
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 6830–6840
November 4-9, 2025 ©2025 Association for Computational Linguistics

ReMamba: Equip Mamba with Effective Long-Sequence Modeling

Danlong Yuan1,2, Jiahao Liu4, Bei Li4, Huishuai Zhang1,3*,
Jingang Wang4, Xunliang Cai4 Dongyan Zhao1,2,3*

1Wangxuan Institute of Computer Technology, Peking University,
2Center for Data Science, AAIS, Peking University,

3State Key Laboratory of General Artificial Intelligence,
4Meituan

Code: https://github.com/lblankl/ReMamba

Abstract

While the Mamba architecture demonstrates
superior inference efficiency and competitive
performance on short-context natural language
processing (NLP) tasks, empirical evidence
suggests its capacity to comprehend long con-
texts is limited compared to transformer-based
models. In this study, we investigate the long-
context efficiency issues of the Mamba mod-
els and propose ReMamba, which enhances
Mamba’s ability to comprehend long contexts.
ReMamba incorporates selective compression
and adaptation techniques within a two-stage
re-forward process, incurring minimal addi-
tional inference costs overhead. Experimental
results on the LongBench and L-Eval bench-
marks demonstrate ReMamba’s efficacy, im-
proving over the baselines by 3.2 and 1.6 points,
respectively, and attaining performance almost
on par with same-size transformer models.

1 Introduction

Transformers (Vaswani et al., 2017), which form
the backbone of most LLMs, encounter substan-
tial challenges when dealing with long texts. The
quadratic computational demands and the linear
memory costs of the attention mechanism become
prohibitive as the text length grows. This com-
plexity poses a significant barrier to effectively
modeling long texts, which is crucial for the de-
velopment of LLMs. To address this, Mamba is
proposed as a solution (Gu and Dao, 2024), which
utilizes a recurrent inference mode that ensures lin-
ear time complexity and compress information into
the fixed state size. This results in constant memory
demands during inference. Furthermore, Mamba
eliminates the need for positional encoding, theo-
retically allowing it to handle inputs of any length,
while performing competitively against transform-
ers on downstream tasks. Shortly after, Mamba2
was introduced, simplifying the structured A matrix

*Corresponding author.

Figure 1: A comparison of pretrained Mamba models
and Transformers of equivalent size across speed, short-
context, and long-context performance metrics. Speed
is measured under conditions of 6k input tokens and 1k
output tokens. “short scores” represents the average ac-
curacy across six tasks (HellaSwag, PIQA, Arc-E, Arc-
C, WinoGrande, OpenbookQA) evaluated within the
LM evaluation harness (Gao et al., 2023). “long scores”
corresponds to the average scores on the LongBench-E
benchmark (Bai et al., 2024). Notably, all LongBench
evaluations employ a maximum token length of 2k to
align with the model’s training configuration.

of Mamba to enable faster training and enlarged
state size (Dao and Gu, 2024).

Despite these advantages, some studies reveal
that Mamba models do not perform as well as ex-
pected when dealing with long texts reaching 2k
tokens or more (Waleffe et al., 2024). As depicted
in Figure 1, our experimental findings reveal that
the pretrained Mamba model surpasses pretrained
Transformers of comparable size, such as Llama-3b
(Geng and Liu, 2023), on short-context tasks. Con-
versely, a substantial performance degradation is
observed for Mamba on long-context tasks relative
to Transformers. This performance disparity under-
scores a significant limitation of Mamba models in
practical long-context applications.

This long-context deficency issue of Mamba is
usually attributed to its RNN-like nature. This kind
of architecture exhibits limitations in preserving
crucial information from earlier input sequences as

6830

https://github.com/lblankl/ReMamba

the context length increases due to the fixed-size
memory (Wen et al., 2024; Yang et al., 2024b). Hy-
brid architectures (Lieber et al., 2024; Ren et al.,
2024; Park et al., 2024) have sought to mitigate this
issue by integrating attention mechanisms from
transformers. However, these approaches often
lead to decreased computational efficiency and in-
creased memory consumption.

The key challenge in Mamba is the excessive
degradation of distant information. ReMamba ad-
dresses this by employing an effective compression
strategy that condenses the information and reduces
the context length. Specifically, it selects the top-k
hidden states during the first forward pass and in-
tegrates them into the state space using Mamba’s
selective mechanism in the second pass. ReMamba
introduces minimal computational overhead (one
additional forward pass) and maintains low, con-
stant memory consumption. Experimental results
demonstrate that our approach significantly im-
proves Mamba’s long-context performance, bring-
ing it close to the performance of transformers. Our
ReMamba model achieves a 3.2 improvement over
the baseline on LongBench (Bai et al., 2024) and
1.6 improvement on L-Eval (An et al., 2023). Fur-
thermore, our methodology exhibits transferability
to Mamba2, yielding a 1.6 improvement on Long-
Bench.

2 Related work

2.1 Mamba

The state space model chooses the time-invariant
Â (state transition matrix) and B̂ (input coefficient
matrix) thus lacking expressiveness and flexibility.
Mamba (Gu and Dao, 2024) proposes to make Â
and B̂ dynamically depend on inputs.

Recall that in one Mamba layer l , SSM states S
are transformed as follows:

∆l
t−1 = Softplus

(
Proj1(h

l−1
t−1)

)
, (1a)

Bl
t−1 = Proj2

(
hl−1
t−1

)
, (1b)

Âl, B̂l
t−1 = discretize

(
Al, Bl

t−1,∆
l
t−1

)
, (1c)

h′lt−1 = Proj3
(
hl−1
t−1

)
, (1d)

Sl
t = Âl ⊗ Sl

t−1 + B̂l
t−1

(
h′lt−1

)T
. (1e)

Here, hl−1
t−1 ∈ RH represents the output hidden

state of Mamba at layer l − 1 and time step t −

1. The Softplus function is denoted by Softplus,
and Proj1, Proj2, and Proj3 are abbreviations for
multiple space projection operations.

Furthermore, ∆l
t−1 ∈ RH′

is the discrete time
step corresponding to the selective mechanism in
Mamba, where H ′ is the intermediate hidden size.
The continuous and discrete state transformation
matrices at layer l are given by Al, Âl ∈ RH′×N ,
respectively. The continuous and discrete input
coefficient matrices are denoted by Bl

t−1, B̂
l
t−1 ∈

RN×1. The state size is represented by N . The
discretization method for computing Â and B̂ is in-
dicated by “discretize”. The vector h

′l
t−1 ∈ RH′×1

and the SSM state is represented by Sl
t ∈ RH′×N .

The symbol ⊗ denotes element-wise multiplica-
tion, and B̂l

t−1

(
h′lt−1

)T represents matrix multipli-
cation.

2.2 Mamba2

Dao and Gu (2024) theoretically proves the con-
nections between structured state space models and
attention mechanisms. They also simplify struc-
tured matrix Â further into scalar-times-identity
structure and thus develop a new state space duality
(SSD) framework with multi-head patterns similar
to transformers.

2.3 Long Context Mamba and Transformers

Positional interpolation has been widely used as a
technique to extend the context length of transform-
ers (Chen et al., 2023; Peng et al., 2024; Ding et al.,
2024). But they are specialized for transformers.

Mamba has been found to struggle in maintain-
ing performance beyond its pretraining context
length without additional training. LongMamba
(Peiyuan, 2024) made the first successful attempt
to extend Mamba’s context length through a few
hours of long-context fine-tuning. DeciMamba
(Ben-Kish et al., 2024) aimed to address the con-
text extension problem of Mamba in a training-free
manner, proposing a method to progressively re-
duce sequence length across layers by empirically
removing unimportant tokens.

However, our experiments demonstrate that long-
context fine-tuned Mamba still lags behind long-
context fine-tuned transformers of the same size,
despite using the same data. Moreover, Deci-
Mamba2.8b appears to be insufficiently effective
when evaluated on two widely used long-context
benchmarks.

6831

3 Preliminary Study

KV cache compression is widely used in transform-
ers to reduce memory consumption and improve
inference speed. However, prompt compression
often results in performance degradation compared
to the full context lengths generation in transform-
ers. Unlike transformers, Mamba does not employ
a KV cache; instead, it utilizes a fixed-size state
space in each layer to preserve context memory. A
potential issue with Mamba is its tendency to forget
distant information. In our preliminary study, we
hypothesize that the state space update in Mamba
is insufficient for effectively compressing context
information, and that techniques like prompt com-
pression could help relieve this issue.

To explore this, we apply a simple prompt com-
pression method: we replace part of the context
tokens with a few randomly selected hidden states
from the last layer of Mamba, creating a shorter
prompt (referred to as random Mamba). This ap-
proach is similar to that of Ge et al. (2024), which
used soft prompts for information compression. In-
tuitively, this random compression method may
lead to significant information loss and degraded
performance. However, our results show that the
average scores for different context lengths on
LongBench between normal Mamba and random
Mamba are similar when both are trained on the
same long-context dataset. Furthermore, random
Mamba outperforms normal Mamba at certain con-
text lengths, as shown in Figure 3 of 5.4.1. The
random_select (SFT) represents the fine-tuned ran-
dom Mamba, while Mamba (SFT) represents the
fine-tuned vanilla Mamba.

This observation suggests that information loss
in Mamba when handling long contexts is substan-
tial. To relieve this, we propose selective compres-
sion and selective adaptation through leveraging
Mamba’s state space update mechanism.

4 Methodology

ReMamba consists of two forward stages. In the
first stage, three feed-forward networks are em-
ployed to help determine the significance of hid-
den states from Mamba’s final layer. These hid-
den states are selected based on their importance
scores. The second stage integrates these compres-
sion hidden states with the input context, adapting
Mamba’s selective mechanism to incorporate them
into the state space.

Our proposed method draws some spirits from

techniques employed in KV cache compression
(Mu et al., 2023; Ge et al., 2024; Yang et al., 2024a;
Chevalier et al., 2023; Hwang et al., 2024; Gao
et al., 2024) by leveraging the language model
itself to aggregate information via hidden states
and employing a scoring mechanism to select the
most salient representations. Nevertheless, differ-
ent from transformers, ReMamba’s compression
strategy focuses on two key objectives: 1) com-
pressing and selectively retaining crucial informa-
tion to minimize information degradation, and 2)
reducing the frequency of state space updates to
further alleviate the information loss.

The selection method employed in ReMamba is
a simplified key-query-value-based approach, com-
monly used in Retrieval-Augmented Generation
and summarization tasks (Lewis et al., 2020; Mao
et al., 2022). In this context, we select the most im-
portant hidden states from the last layer of Mamba
to mitigate information loss during the compression
process.

4.1 Stage1 : Selective Compression
Selective compression involves selectively com-
pressing the input prompt by leveraging the final
layer hidden states of the Mamba model to decrease
state updates and consolidate information.

Suppose the sequence length is L and the con-
text token embeddings are {ti}Li=1. We define the
relative range to be compressed as range := (s, e),
where e = s + p, with s and e denoting the rel-
ative start and end positions, respectively, and p
representing the relative length to compress. These
values satisfy 0 ≤ s, p, e ≤ 1. The index set of
the context to compress is R := [S,E], where
S = L·s+1 and E = L·(s+p). Consequently, the
length of the prompt to compress is L′ = E−S+1.
For convenience, we use R to represent both the
set of indices and the set of actual tokens within the
context to be compressed. Furthermore, we define
the compression ratio ρ and compress the selected
context R into K := |R| ·ρ hidden representations.

In Figure 2, the compression hyperparameter
settings are: s = 0.2, p = 0.4, range = (0.2, 0.6),
R = [3, 6], ρ = 0.5, K = 2. In our experiments,
we find that s = 0 yields the best results, which
can be attributed to the casual language modeling
nature of Mamba (this will be discussed in more
details in Appendix A.3).

As shown in the Stage 1 of Figure 2, we de-
note the last layer’s output hidden states as {hi}Li=1,
where each hi ∈ RH with H representing the hid-

6832

Figure 2: ReMamba architecture. We just show one layer and leave out the A, B and discrete method here. For
Stage 2, only those value vectors selected need to go through selective adaption. Normal token embeddings just
flow as usual. We select top-K (here is top-2) hidden states in the last layer according to their importance scores
calculated with the last hidden state hL. And we incorporate the scores into the gradient utilizing the selective
mechanism in Mamba.

den size. We then transform the last hidden state hL
into a query hidden state, namely q, through a feed-
forward layer named Query. Additionally, the hid-
den states to be compressed, denoted as {hi}Ei=S ,
are transformed into {ki}Ei=S via a Key layer (this
transformation is not shown in Figure 2). Finally,
the cosine similarity scores, Cos = {cosi}Ei=S , are
computed to serve as importance scores for the hid-
den states {hi}Ei=S . The calculation of q, ki, and
cosi is formulated as follows:

q = Query(hL)

{ki}Ei=S = Key({hi}Ei=S)

cosi =
ki · q

max(∥ki∥2 · ∥q∥2, ϵ)

(2)

where ki represents the transformed hidden state at
position i, and cosi computes the cosine similarity
between q and ki. The constant ϵ prevents division
by zero.

We select the top-K hidden states hj , where j ∈
G, from the hidden states {hi}Ei=S based on their
importance scores, denoted by Cos. The index set
G is defined as:

G = argmax
A⊂{S,S+1,...,E},|A|=K

∑

i∈A
cosi (3)

Note that the original order of these indices is
preserved.

In our model, after selecting the top-K hidden
states hj , we apply a feed-forward layer, V alue,
to project them into the token embedding hidden
space:

{vi}Ki=1 = V ({hj}, j ∈ G) (4)

Their corresponding cosine similarity scores are
{cos′i}Ki=1. We then replace the token embeddings
{ti}Ei=S (R) with {vi}Ki=1. Consequently, the new
input embeddings for Mamba are replaced by:

Tnew = Cat({ti}S−1
i=1 , {vi}Ki=1, {ti}Li=E+1) (5)

= {t′i}L−L′+K
i=1 (6)

where Cat denotes the concatenation operation.
The length of Tnew is L − L′ + K, resulting in a
significantly shorter input sequence for the second
forward pass compared to the first.

4.2 Stage 2: Selective Adaption

One significant challenge in using top-K se-
lection based on importance scores is its non-
differentiability, which impedes the ability to train
such models effectively. Here we propose a frame-
work that integrates importance scores into the se-
lective mechanisms of the Mamba model.

For hidden states (embeddings) that do not re-
quire compression in stage 1, namely {ti}S−1

i=1 and

6833

{ti}Li=E+1, the standard Mamba algorithm is ap-
plied during the second forward pass. For embed-
dings at selected positions, specifically {t′i}S+K−1

i=S

or equivalently {vi}Ki=1, Equation 1a is reformu-
lated as follows:

α = ReLU(cos
′
t−1)

∆l
t−1

′
= Proj1(h

l−1
t−1)

δ = ∆l
t−1

′
· α+Θl

∆l
t−1 = Softplus(δ)

(7)

where Θl ∈ RH′
is a layer-wise trainable offset

parameter controlling scale intensity. ReLU is the
activation function. Intuitively, hidden states with
low importance scores should minimally impact
model computations. Therefore, we approximate
this behavior by setting their corresponding ∆ val-
ues close to zero. Ideally, directly multiplying ∆ by
α would be more precise, but this necessitates mod-
ifications to the selective scan algorithm, leading
us to adopt the simpler approach.

4.3 Training

Following the forward encoding processes, stan-
dard causal language generation is applied using
the Mamba architecture. During training, newly
introduced parameters within the selective com-
pression mechanism are optimized. These parame-
ters, except for Θ which is initialized to all zeros,
are initialized with a subset of the weights from
the first layer’s in_proj matrix. Additionally, for
parameters in Mamba, the dt_proj matrix is fully
trained, while in_proj, out_proj, embeddings, and
lm_head are updated using Low-Rank Adaptation
(LoRA) (Hu et al., 2022). In our best implemen-
tation, to emphasize the significance of specific
information, gradients flowing into the importance
scores are scaled proportionally to these scores.
This approach intuitively prioritizes the training of
more critical representations.

5 Experiments

5.1 Experimental Setups

Our model is designed for long-context question-
answering tasks, necessitating a substantial corpus
of long-context instruction tuning data. To this
end, we leverage the OpenOrca dataset (Mukher-
jee et al., 2023) and LongAlpaca-12k (Chen et al.,
2024). The former comprises a rich collection of
ChatGPT-augmented FLAN data alignments, while

the latter is a long-context alignment dataset. We
initially filter long instruction tuning instances from
OpenOrca and concatenate them with LongAl-
paca. To accommodate device memory constraints,
prompts are truncated to a maximum length of
6,000 tokens. This process yields approximately
200,000 long-context training examples. To aug-
ment training data diversity, the initial 300,000 stan-
dard instances from OpenOrca are incorporated.
This dataset is referred to as the LongOrca dataset.
We finetune the baseline Mamaba 2.8b model and
our ReMamba model on the same dataset. We also
finetune a DeciMamba2.8b (Ben-Kish et al., 2024)
and a Llama-3b (Geng and Liu, 2023) for reference.
DeciMamba aims to address Mamba’s context-
extension issue without requiring additional train-
ing. Although our approach differs slightly in terms
of settings and objectives, we still fine-tune Dec-
iMamba2.8b using the same data. Given the 2k
maximum positional encoding limit of Llama-3b,
we conduct fine-tuning experiments using the sim-
ple linear positional interpolation technique (Chen
et al., 2023) to extend its context length. The data
construction process for Llama-3b is identical to
that of Mamba. Details can be found in A.1. Notice
that Mamba2.8b is the largest model we can obtain.

5.2 Evaluations
We conduct comparative analyses of our model
against baseline Mamba2.8b and DeciMamba2.8b
(both of finetuned and pretrained) on the widely
adopted LongBench benchmark (Bai et al., 2024)
and LEval benchmark (An et al., 2023), which en-
compass a diverse set of challenging real-world
long-context tasks. For consistency, the same
prompt templates and greedy decoding configu-
rations are employed across all models.

To provide a reference point, the performance of
a similarly sized transformer architecture (Llama-
3b) is also included. Both the pretrained and fine-
tuned evaluations of Llama-3b utilize the linear
positional interpolation technique.

5.3 Results
Results on LongBench We choose the English
branch of LongBench because our training set only
contains English. Higher values across all indi-
cators are indicative of better performance. We
compare the performance of the models in detailed
tasks in Table 1 under the max length 6k corre-
sponding to the training setting. Here the hyper-
parameters for ReMamba are: s = 0, p = 0.18

6834

Model 2W
iki

M
QA

Gov
Rep

or
t

Hotp
otQ

A
LCC
M

ult
iN

ew
s

M
ult

iQ
A

Pas
sC

ou
nt

Pas
sR

etr
ie.

Qas
pe

r
Rep

oB
en

ch
SA

M
Su

m
TREC
Triv

iaQ
A

Ave
ra

ge

Llama-3b (Pre) 4.07 10.33 3.93 43.17 6.96 7.74 1.78 7.13 3.49 32.14 9.98 15.0 30.65 13.57
Llama-3b (SFT) 15.69 24.55 19.69 56.17 19.37 29.73 0.33 6.67 19.73 44.47 33.37 48.67 58.41 28.99

DeciMamba (Pre) 3.89 9.36 3.85 25.69 11.62 4.91 0.83 1.19 3.21 13.88 6.79 6.67 17.72 8.43
DeciMamba (SFT) 19.6 13.74 15.32 23.65 10.91 17.88 1.37 4.96 5.72 12.54 10.59 30.33 46.06 16.36
Mamba (Pre) 3.73 8.72 4.03 24.03 11.31 4.95 0.80 1.75 3.67 12.83 6.86 9.00 17.40 8.39
Mamba (SFT) 22.10 19.08 15.90 40.20 19.36 30.28 0.00 4.67 19.04 36.02 28.30 39.33 45.97 24.63
ReMamba (SFT) 21.18 19.67 20.56 48.21 18.86 26.39 3.21 6.83 16.76 40.40 33.65 48.67 57.73 27.86

Table 1: Performance on LongBench-E (English branch). “MultiQA” denotes MultiFieldQA , “PassCount” denotes
PassageCount, “PassRetrie.” denotes PassageRetrieval. Models are evaluated using a maximum length of 6K tokens,
matching their finetuning configurations. Here “(Pre)” means pretrained model. “(SFT)” means finetuned model.

Model Finetuned Tokens CodeU Coursera GSM QuALITY SFictio TOEFL Average

Llama-3b (Pre) % 6k 0.0 24.71 3.0 27.23 32.81 17.47 17.54
Llama-3b (SFT) ! 6k 1.11 19.62 7.0 24.26 57.03 27.14 22.69

DeciMamba (Pre) % 6k 2.22 24.71 0.0 25.25 24.6 16.73 15.59
DeciMamba (SFT) ! 6k 0.0 23.69 0.0 26.86 53.17 22.68 21.07
Mamba (Pre) % 6k 2.22 23.26 0.00 25.74 23.44 17.10 15.29
Mamba (SFT) ! 6k 4.44 26.16 1.00 27.72 50.78 23.05 22.19
ReMamba (SFT) ! 6k 2.22 22.97 3.00 25.74 58.59 30.48 23.83

Table 2: Model performance on closed-ended tasks of L-Eval. “Tokens” denotes the max length. “SFT” denotes
finetuned models. “Pre“ denotes pretrained models.

and ρ = 0.009. We will also show later that our
model’s robustness to various of hyperparameter
combinations. Table 1 shows that our ReMamba
model improves the average scores on LongBench
3.23 compared to the SFT Mamba baseline. Our
model approaches the pretrained and finetuned
transformer baseline. The results for DeciMamba
indicate that it may not be sufficiently effective for
tasks in LongBench or it may be sensitive to the
choosing of hyperparameters.

Results on LEval We compare the performance
on the closed-ended tasks of L-Eval. The higher all
indicators are, the better. A snap of detailed task
scores for the maximum length of 6k is presented
in Table 2. We can witness a 1.64 improvement
on average scores compared to the SFT Mamba
baseline. Here the hyperparameter setting for Re-
Mamba is: s = 0, p = 0.20 and ρ = 0.05. The
results for DeciMamba2.8b also show no signifi-
cant improvements.

5.4 Analyses and Discussions

5.4.1 Ablation Study
To verify the effectiveness of the modules we in-
troduced, we conduct an ablation study by compar-
ing ReMamba against three alternative methods: 1.

Random Selection: which randomly select hidden
states as the compressed information according to
ρ. 2. Fix Selection: given the ρ we select enough
hidden states every k positions. The interval k is
calculated based on the compression ratio. 3. Mul-
tiplicative Selection: This variant just modifies the
selective adaptation process by directly multiplying
importance scores with the selected hidden states,
aligning with the approach proposed by Raposo
et al. (2024). All of those models are trained on the
same data as ReMamba.

We report the averaged scores on LongBench
across various maximum input lengths. As illus-
trated in Figure 3, both the fixed and random selec-
tion methods achieve performance comparable to
the finetuned Mamba baseline. Interestingly, these
methods even outperform Mamba at lengths of 5k
and 6k. This observation confirms our hypothesis
that Mamba models suffer from severe forgetting
issues. Even simple methods like dropping some
information appear beneficial. The performance of
the multiplicative selection method shows some im-
provements across varying input lengths. However,
the substantial performance gap observed with our
selective adaptation module demonstrates its crit-
ical role in the ReMamba model. The selective

6835

Figure 3: Ablation study about average scores on
LongBench varying max length from 2k to 9k.
“Mamba(SFT)” is the finetuned Mamba. “fix_select”
is the Fix Selection. “random_select” is the Random
Selection. “multiplicative_select” is the Multiplicative
Selection.

Figure 4: Average scores on LongBench varying max
length from 2k to 9k. The “Pre” means pretrained model
while “SFT” means finetuned model. The performance
of Llama-3b (SFT) and Llama-3b (Pre) is for reference,
using the max length of 6k.

adaptation module not only mitigates the forget-
ting problem, but also significantly enhances the
model’s ability to handle longer input sequences
effectively.

5.4.2 Varying Length

To complement our main results, which employ a
maximum sequence length of 6k tokens to align
with training settings, we further evaluate the
model performance at varying input lengths rang-
ing from 2k to 9k tokens. This evaluation is con-
ducted using the LongBench and L-Eval bench-
marks. As depicted in Figure 4, our ReMamba con-
sistently outperforms the baseline Mamba model
across all tested context lengths on LongBench.
Notably, the performance gap between our model
and the baseline widens as the context length in-

Figure 5: Average scores on L-Eval varying max length
from 2k to 9k. The performance of Llama-3b (SFT) and
Llama-3b (Pre) is for reference, using the max length of
6k.

Figure 6: Memory consumption comparisons during
inference are conducted with a 6144 input sequence and
a 1024 output sequence, using a batch size of 1. The
experiments are done on an A100 80GB GPU.

creases. Furthermore, our model extends the effi-
cient context length (the length at which greatest
performance is observed) to 6k tokens, compared
to 4k tokens for the finetuned Mamba baseline. In
Figure 5, we observe performance improvements
across all context lengths for our model on L-Eval.

5.4.3 Speed Performance and Memory
Expense

Our model introduces a single additional forward
pass during inference, resulting in small constant
memory consumption. We visualize the memory
consumption during inference with a 6k input se-
quence and a 1k output sequence, using a batch
size of 1 in Figure 6. The device we use is an
A100 80GB GPU. We observe that the encoding
process of Llama consumes a substantial amount
of memory and the KV cache increases gradually
during the decoding process, whereas ReMamba
incurs only a small additional memory cost. After

6836

Model 2W
iki

M
QA

Gov
Rep

or
t

Hotp
otQ

A
LCC
M

ult
iN

ew
s

M
ult

iQ
A

Pas
sC

ou
nt

Pas
sR

etr
ie.

Qas
pe

r
Rep

oB
en

ch
SA

M
Su

m
TREC
Triv

iaQ
A

Ave
ra

ge

Mamba2 (Pre) 2.18 4.76 1.54 23.46 7.71 2.88 0.60 1.47 1.17 14.97 2.07 8.33 10.60 6.29
Mamba2 (SFT) 13.73 19.97 15.05 41.78 19.52 25.20 0.67 5.67 13.44 38.79 33.95 49.67 43.54 24.69
ReMamba2 (SFT) 18.90 19.03 18.09 51.15 17.68 25.82 3.33 5.00 14.84 43.99 23.55 44.00 56.90 26.33

Table 3: The performance comparisons of LongBench-E (English Branch) on Mamba2. Mamba2 (Pre) means
pretrained Mamba2. Mamba2 (SFT) means finetuned Mamba2. ReMamba2 (SFT) means our model. All use the
setting of 6k max length.

Figure 7: Speed (tokens/second) performance compar-
isons. Here 1024_1024 means input 1024 tokens and
output 1024 tokens.

the encoding process, ReMamba’s memory con-
sumption stabilizes at a constant level, which is
moderately higher than Mamba’s, corresponding
to the additional parameters introduced to support
the selection mechanism.

To evaluate the speed performance, we varys the
input sequence length from 1k to 8k tokens while
fixing the output length at 1k tokens. For all the
experiments, we use a batch size of 1 and measure
the speed on an NVIDIA A100 80GB GPU. We
compare the performance of ReMamba, Mamba,
and the vanilla transformer model (Llama-3b), as
illustrated in Figure 7. The speed metric is given in
tokens per second. Our experiments indicate that
ReMamba operates at speeds comparable to the
original baseline, maintaining a significant speed
advantage over traditional transformers.

5.4.4 Robustness varying choices of
hyperparamters

The aforementioned results were obtained using
the hyperparameter settings s = 0, p = 0.18, and
ρ = 0.009, which demonstrates relatively superior
performance. In Figure 8, we also show the stabil-
ity of our model by varying the hyperparameters p
and ρ. For these experiments, the hyperparameter
s is fixed at 0.

Figure 8: Robustness of the ReMamba model with vary-
ing hyperparameters. The row label denotes the relative
ratio of the prompt to be compressed, corresponding to
parameter p. The column label indicates the compres-
sion ratio, corresponding to parameter ρ.

5.4.5 Generalizing to Mamba2
We also evaluated the applicability of our approach
to Mamba2. As shown in Table 3, ReMamba
achieves an average improvement of 1.6 points on
LongBench. Further details are available in Ap-
pendix A.2.

6 Conclusions

This study investigates the long-context efficiency
challenges posed by Mamba models, hypothesiz-
ing that distant information within these models
is subject to substantial degradation. In response,
we introduce ReMamba, a novel approach that
compresses and selectively preserves critical in-
formation during an initial forward pass. This
compressed information is subsequently integrated
into the state space during a second forward pass,
capitalizing on Mamba’s inherent selective mech-
anism. Notably, ReMamba incurs minimal com-
putational overhead while substantially enhancing
Mamba’s long-context performance, thereby offer-
ing a promising avenue for advancing the Mamba
model family.

6837

Limitations

Although ReMamba improves the long-context per-
formance of Mamba, it is unlikely that Mamba
can outperform transformers as the context length
increases, due to its fixed-size state space. Addi-
tionally, ReMamba primarily relieve the loss of
long-context information in Mamba through se-
lective compression. A more promising approach
would be to directly modify the state space update
mechanism.

Acknowledgments

This work is supported in part by the State Key
Laboratory of General Artificial Intelligence.

References
Chenxin An, Shansan Gong, Ming Zhong, Xingjian

Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. 2023. L-eval: Instituting standard-
ized evaluation for long context language models.
Preprint, arXiv:2307.11088.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
Preprint, arXiv:2308.14508.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein,
Nadav Cohen, Amir Globerson, Lior Wolf, and
Raja Giryes. 2024. Decimamba: Exploring the
length extrapolation potential of mamba. Preprint,
arXiv:2406.14528.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
Preprint, arXiv:2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Longlora:
Efficient fine-tuning of long-context large language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 3829–3846. Association for Compu-
tational Linguistics.

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms
through structured state space duality. Preprint,
arXiv:2405.21060.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. 2024. Longrope: Extending LLM
context window beyond 2 million tokens. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Jun Gao, Ziqiang Cao, and Wenjie Li. 2024. Selfcp:
Compressing over-limit prompt via the frozen large
language model itself. Preprint, arXiv:2405.17052.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. 2023.
A framework for few-shot language model evalu-
ation. https://zenodo.org/records/10256836. Ac-
cessed: 2024-May-29.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2024. In-context autoencoder for con-
text compression in a large language model. Preprint,
arXiv:2307.06945.

Xinyang Geng and Hao Liu. 2023. Openllama: An open
reproduction of llama. https://github.com/openlm-
research/open_llama. Accessed: 2024-May-29.

Albert Gu and Tri Dao. 2024. Mamba: Linear-
time sequence modeling with selective state spaces.
Preprint, arXiv:2312.00752.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Dongseong Hwang, Weiran Wang, Zhuoyuan Huo,
Khe Chai Sim, and Pedro Moreno Mengibar. 2024.
Transformerfam: Feedback attention is working
memory. Preprint, arXiv:2404.09173.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen,
Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-
Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman,
Avashalom Manevich, Nir Ratner, Noam Rozen,
Erez Shwartz, Mor Zusman, and Yoav Shoham.
2024. Jamba: A hybrid transformer-mamba language
model. Preprint, arXiv:2403.19887.

6838

https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://openreview.net/forum?id=ONOtpXLqqw
https://openreview.net/forum?id=ONOtpXLqqw
https://arxiv.org/abs/2405.17052
https://arxiv.org/abs/2405.17052
https://arxiv.org/abs/2405.17052
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2404.09173
https://arxiv.org/abs/2404.09173
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://arxiv.org/abs/2403.19887
https://arxiv.org/abs/2403.19887

Ziming Mao, Chen Henry Wu, Ansong Ni, Yusen Zhang,
Rui Zhang, Tao Yu, Budhaditya Deb, Chenguang
Zhu, Ahmed Awadallah, and Dragomir Radev. 2022.
DYLE: Dynamic latent extraction for abstractive
long-input summarization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1687–1698, Dublin, Ireland. Association for Compu-
tational Linguistics.

Jesse Mu, Xiang Li, and Noah Goodman. 2023. Learn-
ing to compress prompts with gist tokens. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 19327–19352. Curran Associates,
Inc.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. Preprint,
arXiv:2306.02707.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung
Lee, Jaewoong Cho, Samet Oymak, Kangwook Lee,
and Dimitris Papailiopoulos. 2024. Can mamba learn
how to learn? a comparative study on in-context
learning tasks. Preprint, arXiv:2402.04248.

Zhang Peiyuan. 2024. Longmamba.
https://github.com/jzhang38/LongMamba. Ac-
cessed: 2024-August-10.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2024. Yarn: Efficient context window
extension of large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. 2024. Mixture-of-depths: Dynamically allocat-
ing compute in transformer-based language models.
Preprint, arXiv:2404.02258.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen
Liang, and Weizhu Chen. 2024. Samba: Simple hy-
brid state space models for efficient unlimited context
language modeling. Preprint, arXiv:2406.07522.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, Garvit Kulshreshtha, Vartika Singh, Jared
Casper, Jan Kautz, Mohammad Shoeybi, and Bryan
Catanzaro. 2024. An empirical study of mamba-
based language models. Preprint, arXiv:2406.07887.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. 2024.
Rnns are not transformers (yet): The key bot-
tleneck on in-context retrieval. arXiv preprint
arXiv:2402.18510.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. Preprint, arXiv:2405.12532.

Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng,
Bohang Zhang, Yunzhen Feng, Qiwei Ye, Di He,
and Liwei Wang. 2024b. Do efficient transform-
ers really save computation? arXiv preprint
arXiv:2402.13934.

A Appendix

A.1 Training Details
During training, the ReMamba hyperparameter s
is fixed at 0. The hyperparameter p is randomly
sampled from the interval [0.1, 0.3], while ρ is
randomly sampled from the interval [0.05, 0.2].

Most of DeciMamba’s experiments are con-
ducted on Mamba130m. The only configura-
tion for DeciMamba2.8 provided in the origi-
nal paper is decimating_layers = 22, decima-
tion_max_p_L_base = 4000, used for language
modelling tasks. Here we change the decima-
tion_max_p_L_base = 6000. For all other hyper-
parameters, we use the default settings: decima-
tion_min_seq_len = 20, decimation_beta = 0.5,
and decimation_type = “max_p“. The linear po-
sitional interpolation configurations for Llama-3B
are: max_position_embeddings = 6144 and factor
= 3. The data construction process for Llama-3b
is identical to that of Mamba. We finetune all the
models for 1 epoch using DeepSpeed Zero Stage 3
on 8 A100-80GB GPUs. Other training details can
be found in the Table 4.

A.2 Mamba2 Details
The hyperparameters here are: s = 0, p = 0.25
and ρ = 0.05. The max length is still 6k. It is
noteworthy that Mamba2 exhibits nearly no perfor-
mance improvement over Mamba on LongBench,
suggesting potential limitations within the Mamba
model series.

A.3 Why compress from the start
Experimental results indicate that setting s = 0 is
the best. However, one might wonder about the
effectiveness of compressing in the middle of the
sequence. We conduct additional analytical studies
to explore the impact of compressing the input
sequence from different starting positions.

6839

https://doi.org/10.18653/v1/2022.acl-long.118
https://doi.org/10.18653/v1/2022.acl-long.118
https://proceedings.neurips.cc/paper_files/paper/2023/file/3d77c6dcc7f143aa2154e7f4d5e22d68-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3d77c6dcc7f143aa2154e7f4d5e22d68-Paper-Conference.pdf
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2402.04248
https://arxiv.org/abs/2402.04248
https://arxiv.org/abs/2402.04248
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532

Model dataset epoch optimizer learning scheduler learning rate warm up steps LoRA rank

Llama-3b (SFT) LongOrca 1 AdamW linear 2e-5 0 32

DeciMamba (SFT) LongOrca 1 AdamW linear 2e-5 0 32
Mamba (SFT) LongOrca 1 AdamW linear 2e-5 0 32
ReMamba (SFT) LongOrca 1 AdamW cosine 2e-5 0 32
Mamba2 (SFT) LongOrca 1 AdamW cosine 2e-5 0 32
ReMamba2 (SFT) LongOrca 1 AdamW cosine 2e-5 0 32

Table 4: Model training details

Model ρ p s model_type average

ReMamba 0.009 0.18 0.00 ReMamba 27.86
middle0.0 0.009 0.18 0.00 middle 25.96
middle0.1 0.009 0.18 0.10 middle 26.45
middle0.2 0.009 0.18 0.20 middle 26.86
middle0.3 0.009 0.18 0.30 middle 26.56
middle0.4 0.009 0.18 0.40 middle 26.43
special 0.009 1.00 1.00 special 15.76

Table 5: Performance of different model variants on
LongBench. Parameters s, p, and ρ represent the rel-
ative start position, relative length to compress, and
compression ratio, respectively. In this context, the “Re-
Mamba” model type constitutes our optimal model. The
“middle” type corresponds to the model variant where
s is non-zero. The “special” model variant compresses
the entire prompt using ρ = 0.009 and subsequently
appends the compressed hidden states to the end of the
original prompt in the second stage.

We train a model utilizing s sampled uniformly
from the interval [0.1, 0.3] during the training pro-
cess. Subsequently, we evaluate its performance
on LongBench under conditions identical to those
of the ReMamba model, employing a maximum
length of 6k tokens, p = 0.18, and ρ = 0.009. We
evaluate the average scores ranging s from 0 to 0.4.
Additionally, we train a special model variant that
compresses the entire prompt based on ρ = 0.009
and appends the compressed hidden states to the
end of the original prompt in the second stage.

Table 5 presents the results of these experiments.
We observe a performance degradation when the
compression is applied in the middle of the se-
quence. The special model variant performs even
worse than the finetuned Mamba baseline.

This degradation can be explained by the dis-
ruption caused to the causal language modeling
nature of the Mamba model. When compressed
information is integrated into the initial position,
the subsequent language modeling process can pro-
ceed without modification, effectively treating the
compressed data as a specialized non-zero initial
state. Conversely, inserting those compressed hid-

den states as tokens within the sequence disrupts
the causal language modeling paradigm, which as-
sumes complete sentences as input. This incon-
gruity hinders the model’s ability to maintain a
coherent state space and can lead to performance
degradation. Among the tested models, the spe-
cial model variant that appends compressed hidden
states to the end of the original prompt exhibits
the most pronounced negative impact due to the
significant disruption of the model’s expected input
structure.

Despite these challenges, the model that com-
presses in the middle still outperforms the fine-
tuned Mamba baseline. This demonstrates that our
method exhibits apparent effectiveness.

6840

