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Abstract

Proteins are critical for various molecular func-
tions, relying on their precise tertiary structures.
This structure-sequence relationship is complex
and degenerate, meaning multiple sequences
can fold into a similar structure. The challenges
in protein prediction, design, and modification
increase with sequence complexity, while re-
search on RNA-protein interactions, especially
RNA-binding proteins (RBPs), is gaining im-
portance. Large-scale pre-trained language
models (LLMs) have shown promising results
in handling biological sequences by treating
them as natural language, though integrating
spatial structures remains complex due to the
need for specialized visual and 3D modeling ap-
proaches. We introduce a method to integrate
protein 3D structural data within a sequence
processing framework, converting 3D coordi-
nates into discrete structure tokens using a VQ-
VAE-like network. This simplifies the handling
of 3D data, avoiding complex pipelines and
facilitating a unified sequence-to-sequence pro-
cessing model. Our approach demonstrates
strong performance across a range of tasks,
achieving high sequence recovery in inverse
folding and protein-conditioned RNA design.
These outstanding results demonstrate signifi-
cant potential for application in complex bio-
logical systems research.

1 Introduction

Proteins play crucial roles in molecular biology
and biochemistry, from molecular catalysis to sig-
nal transduction, with diverse functions relying
on their precisely folded three-dimensional struc-
tures (Ferruz et al., 2022; Madani et al., 2023; Yue
and Dill, 1992). However, there is no strict one-to-
one mapping between protein sequences and their
3D structures (Yue and Dill, 1992; Zhang et al.,
2024), and increasing sequence length and com-
plexity poses significant challenges for prediction,

*Equal contribution.

design, and modification. Meanwhile, growing
research on nucleic acid-protein interactions, es-
pecially RNA-binding proteins, calls for rational
RNA design based on RBP sequences or structures
to enhance binding or catalytic functions.

LLMs demonstrate powerful capabilities across
tasks (Achiam et al., 2023; Jiang et al., 2025a;
Wang et al., 2025; Jiang et al., 2025b), leveraging
self-supervised learning on large corpora to cap-
ture long-range dependencies and complex patterns.
This approach extends to biological sequences such
as proteins and nucleic acids. However, spatial
structures often require additional computer vision
or 3D pipelines, increasing complexity, resource
usage, and potential mismatches in multimodal in-
tegration.

To efficiently incorporate 3D structural infor-
mation into a unified sequence framework, we
propose discretizing protein 3D coordinates into
“structural tokens” via a VQ-VAE-like network.
This mapping from continuous 3D coordinates
to discrete indices removes the need for elabo-
rate visual or 3D pipelines, instead treating pro-
tein structures as sequential tokens. Consequently,
various tasks—sequence-to-structure, structure-to-
sequence, and protein-nucleic acid co-design—can
be unified under a sequence-to-sequence (Seq2Seq)
paradigm, maintaining autoregressive modeling
strengths and leveraging LLM capabilities in cap-
turing long-range dependencies and intricate pat-
tern recognition.

The main contributions of this paper can be sum-
marized as follows: (1) We propose a unified struc-
ture representation method: converting protein 3D
coordinates into structure tokens through the dis-
cretization of VQ-VAE, enabling the autoregressive
sequence modeling paradigm of traditional LLMs
to be directly applied to protein structure learning.
(2) Within this unified framework, we have suc-
cessfully implemented four distinct tasks: Protein
sequence-to-structure prediction, achieving a TM-
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Figure 1: The LM2Protein Framework. The model consists of three main stages. (A) SE(3)-Equivariant Structural
Tokenization: 3D atomic coordinates of a protein are processed by a lightweight Equiformer encoder and a VQ-VAE
to be discretized into a sequence of structural tokens. (B) Augmented Decoder-Only Language Model: A Qwen 2.5
decoder, whose tokenizer is extended to include the 4096 structural tokens, processes both amino acid sequences
and structural token sequences under a unified format. (C) Unified Downstream Generative Tasks: The single
Seq2Seq model is capable of performing four distinct tasks: protein structure prediction, inverse folding, and RNA
design conditioned on either an RBP’s sequence or its tokenized structure.

score of 54.80%. Protein structure-to-sequence
design (inverse folding), achieving a sequence re-
covery of 51.00%. RNA design based on protein
structure, achieving a high sequence recovery rate.
(3) By encoding structures discretely, we avoid the
cumbersome and unstable multi-modal integration
in 3D geometric or visual pipelines, significantly
simplifying the training and inference processes.
(4) The effectiveness and versatility demonstrated
in the protein-nucleic acid domain offer a viable
path for further expansion into larger-scale and
more complex biological systems.

2 Method

2.1 Problem Definition
In this work, we aim to develop a unified frame-
work capable of handling biomolecular sequence
to sequence tasks, leveraging both sequences and
structure representations of proteins. Here we for-
malize these four tasks:

Task1 - Protein Structure Prediction The ob-
jective is to predict the corresponding 3D structure
given protein’s amino acids A = (a1, a2, . . . , an).
We form the structure in a sequence of discrete
tokens T = (t1, t2, . . . , tm). We adopt a VQ-
VAE (Van Den Oord et al., 2017) based structural
tokenizer to convert point cloud into that sequence
of discrete tokens, allowing structural data to be
processed similarly to sequence data. The details
will be introduced in Section 2.2

Task2 - Protein Sequence Design The objec-
tive is to predict the corresponding amino-acid se-
quence of the input protein’s 3D structure. It’s the
inverse task of protein folding, given tokenized
structure T = (t1, t2, . . . , tm), and predicting
A = (a1, a2, . . . , an).

Task3 - RNA Design Based on RBP Sequence
This task aims to generate an RNA sequence that
satisfies the binding requirements of RBPs for a
given protein sequence. Formally, given a pro-
tein sequence A = (a1, a2, . . . , an), the goal is
to generate a corresponding RNA sequence R =
(r1, r2, . . . , rk). To provide fine-grained control
over the binding sites, we additionally introduce
a binding-type annotation B = (b1, b2, . . . , bn),
where bj ∈ {0, 1} indicates whether the j-th
residue is involved in RNA binding.

Task4 - RNA Design Based on RBP Structure
This task generates an RNA sequence that satisfies
RBP binding requirements based on a given protein
structure. Formally, given a sequence of structural
token T = (t1, t2, . . . , tm), the goal is to generate
an RNA sequence R = (r1, r2, . . . , rk).

2.2 Protein Tokenization
To enable sequence-based processing of protein
structures, we adopt a VQ-VAE-based tokenization
approach inspired by (Zhang et al., 2024) and im-
plemented in the ESM-3 repository (Hayes et al.,
2025). This approach transforms coordinates into a
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sequence of discrete tokens, making it compatible
with autoregressive language models.

SE(3)-Equivariant Encoding. The 3D coordi-
nates of protein atoms are first processed by a
lightweight SE(3)-equivariant structure encoder
E , implemented as a 6M-parameter multi-layer
Equiformer. This encoder computes residue-level
continuous latent descriptors zi = E(ri) ∈ Rd,
where ri represents the local 30-atom point cloud
surrounding the i-th residue. The equivariant trans-
form E ensures that both local and global structural
patterns are captured consistently across different
global poses of the same structure.

Vector Quantization. The continuous descrip-
tors zi are then mapped to their nearest en-
tries in a pre-trained 4096-vector codebook C =
{c0, c1, . . . , c4095} using nearest-neighbor search:
yi = VQ(zi) = argmink ∥zi − ck∥2. This quan-
tization step converts the continuous latent rep-
resentations into discrete structural tokens T =
(y1, y2, . . . , ym).

Sequence-to-Sequence Modeling. The to-
kenized tokens represent the structure of a
protein, reformulating the four tasks in uniform
sequence-to-sequence problems. The tokenized
representations bridge the gap between geometric
point cloud and sequence-based language models,
supporting unified modeling across multiple
biomolecular tasks.

2.3 Language Interface

To expose structural information to a text decoder,
we augment the original Qwen 2.5 (Team, 2024)
tokenizer with three groups of symbols: (i) task
delimiters, (ii) 26 residue tags, (iii) integer tokens
for the 4096 codebook indices. This minimal ex-
tension (4 k+ tokens) allows the model to jointly
process amino-acid text and structure tokens with-
out architectural changes.

2.4 Causal Decoder

We fine-tune a Qwen 2.5 (Team, 2024) with a fixed
SYSTEM_PROMPT that instructs the model to output
structure tokens. Only positions corresponding to
<str_begin>. . .<str_end> contribute to the stan-
dard cross-entropy loss; earlier tokens are masked.
Flash-Attention is enabled but no other architec-
tural modifications are made.

2.5 Training Protocol

The model is trained for a handful of epochs on
a split of protein structures (∼200 k), holding out
10 % for validation. We use AdamW with a peak
learning rate of 2×10−5 and a short linear warm-up.
Training runs on multiple GPUs under DeepSpeed
ZeRO with tensor parallelism; checkpointing re-
tains the most recent snapshots to ensure recov-
erability. All hyper-parameters follow common
practice for billion-scale language models and are
provided in the supplementary material.

3 Experiments

3.1 Experiment Setting

All experiments are conducted on a distributed com-
puting cluster equipped with eight NVIDIA RTX
4090 GPUs. We implement our models using Py-
Torch 2.6.0 and Hugging Face Transformers. For
distributed training, we utilize DeepSpeed with ten-
sor parallelism and ZeRO-1 optimization strategy
across multiple GPUs to efficiently train our large-
scale model.

The fine-tuning of Qwen-2.5-1.5B is performed
with a mini-batch size of 2 sequences per GPU,
accumulating gradients for 8 iterations before per-
forming parameter updates, resulting in an effective
batch size of 16 sequences per GPU. We employ
Flash-Attention to optimize memory usage and
computational efficiency. To manage the varying
lengths of protein sequences and structural tokens,
we implement a dynamic batching strategy with a
maximum sequence length of 4096 tokens.

3.2 Datasets

Regarding the protein data, we collect protein
datasets from the AlphaFold DB (Varadi et al.,
2022) to serve as our training set, and utilized
protein data from the BFVD database (Kim et al.,
2025) as our test set.

Concerning the RBP data, we gather complex
structures from EMDB (wwp, 2024) and PDB (Bur-
ley et al., 2017).

3.3 Baselines

In the field of protein structure prediction, we are
selected Alphafold3 (Abramson et al., 2024) as our
baseline model. For protein sequence generation,
we have chosen ESM-IF1, PiFold (Gao et al., 2022),
and ProteinMPNN (Dauparas et al., 2022) as our

1https://github.com/facebookresearch/esm
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baselines. In RNA design, RNAFlow (Nori and Jin,
2024) is selected as the baseline.

3.4 Evaluation Metrics
We use the TM-score and RMSD to compare the
similarity between structures, and employ recov-
ery rate and sequence similarity to compare the
similarity between sequences.

4 Results and Analysis

4.1 Protein Structure Prediction
In the task of protein structure prediction (Table 1),
compared to AlphaFold3, which is based on deep
neural networks and has an enormous number of
parameters, our LM2Protein (with only about 1.5
billion parameters) slightly underperforms in the
TM-score (54.80% vs. 62.52%). However, it per-
forms comparably in terms of RMSD (6.9428 Å
vs. 6.4000 Å), indicating from another perspec-
tive that the predicted structures have a reason-
ably good level of convergence. Overall, although
LM2Protein’s performance still lags behind Al-
phaFold3, it can achieve usable and reasonable
three-dimensional structure predictions under con-
ditions of fewer parameters.

Models TM-score RMSD

AlphaFold3 62.52 6.4000 Å
LM2Protein 54.80 6.9428 Å

Table 1: Comparison of structure prediction perfor-
mance between AlphaFold3 and LM2Protein models.

4.2 Protein Sequence Design
In the task of protein sequence design, LM2Protein
significantly outperforms ProteinMPNN, PiFold,
and ESM-IF in both Recovery Rate and Sequence
Similarity metrics. This demonstrates that our dis-
crete approach can more effectively capture and
reconstruct the features of protein sequences while
maintaining high sequence similarity, thereby gen-
erating amino acid sequences that better match the
target structure.

Models Recovery Sequence Similarity

ProteinMPNN 34.26 29.61
PiFold 30.35 27.02
ESM-IF 30.43 26.32
LM2Protein 51.00 39.30

Table 2: Protein sequence design results comparing
ProteinMPNN, PiFold, ESM-IF, and LM2Protein.

4.3 RNA design based on RBP Sequence

In the task of RNA design based on RBP sequence,
LM2Protein demonstrates exceptional sequence
generation capabilities. It achieves a recovery
rate of 73.7%, a more than threefold improve-
ment compared to the 21.0% of the baseline model,
RNAFlow. This significant advantage validates that
LM2Protein’s discrete representation method can
effectively capture and leverage protein sequence
information to generate RNA sequences that better
meet specific binding requirements.

However, despite the outstanding performance
in sequence generation, the model faces challenges
at the tertiary structure level. When the generated
RNA sequences are evaluated for their structural
accuracy, the metrics are an RMSD of 10.0282 Å,
and a TM-score of 42.32%.

Models Recovery Sequence Similarity

RNAFlow 21.0 28.0
LM2Protein 73.7 72.5

Table 3: Comparison of RNA design performance be-
tween RNAFlow and LM2Protein models.

4.4 RNA design based on RBP Structure

In the task of RNA design based on protein struc-
tures, LM2Protein achieve high Recovery, signif-
icantly outperforming RNAFlow. This demon-
strates that the model can effectively use a dis-
crete representation of protein structures to gener-
ate target RNA sequences with greater precision.
However, the 3D structures of the generated RNA
sequences show room for improvement. The de-
signed sequences achieve an RMSD of 17.5493 Å,
and a TM-score of 34.53%.

Models Recovery Sequence Similarity

RNAFlow 26.0 32.0
LM2Protein 72.1 70.7

Table 4: Comparison of RNA design performance be-
tween RNAFlow and LM2Protein models.

5 Related Work

5.1 Protein Representation and Language
Modeling

Deep learning models can accurately predict 3D
conformations from sequences (Jumper et al., 2021;
Lin et al., 2023; Li et al., 2025). Existing lan-
guage models (e.g., ESM (Rives et al., 2021)) or
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generative models (e.g., ProtGPT2 (Ferruz et al.,
2022), ProGen (Madani et al., 2023)) often omit
explicit structural context or rely on specialized ge-
ometric encoders. We adopt structural tokenization,
mapping 3D coordinates to discrete indices, which
allows a standard Seq2Seq model to uniformly pro-
cess both structures and sequences.

5.2 Inverse Protein Folding
Inverse folding aims to design an amino acid se-
quence for a given protein backbone (Yue and Dill,
1992). The field has shifted from computationally
expensive physics-based methods (e.g., ROSETTA;
Das and Baker, 2008) to being dominated by deep
learning models. Current leading models, such
as PROTEINMPNN (Dauparas et al., 2022) which
uses message-passing, and ESM-IF (Hsu et al.,
2022) which employs Geometric Vector Percep-
trons, rely on custom geometric networks to pro-
cess continuous 3D coordinates. This structure-
conditioned generative paradigm has also been ex-
tended to other molecular design tasks; for instance,
SURFPRO (Song et al., 2024) designs sequences
from molecular surfaces, and DS-PROGEN (Li
et al., 2025) uses surfaces and structural designs to
generate RNA sequences.

5.3 Generative Design of RNA for
RNA-Binding Proteins

Designing RNA sequences to bind specific RNA-
binding proteins is a key challenge in synthetic
biology. However, current computational methods
are either purely predictive, identifying binding
sites without generating new sequences (Shen et al.,
2025; Xu et al., 2023), or employ decoupled gener-
ative pipelines. Flow matching-based models like
RNAFlow rely on the interplay between an inverse
folding module and a separate structure prediction
network (RF2NA) to iteratively generate structures
and sequences (Nori and Jin, 2024).

6 Conclusion

We introduced LM2Protein, a unified framework
that processes discrete structural tokens within a
LLM to bridge protein sequence and 3D geometry.
This simplified approach achieves high sequence
recovery in protein-conditioned RNA design. How-
ever, it also reveals a critical challenge: The model
captures local sequence motifs but struggles with
global folding constraints. Future work will fo-
cus on integrating biophysical priors to enhance
structural accuracy and extending the framework

to other molecular systems, paving the way for a
universal model for in silico molecular engineering.

Limitations

The reliance on VQ-VAE for structural tokeniza-
tion may underrepresent rare or anomalous protein
topologies. Limited structural resolution may con-
strain the model’s ability to capture high-fidelity
3D features, thus falling short of physics-based
simulations. Scaling up to larger or more intricate
molecular systems demands further optimization
to balance model complexity and computational
costs. For RBP-based RNA design, the generated
sequences still leave room for improvement with
respect to accurately capturing the target tertiary
structure.

In addition, we only use the AI tool to polish the
language of the paper.
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