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Abstract

The self-attention mechanism is key to the suc-
cess of transformers in recent large language
models (LLMs). However, the quadratic com-
putational cost, O(n2), with respect to the in-
put sequence length n poses a significant ob-
stacle to further improvement and scalability in
longer contexts. In this work, we leverage the
convolution-like structure of attention matrices
to develop an efficient approximation method
for attention computation using convolution
matrices. We propose a conv basis system, anal-
ogous to the rank basis, and show that any lower
triangular matrix can be decomposed as a sum
of structured convolution matrices in this basis.
We then design a fast algorithm to approximate
the attention matrix using a sum of k convolu-
tion matrices. This enables us to compute at-
tention during inference via Fast Fourier Trans-
forms (FFT) in O(knd log n) time, where d is
the hidden dimension, achieving nearly linear
time complexity, n1+o(1), in practical scenarios
where kd = no(1). Furthermore, both training
forward and backward gradient computations
can be performed in n1+o(1) time as well. We
provide theoretical guarantees on runtime and
approximation error and conduct preliminary
experiments to evaluate the effectiveness of our
approach. We hope this new paradigm for ac-
celerating attention computation in transformer
models facilitates their application to longer
contexts.

1 Introduction

Numerous notable large language models (LLMs)
in natural language processing (NLP) have
emerged over the past two years, including Mis-
tral (Jiang et al., 2023), Gemini (Team et al.,
2023), Claude3 (Anthropic, 2024), GPT-4 (Achiam
et al., 2023), and Llama3 (AI, 2024), among oth-
ers. These models have profoundly impacted the
world and are widely used in various domains,
such as education (Kasneci et al., 2023), law (Sun,

2023), finance (Li et al., 2023a), bioinformat-
ics (Thirunavukarasu et al., 2023), coding (Hou
et al., 2024), and even creative writing (Achiam
et al., 2023), including top AI conference re-
views (Liang et al., 2024c).

The key to the success of generative LLMs is the
decoder-only transformer architecture introduced
by Vaswani et al. (2017). The transformer employs
a self-attention mechanism, enabling the model
to capture long-range dependencies in sequences.
Self-attention computes a weighted sum of input
tokens, where the weights are determined by the
similarity between each token pair. This allows the
model to focus on relevant information across dif-
ferent parts of the sequence when generating output.
However, the computational complexity of self-
attention grows quadratically, O(n2), with the in-
put length n, limiting their scalability for long con-
texts. For example, GPT-4 (Achiam et al., 2023),
Claude3 (Anthropic, 2024), and Gemma (Team
et al., 2024) support input lengths of 128k, 200k,
and 1000k tokens, respectively.

The complexity O(n2) arises from computing
the similarity between each pair of tokens, resulting
in an n× n matrix. More specifically, let d be the
hidden dimension, and let Q,K ∈ Rn×d be the
query and key matrices of the input. Attention
then requires computing the Softmax function on
QK⊤ ∈ Rn×n. Although QK⊤ has at most rank
d, the Softmax operation in attention can produce
Softmax(QK⊤) ∈ Rn×n with full rank.

To overcome the computational obstacle of
Softmax(QK⊤), many studies have proposed
more efficient attention computation methods that
scale gracefully with sequence length while main-
taining the model’s performance. Alman and
Song (2023) shows that if all entries of QK⊤ are
bounded and d = O(log n), Softmax(QK⊤) will
be “close” to a low-rank matrix. They then present
an algorithm that approximates attention computa-
tion in almost linear time. Under the assumptions
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of uniform Softmax column norms and sparsity,
Han et al. (2024) solves the attention computation
in almost linear time by identifying large entries in
the attention matrix and focusing only on them.

Another line of work (Olsson et al., 2022; Song
and Zhong, 2023; Nichani et al., 2024; Reddy,
2024) finds that the attention pattern exhibits a
convolutional-like (or “diagonalized”) structure
(see Figure 1 (b)). Mathematically, Ai,j ≈ Ai′,j′

when i − j = i′ − j′, where i − j represents the
positional distance between two tokens. This is
related to the bag-of-words or n-gram concept,
i.e., sequences of n adjacent symbols or words in
NLP. Furthermore, the convolutional-like structure
connects to convolutional recurrent models (Bai
et al., 2018), Hyena Hierarchy models (Poli et al.,
2023; Massaroli et al., 2023), and structured state
space models (SSMs) such as Mamba (Gu and Dao,
2023). More specifically, multiple convolution ma-
trices can be used to approximate an attention ma-
trix, following an intuition similar to low-rank ap-
proximation in terms of computational acceleration.
Notably, the product of a convolution matrix and
a vector can be computed using the Fast Fourier
Transform (FFT) in O(n log n) time, whereas the
naive approach requires O(n2) time (see details in
Figure 1 (a)). Therefore, it is natural to ask:

Can we exploit the convolutional structure to
accelerate the attention computation?

In this paper, we use multiple convolution matri-
ces to efficiently approximate attention computa-
tion. Informally speaking, we present the following
results, which apply to any Q,K ∈ Rn×d.

Theorem 1.1 (Main result, informal version of The-
orem 3.4). Let ϵ > 0, k ∈ [n], and Q,K ∈ Rn×d.
If QK⊤ is ϵ-close in the ℓ∞ norm to a matrix with
a k-conv basis (Definition 3.1), then the Exact At-
tention Computation (Definition 2.3) can be solved
in O(knd log n) time via FFT, with an error of at
most O(ϵ).

When kd = no(1), our method achieves an al-
most linear runtime of n1+o(1). Similar to low-
rank approximation, we construct a conv basis sys-
tem, analogous to the rank basis, and show that
any lower triangular matrix H ∈ Rn×n can al-
ways be decomposed into a k-conv basis for some
k ∈ [n], where [n] = 1, 2, . . . , n (Lemma 2.12 and
Theorem 3.3). Then, Algorithm 2 efficiently de-
composes QK⊤ into k convolution matrices when
QK⊤ satisfies certain non-degeneracy properties
(see Definition 3.1). Finally, using FFT, we achieve

a time complexity of O(knd log n) to solve the
task (Algorithm 1 and Theorem 3.4), whereas naive
methods require O(n2d).

Thus, our algorithm enables attention inference
in O(knd log n) without any parameter updates,
such as retraining or fine-tuning. Additionally, our
theorems apply to accelerating attention training,
requiring O(knd log n + nd2) time for forward
computation and O(knd2 log n) time for backward
gradient computation (Theorem 4.4). We also con-
duct preliminary experiments to evaluate its effec-
tiveness (Section 5). Furthermore, our technique
extends the low-rank approximation of attention
matrices (Alman and Song, 2023) to more general
settings (Theorem D.5). Specifically, Alman and
Song (2023) focuses only on attention approxima-
tion without an attention mask, whereas our ap-
proach applies to various types of attention masks,
including the widely used causal attention mask
(Definition 2.2). This demonstrates the broad appli-
cability of our analysis.

Our contributions. Our contributions are sum-
marized as follows:

• We propose a conv basis system and show that
any lower triangular matrix H ∈ Rn×n can
always be decomposed into a k-conv basis for
some k ∈ [n] (Lemma 2.12 and Theorem 3.3).

• We introduce an algorithm (Algorithm 2) that
efficiently decomposes any lower triangular
matrix into its k convolution basis. Using FFT,
we solve the Exact Attention Computation
task in O(knd log n) time (Algorithm 1 and
Corollary 3.5). When kd = no(1), our method
runs in nearly linear time, n1+o(1). Our results
surpass or are comparable to previous works
(see comparison below).

• During attention inference, our algorithm runs
in O(knd log n) time without requiring any
parameter updates, such as retraining or fine-
tuning (Theorem 3.4). Leveraging convolu-
tion properties and Fourier analysis, our ap-
proach provides stronger theoretical guaran-
tees than existing methods.

• During attention training, our method requires
O(knd log n+ nd2) time for forward compu-
tation and O(knd2 log n) time for backward
gradient computation (Theorem 4.4).

• Our broadly applicable technique extends low-
rank approximations of attention matrices and
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Figure 1: (a) In the left two figures, we compare the complexity of conv(a) ·w between the naive approach and FFT
for a random vector a,w ∈ Rn and conv(a) ∈ Rn×n (Definition 2.5). The x-axis represents the input token number
n, while the y-axis represents the average CPU time (first figure) and Float Operations (FLOPs) per token (second
figure). The reported values are averaged over 100 runs using a NumPy implementation. It is evident that the naive
approach takes O(n2) time, whereas the FFT approach runs in O(n log n). (b) In the right figure, we visualize an
attention matrix QK⊤ ∈ Rn×n from Llama3 (AI, 2024), where the input is from SST-2 (Wang et al., 2018) with
n = 47 tokens. The conv-like structure in the attention matrix is clearly observable.

generalizes existing results to more complex
settings (Theorem D.5). Due to space limita-
tions, we defer this result and its proof to the
Appendix D.

Our motivation lies in addressing the limita-
tions of prior methods that rely on restrictive as-
sumptions. In contrast, we develop a theoretically
grounded, assumption-light approach with prov-
able guarantees. While our main focus is theoret-
ical, we include experiments to demonstrate the
method’s practicality and ease of integration into
real-world models like Llama 3.

Detailed comparison with previous works. Our
results are beyond or comparable to the two bril-
liant previous works. (1) To ensure a small ap-
proximation error for the attention matrix, Alman
and Song (2023) requires bounded entries and as-
sumes d = O(log n), while Han et al. (2024) as-
sumes uniform Softmax column norms and sparsity.
However, our algorithm guarantees a small approx-
imation error without any of these assumptions
(Corollary 3.5). That is, our approach applies to
any Q,K, including unbounded matrices, dense
matrices, and any hidden dimension d. (2) Al-
man and Song (2023) assumes d = O(log n) to
achieve a runtime of n1+o(1). In contrast, our algo-
rithm achieves n1+o(1) runtime as long as d = no(1)

and k = no(1), imposing far fewer restrictions on
d. Moreover, our time complexity ranges from
n1+o(1) to n2−Ω(1) depending on d, whereas Al-
man and Song (2023) is limited to d = O(log n).
(3) To ensure subquadratic runtime, Han et al.

(2024) assumes dm = n2−Ω(1), since their time
complexity is O(dn1+o(1) + dm), where m rep-
resents the number of large entries in the atten-
tion matrix. Our approach has a time complex-
ity of O(knd log n) and requires kd = n1−Ω(1)

for truly subquadratic runtime. In the case where
m = n1+o(1), d = no(1), and k = no(1), both our
algorithm and Han et al. (2024) achieve n1+o(1)

runtime. However, if m = n1+Ω(1), d = no(1), and
k = no(1), Han et al. (2024) incurs a superlinear
runtime of n1+Ω(1), whereas our algorithm remains
nearly linear at n1+o(1)1.

1.1 Related Work

Attention matrix conv-like structure. Very re-
cent works study the conv-like attention matrix.
Elhage et al. (2021); Olsson et al. (2022) find that
in-context learning is driven by the formation of
“induction heads”–attention heads that copy pat-
terns from earlier in the input sequence. This is re-
flected in the attention matrix becoming more diag-
onal, with tokens attending primarily to preceding
tokens that match the current token. In Song and
Zhong (2023) Figure 6, they show a similar conv-
like attention pattern for other important attention
circuits. Figure 3 of Reddy (2024) shows that in a
minimal classification task, the abrupt emergence
of in-context learning coincides with the formation
of an induction head, characterized by a diagonal
attention pattern. Beltagy et al. (2020) proposed a

1For example, if the attention matrix is a lower triangular
matrix with all entries equal to 1, we have k = 1 and m =
n(n+ 1)/2.
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combination of local and global attention, where
local attention captures short-range dependencies,
and global attention captures long-range dependen-
cies. Wang et al. (2020) introduced a low-rank
approximation of the self-attention mechanism that
significantly reduces computational and memory
costs while maintaining comparable performance
to standard transformers. Nichani et al. (2024)
proves that for a simplified task, gradient descent
causes a transformer to encode the causal graph
structure of the task in the attention matrix. This
results in tokens attending primarily to their causal
parents reflected in a sparse diagonal structure (Fig-
ure 2). In Li et al. (2024a), the conv-like attention
matrix can also be observed when learning math
tasks. Moreover, Cai et al. (2024) uses convolu-
tional kernels to compress the KV-cache size for
fast LLM generation.

We provide additional comparisons between our
method and previous works in Section 6 for further
reference.

2 Preliminaries

Notation. ◦ denotes element-wise multiplica-
tion. We denote [n] = {1, 2, . . . , n} and [0] as
an empty set. 0n and 1n are n-dimensional vec-
tors whose entries are all 0 and 1 respectively.
exp(·) is the element-wise exponential function.
We denote [xa, xa+1, . . . , xb]

⊤ ∈ Rb−a+1 as xa:b,
where 1 ≤ a ≤ b ≤ n, similarly for matrix.
diag : Rn → Rn×n is defined as diag(x)i,i = xi
and diag(x)i,j = 0, for all i ̸= j. For a matrix A ∈
Rm×n, its ℓ1 norm is ∥A∥1 =

∑m
i=1

∑n
j=1 |Aij |,

ℓ∞ norm is ∥A∥∞ = maxi,j |Aij |, and Frobenius

norm is ∥A∥F :=
√∑

i,j A
2
i,j , where Aij is an en-

try at the i-th row and j-th column. Tmat(n, d, k)
is the time of an n× d matrix times a d× k matrix.
Given two matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 ,
for all i1 ∈ [n1], i2 ∈ [n2], j1 ∈ [d1], j2 ∈ [d2],
we define A := A1 ⊗ A2 ∈ Rn1n2×d1d2 as
Ai1+(i2−1)n1,j1+(j2−1)d1 = (A1)i1,j1 · (A2)i2,j2 .

2.1 Basic Definitions and Facts
Now, we present basic definitions. We start by
introducing the input and weight matrix.

Definition 2.1 (Input and weight matrix). We define
the input sequence as X ∈ Rn×d and the key, query,
and value weight matrix as WK ,WQ,WV ∈ Rd×d.
Then, we define the key, query, and value matrix
as K := XWK ∈ Rn×d, Q := XWQ ∈ Rn×d,
V := XWV ∈ Rn×d.

Note that QK⊤ = XWQW
⊤
KX⊤. In LLMs,

there is a causal mask M to guarantee the later to-
kens cannot see the prior tokens during generation.
Definition 2.2 (Causal attention mask). We de-
fine the causal attention mask as M ∈ {0, 1}n×n,
where Mi,j = 1 if i ≥ j and Mi,j = 0 otherwise.
We define Mj to be the j-th column of M .

Now, we introduce the mathematical definition
of the exact attention computation with a mask.
Definition 2.3 (Exact attention computation). Let
Q,K, V ∈ Rn×d be the query, key, and value ma-
trices respectively defined in Definition 2.1. Let
M ∈ {0, 1}n×n be the attention mask defined in
Definition 2.2. The goal of the Exact Attention Com-
putation is to find the matrix Att(M,Q,K, V ) ∈
Rn×d, which is defined as Att(M,Q,K, V ) :=
D−1AV where A ∈ Rn×n is a lower triangular
matrix and D ∈ Rn×n is a diagonal matrix, i.e.,
A := M ◦ exp(QK⊤) and D := diag(A1n).

Remark 2.4. In Definition 2.3, we divide the
Softmax operation into an element-wise exp oper-
ation and a diagonal normalization matrix D to
obtain a clear formulation.

Efficiently computing the attention needs to ex-
ploit structured matrices that enable fast multipli-
cation algorithms. Here, we define the convolution
matrix, which is a structured matrix where each row
vector is rotated one element to the right relative to
the preceding row vector.
Definition 2.5 (Convolution matrix). Let a ∈ Rn.
We define conv : Rn → Rn×n as,

conv(a) :=




a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1



.

By the following fact, we know that the rank of
a convolution matrix can be an arbitrary number.
Thus, our conv-basis is totally different from the
rank basis. See proof in Appendix B.1.
Claim 2.6. We have conv(ej) ∈ Rn×n is a j-rank
matrix, where the j-th entry of ej ∈ Rn is 1 and all
other entries are 0.

Efficient computation of the convolution opera-
tion is crucial for many applications. The convo-
lution theorem states that the circular convolution
of two vectors can be computed efficiently using
the Fast Fourier Transform (FFT). This leads to the
following claim (see proof in Appendix B.1):
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Claim 2.7. Let conv be defined in Definition 2.5.
For any a, x ∈ Rn, conv(a)x can be computed in
O(n log n) via FFT.

One property of convolution matrices is that they
are additive with respect to the input vectors. In
other words, the convolution of the sum of two
vectors is equal to the sum of the convolutions of
the individual vectors. This is stated formally in
the following claim (see proof in Appendix B.1):

Claim 2.8. conv is additive, i.e., for any a, b, x ∈
Rn we have conv(a)x+conv(b)x = conv(a+b)x.

Many other interesting facts and properties about
the convolution matrix are used in our main theo-
rem proof. Due to space limitations, we leave them
in Appendix B.1 for reader interests.

2.2 Sub-convolution Matrix: Definitions and
Properties

= + +

Figure 2: We present an example of the matrix defined
in Definition 2.11 when k = 3. The matrix with 3-conv
basis is on the left-hand side of the equation in this
figure. The red entries in this matrix come from the
first matrix on the right-hand side. The purple entries
in this matrix are the sum of the red entries from the
first matrix on the right-hand side and the blue entries
from the second matrix on the right-hand side. The dark
green entries are equal to the sum of red, green, and
blue entries from the matrices on the right-hand side.

If we would like to use conv as a basis system,
we need to introduce some new concepts. Recall
that, in general, the sum of two rank-1 matrices is a
rank-2 two matrix. Due to conv being additive, the
sum of two convolution matrices is another convo-
lution matrix, which does not hold the above prop-
erty. Thus, we need to introduce sub-convolution
matrices to be the basis.

Definition 2.9 (Sub-convolution matrix). Let m ∈
[n]. For any a ∈ Rn. We define the sub-convolution
matrix conv(a,m) as

conv(a,m) =

[
0(n−m)×(n−m) 0(n−m)×m

0m×(n−m) conv(a1:m)

]
.

Given two vectors a, x ∈ Rn, let a ∗m x ∈ Rn

denote the sub-convolution operator between a and
x, i.e., conv(a,m)x = a ∗m x.

Similarly, sub-convolution can be computed
in O(n log n) time via FFT (see proof in Ap-
pendix B.1).

Claim 2.10. Let m ∈ [n]. For any a, x ∈ Rn,
conv(a,m)x, (defined in Definition 2.9) can be
computed in O(n log n) via FFT.

Here, we present the definition of the matrix with
k-conv basis which is non-reducible.

Definition 2.11 (Matrix with k-conv basis). Let
k ∈ [n]. We say a lower triangular matrix H ̸=
0n×n ∈ Rn×n has k-conv basis if

• There exists b1, . . . , bk ∈ Rn and k inte-
gers m1,m2, . . . ,mk satisfying n ≥ m1 >
m2 > · · · > mk ≥ 1 such that H =∑

i∈[k] conv(bi,mi), (Definition 2.9).

• For all b1, . . . , bk−1 ∈ Rn and integers
m1, . . . ,mk−1 with n ≥ m1 > m2 > · · · >
mk−1 ≥ 1, H ̸= ∑

i∈[k−1] conv(bi,mi).

The following lemma establishes that any non-
zero lower triangular matrix can be represented as
a matrix with a k-conv basis for some unique k
between 1 and n. The proof is in Appendix F.1.

Lemma 2.12. For any lower triangular matrix
H ̸= 0n×n ∈ Rn×n, there exists a unique k ∈ [n]
such that H is a matrix with k-conv basis.

3 conv Approximation during Inference

In Section 3.1, we introduce the basic definitions
to support our algorithmic analysis in this section.
In Section 3.2, we present the binary search and
recover k-conv algorithms and present their theo-
retical guarantees. In Section 3.3, we provide the
formal version of our main result.

3.1 Key Concepts
Any non-zero lower triangular matrix can be rep-
resented as a matrix with a k-conv basis for some
unique k between 1 and n (Lemma 2.12). How-
ever, exactly getting k is hard and the definition is
too strict for the algorithm design. Thus, for more
flexibility, we introduce a more general definition
of non-degenerate k-conv basis as below, which is
a proxy notion to relax the conditions required.

Definition 3.1 (Non-degenerate k-conv basis). Let
T ∈ [n], δ ≥ 0, and k ∈ [n + 1 − T ]. Let
b1, . . . , bk ∈ Rn and k integers m1,m2, . . . ,mk

satisfying n ≥ m1 > m2 > · · · > mk ≥ T . Let
H =

∑
i∈[k] conv(bi,mi). If for each basis i ∈ [k],
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for all j ∈ [i], we have ∥∑i
l=j(bl)1:T ∥1 ≥ δ, then

we define H ∈ Rn×n to be a matrix with (T, δ)-
non-degenerate k-conv basis.

Here (T, δ)-non-degenerate k-conv basis means
that each conv basis cannot be “covered” by the
other basis easily.

Definition 3.2. We define G as a ϵ-close (T, δ)-
non-degenerate k-conv basis matrix when G =
H + R, where H is a (T, δ)-non-degenerate k-
conv basis matrix defined in Definition 3.1 and the
noise matrix R ∈ Rn×n satisfies ∥R∥∞ ≤ ϵ ≤ δ

5T .

The following theorem establishes that any non-
zero lower triangular matrix can be represented as
an ϵ-close (T, δ)-non-degenerate k-conv basis ma-
trix (see proof in Section B.2). There may be many
different choices of (k, T, δ, ϵ), which provide flex-
ibility for our Algorithm 1.

Theorem 3.3. For any lower triangular matrix
G ̸= 0n×n ∈ Rn×n, there exists k, T ∈ [n]
and δ, ϵ ≥ 0 such that G is a ϵ-close (T, δ)-non-
degenerate k-conv basis matrix.

3.2 Algorithms and Their Properties
Now, we present our main Algorithm 1. We present
Algorithm 2 and Algorithm 3 as well.

Algorithm 1 Main k-conv forward
1: procedure convFORWARD(Q,K, V ∈

Rn×d, k, T ∈ [n], δ, ϵ ∈ R≥0) ▷ Theorem 3.4
2: b̃1, . . . , b̃k,m1, . . . ,mk ← RE-

COVER(Q,K, k, T, δ, ϵ) ▷ Algorithm 2,
recover k-conv

3: D̃ ← diag(
∑

r∈[k] conv(̃br,mr)1n) by
FFT in Claim 2.10

4: Ỹ ← D̃−1
∑

r∈[k] conv(̃br,mr)V by FFT
in Claim 2.10

5: return Ỹ
6: end procedure

In Algorithm 1, we first using Algorithm 2 to get
k conv basis. Then, we can get the approximated
normalization matrix D̃ and the final output Ỹ by
FFT in Claim 2.7.

In Algorithm 2, we iteratively use binary search
(Algorithm 3) to identify the conv basis positions
and compute their values. Note that, in the final
step, we replace b′i with b̃i by incorporating the exp
function used in Softmax. We will provide proofs
of correctness and time complexity below.

In Algorithm 3, we employ binary search to
efficiently locate the convolution basis positions

Algorithm 2 Recover k-conv

1: procedure RECOVER(Q,K ∈ Rn×d, k, T ∈
[n], δ, ϵ ∈ R≥0)

2: v ← 0T , u ← 0n, s ← 0, t ← n − T + 1
▷ Initialize the state for binary search

3: for i = 1→ k do
4: s← s+ 1
5: s ← SEARCH(Q,K, k, T, δ, ϵ, v, s, t)

▷ Algorithm 3 in Appendix B.2, binary search
the next conv basis position

6: mi ← n− s+ 1
7: H̃s ←Ms ◦ (Q(K⊤)s)
8: (b′i)1:mi ← H̃s,s:s+mi−1 − u1:mi ,

(b′i)mi+1:n ← 0n−mi ▷ Get the conv basis
value

9: v ← v + (b′i)1:T
10: u← u+ b′i
11: end for
12: Get b̃1, . . . , b̃k by Lemma B.16 from

b′1, . . . , b
′
k and m1, . . . ,mk

13: return b̃1, . . . , b̃k,m1, . . . ,mk

14: end procedure

by leveraging the non-degenerate property (Defi-
nitions 3.1 and 3.2) of the attention matrix. This
property allows us to identify the k-conv basis in
our main Algorithm 1, enabling better control over
runtime while bounding the error. The choice of
k balances the trade-off between accuracy and ef-
ficiency. Algorithm 3 identifies positions in the
attention matrix where the ℓ1 norm of the remain-
ing attention values exceeds the threshold δ − 2Tϵ.
The non-degenerate property ensures that the bi-
nary search algorithm can find the next convolution
basis position in O(log n) steps.

3.3 Main Theoretical Result
In this section, we present our main result.

Theorem 3.4 (Main conv results for inference).
Let Q,K, V ∈ Rn×d. Let A = M ◦ exp(QK⊤) ∈
Rn×n, D = diag(A1n) ∈ Rn×n be defined in
Definition 2.3. We let Y := D−1AV ∈ Rn×d. Let
M ◦(QK⊤) be an ϵ-close (T, δ)-non-degenerate k-
conv basis matrix (Definition 3.2), where δ, ϵ ≥ 0
and k, T ∈ [n]. By Algorithm 1, we can get Ỹ with

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

whose time complexity is O(knd log(n)).

Proof sketch. See complete proof in Appendix B.4.
The proof idea is that using binary search to re-
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Algorithm 3 Binary search

1: procedure SEARCH(Q,K ∈ Rn×d, k, T ∈
[n], δ, ϵ ∈ R≥0, v ∈ RT , s, t ∈ [n])

2: if s ≥ t then
3: return s
4: end if
5: j ← ⌊(s+ t)/2⌋
6: H̃j ←Mj ◦ (Q(K⊤)j) ▷ j ∈ [n],M is

attention mask defined in Definition 2.2
7: α← ∥(H̃j)j:j+T−1 − v∥1
8: if α ≥ δ − 2Tϵ then
9: return

SEARCH(Q,K, k, T, δ, ϵ, v, s, j)
10: else
11: return SEARCH(Q,K, k, T, δ, ϵ, v, j+

1, t)
12: end if
13: end procedure

cover all non-degenerate conv basis (Lemma B.19),
which takes O(knd log(n)) time and has upto
2(exp(2ϵ)− 1)∥V ∥∞ error (Lemma B.20). Then,
via FFT (Claim 2.10), we finish the proof.

Note that our algorithm can handle any Q,K ∈
Rd×d. Furthermore, we can exactly recover Y if
we do not care about the time complexity. We
formally describe the above intuition as follows.

Corollary 3.5 (Exact conv inference). Let
Q,K, V ∈ Rn×d. Recall A = M ◦ exp(QK⊤) ∈
Rn×n, D = diag(A1n) ∈ Rn×n defined in Def-
inition 2.3. We denote Y := D−1AV ∈ Rn×d.
For any ϵ ≥ 0 and any Q,K, V , there exists a
hyper-parameter k, T ∈ [n] and δ ≥ 0 such that
Algorithm 1 can output Ỹ satisfying

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞.

Furthermore, we can exactly get Y , i.e., ϵ =
0, through Algorithm 1 with a time complexity
O(n2d log(n)) in the worst case.

We defer the proof to Appendix B.4. By Theo-
rem 3.4, for ϵ = O(1), we get the attention infer-
ence time complexity is O(knd log(n)) with error
up to O(ϵ). It may enable further improvement and
scalability of LLMs in the longer context. More-
over, in Section 6, we provide a detailed discus-
sion about two case studies, LongLora (Chen et al.,
2023b) and RoPE (Su et al., 2024), where our al-
gorithm can apply to these two long-context LLMs
as well. We also provide further discussion on
limitations and extensions there.

4 conv Approximation for Training

We accelerate both forward and back propagation
of attention. We first define attention optimization,
which is also used in Alman and Song (2024a).

Definition 4.1 (Attention optimization). Given
A1, A2, A3, E ∈ Rn×d and Y ∈ Rd×d, let M ∈
Rn×n be a casual attention mask (Definition 2.2).
Let D(X) := diag(M ◦ exp(A1XA⊤

2 )1n) ∈
Rn×n. The attention optimization is to find
minX∈Rd×d L(X), where L(X) is defined as

0.5∥D(X)−1M ◦ exp(A1XA⊤
2 )A3Y − E∥2F .

Remark 4.2. Our Attention Optimization task
in Definition 4.1 covers both the cross-attention
and self-attention setting. Let weight matrices
WK ,WQ,WV ∈ Rd×d be defined in Defini-
tion 2.1. For the self-attention setting, we can
see A1, A2, A3 ∈ Rn×d as X ∈ Rn×d in Def-
inition 2.1, see X ∈ Rd×d in Definition 4.1 as
WQW

⊤
K ∈ Rd×d and see Y ∈ Rd×d as WV ∈

Rd×d. To overcome the quadratic complexity ob-
stacle, we only need to handle the gradient compu-
tation of WQW

⊤
K .

As QK⊤ ∈ Rn×n during inference, in gradient
calculation, we have an n× n matrix u(x).

Definition 4.3. Let M ∈ Rn×n be a casual atten-
tion mask defined in Definition 2.2. Let A1, A2 ∈
Rn×d. Suppose that A = A1 ⊗A2 ∈ Rn2×d2 . For
all j0 ∈ [n], let Aj0 ∈ Rn×d2 be the j0-th block
of A and u(x)j0 := Mj0,∗ ◦ exp(Aj0 x), where
x ∈ Rd2 is the vectorization of X ∈ Rd×d. Define
u(x) ∈ Rn×n as the matrix where the j0-th row
corresponds to (u(x)j0)

⊤.

We show our main result of attention training.

Theorem 4.4 (Main conv result for training
forward and backward gradient). If u(x) is a
1/ poly(n)-close (T, δ)-non-degenerate k-conv
basis matrix as defined in Definition 3.2, where
δ ≥ 0 and k, T ∈ [n]. Then there are algo-
rithms that run to compute training forward in
time O(knd log n+ Tmat(n, d, d)) and backward
gradient in time O(d2kn log n) of attention loss
(Definition 4.1) approximately up to 1/poly(n) er-
ror under ℓ∞ norm.

Proof sketch. See complete proof in Appendix C.4.
During backward computation, we can convey the
properties of low-rank and convolution at the same
time (Lemma C.13 and Lemma C.15). Then, by
tensor trick, we can compute the attention gradient
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Figure 3: The comparison between the Llama3 8B Instruct with or without using our Algorithm 1 on the IMDB
dataset. The input sequence length n = 2048. The x-axis is the number of conv basis. The y axis is relative

difference ∥Y−Ỹ ∥2
F

∥Y ∥2
F

for the left figure and classification accuracy for the right figure. Note that k = 2048 represents
the baseline of the original model, as this is the input sequence length.

based on attention inference (Lemma C.9). We
finish the proof by Theorem 3.4.

Remark 4.5. Alman and Song (2024a) only convey
the low-rank property, but we convey both low-rank
and convolution properties, which is general.

The parameter k serves as a critical design pa-
rameter in our method. A larger k improves ap-
proximation accuracy but increases computation,
while a smaller k reduces cost but may affect per-
formance. Moreover, Theorem 4.4 shows k is in-
sensitive to context length; as long as k grows sub-
linearly with input length n, the algorithm runs in
sub-quadratic time. It also proves our method can
accelerate Transformer training, demonstrating its
practical advantage.

5 Experiments

Now, we show our experimental results for convo-
lution attention computing in language models, of-
fering empirical backing to our theoretical claims.

Setup. We use the latest Llama3 8B Instruct
model2 (AI, 2024) as our foundation, modifying its
attention mechanism with our convolution-based
approach using varying numbers of convolution
bases k. We evaluate our method on the IMDB
dataset (Maas et al., 2011), which consists of la-
beled movie reviews. Our assessments rely on two
key metrics: (1) the relative difference between
our final layer output Ỹ and the original model
output Y , i.e., ∥Y − Ỹ ∥2F /∥Y ∥2F ; and (2) classifi-
cation accuracy. This dual approach enables us to
assess both internal representations and the overall

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

predictive performance of our convolution-based
attention compared to the standard mechanism.

Implementation details. To ensure a fair com-
parison and prevent memory issues, we set the
model’s context length to 2048 tokens and incre-
mentally increased the number of conv bases k.
When k = 2048, our convolution attention pro-
duces an identical output to the original attention
mechanism. We use an instruction-based approach
to evaluate generation accuracy, formatting our in-
put as Review: <REVIEW> Question: Is this re-
view positive or negative? Answer:. This technique
allows us to systematically assess the performance
of our convolution-based attention across various
complexity levels while maintaining comparability
with the original model. We randomly sample 5
sample groups, with 200 samples per group, and
report the results averaged across each group. All
evaluations are conducted by directly applying our
approximation to the pretrained Llama3 8B Instruct
model without any retraining or fine-tuning, isolat-
ing the effect of the attention modification.

Results. Figure 3 (left) shows that the relative
MSE drops rapidly as k increases, even with small
values like k = 256 or 512, indicating conver-
gence toward the original attention. The right plot
shows accuracy also improves with k and matches
the original at k = 512, demonstrating that our
method retains strong performance with lower com-
putational costs. These results imply that our ap-
proach effectively approximates the original atten-
tion mechanism, offering a promising trade-off
between accuracy and efficiency, particularly in
resource-constrained scenarios.
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6 Further Discussion

Comparison with efficient attention methods.
Recent works such as Linformer (Wang et al.,
2020) and Longformer (Beltagy et al., 2020) re-
duce attention complexity by imposing structural
assumptions like low-rank projections or sparsity
patterns on the attention matrix. In contrast, our
approach leverages a convolutional basis decom-
position, which does not rely on any low-rank hy-
pothesis. The conv-basis framework is provably
applicable to any lower triangular matrix, includ-
ing masked attention scenarios. Importantly, our
theoretical results (Theorem 3.4 and Corollary 3.5)
guarantee that the approximation error is tightly
controlled and can be made arbitrarily small by
increasing k, with provable bounds on ∥Y − Ỹ ∥∞.

LongLora. Our conv and low-rank approxima-
tion can be applied to LongLora (Chen et al.,
2023b), whose mask is shown in the left of Fig-
ure 4. They use this kind of sparse mask to extend
the context sizes of pre-trained large language mod-
els, with limited computation cost, e.g., extending
Llama2 70B from 4k context to 32k on a single
8× A100 machine. As the “diagonalized” mask
structure, we can directly apply our Algorithm 1 by
replacing the causal attention mask (Definition 2.2)
with their sparse mask for the conv approximation
with time complexity O(knd log(n)). Similarly,
for the low-rank approximation, we directly use the
second statement in Theorem D.5 by considering
row change by amortized constant mask defined
in Definition D.1 with time complexity O(knd),
where Bj = O(1) for any j ∈ [n].

RoPE. The Rotary Position Embedding
(RoPE) (Su et al., 2024) designs a rotation
matrix R(m) ∈ Rd×d, for all m ∈ [n], which
can effectively encode the positional information
into embedding Q,K ∈ Rn×d. In detail, let
qi, kj ∈ Rd, where q⊤i and k⊤j be the i-th and j-th
row of Q,K respectively, for any i, j ∈ [n]. By
the property of rotation matrix, we have

(R(i)qi)
⊤(R(j)kj) = q⊤i R

(j−i)kj

We define Q′,K ′ ∈ Rn×d, and let q′i, k
′
j ∈ Rd,

where q′⊤i and k′⊤j be the i-th and j-th row of
Q′,K ′ respectively, for any i, j ∈ [n]. Let q′i =
R(i)qi and k′j = R(j)kj . By Equation (34) in (Su
et al., 2024), we know that we can get Q′,K ′ in
O(nd) time. Thus, we can apply Q′,K ′ in our

Theorem 3.4 and Theorem D.5 to get the same
approximation error guarantee and the same time
complexity.

Extend to full self-attention. We can easily ex-
tend our method to full self-attention. Our pro-
posed approach can be extended to accelerate full
self-attention as well, not just the causal attention
mechanism. Note that the full self-attention matrix
can be split into a lower triangular matrix L and an
upper triangular matrix U . Then, our conv-basis ap-
proximation method can be applied separately to L
and the transpose of U . This allows the algorithm
to handle both the lower and upper triangular com-
ponents of the full attention matrix. The diagonal
normalization step D−1 would need to be adjusted
to account for the full matrix rather than just the
lower triangular portion. Finally, we combine the
approximations of L and U⊤ to reconstruct the full
self-attention output.

Memory consumption. Our method does not
increase the memory consumption because each
convolution matrix can be stored as a n-dimention
vector (see Definition 2.5). Therefore, our method
requires O(kn) memory for k convolution matri-
ces, O(nd) memory for the value matrix V ∈
Rn×d, and O(n) memory for the diagonal matrix
D ∈ Rn×n. In total, our memory consumption is
O(kn+ nd). For the standard attention computa-
tion of D−1AV , it requires O(n2) memory for the
attention matrix A, O(nd) memory for the value
matrix V ∈ Rn×d, and O(n) memory for the di-
agonal matrix D ∈ Rn×n. In total, the memory
consumption is O(n2 + nd).

7 Conclusion

We introduce a novel method for efficient attention
computation in transformers by leveraging a struc-
tured convolution matrix decomposition. Unlike
previous approaches that often rely on restrictive
assumptions or focus exclusively on approximating
specific types of attention, our algorithm provides a
general, assumption-light framework with provable
guarantees. It achieves nearly linear time complex-
ity for both attention inference and gradient com-
putation, offering stronger theoretical assurances
than existing methods. This work establishes a new
paradigm for accelerating attention operations, en-
abling transformers to handle longer contexts more
efficiently and paving the way for further advance-
ments in Large Language Models.
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Limitation

We focus primarily on theoretical analysis, with
relatively limited empirical validation. Although
our paper includes preliminary experiments on the
IMDB dataset, more comprehensive real-world
benchmarking across diverse tasks and model archi-
tectures would further validate the practical benefits
of the proposed conv-basis approach. However, we
believe that our extensive theoretical development
outweighs this experimental limitation. We pro-
vide a detailed comparison of our work with recent
papers, such as Alman and Song (2023); Han et al.
(2024), in Section 1. Our motivation stems from
the fact that their assumptions are overly restric-
tive, making their algorithms difficult to implement
successfully. In contrast, our work develops an im-
plementable, assumption-light algorithm that can
be applied in real-world scenarios while maintain-
ing a comparable running time to Alman and Song
(2023); Han et al. (2024). The experiment in our
paper serves as an example to demonstrate the im-
plementation of our theoretical contribution and
to highlight its independence from the restrictive
assumptions of Alman and Song (2023), which is
a purely theoretical work with no experiments.
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Appendix
Roadmap. In Section A, we discuss additional
related works. In Section B, we present additional
details and proofs related to the convolution approx-
imation approach. In Section C, we introduce the
conv approximation in gradient. In Section D, we
show that our broadly applicable technique extends
low-rank approximations of attention matrices and
generalizes existing results to more complex set-
tings. In Section E, we include supplementary ma-
terial for the low-rank approximation. In Section F,
we present a collection of useful tools and lemmas
that are referenced throughout the main text and
the appendix. In Section G, we provide potential
risks.

A More Related Work

Fast attention computation and long context
LLM. The development of efficient attention
computation has been an active area of research
in recent years. The standard self-attention mech-
anism, introduced in the transformer architecture
(Vaswani et al., 2017), has a quadratic complexity
with respect to the sequence length, which limits
its applicability to long sequences. To address this
limitation, various approaches have been proposed
to improve the efficiency of attention computation.
One line of research focuses on patterns of sparse
attention that reduce the number of computations
(Child et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2020; Shi et al., 2023a; Han et al., 2024). An-
other approach is to use low-rank approximations
or random features for the attention matrix (Razen-
shteyn et al., 2016; Li et al., 2016; Wang et al.,
2020; Choromanski et al., 2020; Zheng et al., 2022;
Alman and Song, 2023; Ahn et al., 2024; Bebensee
and Lee, 2023), which reduces the computational
complexity to linear in the sequence length. In ad-
dition, using linear attention as a proxy of Softmax
attention is a rich line of work (Tsai et al., 2019;
Katharopoulos et al., 2020; Schlag et al., 2021;
Zhang et al., 2023; Sun et al., 2023; Ahn et al.,
2024; Shi et al., 2023b; Xu et al., 2024b; Zhang
et al., 2024; Deng et al., 2023). These develop-
ments in efficient attention computation have en-
abled transformer-based models to process longer
sequences and have opened up new possibilities for
their application in various domains (Chen et al.,
2023b; Su et al., 2024; Peng et al., 2024; Ding
et al., 2024; Ma et al., 2024; Xu et al., 2024c; An
et al., 2024; Bertsch et al., 2024; Chen et al., 2024a;

Liang et al., 2024f; Jin et al., 2024; Shi et al., 2024;
Ye et al., 2024; Zhu et al., 2024; Courtois et al.,
2024). In addition, various efficient attention mech-
anisms have been developed to reduce the com-
putational cost of attention (Song et al., 2024; Hu
et al., 2025b,g; Alman and Song, 2025a,b; Liu et al.,
2025; Hu et al., 2025c).

Convolution in language model and FFT.
There are many subquadratic-time architectures are
proposed to address Transformers’ computational
inefficiency on long sequences, gated convolution
recurrent models (Bai et al., 2018; Fu et al., 2023;
Peng et al., 2023; Qin et al., 2023), and structured
state space models (SSMs) (Gu et al., 2021; Gu and
Dao, 2023). They can use global or local convolu-
tion (Krizhevsky et al., 2012) operations to replace
attention while keeping a comparable performance.
The convolution operation can be computed by fast
Fourier transform (FFT) efficiently (Pratt et al.,
2017; Chi et al., 2020). Moreover, the development
of efficient convolution algorithms like Winograd
(Lavin and Gray, 2016) and FFT-based convolu-
tions (Mathieu et al., 2013) has further optimized
the computation, reducing the memory footprint
and improving the overall speed. There are many
other works studying Fourier transform (Price and
Song, 2015; Moitra, 2015; Chen et al., 2016; Song,
2019; Lee et al., 2019; Chen et al., 2020; Song
et al., 2022; Gao et al., 2022; Song et al., 2023a;
Chen et al., 2023a; Song et al., 2023e; Jin et al.,
2023).

(Weighted) low rank approximation. Low-rank
approximation has become an important tool in ma-
chine learning and numerical linear algebra, pro-
viding a way to extract the core structure of high-
dimensional data while minimizing computational
costs. Mathematically, we want to find matrices
X,Y ∈ Rn×k such that ∥M − XY ⊤∥F is mini-
mized. It has been applied to various fields, such
as training multi-layer neural network (Song et al.,
2021), attention approximation (Alman and Song,
2023, 2024a), dynamic Kronecker product main-
tenance (Song et al., 2023c), and tensor product
regression (Reddy et al., 2022). In practice, certain
entries of M tend to be more important than others,
leading to the study of the weighted low-rank ap-
proximation: finding matrices X,Y ∈ Rn×k such
that ∥W ◦ (M − XY ⊤)∥F is minimized, where
W ∈ Rn×n

≥0 (Li et al., 2016; Razenshteyn et al.,
2016; Song et al., 2023d; Gu et al., 2024; Li et al.,
2025a). It has been applied to various fields, such
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as (Song et al., 2021, 2023c, 2021; Reddy et al.,
2022). Weighted low-rank approximation has also
been connected to optimization and efficiency in
large models. For example, theoretical analyses
of Transformer fine-tuning and in-context learning,
including LoRA limits (Hu et al., 2025d), prompt
tuning capacity and universality (Hu et al., 2025e),
and in-context learning as conditioned associative
memory retrieval (Wu et al., 2025b,a). As data con-
tinues to grow in size and complexity, (weighted)
low-rank approximation remains an active area of
research, with ongoing efforts to develop more ef-
ficient, scalable, and robust methods for a wide
range of applications.

Attention optimization. There are several other
techniques optimizing the approximation of the at-
tention computation to alleviate the quadratic com-
plexity O(n2), such as optimizing the attention-
related regression problems (Song et al., 2023f;
Gao et al., 2023b,d,c; Li et al., 2024b; Liang et al.,
2024d), multi-layer attention optimization (Song
et al., 2023b; Li et al., 2023b; Liang et al., 2024e),
cross attention (Liang et al., 2024g), Hopfield Mod-
els (Hu et al., 2023; Wu et al., 2024b; Hu et al.,
2024b; Xu et al., 2024a; Wu et al., 2024a; Hu et al.,
2024a, 2025a, 2024c), and optimizing the tensor
version of the attention approximation (Liang et al.,
2024h; Alman and Song, 2024b).

Beyond approximation-based techniques, there
is a growing line of theoretical work that investi-
gates optimization in large models, with a partic-
ular focus on their fundamental limitations, such
as (Chen et al., 2024b; Liang et al., 2024b,a; Cao,
2024; Chen et al., 2024c; Nguyen et al., 2024; Chen
et al., 2025; Nguyen et al., 2025; Li et al., 2025b).

Application in Image/Video Generation Diffu-
sion models have emerged as a powerful frame-
work for generative tasks in both image and video
domains. Recent works have explored both the
theoretical and practical aspects of these models
(Hu et al., 2024d, 2025f), as well as a variety of
techniques for modeling temporal dynamics and la-
tent representations (Cao et al., 2025c; Sestak et al.,
2025; Cao et al., 2025a,b).

Recent work has also focused on addressing chal-
lenges such as physical plausibility, world knowl-
edge consistency, and text generation (Guo et al.,
2025b; Chen et al., 2026; Guo et al., 2025a; Cao
et al., 2025d; Guo et al., 2025c), which are crucial
for the practical deployment of generative models
in complex scenarios.

B Technical Details About conv
Approximation

In Section B.1, we present the background of
Toeplitz, circulant, and convolution matrices. In
Section B.2, we develop more mathematical tools
for studying the conv approximation. In Sec-
tion B.3, we give the key lemmas we used. In
Section B.4, we use these tools and lemmas to
prove our main theorem for the conv approxima-
tion. In Section B.5, we analyze our case study.

B.1 Properties of Toeplitz, Circulant, and
Convolution Matrices

Remark B.1. The integer i may have different
ranges. We will specify these ranges in later text,
corresponding to different contexts.

The Toeplitz matrix is one such structured matrix
that has constant values along its diagonals. We
define it as follows:
Definition B.2 (Toeplitz matrix). Given a length-
(2n − 1) vector a ∈ R2n−1 (for convenience, we
use ai ∈ R to denote the entry of vector where i ∈
{−(n−1),−(n−2), · · · , 0, · · · , (n−2), (n−1)}),
we can formulate a function Toep : R2n−1 →
Rn×n as follows

Toep(a) =




a0 a−1 a−2 · · · a−(n−1)

a1 a0 a−1 · · · a−(n−2)

a2 a1 a0 · · · a−(n−3)
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0




Furthermore, we define the circulant matrix,
which is a structured matrix where each row vector
is rotated one element to the right relative to the
preceding row vector, which is defined as follows:
Definition B.3 (Circulant matrix). Let a ∈ Rn

denote a length-n vector. We define Circ : Rn →
Rn×n as,

Circ(a) :=




a1 an an−1 · · · a2
a2 a1 an · · · a3
a3 a2 a1 · · · a4
...

...
...

. . .
...

an an−1 an−2 · · · a1



.

Now, we define a binary operation ∗ defined on
Rd:
Definition B.4. Let conv be defined in Defini-
tion 2.5. Given two vectors a and x ∈ Rn, let
a ∗ x ∈ Rn denote the convolution operator be-
tween a and x, i.e., a ∗ x := conv(a)x.
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Finally, we present a basic fact about the
Hadamard product.

Fact B.5. For all a, b ∈ Rn, we have a◦b = b◦a =
diag(a) · b = diag(b) · a.

Below, we explore the properties of conv, Toep,
Resi, and Circ.

Claim B.6. Given a length-(2n − 1) vector a′ ∈
R2n−1 (for convenience, we use a′i ∈ R to denote
the entry of vector where i ∈ {−(n − 1),−(n −
2), · · · , 0, · · · , (n−2), (n−1)}). Let a ∈ Rn, such
that a = [a′0, a

′
1, . . . , a

′
n−1]

⊤. Let M be defined in
Definition 2.2, Toep be defined in Definition B.2,
and conv be defined in Definition 2.5. We have

conv(a) = Toep(

[
0n−1

a

]
) = M ◦ Toep(a′).

Proof. The proof directly follows the Defini-
tion 2.2, Definition B.2, and Definition 2.5.

Fact B.7 (Folklore). Let Toep be defined in
Definition B.2, and Circ be defined in Def-
inition B.3. Given a length-(2n − 1) vec-
tor a ∈ R2n−1 (for convenience, we use
ai ∈ R to denote the entry of vector where
i ∈ {−(n − 1),−(n − 2), · · · , 0, · · · , (n −
2), (n − 1)}). Let a′ ∈ R2n, such that a′ =
[a0, a1, . . . , an−1, 0, a−(n−1), . . . , a−1]

⊤. For any
x ∈ Rn, we have

Circ(a′)
[
x
0n

]
=

[
Toep(a) Resi(a)
Resi(a) Toep(a)

]
·
[
x
0n

]

=

[
Toep(a)x
Resi(a)x

]
,

where the residual matrix Resi(a) is defined as



0 an−1 an−2 · · · a2 a1
a−(n−1) 0 an−1 · · · a3 a2
a−(n−2) a−(n−1) 0 · · · a4 a3

...
...

...
. . .

...
...

a−2 a−3 a−4 · · · 0 an−1

a−1 a−2 a−3 · · · a−(n−1) 0



.

Circ(a) can be expressed in the form of
F−1diag(Fa)F , which is as follows:

Fact B.8 (Folklore). Let a ∈ Rn denote a length-
n vector. Let Circ be defined in Definition B.3.
Let F ∈ Cn×n denote the discrete Fourier trans-
form matrix. Using the property of discrete Fourier
transform, we have

Circ(a) = F−1diag(Fa)F.

Claim B.9 (Restatement of Claim 2.6). We have
conv(ej) ∈ Rn×n is a j-rank matrix, where the
j-th entry of ej ∈ Rn is 1 and all other entries are
0.

Proof. This follows from Definition 2.5.

Claim B.10 (Restatement of Claim 2.7). Let conv
be defined in Definition 2.5. For any a, x ∈ Rn,
conv(a)x can be computed in O(n log n) via FFT.

Proof of Claim 2.7. For any a ∈ Rn, we denote

a′ =
[
0n−1

a

]
∈ R2n−1 and a′′ =

[
a
0n

]
∈ R2n.

We have
[
conv(a)x
Resi(a′)x

]
=

[
Toep(a′)x
Resi(a′)x

]

= Circ(a′′)
[
x
0n

]

= F−1diag(Fa′′)F
[
x
0n

]
,

where the first step follows Claim B.6, i.e.,

conv(a) = Toep(

[
0n−1

a

]
), the second step fol-

lows Fact B.7 and the last step follows Fact B.8.
We finish the proof by O(n log n) for FFT.

Claim B.11 (Restatement of Claim 2.8). conv is
additive, i.e., for any a, b, x ∈ Rn we have

conv(a)x+ conv(b)x = conv(a+ b)x.

Proof. This follows from Definition 2.5 and the
fact that the matrix product operation is additive.

Claim B.12 (Restatement of Claim 2.10). Let m ∈
[n]. For any a, x ∈ Rn, conv(a,m)x, (defined in
Definition 2.9) can be computed in O(n log n) via
FFT.

Proof. This follows from considering the calcula-
tion between the truncated matrix of conv(a,m)
and the truncated vector of x with Claim 2.7.

B.2 Mathematical Tools Development for
k-conv Basis

Definition B.13. Let M ∈ Rn×n be defined in
Definition 2.2 and Q,K ∈ Rn×d be defined in
Definition 2.1. We define H̃ := M ◦ (QK⊤) ∈
Rn×n.
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When a lower triangular matrix H is expressed
as the sum of k convolution matrices, it is useful to
understand the structure of the entries in H . The
following claim provides an explicit formula for
the entries of H in terms of the basis vectors of the
convolution matrices.

Claim B.14. Given b1, . . . , bk ∈ Rn and k inte-
gers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 >
· · · > mk ≥ 1, let H =

∑
i∈[k] conv(bi,mi).

Then, for any i ≥ j ∈ [n], let ℓ satisfy mℓ ≥
n− j + 1 and mℓ+1 < n− j + 1, and we have

Hi,j =
∑

l∈[ℓ]
(bl)i−j+1.

For any i < j ∈ [n], we have Hi,j = 0.

Proof. This is trivial by following H =∑
i∈[k] conv(bi,mi), the Definition 2.5 and Defi-

nition 2.9.

We present the property of H̃ = M ◦ (QK⊤) as
follows:

Lemma B.15. Given M ∈ Rn×n, Q,K ∈ Rn×d,
and H̃ = M ◦ (QK⊤), we have for any j ∈ [n],
there exists H̃j ∈ Rn, i.e., the j-th column of H̃ ,
such that

H̃j = Mj ◦ (Q(K⊤)j)

with time complexity O(nd), where (K⊤)j denotes
the j-th row of K.

Proof. We can check the correctness as follows:

(H̃)j = (M ◦ (QK⊤))j

=Mj ◦ (QK⊤)j

=Mj ◦ (Q(K⊤)j),

where the first step follows from the definition of
H̃ (see Definition B.13), the second step follows
from simple algebra, the third step follows from
the fact that the j-th column of K⊤ is equal to the
j-th row of K.

Now, we can check the running time.

• As Q ∈ Rn×d and (K⊤)j ∈ Rd, we need
O(nd) time to get Q(K⊤)j .

• For any vector v, we need O(n) time to get
Mj ◦ v.

Thus, in total, the time complexity is O(nd).

The key idea behind our approach is to express
the matrix exponential of a matrix with k-conv ba-
sis as the sum of k sub-convolution matrices involv-
ing the basis vectors. This allows us to efficiently
approximate the exponential of the attention matrix.
We show how to compute the new basis vectors of
the convolution matrices from the original basis
vectors below.

Lemma B.16. Let M be a mask defined in Def-
inition 2.2. Given b1, . . . , bk ∈ Rn and k inte-
gers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 >
· · · > mk ≥ 1, we let H =

∑
r∈[k] conv(br,mr).

We denote b̃1 = exp(b1). Then, we can get
b̃2, b̃3, . . . b̃k ∈ Rn such that for any r ∈
{2, 3, · · · , k}

b̃r = exp(
∑

l∈[r]
bl)− exp(

∑

l∈[r−1]

bl)

and M ◦exp(H) =
∑

r∈[k] conv(̃br,mr) with time
complexity O(nk).

Proof. Correctness.
By Claim B.14, for any i ≥ j ∈ [n], let ℓ satisfy

mℓ ≥ n − j + 1 and mℓ+1 < n − j + 1, and we
have

Hi,j =
∑

l∈[ℓ]
(bl)i−j+1. (1)

As exp is an element-wise function, when i ≥ j
we have (M ◦ exp(H))i,j = exp(H)i,j and

exp(H)i,j

= exp(
∑

l∈[ℓ]
(bl)i−j+1)

=

ℓ∑

r=1

exp(
∑

l∈[r]
(bl)i−j+1)− exp(

∑

l∈[r−1]

(bl)i−j+1)

=
ℓ∑

r=1

(̃br)i−j+1

=

ℓ∑

r=1

conv(̃br,mr)i,j

=
k∑

r=1

conv(̃br,mr)i,j ,

where the first step follows from Eq. (1), the sec-
ond step follows from simple algebra, the third
step follows from the lemma statement, the fourth
step follows from Definition 2.9, and the last step
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follows from Definition 2.9 (when k < r ≤ ℓ,
conv(̃br,mr)i,j = 0).

When i < j we have (M ◦ exp(H))i,j = 0 =∑k
r=1 conv(̃br,mr)i,j .
Thus, we have M ◦ exp(H) =∑
r∈[k] conv(̃br,mr).
Running time.
We need O(nk) time to get

∑
l∈[r] bl for any

r ∈ [k]. Then, we need O(1) time for element-wise
exp and minus operation for O(nk) terms. Thus,
in total, we need O(nk) time complexity.

Lemma B.17. Let G ∈ Rn×n. Let M ∈
{0, 1}n×n. Let H = M ◦G and A = M ◦ exp(G).
Then, we have

A = M ◦ exp(H).

Proof. We have

A =M ◦ exp(G)

=M ◦ exp(M ◦G)

=M ◦ exp(H),

where the first step follows the lemma statement,
the second step follows the property of Hadamard
product and the last step follows the lemma state-
ment.

Theorem B.18 (Restatement of Theorem 3.3). For
any lower triangular matrix G ̸= 0n×n ∈ Rn×n,
there exists k, T ∈ [n] and δ, ϵ ≥ 0 such that G is a
ϵ-close (T, δ)-non-degenerate k-conv basis matrix.

Proof. By Lemma 2.12, we have G is a matrix with
k-conv basis for some k ∈ [n]. We finish the proof
by setting T = 1 and δ = ϵ = 0.

B.3 Lemma Used in Main Theorem Proof
In this section, we present the formal proof for our
conv approximation main result. In Algorithm 2,
we recover the k-conv basis vectors b′1, . . . , b

′
k ∈

Rn through an iterative process. We show that after
each iteration i, the algorithm maintains certain
invariants related to the recovered basis vectors
b′1, . . . , b

′
i ∈ Rn, the index s, and the error com-

pared to the true basis vectors b1, . . . , bi ∈ Rn.
These properties allow us to prove the correctness
of the overall algorithm. The following lemma
formalizes these invariants:

Lemma B.19. Let H̃ be a ϵ-close (T, δ)-non-
degenerate k-conv basis matrix as defined in Def-
inition 3.2, where δ, ϵ ≥ 0 and k, T ∈ [n]. Let

Q,K, V ∈ Rn×d. In Algorithm 2, we can get
b′1, . . . , b

′
k ∈ Rn. Then, for any i ∈ [k], after the

i-th loop, we have

• Part 1: v =
∑

r∈[i](b
′
r)1:T and u =

∑
r∈[i] b

′
r

• Part 2: s = n−mi + 1

• Part 3: ∥∑r∈[i](b
′
r)1:T −

∑
r∈[i](br)1:T ∥1 ≤

Tϵ

• Part 4: |∑r∈[i](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for

any l ∈ [n].

Proof. We use the math induction to prove the cor-
rectness.

Let b′1, . . . , b
′
k ∈ Rn and v ∈ RT defined in

Algorithm 2. Let i ∈ {0, . . . , k − 1} be fixed.
Suppose after the i-th loop, we have

• Part 1: v =
∑

r∈[i](b
′
r)1:T and u =

∑
r∈[i] b

′
r

• Part 2: s = n−mi + 1 (Denote s = 0, after
the 0-th loop.)

• Part 3: ∥∑r∈[i](b
′
r)1:T −

∑
r∈[i](br)1:T ∥1 ≤

Tϵ

• Part 4: |∑r∈[i](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for

any l ∈ [n]

Now we consider after the i+ 1-th loop.
Proof of Part 1.
We have v =

∑
r∈[i+1](b

′
r)1:T and u =∑

r∈[i+1] b
′
r by the line 9 and line 10 in Algo-

rithm 2.
Proof of Part 2.
We denote the output of

SEARCH(Q,K, k, T, δ, ϵ,
∑

r∈[i](b
′
r)1:T ,mi, n −

T + 1) as y. Now, we prove y = n−mi+1 + 1.
It is clear that n−mi+1 ≤ y ≤ n−T +1. For

any j ∈ {n −mi + 1, . . . , n − T + 1}, we have
line 7 in Algorithm 3 as

α = ∥(H̃j)j:j+T−1 − v∥1
= ∥(Hj)j:j+T−1 +Rj,j:j+T−1 − v∥1
= ∥(Hj)j:j+T−1 +Rj,j:j+T−1 −

∑

r∈[i]
(b′r)1:T ∥1

= ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1

+ Rj,j:j+T−1 −
∑

r∈[i]
(b′r)1:T ∥1, (2)

where the first step follows from Definition B.13
(H̃ = H + R), the second step follows from Part
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1, and the last step follows from Definition 3.2
(H =

∑
r∈[k] conv(br,mr)).

When j < n−mi+1 + 1, we have Eq. (2) as

∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1

+Rj,j:j+T−1 −
∑

r∈[i]
(b′r)1:T ∥1

≤ ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1

−
∑

r∈[i]
(b′r)1:T ∥1 + ∥Rj,j:j+T−1∥1

≤ ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1

−
∑

r∈[i]
(b′r)1:T ∥1 + Tϵ

= ∥(
∑

r∈[i]
conv(br,mr))j,j:j+T−1

−
∑

r∈[i]
(b′r)1:T ∥1 + Tϵ

= ∥
∑

r∈[i]
(br)1:T −

∑

r∈[i]
(b′r)1:T ∥1 + Tϵ

≤ 2Tϵ

< δ − 2Tϵ,

where the first step follows from the triangle in-
equality, the second step follows from Defini-
tion 3.2 (∥R∥∞ ≤ ϵ), the third step follows from
j < n −mi+1 + 1, the fourth step follows from
Definition 2.9, the fifth step follows from Part
3, and the last step follows from Definition 3.2
(ϵ ≤ δ

5T < δ
4T ).

Similarly, when j ≥ n − mi+1 + 1, we have
Eq. (2) as

∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1 +Rj,j:j+T−1

−
∑

r∈[i]
(b′r)1:T ∥1

≥ ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1

−
∑

r∈[i]
(b′r)1:T ∥1 − ∥Rj,j:j+T−1∥1

≥ ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1 −

∑

r∈[i]
(b′r)1:T ∥1

− Tϵ

= ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1 −

∑

r∈[i]
(br)1:T

+
∑

r∈[i]
(br)1:T −

∑

r∈[i]
(b′r)1:T ∥1 − Tϵ

≥ ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1 −

∑

r∈[i]
(br)1:T ∥1

− ∥
∑

r∈[i]
(br)1:T −

∑

r∈[i]
(b′r)1:T ∥1 − Tϵ

≥ ∥(
∑

r∈[k]
conv(br,mr))j,j:j+T−1 −

∑

r∈[i]
(br)1:T ∥1

− 2Tϵ

≥ δ − 2Tϵ

where the first step follows from the triangle in-
equality, the second step follows from Defini-
tion 3.2 (∥R∥∞ ≤ ϵ), the third step follows from
simple algebra, the fourth step follows from the
triangle inequality, the fifth step follows from Part
3, and the last step follows from Definition 3.1.

Thus, we can claim, when α < δ−2Tϵ, we have
j < n−mi+1+1, and we have j ≥ n−mi+1+1
otherwise. Therefore, by binary search, we can get
s = y = n−mi+1 + 1.

Proof of Part 3.
We have s = n−mi+1 + 1 and u =

∑
r∈[i] b

′
r

at line 8 in Algorithm 2. Thus, we have

∥
∑

r∈[i+1]

(b′r)1:T −
∑

r∈[i+1]

(br)1:T ∥1

= ∥(b′i+1)1:T +
∑

r∈[i]
(b′r)1:T −

∑

r∈[i+1]

(br)1:T ∥1

= ∥H̃s,s:s+T−1 − u1:T +
∑

r∈[i]
(b′r)1:T

−
∑

r∈[i+1]

(br)1:T ∥1

= ∥H̃s,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥Hs,s:s+T−1 +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑

r∈[k]
conv(br,mr)s,s:s+T−1 +Rs,s:s+T−1

−
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑

r∈[i+1]

conv(br,mr)s,s:s+T−1 +Rs,s:s+T−1

−
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑

r∈[i+1]

(br)1:T +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1
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= ∥Rs,s:s+T−1∥1
≤ Tϵ,

where the first step follows from simple algebra, the
second step follows from Algorithm 2 (line 8), the
third step follows from u =

∑
r∈[i] b

′
r, the fourth

step follows from Definition B.13 (H̃ = H +R),
the fifth step follows from Definition 3.2 (H =∑

r∈[k] conv(br,mr)), the sixth step follows from
s = n−mi+1 + 1, the seventh step follows from
Definition 2.9, the eighth step follows from sim-
ple algebra, and the last step follows from Defini-
tion 3.2 (∥R∥∞ ≤ ϵ).

Proof of Part 4.
We can get |∑r∈[i+1](b

′
r)l −

∑
r∈[i](br)l| ≤ ϵ

for any l ∈ [n] similarly as Proof of Part 3.
We can check the initial conditions hold. Thus,

we finish the whole proof by math induction.

Building upon Lemma B.19, we now analyze
the overall error of our approach for approximating
the attention computation. Recall that our goal is to
efficiently approximate the matrix Y = D−1AV ,
where A = M ◦ exp(QK⊤) and D = diag(A1n).
We will show that by using the approximate basis
vectors recovered by Algorithm 2, we can construct
matrices Ã and D̃ such that the approximation er-
ror ∥Y − D̃−1ÃV ∥∞ is bounded. The following
lemma provides this error analysis:
Lemma B.20 (Error analysis). Let H̃ be a ϵ-
close (T, δ)-non-degenerate k-conv basis matrix
as defined in Definition 3.2, where δ, ϵ ≥ 0 and
k, T ∈ [n]. Let Q,K, V ∈ Rn×d. Recall A = M ◦
exp(QK⊤) and D = diag(A1n) defined in Defini-
tion 2.3. By Algorithm 2, we can get k-conv basis
b̃1, . . . , b̃k ∈ Rn and k integers m1,m2, . . . ,mk

satisfying n ≥ m1 > m2 > · · · > mk ≥ T ,
such that Ã :=

∑
r∈[k] conv(̃br,mr) and D̃ :=

diag(Ã1n) satisfy

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

with time complexity O(knd log(n)).

Proof. Correctness.
By Lemma B.19 Part 4, we can get b′1, . . . , b

′
k ∈

Rn, such that, for any i ∈ [k] and l ∈ [n], we have

|
∑

r∈[i]
(b′r)l −

∑

r∈[i]
(br)l| ≤ ϵ. (3)

Furthermore, we denote

H ′ =
∑

r∈[k]
conv(b′r,mr)

Recall H̃ = H +R ∈ Rn×n,

H =
∑

r∈[k]
conv(br,mr),

and ∥R∥∞ ≤ ϵ.
Thus, we have

∥H ′ − H̃∥∞ ≤ ∥H ′ −H∥∞ + ∥H − H̃∥∞
≤ ∥H ′ −H∥∞ + ∥R∥∞
≤ 2ϵ, (4)

where the first step follows from triangle inequality,
the second step follows from H̃ = H +R and the
last step follows from ∥R∥∞ ≤ ϵ and Eq. (3).

By Lemma B.17, we have

A =M ◦ exp(QK⊤)

=M ◦ exp(M ◦QK⊤)

=M ◦ exp(H̃).

We also have

Ã =
∑

r∈[k]
conv(̃br,mr) = M ◦ exp(H ′)

by Lemma B.16 and line 12 in Algorithm 2.
Then, by Lemma F.4, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞.

Running time.
We have k loops in Algorithm 2.
In each loop, we call O(log(n)) times of binary

search function. In each binary search function,
we take O(nd) time for line 6 in Algorithm 3 by
Lemma B.15. Thus, we take O(nd log(n)) in total
for the search (Algorithm 3) in each loop.

In each loop, we take O(nd) time for line 7 in
Algorithm 2 by Lemma B.15.

Thus, we take total O(k(nd + nd log(n))) =
O(knd log(n)) for the whole loop.

We take O(nk) time for the line 12 in Algo-
rithm 2 by Lemma B.16.

In total, we take O(nk + knd log(n)) =
O(knd log(n)) time.

We are now ready to prove our main result for
the conv approximation approach. Theorem B.21
brings together the key components we have de-
veloped: the existence of a k-conv basis for the
attention matrix (Definition 3.2), the ability to effi-
ciently recover an approximate k-conv basis (Algo-
rithm 2 and Lemma B.19), and the bounded approx-
imation error when using this approximate basis
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(Lemma B.20). The theorem statement is a for-
mal version of our main conv result, Theorem 3.4
and Algorithm 1, which was presented in the main
text. It specifies the input properties, the approxi-
mation guarantees, and the time complexity of our
approach.

B.4 Proof of Main Theorem
Theorem B.21 (Main conv results for inference
(Restatement of Theorem 3.4)). Let Q,K, V ∈
Rn×d. Recall A = M ◦exp(QK⊤) ∈ Rn×n, D =
diag(A1n) ∈ Rn×n defined in Definition 2.3. We
denote Y := D−1AV ∈ Rn×d. Let M ◦ (QK⊤)
be a ϵ-close (T, δ)-non-degenerate k-conv basis
matrix as defined in Definition 3.2, where δ, ϵ ≥ 0
and k, T ∈ [n]. By Algorithm 1, we can get Ỹ such
that

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

whose time complexity is O(knd log(n)) given
M,Q,K, V .

Proof of Theorem 3.4. Correctness.
Correctness follows Lemma B.20.
Running time.
By Lemma B.20, we need time O(knd log(n))

time to get k-conv basis b̃1, . . . , b̃k ∈ Rn and k
integers m1,m2, . . . ,mk satisfying n ≥ m1 >
m2 > · · · > mk ≥ T .

Denote Ã :=
∑

r∈[k] conv(̃br,mr). By
Claim 2.10, we take O(knd log(n)) time to get
ÃV via FFT as k-conv basis and d columns in V .
Similarly, by Claim 2.10, we take O(kn log(n))
time for D̃ = diag(Ã1n) via FFT as k-conv ba-
sis. Finally, we take O(nd) time to get D̃−1ÃV as
D̃−1 is a diagonal matrix.

Thus, in total, we take O(knd log(n) +
knd log(n) + kn log(n) + nd) = O(knd log(n))
time complexity.

Corollary B.22 (Exact conv inference, restatement
of Corollary 3.5). Let Q,K, V ∈ Rn×d. Recall
A = M ◦exp(QK⊤) ∈ Rn×n, D = diag(A1n) ∈
Rn×n defined in Definition 2.3. We denote Y :=
D−1AV ∈ Rn×d. For any ϵ ≥ 0 and any Q,K, V ,
there exists hyper-parameter k, T ∈ [n] and δ ≥ 0
such that Algorithm 1 can output Ỹ satisfying

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞.

Furthermore, we can exactly get Y , i.e., ϵ =
0, through Algorithm 1 with time complexity
O(n2d log(n)) in the worst case.

Proof. We set k = n, T = 1, δ = 0 and ϵ = 0 as
the input of Algorithm 1. Then, the proof follows
Theorem 3.3 and Theorem 3.4 .

B.5 Construction for Case Study
In this section, we present the case study. We use
i to denote the

√
−1. For a complex number z =

a + bi ∈ C, where a, b ∈ R, we use |z| to denote
its norm, i.e., |z| =

√
a2 + b2.

Lemma B.23 (Complex vector construction). If
the vectors x1, · · · , xn ∈ Cd satisfy the following
properties,

• ∥xi∥2 = 1 for all i ∈ [n]

• For each i ∈ [n], let xi,1 = eiiθ and ei,l = 0
for all l ̸= 1

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi −
xj∥22 = f(i− j) for some function f .

Proof. We can show that

∥xi − xj∥22 = |eiiθ − eijθ|2

= |eijθ|2 · |ei(i−j)θ − 1|2

= |ei(i−j)θ − 1|2
=: f(i− j),

where the first step follows from the assumption
that for each i ∈ [n] and l ̸= 1, xi,1 = eiiθ and
ei,l = 0, the second step follows from simple al-
gebra, the third step follows from the |eijθ| = 1,
and the last step follows from the definition of the
function f .

Thus, we complete the proof.

Lemma B.24 (Real vector construction). If the vec-
tors x1, · · · , xn ∈ Rd satisfy the following proper-
ties,

• ∥xi∥2 = 1 for all i ∈ [n]

• xi,1 = cos(iθ) and xi,2 = sin(iθ). For all
l /∈ {1, 2}, we have xi,l = 0.

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi −
xj∥22 = f(i− j) for some function f .

Proof. We can show that

∥xi − xj∥22
= (cos(iθ)− cos(jθ))2 + (sin(iθ)− sin(jθ))2

= 2− 2 cos(iθ) cos(jθ)− 2 sin(iθ) sin(jθ)

= 2− 2 cos((i− j)θ),
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where the first step follows from construction condi-
tion, the second step follows from simple algebra,
and the last step follows from the trigonometric
properties.

Thus, we complete the proof.

Lemma B.25 (A general real vector construction).
If the vectors x1, · · · , xn ∈ Rd satisfy the follow-
ing properties,

• ∥xi∥2 = 1 for all i ∈ [n].

• Let H ∈ Rd×d be any orthonormal matrix.

• Let (s1, s2, . . . , sd) be a permutation of
(1, 2, . . . , d).

• Let l = ⌊(d+1)/2⌋, where l is an integer. Let
a1, . . . , al ∈ R.

• Let u1, · · · , un ∈ Rd and xi = Hui for any
i ∈ [n].

• When d is even, ui,sk = ak cos(iθk) and
ui,sk+l

= ak sin(iθk), for all k ∈ [l] and
i ∈ [n], where θ1, . . . , θl ∈ R.

• When d is odd, ui,sk = ak cos(iθk) and
ui,sk+l

= ak sin(iθk), for all k ∈ [l − 1]
and i ∈ [n], where θ1, . . . , θl−1 ∈ R, and
ui,sl = al.

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi −
xj∥22 = f(i− j) for some function f .

Proof. When d is even, we can show that

∥xi − xj∥22
= ∥ui − uj∥22
=

∑

k∈[l]
(ak cos(iθk)− ak cos(jθk))

2

+ (ak sin(iθk)− ak sin(jθk))
2

=
∑

k∈[l]
a2k cos

2(iθk) + a2k cos
2(jθk)

− 2a2k cos(iθk) cos(jθk)

+ a2k sin
2(iθk) + a2k sin

2(jθk)

− 2a2k sin(iθk) sin(jθk)

=
∑

k∈[l]
2a2k − 2a2k cos(iθk) cos(jθk)

− 2a2k sin(iθk) sin(jθk)

=
∑

k∈[l]
2a2k(1− cos(iθk) cos(jθk)

− sin(iθk) sin(jθk))

=
∑

k∈[l]
2a2k(1− cos((i− j)θk)),

where the first step follows H being orthonormal,
which preserves the Euclidean distance between
two vectors, i.e., ∥Hu1 − Hu2∥2 = ∥u1 − u2∥2
for any u1, u2 ∈ Rd, the second step follows from
the construction condition, the third step follows
from (a− b)2 = a2+ b2− 2ab for all a, b ∈ C, the
fourth step follows from sin2(x) + cos2(x) = 1,
the fifth step follows from simple algebra, and the
last step follows from the trigonometric properties.

When d is odd, we can show similar results by
the same way. Thus, we complete the proof.

Lemma B.26. If the following conditions hold

• Let b ∈ Rn denote a vector

• Q ∈ Rn×d and K ∈ Rn×d

• For each i, j ∈ [n],

– (QK⊤)i,j = bi−j+1 if i ≥ j

– (QK⊤)i,j = bi−j+n+1 if i < j

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Circ(a)

Proof. Since a = exp(b), we have

Circ(a) = Circ(exp(b))

= exp(Circ(b)), (5)

where the second step follows from the fact that
exp(·) is applied entry-wisely to a vector.

By the assumption from the Lemma statement
that (QK⊤)i,j = bi−j+1 if i ≥ j and (QK⊤)i,j =
bi−j+n+1 if i < j, we get

QK⊤ =




b1 bn bn−1 · · · b2
b2 b1 bn · · · b3
b3 b2 b1 · · · b4
...

...
...

. . .
...

bn bn−1 bn−2 · · · b1



,

which is exactly equal to Circ(b) (see Defini-
tion B.3).

Therefore, combining with Eq. (5), we have

exp(QK⊤) = Circ(a),

which completes the proof.
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Lemma B.27. If the following conditions hold

• Let b ∈ R2n−1 denote a vector

• Q ∈ Rn×d and K ∈ Rn×d

• For each i, j ∈ [n], (QK⊤)i,j = bi−j .

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Toep(a).

Proof. We can prove similarly as Lemma B.26.

Assumption B.28. We assume that WQW
⊤
K is a

p.s.d. matrix, so that WQW
⊤
K = AA⊤ where A ∈

Rd×d.

Definition B.29. Assume Assumption B.28. We

define Z := XA ∈ Rn×d, where Z =



z⊤1
...
z⊤n


.

Then we have QK⊤ = ZZ⊤.

Lemma B.30. If the following conditions hold,

• Assume Assumption B.28.

• Let b ∈ R2n−1 denote a vector

• Let z1, . . . , zn defined in Definition B.29 sat-
isfy the properties in Lemma B.25.

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Toep(a).

Proof. By Lemma B.25, we have for all i ∈ [n],
for all j ∈ [n],

∥zi − zj∥22 = f(i− j)

for some function f .
We also have

⟨zi, zj⟩ = 1− f(i− j)/2 =: g(i− j)

as ∥zi∥2 = ∥zj∥2 = 1.
Then, we have ∀i, j ∈ [n],

(QK⊤)i,j = (ZZ⊤)i,j
= ⟨zi, zj⟩
= g(i− j),

where the first two steps from Definition B.29, and
the last step from Lemma B.25. We finish the proof
by denote bi−j as g(i− j) in Lemma B.27.

C conv Approximation in Gradient

In Section C.1, we present the basic definitions. In
Section C.2, we combine all these definitions to
form the loss function. In Section C.3, we analyze
the running time. In Section C.4, we present the
proof of the main theorem of conv approximation
in gradient.

C.1 Definitions

In this section, we let x, y ∈ Rd2 denote the vector-
ization of X,Y ∈ Rd×d. To concisely express the
loss function, we define more functions below.

Definition C.1. Let u(x)j0 ∈ R (see Defini-
tion 4.3). For each j0 ∈ [n], we define α(x)j0 :

Rd2 → R

α(x)j0 := ⟨u(x)j0︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩.

Consider α(x) ∈ Rn as a vector whose j0-th entry
equals α(x)j0 .

Definition C.2. Let α(x)j0 ∈ R (see Defini-
tion C.1). Let u(x)j0 ∈ Rn (see Definition 4.3).
For a fixed j0 ∈ [n], we define f(x)j0 : Rd2 → Rn

f(x)j0 := α(x)−1
j0︸ ︷︷ ︸

scalar

u(x)j0︸ ︷︷ ︸
n×1

.

Consider f(x) ∈ Rn×n as a matrix whose j0-th
row equals (f(x)j0)

⊤.

Definition C.3. For a fixed i0 ∈ [d], define h(x)i0 :
Rd2 → Rn:

h(y)i0 := A3︸︷︷︸
n×d

Y∗,i0︸︷︷︸
d×1

,

where Y ∈ Rd×d is the matrix representation of
y ∈ Rd2 . Let h(y) ∈ Rn×d be a matrix where i0
column is h(y)i0 .

C.2 Loss Functions

Now, we start the construction of the loss function.

Definition C.4. For each j0 ∈ [n], we denote
the normalized vector defined by Definition C.2
as f(x)j0 ∈ Rn. Similarly, for each i0 ∈ [d], we
define h(y)i0 as specified in Definition C.3.

Consider every j0 ∈ [n], every i0 ∈ [d]. Let us
consider c(x)j0,i0 : Rd2 × Rd2 → R as follows:

c(x)j0,i0 := ⟨f(x)j0 , h(y)i0⟩ − Ej0,i0 .
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Here Ej0,i0 is the (j0, i0)-th entry of E ∈ Rn×d

with j0 ∈ [n], i0 ∈ [d], similar for c(x)︸︷︷︸
n×d

=

f(x)︸︷︷︸
n×n

h(y)︸︷︷︸
n×d

− E︸︷︷︸
n×d

.

Definition C.5. For every j0 ∈ [n], for every i0 ∈
[d], we define L(x)j0,i0 to be := 0.5c(x)2j0,i0 .

Definition C.6. Consider c(x) ∈ Rn×d which is
described in Definition C.4, and h(y) ∈ Rn×d

which is defined in Definition C.3. We now define
q(x) ∈ Rn×n

q(x) := c(x)︸︷︷︸
n×d

h(y)⊤︸ ︷︷ ︸
d×n

Subsequently, we denote the j0-th row of q(x) ∈
Rn×n as q(x)⊤j0 .

Definition C.7. Let j0 ∈ [n]. We define p(x)j0 :

Rd2 → Rn

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0

= p1(x)j0 + p2(x)j0 ,

where

p1(x)j0 := diag(f(x)j0)q(x)j0

p2(x)j0 := f(x)j0f(x)
⊤
j0q(x)j0 .

We establish p(x) ∈ Rn×n such that p(x)⊤j0 rep-
resents the j0-th row of p(x). Note that p1(x) =
f(x) ◦ q(x).
Lemma C.8. Let M ∈ Rn×n be a casual attention
mask defined in Definition 2.2. Let X ∈ Rn×n, we
have

d(M ◦X)

dXi,j
= M ◦ dX

dXi,j
.

Proof. The proof is trivial by element-wise multi-
plication.

Lemma C.9 (Gradient computation). We have
f(x) ∈ Rn×n, c(x) ∈ Rn×d, h(y) ∈ Rn×d,
q(x) ∈ Rn×n, and p(x) ∈ Rn×n respectively
be defined in Definitions C.2, C.4, C.3, C.6, and
C.7. Consider A1, A2 ∈ Rn×d as given and
A = A1 ⊗A2. We have L(x) be specified in Defi-
nition 4.1, and L(x)j0,i0 is as in Definition C.5.

Then, we can show that dL(x)
dx =

vec(A⊤
1 p(x)A2).

Proof. From the Lemma statement, by Lemma C.8,
we have

dL(x, y)j0,i0
dxi

= c(x, y)j0,i0 · (⟨Mj0,∗ ◦ f(x)j0 ◦ Aj0,i, h(y)i0⟩
− ⟨f(x)j0 , h(y)i0⟩ · ⟨Mj0,∗ ◦ f(x)j0 ,Aj0,i⟩)

= c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩
− ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩), (6)

where the first step is from the chain rule and the
second step follows from Mj0,∗ ◦ f(x)j0 = f(x)j0 .

Note that by Fact B.5, it holds that

⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩
= A⊤

j0,i diag(f(x)j0)h(y)i0

and

⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩
= A⊤

j0,i f(x)j0f(x)
⊤
j0h(y)i0

Therefore, Eq. (6) becomes

dL(x)j0,i0
dxi

= c(x, y)j0,i0 · (A⊤
j0,i diag(f(x)j0)h(y)i0

− A⊤
j0,i f(x)j0f(x)

⊤
j0h(y)i0)

= c(x, y)j0,i0 · A⊤
j0,i(diag(f(x)j0)

− f(x)j0f(x)
⊤
j0)h(y)i0 , (7)

where the last step is by simple algebra.
Let q(x)j0 be defined as in Definition C.6:

q(x)j0 :=

d∑

i0=1

c(x)j0,i0h(y)i0 . (8)

Let p(x)j0 be define as in Definition C.7:

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 .

(9)

It holds that

dL(x)

dx

=

n∑

j0=1

d∑

i0=1

dL(x)j0,i0
dx

=

n∑

j0=1

d∑

i0=1

c(x)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d2×n
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· (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

h(y)i0︸ ︷︷ ︸
n×1

=
n∑

j0=1

A⊤
j0(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)q(x)j0

=

n∑

j0=1

A⊤
j0 p(x)j0

= vec(A⊤
1︸︷︷︸

d×n

p(x)︸︷︷︸
n×n

A2︸︷︷︸
n×d

)

where the 1st step is because of Definition 4.1, the
second step follows from Eq. (7), the third step
follows from Eq. (8), the fourth step follows from
Eq. (9), and the fifth step follows from Fact F.9.

C.3 Running Time
In this section, we analyze the running time of the
conv approximation approach for computing the
training forward pass and backward gradient. We
build upon the key definitions and loss functions
introduced in the previous sections to derive the
running time of the algorithm.

Lemma C.10. If we have

• Define u(x) ∈ Rn×n as outlined in Defini-
tion 4.3.

• Define f(x) ∈ Rn×n as specified in Defini-
tion C.2.

• Define h(y) ∈ Rn×d according to Defini-
tion C.3.

• Suppose u(x) is a k-conv matrix defined in
Definition 2.11 with known basis.

Then, we have

• For any w ∈ Rn, we have f(x) · w ∈ Rn can
be done in O(kn log n) time.

• h(y) can be expiciltiy computed in
Tmat(n, d, d) time.

Proof. For the first part, by definition of u(x) ∈
Rn×n, we know that for any vector w ∈ Rn, we can
compute u(x)w in O(kn log n) time (Claim 2.10).
Thus,

f(x) · w = diag(α(x))−1u(x)w

= diag(u(x)1n)
−1u(x)w,

which can be done in O(kn log n) time by Fact B.5.
The second part is trivial by Definition C.3.

Lemma C.11. If we have

• Define f(x) ∈ Rn×n as specified in Defini-
tion C.2.

• Define h(y) ∈ Rn×d according to Defini-
tion C.3 and h(y) is known.

• Define c(x) ∈ Rn×d as outlined in Defini-
tion C.4.

• Suppose f(x)w takes O(kn log n) time.

Then, we can show that

• c(x) can be expiciltiy computed in
O(knd log n) time.

Proof. Firstly we can compute f(x)h(y), this can
be done in O(knd log n), since we run f(x) times
a vector oracle (Lemma C.10) for d times.

Then do minus E ∈ Rn×d matrix. This takes
O(nd) time. Thus we complete the proof.

Lemma C.12. If the following conditions hold

• Let c(x) ∈ Rn×d be defined in Definition C.4
and c(x) is known.

• Let h(y) ∈ Rn×d be defined in Definition C.3
and h(y) is known.

• Let q(x) ∈ Rn×n be defined in Definition C.6.

Then, we can show that

• q(x)’s rank-d factorization can be explilcitly
computed in O(nd) time.

Proof. Note that q(x) = c(x)h(y)⊤. Since both
c(x) and h(y) are known. Thus, the result is trivial.

Lemma C.13 (Fast computation p1(x) multiply
with a vector ). If the following conditions hold

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n)
time for any w ∈ Rn.

• Let q(x) denote a rank-τ matrix with known
low-rank factorizations.

• Let p1(x) = f(x) ◦ q(x).

Then, we can show

• For any vector w ∈ Rn, p1(x) · w can be
computed in O(τkn log n) time
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Proof. Since q(x) ∈ Rn×n has rank-τ , we assume
that the low-rank factors are a1, a2, · · · , aτ ∈ Rn

and b1, b2, · · · , bτ ∈ Rn. In particular, q(x) can be
written as

q(x) =
τ∑

i=1

aib
⊤
i

Using a standard linear algebra trick, we can
show that

f(x) ◦ q(x) = (f(x)) ◦ (
τ∑

i=1

aib
⊤
i )

=
τ∑

i=1

(f(x)) ◦ (aib⊤i )

=
τ∑

i=1

diag(ai)f(x) diag(bi)

Note that for each i ∈ [τ ], we can show
that diag(ai)f(x) diag(bi)w can be computed in
O(kn log n) time by Lemma statement. Thus, for
any vector w ∈ Rn, (f(x) ◦ q(x)) · w can be com-
puted in O(τkn log n) time. Therefore, we com-
plete the proof.

Lemma C.14 (Fast computation for r(x)). If the
following conditions hold

• Let r(x)j0 := ⟨f(x)j0 , q(x)j0⟩.

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n)
time for any w ∈ Rn.

• Let q(x) denote a rank-τ matrix with known
low-rank factorizations.

Then, we can show

• r(x) ∈ Rn can be in O(τkn log n) time.

Proof. Since q(x) ∈ Rn×n has rank-τ , we assume
that the low-rank factors are a1, a2, · · · , aτ ∈ Rn

and b1, b2, · · · , bτ ∈ Rn, in particular, q(x) can be
written as

q(x) =
τ∑

i=1

aib
⊤
i

Let q(x) = UaU
⊤
b . It is easy to see that

f(x)q(x)⊤ can be written as f(x)UbU
⊤
a .

We firstly compute f(x)Ub, since Ub has τ
columns, each column will take O(kn log n) time,
so in total it takes O(τkn log n) time.

Then, we know that r(x)j0 =
⟨(f(x)Ub)j0,∗, (Ua)j0,∗⟩ which takes O(τ)
time per j0. There are n different j0, so it takes
O(nτ) time.

Overall it takes O(τkn log n) time.

Lemma C.15 (Fat computation for p2(x)). If the
following conditions hold

• Assume that r(x) ∈ Rn is given.

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n)
time for any w ∈ Rn.

• Let p2(x) = diag(r(x))f(x) (This is obvious
from definition of r(x))

Then, we can show that

• For any w ∈ Rn, p2(x) · w can be computed
O(kn log n) time.

Proof. For any vector w, we firstly compute
f(x)w, then we compute diag(r(x))(f(x)w).

Lemma C.16. If the following conditions hold

• Let A1, A2 ∈ Rn×d are two given matrices.

• Let p1(x), p2(x) ∈ Rn×n are defined in Defi-
nition C.7.

• Suppose p1(x)w takes Tp1 time for any w ∈
Rn.

• Suppose p2(x)w takes Tp2 time for any w ∈
Rn.

Then, we have

• vec(A⊤
1 p(x)A2) can be computed in

O(Tmat(n, d, d) + d(Tp1 + Tp2)) time.

Proof. Firstly, we can compute p1(x)A2, this takes
dTp1 time.

Second, we can compute p2(x)A2, this takes
dTp2 time.

Then, we can compute A⊤
1 (p(x)A2), this takes

Tmat(d, n, d) = O(Tmat(n, d, d)).
Putting it all together we complete the proof.
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C.4 Proof of Main Theorem
In this section, we present the formal proof of our
main theorem regarding the conv approximation
approach for efficiently computing the training for-
ward pass and backward gradient of the attention
mechanism.

Theorem C.17. Suppose u(x) is a k-conv ma-
trix defined in Definition 2.11 with known ba-
sis. Then there is an algorithm that runs in time
O(d2kn log n) time to compute the gradient of at-
tention loss defined in Definition 4.1.

Proof. We need to choose τ = d, thus total running
time is

Tmat(n, d, d) +O(dτkn log n) = O(nd2k log n),

by putting everything together from Lemma C.9,
Lemma C.10, Lemma C.11, Lemma C.12,
Lemma C.13, Lemma C.14, Lemma C.15,
Lemma C.16.

Theorem C.18 (Main conv result for training for-
ward and backward gradient (Restatement of The-
orem 4.4)). If u(x) is a 1/poly(n)-close (T, δ)-
non-degenerate k-conv basis matrix as defined in
Definition 3.2, where δ ≥ 0 and k, T ∈ [n]. Then
there are algorithms that run to compute training
forward in time O(knd log n+ Tmat(n, d, d)) and
backward gradient in time O(d2kn log n) of at-
tention loss (Definition 4.1) approximately up to
1/ poly(n) error under ℓ∞ norm.

Proof of Theorem 4.4. Correctness.
For the forward, we directly get the correctness

by Theorem 3.4. For the backward, we directly run
error propagation analysis which is similar to (Al-
man and Song, 2024a) and proof of Lemma B.20.

Running time.
For the forward, by Theorem 3.4, we di-

rectly get the running time for D(X)−1M ◦
exp(A1XA⊤

2 )A3 being O(knd log n). Then, we
need Tmat(n, d, d) time to involve Y and E.

For the backward, by Lemma B.20, we can
use Algorithm 2 to get k-conv basis b̃1, . . . , b̃k ∈
Rn and k integers m1,m2, . . . ,mk satisfying
n ≥ m1 > m2 > · · · > mk ≥ T in time
O(knd log(n)). Thus, we finish the proof by The-
orem C.17.

D Low Rank Approximation

We can apply our analysis technique to a low-rank
approximation setting in Alman and Song (2023),

Figure 4: A 16 × 16 matrix with, left - row change
by amortized constant mask (Definition D.1); middle -
continuous row mask (Definition D.2); right - distinct 3
rows mask (Definition D.4). Green means 1 and yellow
means 0.

which only works on attention approximation with-
out an attention mask. Equipped with our mask
analysis trick, we can generalize their results with
different kinds of attention masks including the
most popular causal attention mask. We first intro-
duce some practical attention masks.

Definition D.1. Let Bj ∈ Z≥0. We define the
row change by amortized constant mask as W ∈
{0, 1}n×n, where let (W⊤)0 = 0n and ∥(W⊤)j −
(W⊤)j−1∥1 ≤ Bj for any j ∈ [n] and (W⊤)j is
the j-th row of W .

Definition D.2. We define the continuous row mask
as W ∈ {0, 1}n×n, where for each i ∈ [n], we are
given si, ti ∈ [n] such that Wi,j = 1 if si ≤ j ≤ ti
and Wi,j = 0 otherwise.

Definition D.3. We define W ∈ {0, 1}n×n as the
distinct r columns mask satisfying the following
condition. Let S1, · · · , Sr ⊆ [n] denote r disjoint
subsets and ∪j∈[r]Sj = [n]. For any two i, i′ ∈ Sj ,
we have W∗,i = W∗,i′ ∈ Rn, where W∗,i ∈ Rn

denote the i-th column of W ∈ Rn×n.

Definition D.4. We define W ∈ {0, 1}n×n as the
distinct r rows mask satisfying the following con-
dition. Let S1, · · · , Sr ⊆ [n] denote r disjoint
subsets and ∪j∈[r]Sj = [n]. For any two i, i′ ∈ Sj ,
we have Wi,∗ = Wi′,∗ ∈ Rn, where Wi,∗ ∈ Rn

denotes the i-th row of W ∈ Rn×n.

Then, we have the following main results for the
low-rank setting. The proof is in Appendix E.2.

Theorem D.5 (Main low-rank result). Assume the
same condition as Lemma E.2. Let ϵ ∈ (0, 0.1). Let
Q,K, V ∈ Rn×d. Let U1, U2 ∈ Rn×k be defined
in Lemma E.2. Let W ∈ {0, 1}n×n denote a mask
matrix. Let H = exp(QK⊤/d) ∈ Rn×n, A =
W ◦ H ∈ Rn×n and D = diag(A1n) ∈ Rn×n.
We denote Y := D−1AV ∈ Rn×d. Let Ã :=
W ◦U1U

⊤
2 and D̃ := diag(Ã1n). We denote Ỹ :=

D̃−1ÃV ∈ Rn×d. Then, we have ∥Y − Ỹ ∥∞ ≤
4ϵ∥V ∥∞. The time complexity to get Ỹ is
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• O(knd) when W is a causal mask defined in
Definition 2.2.

• O(kd
∑n

j=1Bj) when W is a row change
mask defined in Definition D.1.

• O(knd log(n)) when W is a continuous row
mask defined in Definition D.2.

• O(rnd) when W is a distinct r columns /
rows mask defined in Definition D.3 / Defi-
nition D.4.

Our Theorem D.5 has the same error guaran-
tee as Alman and Song (2023). For the normal
mask, e.g., casual attention mask (Definition 2.2),
Theorem D.5 shares the same time complexity as
theirs.

E Incorporating Weighted Low Rank
Approximation

In Section E.1, we introduce the preliminary for
this section. In Section E.2, we present the proof
of our main result for the low-rank approximation.
In Section E.3, we present the algorithm and its
mathematical properties for causal attention mask.
In Section E.4, we analyze the algorithm and its
mathematical properties for row change by amor-
tized constant mask. In Section E.5, we study the
algorithm and its mathematical properties for con-
tinuous row mask. In Section E.6, we analyze the
property of the mask matrix with r distinct columns
or r distinct rows.

E.1 Preliminary

In this section, we introduce the background of the
weighted low rank approximation.

Definition E.1 (Definition 3.1 in (Alman and Song,
2023)). Consider a positive integer k ≥ 1. We use
ϵ ∈ (0, 0.1) to represent an accuracy parameter.
For H ∈ Rn×n

≥0 , define H̃ ∈ Rn×n
≥0 to be an (ϵ, k)-

approximation of H if

• H̃ can be expressed as the product U1 · U⊤
2

with some U1, U2 ∈ Rn×k, indicating that H̃
has a rank of at most k, and

• |H̃i,j − Hi,j | ≤ ϵ · Hi,j with any arbitrary
(i, j) ∈ [n]× [n].

Now, we present a lemma from (Alman and
Song, 2023).

Lemma E.2 (Lemma 3.4 in (Alman and Song,
2023)). Let Q,K ∈ Rn×d satisfy ∥Q∥∞ ≤ B
and ∥K∥∞ ≤ B respectively for some B > 0 and
H ∈ Rn×n be defined as H := exp(QK⊤/d). We
use ϵ ∈ (0, 0.1) to represent an accuracy parame-
ter.

Then, there exist g > 0 with

g = O(max{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2})

and k > 0 with

k ≤
(
2(g + d)

2g

)

such that: There exists an (ϵ, k)-approximation
(see Definition E.1) of H ∈ Rn×n, namely H̃ ∈
Rn×n. Moreover, U1 and U2 defining H̃ is com-
puted in O(nk) time.

In the following lemma, we prove the validity of
the statement that if there exists an algorithm whose
output is Y ′ = (W ◦ (U1U

⊤
2 ))v in O(t) time, then

there exists an algorithm outputs Y = D−1(W ◦
(U1U

⊤
2 ))v in O(t + n) time. We will combine

everything together and show the soundness of this
statement later in the proof of Theorem E.4.

Lemma E.3. Let W ∈ {0, 1}n×n denote any mask
matrix. Let U1, U2 ∈ Rn×k. Let v ∈ Rn. If there
exists an algorithm whose output promises that

Y ′ = (W ◦ (U1U
⊤
2 ))v,

which takes O(t) time, then, there exists an algo-
rithm promise that

Y = D−1(W ◦ (U1U
⊤
2 ))v

where D := diag((W ◦ (U1U
⊤
2 ))1n) ∈ Rn×n,

which takes O(t+ n) time.

Proof. Correctness.
Suppose there exists an algorithm whose output

is Y ′ satisfying Y ′ = (W ◦ (U1U
⊤
2 ))v and takes

O(t) time. We denote this algorithm as ALG.
Let Y ′ = ALG(U1, U2, v). Let Ỹ =

ALG(U1, U2,1n). Then, Y = diag(Ỹ )−1Y ′.
Running time.
Computing Y ′ and Ỹ takes O(t) time. Comput-

ing Y = diag(Ỹ )−1Y ′ takes O(n) time. There-
fore, it takes O(t+ n) time in total.
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E.2 Proof of Main Results
Now, we present our main theorem.

Theorem E.4 (Main low-rank result (Restatement
of Theorem D.5)). Assume the same condition as
Lemma E.2. Let ϵ ∈ (0, 0.1). Let Q,K, V ∈ Rn×d.
Let U1, U2 ∈ Rn×k be defined in Lemma E.2. Let
W ∈ {0, 1}n×n denote a mask matrix. Let H =
exp(QK⊤/d) ∈ Rn×n, A = W ◦ H ∈ Rn×n

and D = diag(A1n) ∈ Rn×n. We denote Y :=
D−1AV ∈ Rn×d. Let Ã := W ◦U1U

⊤
2 and D̃ :=

diag(Ã1n). We denote Ỹ := D̃−1ÃV ∈ Rn×d.
Then, we have

∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞.

The time complexity to get Ỹ is

• O(knd) when W is a causal mask defined in
Definition 2.2.

• O(kd
∑n

j=1Bj) when W is a row change
mask defined in Definition D.1.

• O(knd log(n)) when W is a continuous row
mask defined in Definition D.2.

• O(rnd) when W is a distinct r columns /
rows mask defined in Definition D.3 / Defi-
nition D.4.

Proof of Theorem D.5. Correctness.
By Lemma E.2, U1U

⊤
2 ∈ Rn×n is an (ϵ, k)-

approximation (Definition E.1) of H ∈ Rn×n.
Thus, we have

|Ãi,j −Ai,j | = |(W ◦ U1U
⊤
2 )i,j − (W ◦H)i,j |

=Wi,j |(U1U
⊤
2 )i,j −Hi,j |

≤Wi,j · ϵ ·Hi,j

= ϵAi,j ,

where the first step follows Ã = W ◦ U1U
⊤
2 and

A = W ◦ H , the second step follows mask is
element-wise operation, the third step follows Defi-
nition E.1, and the last step follows A = W ◦H .

Thus, by Lemma F.6, we get

∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞.

Running time.
By Lemma E.2, the matrices U1 and U2 defining

H̃ can be computed in O(nk) time.
By Lemma E.3, if we can compute Y ′ = (W ◦

(U1U
⊤
2 ))V in O(td) time, we can compute Ỹ in

O(td+ nd) time.

Finally, we finish the proof by following
Lemma E.6 for the causal mask, Lemma E.8
for row change by amortized constant mask,
Lemma E.9 for continuous row mask, and
Lemma E.12 for distinct r columns mask or distinct
r rows mask.

E.3 Causal Attention Mask
In this section, we present the causal attention
mask.

Algorithm 4 Computing (W ◦ (U1U
⊤
2 ))v, where

W ∈ {0, 1}n×n is a causal attention mask, as de-
fined in Definition 2.2

1: procedure CAUSALMASK(U1 ∈ Rn×k, U2 ∈
Rn×k, v ∈ Rn) ▷ Lemma E.6

2: c0 ← 0k
3: for j = 1→ n do
4: bj ← (U⊤

2 )j︸ ︷︷ ︸
k×1

vj︸︷︷︸
scalar

▷ Let (U⊤
2 )j denote

the j-th row of U2 ∈ Rn×k

5: cj ← cj−1︸︷︷︸
k×1

+ bj︸︷︷︸
k×1

6: end for
7: for j = 1→ n do
8: Yj ← ⟨(U⊤

1 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

9: end for
10: return Y ▷ Y ∈ Rn

11: end procedure

Lemma E.5. Let W ∈ {0, 1}n×n be a mask.
Let Sj denote the support set of each row of W ,
for each j ∈ [n], i.e., Sj = {k|Wj,k = 1}.
Let U1, U2 ∈ Rn×k. Let v ∈ Rn. Let Y =
(W ◦ (U1U

⊤
2 ))v. Then, we have

Yj = ⟨(U⊤
1 )j ,

∑

l∈Sj

(U⊤
2 )lvl⟩.

Proof. By simple algebra, we have

Yj = ((W ◦ (U1U
⊤
2 ))v)j

= ⟨(U⊤
1 )j ,

∑

l∈Sj

(U⊤
2 )lvl⟩.

Lemma E.6. Let W ∈ {0, 1}n×n be a causal
attention mask defined in Definition 2.2. Let
U1, U2 ∈ Rn×k. Let v ∈ Rn. Then, there ex-
ists an algorithm (see Algorithm 4) whose output
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promises that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(nk) time.

Proof. Let (U⊤
2 )j denote the j-th row of U2.

Correctness.
Let Sj be the support set defined in Lemma E.5.

Note that for the causal attention mask, we have
Sj = [j] for any j ∈ [n]. Thus, by Lemma E.5, we
have

Yj = ⟨(U⊤
1 )j ,

∑

l∈[j]
(U⊤

2 )lvl⟩

= ⟨(U⊤
1 )j , cj⟩.

Running time.
Computing (U⊤

2 )jvj , for all j ∈ [n] takes O(nk)
time.

Note that by the definition of inner product

⟨(U⊤
1 )j , cj⟩ = (U⊤

1 )⊤j cj .

Therefore, it also takes O(nk) to compute
(U⊤

1 )⊤j cj for all j ∈ [n].
Therefore, it takes O(nk) times in total.

E.4 Row Change by Amortized Constant
Mask

In this section, we analyze the row change by amor-
tized constant mask.

Claim E.7. Let W ∈ {0, 1}n×n be the causal at-
tention mask defined in Definition 2.2. Then we
have W is a row change by amortized constant
mask defined in Definition D.1, where Bj = 1,
∀j ∈ [n].

Proof. The proof directly follows the two Defini-
tions.

Lemma E.8. Let B ∈ Z≥0 and let W ∈ {0, 1}n×n

be a row change by amortized constant mask de-
fined in Definition D.1. Let S0 = ∅. Let Sj be the
support set of each row of W , for each j ∈ [n],
i.e., Sj = {k|Wj,k = 1}. We define Bj :=
|(Sj\Sj−1) ∪ (Sj−1\Sj)|. Let U1, U2 ∈ Rn×k.
Let v ∈ Rn. Then, there exists an algorithm (see
Algorithm 5) whose output promises that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(k
∑n

j=1Bj) time.

Algorithm 5 Computing (W ◦ (U1U
⊤
2 ))v, where

W ∈ {0, 1}n×n is a row change by amortized con-
stant mask, as defined in Definition D.1

1: procedure CONSTANTMASK(U1 ∈
Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma E.8

2: c0 ← 0k, S0 ← ∅
3: for j = 1→ n do
4: Precompute indices set Q+

j ←
Sj\Sj−1 ▷ Let Sj denote the support set of
the j-th row

5: Precompute indices set Q−
j ←

Sj−1\Sj

6: cj ← cj−1

7: for i ∈ Q+
j ∪Q−

j do ▷

|Q+
j ∪Q−

j | = Bj

8: bi ← (U⊤
2 )i︸ ︷︷ ︸

k×1

vi︸︷︷︸
scalar

▷ Let (U⊤
2 )i

denote the i-th row of U2 ∈ Rn×k

9: if i ∈ Q+
j then

10: cj ← cj + bi
11: else if i ∈ Q−

j then
12: cj ← cj − bi
13: end if
14: end for
15: end for
16: for j = 1→ n do
17: Yj ← ⟨(U⊤

1 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

18: end for
19: return Y ▷ Y ∈ Rn

20: end procedure

Proof. Correctness.
By Lemma E.5, we have

Yj = ⟨(U⊤
1 )j ,

∑

l∈Sj

(U⊤
2 )lvl⟩.

We will prove it by induction. It is obvious that
base case Y1 is correct, because S0 = ∅.

For a fixed j, we suppose Yj has the correct
answer. This means cj is correct for that j, i.e.,
cj =

∑
l∈Sj

bl =
∑

l∈Sj
(U⊤

2 )lvl.
Now we use Q+

j+1 and Q−
j+1 to generate cj+1 by

adding terms in Q+
j+1 and deleting terms in Q−

j+1,

cj+1

=
∑

l∈Sj

bl −
∑

l∈Sj\Sj+1

bl +
∑

l∈Sj+1\Sj

bl

=
∑

l∈Sj∩Sj+1

bl +
∑

l∈Sj\Sj+1

bl
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−
∑

l∈Sj\Sj+1

bl +
∑

l∈Sj+1\Sj

bl

=
∑

l∈Sj∩Sj+1

bl +
∑

l∈Sj+1\Sj

bl

=
∑

l∈Sj+1

bl,

where the first step follows Algorithm 5 line 10
and line 12, the second step follows Sj = (Sj ∩
Sj+1) ∪ (Sj \ Sj+1), (Sj ∩ Sj+1) and (Sj \ Sj+1)
are disjoint, the third step follows simple algebra,
and the last step follows the as the second step.

Therefore, we have cj+1 is correct, i.e., cj+1 =∑
l∈Sj+1

bl =
∑

l∈Sj+1
(U⊤

2 )lvl. Thus, Yj+1 is
also correct by Lemma E.5. Finally, we finish prov-
ing the correctness by math induction.

Running time.
Note that there are two for-loops in this algo-

rithm. Inside the inner for-loops, it takes O(k)
time to compute

bi = (U⊤
2 )i︸ ︷︷ ︸

k×1

vi︸︷︷︸
scalar

.

The inner for-loop has |Q+
j ∪ Q−

j | = Bj itera-
tions, and the outer for-loop has n iterations.

Therefore, it takes O(k
∑n

j=1Bj) time in total.

E.5 Continuous Row Mask

In this section, we study the continuous row mask.

Lemma E.9. Let W ∈ {0, 1}n×n denote a con-
tinuous row mask defined in Definition D.2. Let
U1, U2 ∈ Rn×k. Let v ∈ Rn. Then, there exists an
algorithm (see Algorithm 6) whose output promises
that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(nk log n) time.

Proof. The correctness is trivially from the con-
struction of the segment tree.

The running time is dominated by O(nk log n).
This time comes from two parts, where the first is
from building the segment tree by O(nk), and the
second part is from for-loop by O(nk log n).

E.6 Distinct r Columns or Rows

Now, we analyze the mask matrix with r distinct
columns.

Algorithm 6 Computing (W ◦ (U1U
⊤
2 ))v, where

W ∈ {0, 1}n×n is a continuous row mask, as de-
fined in Definition D.2

1: procedure CONTINUOUSMASK(U1 ∈
Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma E.9

2: c0 ← 0k
3: Build segment tree T based on
{(U⊤

2 )ivi}i∈[n]
4: for j = 1→ n do
5: Get at most O(log n) vectors from T

(each one is a continuous summation of 2t en-
tries)

6: Compute cj based on the above vectors
7: end for
8: for j = 1→ n do
9: Yj ← ⟨(U⊤

1 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

10: end for
11: return Y ▷ Y ∈ Rn

12: end procedure

Lemma E.10. Let W be the distinct r columns
mask defined in Definition D.3. Let S1, · · · , Sr ⊆
[n] denote r disjoint subsets and ∪j∈[r]Sj = [n] be
defined in Definition D.3. Let h : [r]→ [n] denote
that h(j) ∈ Sj and h(j) is the smallest index in
Sj .

Then we can show

( W︸︷︷︸
n×n

◦( U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) v︸︷︷︸
n×1

=
r∑

j=1

diag(W∗,h(j))︸ ︷︷ ︸
n×n

U1︸︷︷︸
n×k

(U⊤
2 )∗,Sj︸ ︷︷ ︸

k×|Sj |

vSj︸︷︷︸
|Sj |×1

Proof. We can show that

LHS =
n∑

i=1

(W ◦ (U1U
⊤
2 ))∗,i · vi

=
n∑

i=1

(W∗,i ◦ (U1U
⊤
2 )∗,i)vi

=
n∑

i=1

diag(W∗,i)(U1U
⊤
2 )∗,ivi

=
n∑

i=1

diag(W∗,i)U1(U
⊤
2 )∗,ivi

=
r∑

j=1

diag(W∗,h(j))U1(U
⊤
2 )∗,SjvSj ,

6890



where the first step follows from the left hand side
of the equation in the lemma statement, the second
step follows from the definition of the Hadamard
product, the third step follows from Fact B.5, the
fourth step follows from simple algebra, and the
last step follows from the fact that for any two
i, i′ ∈ Sj , we have W∗,i = W∗,i′ ∈ Rn (see from
the lemma statement).

Now, we analyze the mask matrix with r distinct
rows.

Lemma E.11. Let W be the distinct r rows mask
defined in Definition D.4. Let S1, · · · , Sr ⊆ [n]
denote r disjoint subsets and ∪j∈[r]Sj = [n] be
defined in Definition D.4. Let h : [r]→ [n] denote
that h(j) ∈ Sj and h(j) is the smallest index in
Sj .

Then, we can show that

( W︸︷︷︸
n×n

◦( U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) v︸︷︷︸
n×1

=

r∑

j=1

diag(eSj )︸ ︷︷ ︸
n×n

U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

diag(Wh(j),∗)︸ ︷︷ ︸
n×n

v︸︷︷︸
n×1

Proof. It suffices to show

( W︸︷︷︸
n×n

◦( U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

))

=
r∑

j=1

diag(eSj )︸ ︷︷ ︸
n×n

U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

diag(Wh(j),∗)︸ ︷︷ ︸
n×n

. (10)

We have

(W ◦ (U1U
⊤
2 ))

= ((U1U
⊤
2 ) ◦W )

=
n∑

i=1

(diag(ei)(U1U
⊤
2 ) ◦W )i,∗

=
n∑

i=1

(diag(ei)(U1U
⊤
2 ) ◦Wi,∗)

=
n∑

i=1

(diag(ei)(U1U
⊤
2 ) diag(Wi,∗))

=
n∑

j=1

diag(eSj )U1U
⊤
2 diag(Wh(j),∗),

where the first step follows from the definition of
the Hadamard product, the second step follows
from the property of diag(ei) that for any matrix
A, diag(ei)A preserves the i-th row of A and set

other rows to 0, the third step follows from simple
algebra, the fourth step follows from Fact B.5, and
the last step follows from the lemma statement that
for any two i, i′ ∈ Sj , we have Wi,∗ = Wi′,∗ ∈ Rn.

Therefore, we have shown Eq. (10), which com-
pletes the proof.

Lemma E.12. Let W ∈ {0, 1}n×n be a distinct r
columns mask defined in Definition D.3 or a dis-
tinct r rows mask defined in Definition D.4. Let
U1, U2 ∈ Rn×k. Let v ∈ Rn. Then, there exists an
algorithm whose output promises that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(nkr) time.

Proof. The correctness and running time is directly
follows Lemma E.10 for the column case and
Lemma E.11 for the row case.

F Supporting Lemmas and Technical
Results

In Section F.1, we present the matrix and vector
properties. In Section F.2, we analyze and develop
the tools for error analysis. In Section F.3, we
provide some tools for tensor calculation.

F.1 Matrix and Vector Properties
Lemma F.1 (Restatement of Lemma 2.12). For
any lower triangular matrix H ̸= 0n×n ∈ Rn×n,
there exists a unique k ∈ [n] such that H is a
matrix with k-conv basis.

Proof of Lemma 2.12. It suffices to show that any
arbitrary H ∈ Rn×n \ {0n×n} has at least 1 conv
basis and at most n conv basis.

As H ̸= 0n×n, it must have at least 1 conv basis,
and we proved the first part.

Now, we prove the second part by math induc-
tion.

Let i ∈ {0, . . . , n− 1}. For any lower triangular
matrix G ∈ Rn×n, we have

G =

[
0i×i 0i×(n−i)

0(n−i)×i G(i+1):n,(i+1):n

]
.

Let Gi+1 be the i+1-th column of G ∈ Rn×n. Let
G̃i+1 ∈ Rn satisfy, for any j ∈ [n], (G̃i+1)j =

(Gi+1)i+j when i + j ≤ n and (G̃i+1)j =
(Gi+1)i+j−n otherwise. Then, there exists lower
triangular matrix G′ ∈ R(n−i−1)×(n−i−1) such
that

G− conv(G̃i+1, n− i)
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=




0i×i 0i×1 0i×(n−i−1)

01×i Gi+1,i+1 01×(n−i−1)

0(n−i−1)×i G(i+2):n,(i+1) G(i+2):n,(i+2):n




−




0i×i 0i×1 0i×(n−i−1)

01×i Gi+1,i+1 01×(n−i−1)

0(n−i−1)×i G(i+2):n,(i+1) G′




=




0i×i 0i×1 0i×(n−i−1)

01×i 01×1 01×(n−i−1)

0(n−i−1)×i 0(n−i−1)×1 G(i+2):n,(i+2):n −G′




=

[
0(i+1)×(i+1) 0(i+1)×(n−i−1)

0(n−i−1)×(i+1) G(i+2):n,(i+2):n −G′

]
,

where the first step follows from the fact that G
is a lower triangular matrix and Definition 2.9, the
second step follows from simple algebra, and the
last step follows from simple algebra.

As G and G′ are lower triangular matrices, we
have that G − conv(G̃i+1, n − i) is a lower tri-
angular matrix. Thus, we proved the following
statement.

For any lower triangular matrix G ∈ Rn×n

whose first i columns all are zeros, there exists a ba-
sis conv(b,m) such that G−conv(b,m) ∈ Rn×n is
a lower triangular matrix whose first i+1 columns
all are zeros.

As H ∈ Rn×n is a lower triangular matrix whose
first 0 columns all are zeros, we finish the proof
by math induction, i.e., repeat the above process at
most n times.

Lemma F.2. For any matrix G ∈ Rn×n and vector
v ∈ Rn, we have

∥Gv∥1 ≤ ∥G∥1 · ∥v∥∞.

Proof. We have

∥Gv∥1 =
∑

i∈[n]
|
∑

j∈[n]
Gi,jvj |

≤
∑

i∈[n]

∑

j∈[n]
|Gi,jvj |

≤
∑

i∈[n]

∑

j∈[n]
|Gi,j |∥v∥∞

= ∥G∥1 · ∥v∥∞,

where the first step follows the Definition of vector
ℓ1 norm, the second steps follow |a+b| ≤ |a|+ |b|,
the third steps follow simple algebra, and the last
step follow the Definition of matrix ℓ1 norm.

F.2 Tools for Error Analysis
Lemma F.3. Let ϵ ≥ 0. Let x1, x2 ∈ R. We have

| exp(x1)− exp(x2)|
≤ exp(min{x1, x2})(exp(|x1 − x2|)− 1).

Proof. It is trivial by exp(a+ b) = exp(a) exp(b).

Lemma F.4. Let V ∈ Rn×d. Let H, H̃ ∈ Rn×n,
and satisfy ∥H − H̃∥∞ ≤ ϵ, where ϵ ≥ 0. Let
A = exp(H), Ã = exp(H̃) and D = diag(A1n),
D̃ = diag(Ã1n). Then, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(ϵ)− 1)∥V ∥∞.

Proof. By triangle inequality, we have ∥D−1AV −
D̃−1ÃV ∥∞ = ∥D−1AV − D̃−1AV ∥∞ +
∥D̃−1AV − D̃−1ÃV ∥∞, where the first step fol-
lows simple algebra, and the last step follows trian-
gle inequality.

For the first part, for any i ∈ [n], j ∈ [n], we
have

|(D−1AV − D̃−1AV )i,j |

= |
n∑

l=1

(D−1
i,i − D̃−1

i,i )Ai,lVl,j |

≤
n∑

l=1

|(D−1
i,i − D̃−1

i,i )Ai,l| · ∥V ∥∞

=
n∑

l=1

|Di,i − D̃i,i

Di,iD̃i,i

| ·Ai,l · ∥V ∥∞

=
n∑

l=1

|
n∑

k=1

exp(Hi,k)−
n∑

k=1

exp(H̃i,k)|

· Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤
n∑

l=1

n∑

k=1

| exp(Hi,k)− exp(H̃i,k)|

· Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤ (exp(ϵ)− 1)
n∑

l=1

n∑

k=1

exp(H̃i,k)

· Ai,l

Di,iD̃i,i

· ∥V ∥∞

= (exp(ϵ)− 1)∥V ∥∞,

where the first step follows simple algebra, the
second step follows triangle inequality, the third
step follows simple algebra, the fourth step follows
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D = diag(A1n), D̃ = diag(Ã1n), A = exp(H),
Ã = exp(H̃), the fifth steps follows triangle in-
equality, the sixth step follows Lemma F.3 and
the last step follows D̃i,i =

∑n
k=1 exp(H̃i,k) and

Di,i =
∑n

l=1Ai,l.
For the second part, for any i ∈ [n], j ∈ [n], we

have

|(D̃−1AV − D̃−1ÃV )i,j |

= |
n∑

l=1

D̃−1
i,i (Ai,l − Ãi,l)Vl,j |

≤
n∑

l=1

D̃−1
i,i |Ai,l − Ãi,l| · ∥V ∥∞

=

n∑

l=1

D̃−1
i,i | exp(Hi,l)− exp(H̃i,l)| · ∥V ∥∞

≤ (exp(ϵ)− 1)

n∑

l=1

D̃−1
i,i exp(H̃i,l) · ∥V ∥∞

= (exp(ϵ)− 1)∥V ∥∞,

where the first step follows simple algebra, the sec-
ond step follows triangle inequality, the third step
follows A = exp(H), Ã = exp(H̃), the fourth
step follows Lemma F.3, and the last step follows
D̃i,i =

∑n
l=1 exp(H̃i,l).

Thus, we combine two terms,

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(ϵ)− 1)∥V ∥∞.

Lemma F.5. Let a, b ≥ 0 and ϵ ∈ (0, 0.1). If
|a− b| ≤ ϵa, then |a− b| ≤ 2ϵmin{a, b}.

Proof. It is trivial by considering two cases when
b ≥ a and b < a.

Lemma F.6. Let A, Ã ∈ Rn×n
≥0 , and satisfy

|Ãi,j − Ai,j | ≤ ϵ · Ai,j for all (i, j) ∈ [n]2,
where ϵ ∈ (0, 0.1). Let D = diag(A1n) and
D̃ = diag(Ã1n). Then, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 4ϵ∥V ∥∞.

Proof. By triangle inequality, we have

∥D−1AV − D̃−1ÃV ∥∞
≤ ∥D−1AV − D̃−1AV ∥∞ + ∥D̃−1AV − D̃−1ÃV ∥∞,

where the first step follows simple algebra, and the
last step follows triangle inequality.

For the first part, for any i ∈ [n], j ∈ [n], we
have

|(D−1AV − D̃−1AV )i,j |

= |
n∑

l=1

(D−1
i,i − D̃−1

i,i )Ai,lVl,j |

≤
n∑

l=1

|(D−1
i,i − D̃−1

i,i )Ai,l| · ∥V ∥∞

=

n∑

l=1

|Di,i − D̃i,i

Di,iD̃i,i

| ·Ai,l · ∥V ∥∞

=

n∑

l=1

|
n∑

k=1

Ai,k −
n∑

k=1

Ãi,k| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤
n∑

l=1

n∑

k=1

|Ai,k − Ãi,k| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤ 2ϵ

n∑

l=1

n∑

k=1

Ãi,k ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

= 2ϵ∥V ∥∞,

where the first step follows simple algebra, the
second step follows triangle inequality, the third
step follows simple algebra, the fourth step fol-
lows D = diag(A1n), D̃ = diag(Ã1n), the fifth
step follows triangle inequality, the sixth step fol-
lows Lemma F.5 and the last step follows D̃i,i =∑n

k=1 Ãi,k and Di,i =
∑n

l=1Ai,l.
For the second part, for any i ∈ [n], j ∈ [n], we

have

|(D̃−1AV − D̃−1ÃV )i,j |

= |
n∑

l=1

D̃−1
i,i (Ai,l − Ãi,l)Vl,j |

≤
n∑

l=1

D̃−1
i,i |Ai,l − Ãi,l| · ∥V ∥∞

≤ 2ϵ

n∑

l=1

D̃−1
i,i Ãi,l · ∥V ∥∞

= 2ϵ∥V ∥∞,

where the first step follows simple algebra, the
second step follows triangle inequality, the third
step follows Lemma F.5, and the last step follows
D̃i,i =

∑n
l=1 Ãi,l.

Thus, we combine two terms,

∥D−1AV − D̃−1ÃV ∥∞ ≤ 4ϵ∥V ∥∞.
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F.3 Tensor Tools for Gradient Computation
Fact F.7 (Fact A.3 on page 15 of (Li et al., 2024c),
also see (Bürgisser et al., 2013; Bläser, 2013) for
more detail). We can show that

Tmat(a, b, c) = O(Tmat(a, c, b))

= O(Tmat(b, a, c))

= O(Tmat(b, c, a))

= O(Tmat(c, a, b))

= O(Tmat(c, b, a)).

Fact F.8. Let a ∈ Rn, b ∈ Rd. We have

vec(ab⊤) = a⊗ b

Proof. We can show

vec(ab⊤) = vec(




a1b
⊤

a2b
⊤

. . .
anb

⊤


)

= [a1b
⊤, a2b⊤, . . . , anb⊤]⊤

= a⊗ b

where the first step follows from the definition of
outer product, the second step follows from the defi-
nition of vectorization operator vec(·) which stacks
rows of a matrix into a column vector, and the last
step follows from the definition of the Kronecker
product.

Fact F.9 (Tensor-trick on page 3 of (Gao et al.,
2023a), also see (Diao et al., 2018) for more detail).
Given matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 and
X ∈ Rd1×d2 , the well-known tensor-trick suggests
that vec(A1XA⊤

2 ) = (A1⊗A2) vec(X) ∈ Rn1n2 .

Proof. We can show

vec(A1XA⊤
2 ) =

d1∑

i=1

d2∑

j=1

Xi,j vec(A1,∗,i(A2,∗,j)⊤)

=

d1∑

i=1

d2∑

j=1

Xi,j(A1,∗,i︸ ︷︷ ︸
n1×1

⊗A2,∗,j︸ ︷︷ ︸
n2×1

)

=

d1∑

i=1

(A1,∗,i︸ ︷︷ ︸
n1×1

⊗ A2︸︷︷︸
n2×d2

)Xi,∗︸︷︷︸
d2×1

= (A1 ⊗A2) vec(X)

where the first step follows from that matrix can
be written as a summation of vectors, the second

step follows from Fact F.8, the third step follows
from that matrix can be written as a summation of
vectors, and the last step follows from the definition
of vectorization operator vec(·).

G Potential Risks

This work introduces a theoretical and algorithmic
framework for accelerating attention computation
in Transformer models. By proposing a novel con-
volutional basis and leveraging efficient FFT-based
algorithms, we offer new insights into the struc-
ture of attention while achieving faster computation
with formal guarantees on runtime and approxima-
tion error.

As our study is centered on algorithmic and the-
oretical advancements, supported by controlled ex-
perimental validation, we do not anticipate any
direct negative societal impacts.
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