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Abstract

This paper studies the problem of text-
attributed hypergraph self-supervised represen-
tation learning, which aims to generate discrim-
inative representations of hypergraphs without
any annotations for downstream tasks. How-
ever, real-world hypergraphs could contain
incomplete signals, which could deteriorate
the representation learning procedure, espe-
cially under label scarcity. Towards this end,
we introduce a new perspective that lever-
ages large language models to enhance hy-
pergraph self-supervised learning and propose
a novel data-centric approach named Hybrid
Hypergraph Enhancement with LLM-based
Agents (HEAL). The core of our HEAL is
to generate informative nodes and hyperedges
through multi-round interaction with LLM-
based agents. In particular, we first retrieve
similar samples for each node to facilitate the
node expansion agent for different views. To
generate challenging samples, we measure the
gradients for each augmented view and select
the most informative one using an evaluation
agent. From the structural view, we adopt a
topology refinement agent to incorporate new
hyperedges for the recovery of missing struc-
tural signals. The enhanced hypergraphs would
be incorporated into a self-supervised learning
framework for discriminative representations.
Extensive experiments on several datasets vali-
date the effectiveness of our HEAL in compari-
son with extensive baselines.

1 Introduction

In recent years, Large Language Models (LLMs)
have raised a surge of interest in natural language
processing (NLP) (Qin et al., 2024; Tahir et al.,
2024; Vatsal and Dubey, 2024), and have demon-
strated remarkable capabilities in multiple tasks.
Due to extensive pre-training, LLMs could serve as
a powerful tool to capture comprehensive linguistic

T Corresponding authors.

Ton A ToIlc B TDIlc C

- )
ﬂ = *
p2 '
p3 Y2
(a) Graph (b) Hypergraph
Figure 1: An illustration of modeling higher-order

relationships among papers based on topic via text-
attributed graph and hypergraph.

patterns and real-world knowledge. Subseqently,
LLMs have promoted the development of several
domains, such as text generation, information ex-
traction, and semantic understanding, through few-
shot and zero-shot learning. In the relation mining
field, these advantages enable LLMs to excel at
automatically identifying and extracting implicit
relationships between entities from unstructured
texts (Xu et al., 2024; Schilling-Wilhelmi et al.,
2024). Unlike traditional rule-based and machine
learning approaches, LLMs have the capability of
comprehensively combining in-context information
with real-world knowledge to infer latent relation-
ships, significantly enhancing accuracy and robust-
ness. Consequently, researchers widely employ
LLMs for relation mining, facilitating downstream
tasks such as recommender systems and financial
analysis.

Hypergraphs, as an effective data structure, are
ubiquitous across various domains, including so-
cial network analysis, recommender systems, and
bioinformatics (Bretto, 2013). Unlike traditional
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graphs, hypergraphs are characterized by repre-
senting complex higher-order dependencies and
asymmetric relationships among nodes. With the
prevalence of graph neural networks (GNNs) on
graph data processing, hypergraph neural networks
(HyperGNNs) (Feng et al., 2019) have emerged
as an essential focus for hypergraph representation
learning. HyperGNNs could effectively learn node
representations through propagating information
in the topological structure. Especially, in the self-
supervised learning field, hypergraph contrastive
learning (HyperGCL) (Wei et al., 2022) has been
proven to be a powerful framework via construct-
ing contrastive views to maximize the similarity
of homogeneous nodes and minimize the distance
between heterogeneous nodes’ representations.
Despite the remarkable achievements of existing
hypergraph self-supervised representation learning,
they exhibit notable limitations when employed
to process hypergraphs with textual description,
often referred to as Text-Attributed Hypergraphs
(TAHGS) (Bazaga et al., 2024; Nakajima and Uno,
2024), as depicted in Figure 1. Firstly, it mat-
ters to balance the relationship between textual
information and hypergraph topological struc-
ture. Hypergraphs are often applied to model com-
plicated high-order relationships, whereas textual
data typically exhibits sequential or hierarchical
structures. Due to different data structures, simply
utilizing textual information to derive hyperedges
is prone to destroying the original hypergraph struc-
ture, resulting in a counterproductive situation. Sec-
ondly, augmenting nodes’ text properly consti-
tutes another crucial barrier. Although LLMs
excel at text generation, they are prone to hallucina-
tion (Huang et al., 2025), generating plausible yet
nonfactual content. These shortcomings would di-
rectly impact the quality of constructed hyperedges.
Typically, when it comes to excessively large hy-
pergraphs, text processing for each node would
incur overwhelming time consumption and compu-
tational costs. Thirdly, how to construct optimal
hyperedges remains a difficult challenge. Given
the particularly severe hyperedge sparsity problem,
recent works have started to investigate effective
frameworks to tackle it, such as k-HyperEdge (Li
et al., 2024) and CASH (Ko et al., 2025). However,
all of these approaches, without exception, focus
solely on initial embeddings to derive better hy-
peredges. Although they may reasonably perform
well, their effectiveness is inherently deteriorated
by the failure to harness available textual resources.

To address these challenges, in this paper,
we propose HEAL, a novel LLM-based hy-
brid hypergraph enhancement framework for self-
unsupervised representation learning on hyper-
graphs. Unlike existing approaches, such as KGC
with LLMs that complete predefined pairwise rela-
tions, our HEAL framework discovers higher-order
structures in open-world settings. It also goes be-
yond local textual enhancement in LLM-GNNSs by
reconstructing global graph topology in a semantic-
aware manner, enabling both fine-grained node un-
derstanding and holistic structural modeling. To
address the first challenge, we provide LLMs with
connectivity-based signals of the target node to
improve hyperedge prediction. For large hyper-
graphs, we adopt a two-stage sampling strategy:
nodes are first grouped by label, then high-degree
nodes are prioritized. For the second challenge, we
use KNN to retrieve similar texts for the central
node, enriching its textual input with semantically
aligned yet diverse augmentations. To select the
most informative one, we apply a GCN with con-
trastive loss to guide the LLLM via gradient-based
evaluation. To tackle the last challenge, we design a
topology refinement agent that recovers hyperedges
with minimal structural noise. Instead of model-
ing full hyperedge sets, the LLM predicts pairwise
connectivity between the current node and selected
candidates.

Overall, our main contributions are as follows:

@ We introduce HEAL, a novel hybrid enhance-
ment framework for text-attributed hypergraph,
leveraging LL.Ms to advance self-supervised rep-
resentation learning, which bridges two important
areas in NLP and hypergraph learning.

® We propose an effective two-stage approach to
sample nodes from an excessively large hypergraph
to perturb hyperedges at minimal cost.

® We present a pioneering approach to recover
potential hyperedges from optimizing pairwise
edges by jointly investigating textual and structural
spaces.

® We carry out extensive experiments, showing
that HEAL outperforms all baselines, including
ED-HNN, HyperGT, and HyperGCL, with up to
4.87% improvement on ED-HNN.
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Figure 2: High-level pipeline of our proposed HEAL.This pipeline comprises two major processes: text augmen-
tation and edge augmentation. Initially, we employ a BERT-based LLM as a text encoder to provide informative
node texts for augmentation preprocessing. (1) Text Augmentation: For more precise text augmentation with
LLM, we utilize k-nearest neighbors (KNN) to retrieve n similar texts as supplementary knowledge to alleviate
the hallucination issue. For each node, to evaluate n augmented texts generated by LLM, we employ a graph
convolutional network (GCN) to generate n+1 corresponding gradient messages(including one original text and m
augmented ones). (2) Edge Augmentation: In order to refine hyperedges simply yet effectively, we leverage LLM
to judge the connectivity of pairwise edges first, then reconstruct an optimized hypergraph.

2 Related Work

2.1 Large Language Models for Relation
Mining

Recent efforts in refining graph structure have fo-
cused on relation mining (Fu et al., 2025), fol-
lowed by specific downstream tasks such as node
classification and link prediction. For instance,
ConvE (Dettmers et al., 2018), KBGAN (Cai and
Wang, 2018), and ConvTransE (Shang et al., 2018)
utilize the initial embeddings to improve the per-
formance of recovering potential relations. Never-
theless, they did not investigate the very original
data; instead, they proposed novel frameworks to
derive more information from existing embeddings.
Some efforts, such as Graphedit (Guo et al., 2024),
GraphGPT (Tang et al., 2024), and LLMRec (Wei
et al., 2024), have shown that Large Language
Model could alleviate these issues by effectively
aligning textual and structural signals. Inspired
by these findings, we first propose to leverage the
potential relation mining capability of LLM to en-
hance the refinement of hypergraph structure.

2.2 Hypergraph Self-supervised
Representation Learning

In contrast with unsupervised learning and semi-
supervised learning, self-supervised learning is ca-
pable of effectively learn high-quality represen-

tations by automatically generating supervisory
signals from the data itself. With the success of
self-supervised representation learning on graphs,
such as GraphCL (You et al., 2021) and Graph-
MAE (Hou et al., 2022), recent attention has shifted
to apply these ideas on hypergraphs to solve more
complicated real-world problems. For better captur-
ing the higher-order information, ED-HNN (Wang
et al., 2022) combines star expansions of hyper-
graphs with standard message passing neural net-
works. HyperGCL (Wei et al., 2022) proposes a
variational hypergraph auto-encoder architecture
with adversarial attacks for robustness and fairness.
However, these methods struggle to uncover la-
tent interactions among nodes from existing hy-
peredges, which poses inherent limitations of the
quality of hypergraph topology. On the contrary,
our proposed method tackle these issues at minimal
cost yet effectively.

3 The Proposed HEAL

3.1 Framework Overview

The HEAL works, as illustrated in Figure 2,
through multi-round interaction with LLM-based
agents to generate informative nodes and the topo-
logical structure of a hypergraph to enhance self-
supervised representation learning. In order to re-
duce the time complexity of processing excessively
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large hypergraphs, we only investigate the sampled
nodes, which are determined by their classes and
degrees. Given the hallucination, consistency, and
diversity issues of LLM text augmentation, we first
use k-nearest neighbors (KNN) to retrieve the top-
n most similar texts for each original text. These
texts would assist LLM in diversifying the original
text while maintaining core meanings and distin-
guishing features. Due to the open-source nature
and reliability of llama2 (Touvron et al., 2023a), we
adopt llama2-7b as the backbone of our proposed
framework to ensure confidence in its judgment.
After these preparations, the llama serves to aug-
ment the original text by leveraging these similar
texts, generating n augmented versions. Then, we
employ a graph contrastive learning model on both
the original text and the augmented text n, resulting
in corresponding gradients n + 1. Following this,
Llama selects the optimal augmented text based on
both the textual and gradient information and deter-
mines whether pairwise edges should be added or
removed. Finally, each node and its neighbors are
used to form new hyperedges, thereby facilitating
improved hypergraph contrastive learning.

3.2 Retrieval-augmented Node Expansion
Agent for Multiple Views

A text-attributed hypergraph is formally denoted as
H = (V,E,T). In particular, V' represents a non-
empty set of nodes. 1" € I represents text attribute
of nodes, with ¢; corresponding to the text attribute
of v;. F represents a set of hyperedges, which
stand for higher-order relations among v; € V. As
discussed above, previous researches focus solely
on how to uncover latent relations among nodes
through existing embeddings or higher-order in-
teractions. The major issue is neglecting rich text
attributes of nodes. For the purpose of harness-
ing textual resources and attaining optimal text
augmentation, we propose an LLM-based agent,
namely the Retrieval-augmented Node Expansion
Agent, for multiple views of the original text of
each vertex.

The first barrier is how to map texts into a d-
dimensional embedding space via f : T — RP
effectively and discriminatively. Motivated by
BERT (Devlin et al., 2019), we select different
BERT-based LLMs, such as SciBERT (Beltagy
et al., 2019) and BioBERT (Lee et al., 2019),
which have been fine-tuned on specific domains.
Next, in order to ensure consistency and diver-
sity of multiple augmented texts, we leverage the

core idea of retriever-augmented generation (RAG),
which sophisticatedly overcomes the shortcomings
of relying solely on pre-trained knowledge in our
work (Gao et al., 2024). We retrieve the top n simi-
lar texts of nodes (except the processing node itself)
as input for the LLM-based node expansion agent.

LLMinput = p’l"O?’I’Lpt(T, Tsimilar)~ 1)

Subsequently, we would derive n different aug-
mented texts for each vertex.

Taugment = LLM(prompt(T, Tsimilar))‘ (2)

3.3 Gradient-based Evaluation Agent for
Informative Views

Up to this point, we have already discussed how to
augment multiple textual views with an LLM-based
node expansion agent. Now we will investigate
how to select the best one for each vertex to facil-
itate hyperedge recovery. Specifically, we deploy
graph contrastive learning (GCL) to generate gra-
dient signals (Feng et al., 2022). Each original text
and corresponding augmented texts would first be
constructed to a small graph G; = (V;, E;, T;) with
i denoting the i-th node in hypergraph, v;; € V;
denoting the j-th node in G;, E; denoting edges
and ¢;; € T; denoting the text attribute of v;;.
The edges between these entities would be decided
based on the cosine similarity of their embeddings.

Here, we aim to form positive and negative sam-
ple pairs between the original view and each aug-
mented view, with classes determined by adaptive
hyperparameters « and 3. « represents the 90th
percentile of the text similarity, serving as a thresh-
old for sample pairs classification. [ represents
the value of the margin defining the minimum dis-
tance between negative sample pairs. For graph
contrastive learning of (G;, negative contrastive loss
is formulated as follows:

Nncg
Lyeg = Z (max (0, 8 — distance(tj,tm)))Q.

j=1

3
Given the limited input context window of LLM,
we extract four representative statistical metrics,
including mean, variance, max, and min of gradi-
ents. Then we concatenate each augmented text
and associated gradients to facilitate the evaluation
process for the most challenging and informative
one.
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Dataset Nodes Hyperedges Features Classes he Avg. Length
Cora 2,708 1,579 1,433 7 3.03 955.54
PubMed 19,717 7,963 500 3 4.35 1,649.25
Cora-CA 2,708 1,072 1,433 7 4.28 955.54
Zoo 101 43 16 7 39.93 103.54

Table 1: Dataset statistics of text-attributed hypergraphs (TAHGS). h, denotes the average degree of hyperedges,
and Avg. Length represents the average text length of all nodes.

3.4 Topology Refinement Agent for
Hyperedge Recovery

In this work, our goal is to uncover latent hyper-
edges at minimal cost yet effectively. Assuming
there are n nodes in a hypergraph, the number of
possible combinations could be 2™ — 1 (excluding
the empty set). Due to the time consumption and
complexity of iteratively validating each combina-
tion, we ingeniously accomplish this objective by
refining pairwise edges and utilizing retrieval meth-
ods, formally introduced as a topology refinement
agent.

For the purpose of refining pairwise edges
through denoising noisy edges while identifying la-
tent dependencies, we first explore the most cosine-
equivalent non-neighbor nodes as candidates for
edge adding and the most distinct neighbor nodes
as candidates for edge deleting (Fang et al., 2024).
So far, we have shifted the goal of recovering hyper-
edges to refining pairwise edges. Subsequently, we
limit the refining process between each node and se-
lected candidates. On the basis of both candidates
and optimal augmented text attributes, we lever-
age the reasoning capability of LLM to judge the
possibility of edge perturbation. Once refining the
original topological structure of pairwise edges, we
reconstruct hyperedges by gathering all nodes and
connected neighbors. Typically, for those large-
scale hypergraphs, the attention is restricted to
the identified nodes discussed in the framework
overview section. In succession, new hyperedges
would be modified by means of comparing the de-
gree with the average hyperedge degree in the orig-
inal hyperedges. The reason is that hyperedges
with excessive connectivity often contain informa-
tion overlap and data noise, resulting in anomalous
outcomes. Ultimately, adhering to the principle of
preserving the original topological architecture of
the hypergraph, we integrate the newly constructed
edges with the existing ones.

3.5 Summarization

Considering the currently widespread limitation of
data sparsity in hypergraph topological structure,
we innovatively present a pioneering methodology
to enhance hypergraph representation learning by
combining hybrid LLM-based agents. To further
elaborate, the methodology conducted by three dis-
tinct agents consists of two augmentation steps
for text and structure, respectively. The former
procedure utilizes a retrieval-augmented node ex-
pansion agent to yield diverse feature-level views
and a gradient-based evaluation agent to opt for the
most suitable one. The latter process incorporates
the outcomes from prior work to achieve our aim
of optimizing hyperedges with the assistance of a
topology refinement agent. The advanced hyper-
graph would be used to elevate the performance of
hypergraph representation learning.

4 Experiments

4.1 Settings

Datasets. We evaluate our proposed HEAL frame-
work on four publicly available benchmark TAHGs
datasets, including Cora, Pubmed, Cora-CA, and
Zoo, with data statistics depicted in Table 1. Cora
and Pubmed are cocitation networks adapted from
HyperGCN (Yadati et al., 2019). The coauthorship
networks Cora-CA are downloaded from Hyper-
GCN (Yadati et al., 2019). Additionally, we also
validate the effectiveness of our method on the Zoo
dataset from UCI Categorical Machine Learning
Repository (Kelly et al.). When it comes to the prin-
ciple of data splitting, we consciously decide to fol-
low the recommendation from previous works (Wei
et al., 2022). Our efforts focus on how to leverage
textual messages to advance the performance of
hypergraph representation learning. Ultimately, we
report the mean and standard deviation of the test
accuracy averaged over multiple runs.

Baselines. We compare our methodology with
HyperGCL, the state-of-the-art hypergraph repre-
sentation learning framework in the self-supervised
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Category Method Cora PubMed Cora-CA Zoo
Acc F1 Acc F1 Acc F1 Acc F1

HCCF 68.89+1.80 68.81+1.74 84.56+0.34 84.42+0.39 73.22+1.65 72.89+1.74 61.05+14.54 60.86+12.96
DHCN 68.24+1.12 68.19+1.12 84.38+0.38 84.37+0.35 72.74+1.53 72.53+1.25 57.35+18.32 57.38+14.54

Baselines ED-HNN  80.61x1.14 80.50+1.09 89.13+0.48 89.12+0.48 83.63+1.01 83.42+0.93 88.46+4.80 85.17+6.73
HyperGT  75.05+0.88 74.93+0.84 85.00£0.46 84.98+0.46 78.36+1.35 78.44+1.44 93.46+6.80 93.19+9.51
HyperGCL 73.12+1.48 73.03£1.57 85.72+0.38 85.68+0.36 76.21£1.26 76.16+£1.49 66.89+12.44 66.78+13.37
HCCF 69.74+1.75 69.70£1.63 85.70+0.35 85.59+0.38 74.49+1.45 73.76x1.58 63.21+14.77 63.14+13.84
DHCN 69.03+1.32 68.99+1.32 85.56+0.35 85.40+0.35 73.90+1.53 73.61+1.52 58.86+11.83 58.76+12.71

HEAL ED-HNN  80.86+1.46 80.78+1.57 89.81+0.52 89.79+0.51 85.17+1.61 85.10£1.64 90.38+5.51  90.04+5.88
HyperGT  76.62+1.27 76.41£1.32 86.95+0.39 86.95+0.38 77.58+0.78 77.36+£1.02 93.46+6.29 92.61+8.38
HyperGCL 74.32+1.46 74.15£1.04 86.99+0.38 86.82+0.41 77.60+£1.21 77.49+1.34 69.30+11.88 68.92+14.48

Table 2: Performance comparison (in %) across four benchmark graph classification datasets, with standard

deviations calculated over ten runs.

domain. To further test the strong generalizabil-
ity of enhanced datasets, we also measure their
impact on ED-HNN, HyperGT, and the other two
baselines. (1) Hypergraph Contrastive Learning
(HyperGCL) (Wei et al., 2022) focuses on effec-
tively constructing contrastive views for hyper-
graphs through fabricated and generative augmenta-
tions. The fabricated method works by perturbing
edges in an equivalent bipartite graph converted
from hypergraphs. The generative technique in-
volves a variational hypergraph auto-encoder ar-
chitecture to avoid capturing redundant informa-
tion during representation learning. (2) Equivari-
ant Diffusion Hypergraph Neural Network (ED-
HNN) is a hypergraph neural network architecture
designed to efficiently model complex higher-order
relations via equivariant hypergraph diffusion oper-
ators(Wang et al., 2022). It leverages star expansion
and standard message passing to improve scalabil-
ity and expressiveness. (3) HyperGT ingeniously
devises a novel approach, namely HyperGraph
Transformer, to integrate positional encodings from
the incidence matrix and structural regularization
to enhance representation learning(Liu et al., 2024).
(4) Hypergraph contrastive collaborative filtering
(HCCF) (Xia et al., 2022) represents a new self-
supervised recommendation framework leveraging
self-supervised learning to reinforce the represen-
tation quality of recommender systems through
jointly capturing local and global collaborative cor-
relations with cross-view contrastive learning sup-
ported by a hypergraph. (5) DHCN ingeniously
devises a novel approach, namely Dual Channel
Hypergraph Convolutional Networks (Xia et al.,
2021), to comprehensively learn hypergraph topo-
logical structure from both the original hypergraph
and the matching line graph.

Implementation Details. We conduct our main
experiment on 2 NVIDIA GeForce RTX 4090
GPUs, adopting vllm to employ llama2-7b. To
fairly evaluate the performance of new hypergraphs
on baseline models, we adhere to the experiment
environment settings of their regulations, reporting
the mean evaluation results over 10 runs. Addition-
ally, we retrieve and augment 2 texts for PubMed,
given the excessive node numbers, while 3 for the
other datasets. Ultimately, for the purpose of main-
taining the original topological structure of hyper-
graphs, we prioritize uncovered hypergraphs of
high-degree nodes to advance the original data.

Evaluation Metrics. Node classification, often
adopted as a downstream task to evaluate the
quality of graph self-supervised contrastive learn-
ing (Liu et al., 2022). Given this fact, we measure
the effectiveness of our HEAL on the basis of the
mean and standard deviation accuracy over multi-
round epochs. Typically, the accuracy refers to the
proportion of truly predicted node labels in the test
set, and the F1-score refers to the harmonic mean of
precision and recall, which is a balanced evaluation
metric, especially under class imbalance.

4.2 Performance Comparison

In this section, we focus on analyzing the effect of
our approach on previous representation learning
models. As is illustrated in Table ??, the outstand-
ing results of ample experiments further demon-
strate the superior performance of our framework.
Consequently, we could draw three conclusions as
follows:

» Hypergraph recovery presents potentially essen-
tial importance in the self-supervised domain.
As evidenced in Table ??, we could apparently
acknowledge that by properly implementing un-
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Correlations Results

a b ¢ Cora PubMed Cora-CA 700
M, v v | 73671153065 86.52+0.35,047 76.76 £1.64,054 64.13+12.29;5 7
My |/ Vv | 7387+1.40,045 86.23+0.29,07¢ 76.90£2.10,07 67.16 £ 12.65,5 14
Ms |/ 7224 £1.48 508 85.79+£0.37,12 T75.81 4156179 64.25+£11.83505
My | VW 74.32 + 1.46 86.99 £+ 0.38 77.60 £+ 1.21 69.30 + 11.88

Table 3: Ablation analysis on HyperGCL of three main components of HEAL: (a) Retrieval-augmented Node
Expansion Agent, (b) Gradient-based Evaluation Agent, and (c) Topology Refinement Agent.

covered hyperedges could notably advance the
learning process of higher-order relationships,
with up to 2.41% improvement for HyperGCL,
4.87% for ED-HNN, and 1.97% for HyperGT.
These findings demonstrate the contribution of
hypergraph recovery for better embedding for-
mats in downstream tasks.

* Gradient-based information could assist LLM in
recognizing the most challenging and informa-
tive augmented text for better hypergraph con-
trastive learning. We could infer that the gradi-
ent derived from the corresponding agent could
lead to a more comprehensive understanding of
different augmented texts for LLM. It can be at-
tributed to a novel analytical perspective from
the dynamic moving behavior of each augmented
text for improved embedding, instead of being
limited to LLM only.

4.3 Ablation Study

As illustrated in Table 3, we measure the contribu-
tion of each agent in our proposed HEAL on the
most representative self-supervised model, Hyper-
GCL, to explain the necessity of these techniques.
Typically, the replacements for each module are
as follows. Firstly, for the purpose of assessing
a retrieval-augmented node expansion agent, we
re-conduct our hypergraph uncovering process di-
rectly through the original text attributes. As shown
in the results, the accuracy declines by 0.47% and
5.17%, respectively. We could notice that the im-
pact is more noteworthy on the zoo dataset. The
underlying cause of this phenomenon is that the
original node description about the zoo is in a one-
hot manner. To utilize the feature attributes, we
design diverse descriptions for each feature, then
generate the original text descriptions. Therefore,
if we don’t employ LLM to augment the text in-
formation based on the specific characteristics of
each animal, the discrimination would be weaker.
Secondly, when it comes to a gradient-based evalu-
ation agent, we replace the procedure of identifying
the optimal text with random selection. Instead, we
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Figure 3: The right-hand figure is the bar chart of re-
sults on HyperGCL. The left-hand figure refers to the
sensitivity analysis of our proposed HEAL.

measure the effectiveness of augmented text by pro-
viding LLM with the textual information solely. As
shown in Table 3, the accuracy drops to 86.23%
from 86.99% for PubMed. Meanwhile, there is
also a similar shrinkage by 2.14% when applied
to the Zoo dataset. Based on this evidence, the
significance of the valuation agent is validated sta-
tistically. Thirdly, as for the topology refinement
agent, we could observe that both Pubmed and Zoo
achieve their lowest point, with 1.20% decline for
Pubmed and 5.05% decline for Zoo. Intuitively, we
could come to the conclusion that the refinement
agent is the most indispensable component. In par-
ticular, we develop the ablation study without the
hyperedge verification process, which has already
been discussed in the methodology part. This fur-
ther validates the fact that excessively high-degree
nodes and augmented data might instead lead to
detrimental effects.

4.4 Sensitivity Analysis

In this section, we assess the impact of the hyperpa-
rameter n on the performance of HEAL to optimize
the model’s configuration and improve its inter-
pretability. In particular, n refers to the number of
supplemented materials in the text augmentation
stage, illustrated in Figure ??. As shown in Fig-
ure 3, the accuracy of Cora and Cora-CA is more
stable compared to Zoo in response to the change
n. We could infer that the reason lies in the original
text attributes for nodes, which means nodes in Zoo
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enhanced genetic algorithm for efficient "score for augmented text 3: 5", Hvperedees
optimization of complex problems. The } yperedg
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Figure 4: Case study for understanding the function and effectiveness of our proposed HEAL. Typically, gradient i
belongs to the i-th augmented text. The gradient for the original text is discarded in this illustration.

Class
Class 0
Class 1
Class 2

(a) Original (b) HEAL

Figure 5: Impact of our proposed HEAL: the analysis
of outcomes with T-SNE visualization on the PubMed
dataset based on HyperGCL.

datasets could benefit more from supplementation
from LLM enhancement. Typically, on Cora and
Zo0, the performance achieves the peaks at n = 3,
with 74.32% and 69.30%, respectively. While there
is still an increase from n = 3 to n = 4 for Cora-CA,
the fluctuation is minimal.

4.5 Case Study

Explainability. We meticulously conduct a case
study, illustrated in Figure 4, to assist in a deeper
understanding of our work on the proposed HEAL.
As a prerequisite for the text augmentation stage,
we first derive top n = 3 similar texts as input for
prompt 1, which would run n iterative interactions
with the llama to generate n versions of different
texts. Then we utilize GCL to generate correspond-
ing gradients for these n + 1 texts, resulting in n +

1 gradients. Subsequently, we employ a llama to
score these texts from gradient and textual view-
points. In the edge augmentation stage, we initially
retrieve top k = 3 neighbor candidates for edge ad-
dition and edge deletion, respectively. Ultimately,
Llama would judge the connectivity for the im-
proved topological structure of the hypergraph.
t-SNE Visualization. Moreover, we conduct t-
SNE visualization in Figure 5. From the results,
LLM could boost the text encoder process through
a proper prompt manner. As illustrated in Figure 5,
we visualize the enhanced text embedding with
t-SNE. It clearly shows that the superior discrimi-
native and aggregative characteristics of the right
picture, which is processed carefully by leveraging
the text generation capability of LLM. While the
picture on the left-hand side is shadowly encoded
in one-hot format.

5 Conclusion

In this work, we propose a novel framework,
HEAL, a hybrid LLM-based agents to boost hyper-
graph representation learning in a self-supervised
domain. By leveraging the text generation capa-
bility and pre-trained knowledge of LLM, we in-
geniously refine the topological structure of hy-
pergraphs at minimal cost. In particular, we in-
troduce three specific agents for textual-level aug-
mentation and structural-level refinement, namely
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the retrieval-augmented node expansion agent, the
gradient-based evaluation agent, and the topology
refinement agent. Our evaluation demonstrates that
the refined hypergraph structure could advance hy-
pergraph representation learning effectively. These
findings indicate the potential of LLM-based agents
to tackle severe data sparsity issue in hypergraphs.

6 Limitations

Although our work proposes a novel framework
to tackle the hypergraph refinement problem, it
still reveals several limitations. Firstly, our hy-
brid agents rely on LLLM to conduct enhancement,
which means the outcomes would be restricted by
the quality of LLM. Moreover, as LLM is treated
as a black box, the explainability is weaker. Fi-
nally, our work utilizes only llama2-7b due to the
computational constraints. In the future, we aim to
explore the performance of various large language
models to seek the upper bound of our method.
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A Time Complexity

In this part, we provide the time complexity
analysis of our proposed HEAL framework. The
overall computational cost consists of two main
phases:

1. Data Preprocessing: We conduct KNN to com-
pute the similarity among M nodes. The time com-
plexity of this step is:

Tiknn = O(M?) @

since pairwise similarity computations are required
between nodes.

2. LLM Inference: Let IV be the total number
of queries sent to the language model. Assum-
ing a batch size of B, we perform (%1 batches
of inference. For each batch, the language model
processes approximately Lpach tokens, with an in-
ference complexity of O(Lg, ) per batch, where
d is an architecture-dependent exponent. Thus, the
total time complexity is:

Tiim = [g—‘ - O(Lityen) o)
where B = 20, N € O(10%), Lpaen € O(10?),
and d = 2, with all notations summarized
as: B—batch parallel calls, N—total queries,
Lypaen—tokens per batch, d—LLM inference com-
plexity exponent (Touvron et al., 2023b; Vaswani
etal., 2017).

B Analysis of LLMs

The effectiveness of our HEAL is inherently depen-
dent on the quality of the underlying LLMs. For
example, the diversity and faithfulness of the aug-
mented texts used to refine hypergraph structure
are directly tied to the generative capacity of the
LLM. Similarly, the quality of embeddings used
for KNN-based neighbor retrieval is also model-
sensitive. Recent studies, such as AugGPT(Dai
et al., 2025) have shown that stronger LL.Ms such
as GPT-4 and Claude consistently produce more
coherent, semantically rich outputs across a variety
of generation tasks, suggesting that our framework
may yield even greater improvements when used
with such models.

C Hypergraph Structure Comparision
D Prompt Templates
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(a) Original Hyperedges (b) Enhanced Hyperedges

Figure 6: Visualization of the original and enhanced
hypergraph structure (only demonstrating the most sig-
nificant hyperedges for simplicity).
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Prompts for Retrieval-augmented Node Expansion Agent:

System: You are a knowledgeable assistant specializing in hypergraph contrastive learning and text
augmentation. Your task is to enhance the central node’s description by utilizing information from a
neighbor node while maintaining the central node’s key distinguishing features and original meaning.
Ensure that the augmented content enriches the central node without changing its core essence, and
supports finding potential neighboring nodes or removing noise edges for hypergraph learning tasks.

User: Please revise the central node's text using the text of a neighbor node.

Ensure that the revised central node's content enhances the representation of the central node
without losing its key distinguishing features or original meaning. The goal is to expand and enrich the
content of the central node by incorporating relevant insights from the neighbor node while maintaining the
original intent and core message of the central node. The augmented content should help in: Identifying
potential neighboring nodes and removing noise edges by ensuring the central node’s representation is
rich and accurate.

Central Node text: {central_node_abstract}

Neighbor Node text: {similar_node_abstract}

Return the answer in the following JSON format:

{{

"Title": "Replace with the revised title of the central node",
"Abstract": "Replace with the revised abstract of the central node"

1}

Figure 7: Prompt for Retrieval-augmented Node Expansion Agent
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Prompts for Gradient-based Evaluation Agent:

System: You are an knowledgeable assistant specializing in using text and corresponding gradient to
evaluate the effectiveness of augmented texts in the context of hypergraph contrastive learning.

User: Here is the original text and two augmented texts with their corresponding gradient information,
including mean, variance, min, and max.

Please score each of these two augmented texts on a scale from 0 to 10 based on their
**effectiveness for hypergraph contrastive learning in order to improve the accuracy for node classification.
Use both the text and the gradient information to determine the scores.

A higher mean and lower variance indicate that the gradient is stronger and more stable, meaning this
gradient is better"

Each augmented texts has just one score."

Please just score the two augmented texts; the original text is for comparison only.

Return the answer in the following JSON format with:

{

"score for augmented text 1: <score1>",
"score for augmented text 2: <score2>"

1}

Figure 8: Prompt for Gradient-based Evaluation Agent
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Add Edge:

System: "You are a helpful, respectful, and honest assistant. Always answer as helpfully as possible, while
being safe."

User: "Here are the attributes of the two nodes:"

"Central Node {i}: {node_text}"

"Nonneighbor Node {candidate}: {candidate_text}"

"Your task is to decide whether there should be an edge between these two nodes for better hypergraph
contrastive learning."

"Consider the following when making your decision:"

"1. The textual similarity between the central node and the neighbor node."

"2. Whether connecting these nodes would help improve the learning task, such as enhancing the
contrastive representation."

"Please return 'True' if an edge should be added (i.e., they are similar and should be connected), or
'False' if no edge should be added."

"Only respond with 'True' or 'False'. Do not include any other explanation or text. For example: True"

Figure 9: Prompt for Topology Refinement Agent

Delete Edge:

System: "You are a helpful, respectful, and honest assistant. Always answer as helpfully as possible, while
being safe."

User: "Here are the attributes of the two nodes:"

"Central Node {i}: {node_text}"

"Neighbor Node {candidate}: {candidate_text}"

"Your task is to decide whether there should be an edge between these two nodes for better hypergraph
contrastive learning."

"Consider the following when making your decision:”

"1. The textual similarity between the central node and the neighbor node."

"2. Whether connecting these nodes would help improve the learning task, such as enhancing the
contrastive representation."

"Please return 'True' if an edge should be removed (i.e., they are dissimilar and shouldn't be connected),
or 'False'if no edge should be removed."

"Only respond with 'True' or 'False'. Do not include any other explanation or text. For example: True"

Figure 10: Prompt for Topology Refinement Agent
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