77.75 - - 17.13 23.58 - - - - 53.65
okapi 16.5 99.67 62.62 - 7.33 66.83 54.7 - - - - 23 27.33 39.83 14.79 42.50
avg 33.67 99.84 74.51 37.50 23.40 77.11 64.15 15.05 28.20 17.13 23.58 23.00 27.33 39.83 14.79 39.94
aya 86.9 99.17 94.97 5553 71.12 - - - - - - - - - - 81.54
dolly 68.48 - - - - 94.25 80.66 47.62 83.1 - - - - - - 74.82
Llama3-re  native - - - - - 97 87.92 - - 55.27 48.58 - - - - 72.19
okapi 68.92 100 95.79 - 57.13 94.67 91 - - - - 62.33 77.67 87.5 66.08 79.88
avg 74.77 99.59 95.38 55.53 64.13 95.31 86.53 47.62 83.10 55.27 48.58 62.33 77.67 87.50 66.08 73.29
aya 98 98.93 99.83 96.93 92.35 - - - - - - - - - - 97.17
dolly 98.99 - - - - 98.15 93.03 975 100 - - - - - - 98.45
Llama3-multi native - - - - - 99.75 97.87 - - 95.83 100 - - - - 99.09
okapi 98.97 100 99.83 - 952 100 99.8 - - - - 100 94.23 100 97.87 99.08
avg 98.65 99.47 99.83 96.93 93.78 99.30 96.90 97.50 100.0( 95.83 100.0C 100.0C 94.23 100.0( 97.87 98.02

Table 6: Full results of CP replacement experiments
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num_ori prob_ori num_edit prob_edit num_diff prob_diff fluency_ori fluency_cna diff

ar 2.83 25.8 5.37 30.3 2.55 4.5 30.1 24.7 -5.4
pt 2.86 49.5 3.41 56.0 0.56 6.5 25.7 233 -2.3
tr 2.05 29.5 242 23.5 0.37 -6.0 21.2 18.8 -2.5
zh 1.33 8.6 5.10 373 3.78 28.7 33.1 26.0 -7.0
es 1.67 26.5 3.28 50.3 1.61 23.8 254 23.2 2.2
fr 2.48 43.0 291 49.2 0.43 6.2 21.2 21.1 -0.1
hi 1.25 12.0 1.64 13.7 0.39 1.8 28.5 229 -5.6
ru 1.09 18.0 321 31.0 2.12 13.0 23.7 19.5 -4.2
de 2.73 23.7 4.45 37.1 1.72 13.4 23.8 18.5 -5.3
it 1.33 8.4 2.50 39.3 1.17 31.0 25.7 20.2 -5.5
avg 1.96 24.5 3.43 36.8 1.47 12.3 25.8 21.8 -4.0

Table 7: Full results of robustness experiments. Perplexity is calculated to measure fluency.

xnli

language acc_ori acc_edit
ar 0.42 0.37
de 0.54 0.54
es 0.46 0.5
fr 0.49 0.5
hi 0.47 0.48
ru 0.37 0.3
tr 0.46 0.52
vi 0.46 0.37
zh 0.51 0.46
avg 0.464 0.449

sentiment analysis

language acc_ori acc_edit
de 0.98 0.98
es 0.98 0.98
fr 0.98 0.97
ja 0.99 0.99
zh 0.99 0.99
avg 0.984 0.982

Table 8: Full results of generalization experiments.
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