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Abstract

In web search scenarios, erroneous queries fre-
quently degrade users’ experience through ir-
relevant results, underscoring the pivotal role
of Chinese Spelling Check (CSC) systems.
Although large language models (LLMs) ex-
hibit remarkable capabilities across many tasks,
they face critical challenges in the CSC sce-
nario: (1) poor generalization to rare enti-
ties in open-domain searches, and (2) failure
to adapt to temporal entity variations due to
static parameters, resulting in serious over-
correction issues. To tackle this, we present
RACQC, a Chinese Query Correction system
with Retrieval-Augmented Generation(RAG)
and multi-task learning. Specifically, our
approach (1) integrates dynamic knowledge
retrieval through entity-centric RAG to ad-
dress rare entities and innovatively proposes
an entity-title collaborative corpus, and (2)
employs contrastive correction tasks to miti-
gate LLM over-correction tendencies. Further-
more, we propose MDCQC, a Multi-Domain
Chinese Query Correction benchmark to test
the model’s entity correction capabilities. Ex-
tensive experiments on several datasets show
that RACQC significantly outperforms existing
baselines in CSC tasks. Specifically, RACQC
achieves a maximum improvement of +9.92 %
on the search scenario benchmark and +3.2%
on the general-domain dataset under the F
metric.!

1 Introduction

In real-world Chinese online search scenarios,
users frequently make erroneous queries due to
various factors such as input errors and knowledge
gaps, resulting in poor relevance of search results.
These errors manifest in multiple forms, including
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Figure 1: Examples of query correction,where the red
characters represents the errors and green represents the
correct result. The LLM is GPT-4.

homophones, visually similar characters, and omis-
sions or additions of characters. Searching with
uncorrected queries often leads to substantial dis-
crepancies between search results and users’ needs.

Therefore, a Chinese Spelling Check (CSC) sys-
tem aimed at detecting and correcting spelling er-
rors is significant for search scenarios(Gao et al.,
2010; Zhang et al., 2024). In the CSC task, the cur-
rent mainstream methods based on the Sequence-
to-Sequence(Seq2Seq) model conceptualize it as
a machine translation problem, transforming er-
roneous sentences into correct ones(Raffel et al.,
2020; Lewis, 2019). Furthermore, as shown in
Figure 1, the development of large language mod-
els(LLMs) has further augmented the capabilities
of Seq2Seq models in CSC(Achiam et al., 2023;
Yang et al., 2024).

However, prior studies have demonstrated that
LLMs do not perform well on CSC(Qu and Wu,
2023; Li et al., 2024). This limitation primarily
stems from LL.Ms’ propensity to over-correct for
long-tail or temporal entities(Wang et al., 2024a).
For instance, as illustrated in Figure 1, a user in-
puts "Handsome Sheath" and LLM erroneously
corrects it into "Handsome Guard" because it tends
to over-correction. The corrected query completely
deviates from the user’s original search demand,
seriously disrupting the user’s search experience.
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Mainstream research lacks solutions to this prob-
lem and corresponding CSC benchmarks.

To address this limitation, we propose RACQC,
a Chinese Query Correction system with Retrieval-
Augmented Generation. This approach aims to al-
leviate the issue of over-correction in CSC. Specif-
ically, our approach is fundamentally designed to
address two pivotal issues: (1) an intrinsic short-
fall in the LLMs’ CSC capabilities, and (2) a con-
spicuous absence of external knowledge within the
model.

In terms of model capabilities, we innovatively
propose five distinct error correction tasks to mea-
sure the model’s error correction capability, includ-
ing error detection, error correction scoring, error
correction generation, error correction re-ranking,
and error correction chain of thought(CoT)(Wei et
al., 2022). Through a series of experiments, we
observed that these tasks possess the potential to
supplement and amplify each other. Inspired by
this, RACQC has constructed a multi-task instruc-
tion fine-tuning dataset that encompasses these five
types of tasks, aiming to enhance the performance
of LLM in CSC.

In terms of utilizing external knowledge,
RACQC innovatively introduces Retrieval-
Augmented Generation(RAG) in error correction
by exploiting webpage title data and entities
extracted from the titles to establish an offline
entity-title corpus. Upon encountering a query re-
quiring external knowledge, the retriever searches
for relevant information from the corpus to
enhance the model’s response, thereby addressing
the over-correction issues generated by LLMs with
out-of-distribution entities.

Furthermore, owing to the substantial discrepan-
cies between the existing mainstream CSC datasets
and search scenarios, the academic community is
confronted with a dearth of authentic CSC datasets
within the open-domain search scenario. To ame-
liorate this situation, we present MDCQC, a Multi-
Domain Chinese Query Correction benchmark.
Experiments on the search-domain datasets MD-
CQC and MCSC (Jiang et al., 2022), and the
general-domain dataset LEMON (Wu et al., 2023),
show that RACQC surpasses existing baselines,
achieving state-of-the-art performance. Moreover,
this system has been successfully deployed in real-
world online scenarios. The contributions of this
work can be summarized as follows:

* We propose RACQC, a CSC framework that

introduces RAG using a novel entity-title cor-
pus, specifically designed for entity-centric
retrieval to support rare and evolving entity
correction.

* We develop a multi-task training strategy that
incorporates five complementary error correc-
tion tasks, including detection, scoring, gener-
ation, re-ranking, and chain-of-thought. Abla-
tion studies demonstrate that these tasks mu-
tually reinforce each other, leading to robust
improvements in CSC performance.

* We release MDCQC, a challenging bench-
mark derived from real-world online search
queries, containing over 4,000 examples
across 10 domains with entity-level annota-
tions.

* The experimental results substantiate that our
method achieves SOTA performance across
several datasets and has been successfully de-
ployed in a online search engine with opti-
mized real-time latency.

2 Related Work

2.1 Retrieval-Augmented Generation(RAG)

The RAG system aims to enhance the model’s an-
swer with external information (Lewis et al., 2020;
Asai et al., 2023; Chen et al., 2024c¢). The retriever
gathers relevant knowledge from an external base
and feeds it into LLMs to improve the model’s gen-
eration. Previous research has already proved the
effectiveness of this method (Liu et al., 2024; Li et
al., 2023; Chen et al., 2024b) and it has achieved
outstanding performance in a variety of fields such
as code generation (Islam et al., 2024; Wang et
al., 2024d), open-domain QA (Wang et al., 2023,
2024e), table understanding (Chen et al., 2024a),
and so on. However, according to our research, our
work represents one of the earliest endeavors to
integrate RAG into CSC and operationalize it in a
production environment.

2.2 LLMs in Chinese Spelling Check(CSC)

CSC is an important task in Natural Language Pro-
cessing. To improve CSC performance, previous
research primarily used BERT-style models due
to their contextual awareness and transfer learning
capabilities(Devlin et al., 2019; Wu et al., 2023;
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Figure 2: Overview of RACQC. RACQC introduces multi-task training and RAG into CSC tasks.

Cheng et al., 2020). To improve their error cor-
rection abilities, strategies such as data synthe-
sis(Wang et al., 2024b; Hu et al., 2022), incorporat-
ing error detection modules(Zhang et al., 2020a),
and specific character masking strategies(Liu et al.,
2010) have been used.

With the advent of Large Language Models
(LLMs) like ChatGPT(Achiam et al., 2023), their
application in the CSC context has garnered in-
terest. However, previous research indicates that
LLMs tend to over-correct, resulting in an under-
performance compared to the baseline BERT-style
models(Qu and Wu, 2023; Wang et al., 2024c).
In order to solve this problem, C-LLM(Li et
al., 2024) and TIPA(Xu et al., 2024) proposed
methods to make character-level alignment, while
DeCoGLM(Li and Wang, 2024) incorporates a
detection-correction structure based on the GLM.
Additionally, trigger®(Zhang et al., 2024) pro-
posed a correction scheme based on the cooperation
of large and small models. In contrast to them, in
this work, we explored the correction training tasks
needed by LLMs.

3 Methods

To overcome the limitations outlined above, we pro-
pose RACQC to augment the capabilities of LLMs
in the CSC domain. As illustrated in Figure 2, our
training process is divided into two main stages:
the first stage employs multi-task training, and the
second stage performs supervised fine-tuning (SFT)
on high-quality samples. Additionally, during both
the SFT and inference stages, we construct a high-
quality entity-title corpus to enhance the response
quality of LLMs.

3.1 Problem Formulation

The CSC task aims to correct all erroneous charac-
ters in Chinese sentences. Formally, let s denote a
sentence containing erroneous characters, and let
s represent the set of correctly modified sentences.
The model f generates a possibly correct modified
sentence s’ = f(s). CSC task aims to ensure s’
€ sT. Additionally, s~ is defined as negative cor-
rection results generated by a random triggering
method based on confusion sets (mined from our
online scenarios) as shown in Algorithm 1.

3.2 Multi-task Training Data for CSC

At this stage, we introduced five types of CSC train-
ing tasks. Specifically, based on observations of the
online cascaded error correction system, we pro-
pose the error detection, error correction scoring,
and error correction generation tasks. Through fur-
ther analysis of user error correction cases, we intro-
duce more challenging error correction re-ranking
and chain of thought tasks to unlock the full poten-
tial of LLMs in the CSC domain. These five tasks
supplement and amplify each other, endowing the
model with robust error correction abilities. The
complete training instructions are provided in Ap-
pendix A, and a more detailed description of the
roles of each task is provided in the Appendix B.

3.2.1 Error Detection Data

The goal of this task is to enhance the model’s error
identification capability. To this end, we formulate
a binary classification task. More formally, the la-
bel D.4(s) in the error detection dataset is defined
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as Equation 1.

if s is incorrect

1
Ded(s) = { ’ ey

0, if sis correct

Through this task, we have augmented the
model’s adeptness in discerning errors and trained
it to identify common Chinese error patterns.

3.2.2 Error Correction Scoring Data

The goal of this task is to enhance the model’s
ability to recognize high-quality error correction
results. To achieve this, we also constructed a bi-
nary classification task. More formally, let ¢ denote
a possible candidate error correction randomly se-
lected from s* and s~. The label Decs(s,c) in
the error correction scoring dataset is defined as
Equation 2.

1, ifcest

Decs(37c) = { (2)

0, ifces™

Through this task, we primarily enable the model
to learn what kind of error correction results are
necessary and of high quality.

3.2.3 Error Correction Re-Ranking Data

The goal of this task is to re-rank possible error
correction candidates. To achieve this goal, we con-
structed an error correction ranking task to choose
the best among multiple possible error correction
results. For each piece of data, we first combine the
error correction candidates from sets s™ and s,
verifying if the total count exceeds four. In case the
candidates are insufficient, we employ Algorithm 1
to generate additional negative candidates until we
obtain at least four candidates. These candidates
are then numbered in ascending order. After this,
we use the count of the candidates from the s set
among these four candidates as our labels.

Through this task, we have further enhanced the
model’s ability to recognize high-quality correction
results. The model can better learn the differences
between good and bad candidates by comparing
multiple high-quality and low-quality correction
candidates in the same sample.

3.2.4 Chain of Thought Data

Building on the foundation laid by (Wei et al.,
2022), we explore the potential of Chain of
Thought(CoT) reasoning to enhance error correc-
tion capabilities. Leveraging the advanced capabili-
ties of GPT-4(Achiam et al., 2023), complemented

Algorithm 1 Get error correction negative samples

Input: Error query S, Corrected query S, Con-
fusion set ST, The position POS in S

Output: Negative sample S—

. §7=8"

: P=Random(0,1)

if P<0.3 then
POS; = Random(0,LENGTH(S ™))
POS, = Random(0,LENGTH(S ™))
SWAP(Spos,Spos,)

end if

POS =Random(0,LENGTH(S ™))

Spos = ST (Spos)

return S~

R AT > oy

—_
e

by meticulous human review, we generate the detail
thinking process of error correction for each piece
of data and give the error correction results. With
this, we aim to teach the model thinking process
of the error correction task in complex scenarios.
Prompts used when calling GPT-4, please refer to
Appendix C. A more detailed discussion on the
CoT task can be found in the Appendix D.

3.2.5 Error Correction Generation Data

The primary goal of this training task is to equip the
model with the essential capabilities required for
error correction generation. It further bolsters the
model’s aptitude for recognizing and understand-
ing the error patterns learned from previous tasks,
thereby refining its proficiency in discerning and
amending errors. To achieve this goal, we input
the erroneous sentence s and utilize all corrected
sentences in sT set as the ground truth labels.

3.3 SFT and Inference Stage of RACQC

In both the Supervised Fine-tuning(SFT) and in-
ference stages, we integrated RAG information to
bolster the error correction capability of LLMs. To
effectively utilize RAG within the CSC system, de-
termining the appropriate content for our corpus
is crucial. Considering the intent of user search
behavior and synthesizing our experimental results,
we conclude that title information plays a pivotal
role. Regarding form, titles are similar to the user’s
search query but encapsulate more expansive infor-
mation, thus providing a potential basis for error
correction. This will be instrumental in helping
LLM:s to correct long-tail and temporal entities.
However, while the titles contain richer infor-
mation, they often contain more noise, such as
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TYPE NE NPE | NEE | LM
F&G 345 171 138 72
MED 722 326 229 98
NEW 133 49 38 18
LIF 1136 | 393 201 111
EDU 757 324 144 121
BOK 115 53 47 18
CAR 91 37 30 14
MUS 77 38 31 16
TEC 193 90 76 23
OTHER | 484 161 97 37

Table 1: Overview of MDCQC dataset(NE means num-
ber of examples, NPE means number of positive exam-
ples, NEE means number of entity errors, LM means
length mismatched).

redundant details and errors in the entities men-
tioned within the title. Such noise can significantly
impair LLMs’ generation. Therefore, we have en-
riched our corpus with entity information extracted
from titles. A more detailed process of construct-
ing the entity corpus is provided in the Appendix E.
In both the SFT and inference stages, we retrieve
four pieces of corpus data that are most similar to
the query in terms of cosine similarity to augment
LLMs’ response.

3.4 MDCQC Benchmark

Our investigation reveals that general CSC datasets
(Hu et al., 2022; Wu et al., 2023) in mainstream
research often overlook entity-level error correc-
tion critical for open-domain search, focusing pri-
marily on common entities with limited coverage
of long-tail ones. Search-oriented CSC datasets
(Jiang et al., 2022; Wang et al., 2024c) tend to be
domain-specific, which may not fully capture the
diversity of cross-domain and time-sensitive en-
tities. Additionally, while mainstream academic
datasets emphasize length-aligned error correction,
length-mismatched errors are also prevalent in real
search scenarios. Therefore, developing a dataset
grounded in real open-domain search contexts is of
significant value.

Based on this, we propose MDCQC,a Multi-
Domain Chinese Query Correction dataset that
spans ten diverse domains:film&game(F&G),
medical( MED),news(NEW),life(LIF),education
(EDU),books(BOK),cars(CAR),technology(TEC),
music(MUS) and others. The data source is col-
lected from representative queries that our online
system struggles to handle in real online scenarios

and incorporates our manually, meticulously
annotated entity information.

Since the data comes from real online scenar-
i0s, it involves numerous long-tail and temporal
queries, which bring challenges to the correction
model at the entity level. The distribution of en-
tities between different fields also has significant
differences, posing challenges to the content of
the external corpus it relies on. The overview of
MDCQC is reported in Table 1. In the Appendix,
we provide a detailed analysis of the specific dis-
crepancies between MDCQC and mainstream CSC
datasets.

4 Experiments

In this section, we present the details of SFT and
the evaluation results of models on the three CSC
benchmarks: LEMON, MCSC, and our multi-
domain dataset MDCQC.

4.1 Experimental Settings

Datasets. Prior research in the general CSC do-
main predominantly leverages SIGHAN(Tseng et
al., 2015; Wu et al., 2013; Yu et al., 2014) as a
benchmark. However, SIGHAN has grown increas-
ingly misaligned with contemporary Chinese in-
put practices and diverges notably from real-world
search query contexts. To address this, we employ
the following three datasets in our study.

LEMON(Wu et al., 2023) is a large-scale multi-
domain dataset with natural spelling errors, which
spans seven domains, including game (GAM),
encyclopedia (ENC), contract (COT), medical
care (MEC), car (CAR), novel (NOV), and news
(NEW).

MCSC(Jiang et al.,, 2022) is a specialist-
annotated Medical Chinese Spelling Correction
Dataset collected from a large-scale query log.

MDCQC is a multi-domain Chinese query cor-
rection benchmark, which comes from the online
user query logs of a popular Chinese search engine.
After careful manual annotation and filtering, high-
quality Chinese error correction data are selected.
Metrics.  Following previous studies(Zhang
et al., 2024),we use the widely used metrics
precision(P)/recall(R)/F-measure(F';) to evaluate
the performence of different models.

Baselines. We used the following models to com-
pare our method. For traditional models, we
selected the n-gram LM implemented based on
KenLLM(Heafield, 2011). For BERT-style models,
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MDCQC MCSC
MODEL P R Fy P R Fy

BERT 4336 9.57 15.68 80.93 80.05 80.49
SM-BERT 38.68 11.89 18.19 | 8121 8051  80.86
GPT-4 22.12 2624 2400 | 25.11 31.12 27.79
ERNIE-4.0 4354 3790 4052 | 51.01 50.05 50.52
N-GRAM LM 10.13 5.65 7.25 30.32 1604  20.98
Qwen2-1.5B+SFT+RAG | 64.84  40.15 4959 | 7564  75.05 75.34
RACQC + w/o RAG 5313 4032 4585 68.05 69.99 69.00
RACQC 7503  49.31 59.51 81.39  81.04 8121

Table 2: Overall results of RACQC and baseline models on MDCQC and MCSC datasets. The best results are
highlighted in bold and the second performence results are indicated by an underscore. W/o RAG means without

RAG information from entity-title corpus.

MODEL CAR COT ENC GAM MEC NEW NOV | AVG
BERT 46.8 52.6 45.7 234 427 46.6 323 414
SM-BERT 49.9 54.8 493 26.1 46.9 49.1 34.6 443
GPT-4 26.8 27.8 33.7 294 32.7 28.1 29.0 29.6
ERNIE-4.0 32.6 40.8 374 30.6 38.1 41.6 27.5 355
Qwen2-1.5B+SFT 42.5 48.2 48.3 30.8 50.3 41.6 32.9 42.0
TIPA+1.5B 45.2 52.9 46.1 28.4 50.0 474 29.6 42.8
RACQC+w/o RAG | 46.0 52.4 51.5 35.3 60.0 51.8 354 47.5
RACQC 46.1 53.7 50.3 333 58.4 53.0 34.2 47.0

Table 3: Overall results of RACQC and baseline models on LEMON dataset, are presented as F'; scores. The best
results are highlighted in bold and the second performence results are indicated by an underscore. W/o RAG means

without RAG information from entity-title corpus.

we chose the most basic BERT(Devlin et al., 2019)
and its improved Soft-Masked BERT(Zhang et al.,
2020b). For seq2seq models, we chose to com-
pare the error correction effects with the most pop-
ular closed-source LLMs, which mainly include
ERNIE-4.0 and GPT-4(Achiam et al., 2023). For
the specific prompts used when calling GPT-4 and
ERNIE-4.0, please refer to Appendix G. TIPA(Xu
et al., 2024) is a recent work of LLM on CSC, its
main idea is to align the LLM error correction at
the character level. We compared with it on the
LEMON dataset. For RACQC, due to the strong
resource constraints in actual search scenarios, we
use Qwen2-1.5B(Yang et al., 2024), which has a
lower resource overhead, as our basemodel and
we mainly divided it into two settings: with RAG
and without RAG (w/o RAG). To test the effect
of our multi-task training, we also experimented
on SFT directly on Qwen2-1.5B. In the settings
without RAG, the model will only take the query
as input, while in the settings with RAG (w RAG),
we retrieve the top-4 information from the entity-
title corpus to enhance the model’s answers. For

prompts used when calling RACQC, please refer
to Appendix H.

4.2 Implementation Details

We used real online search scenario logs for multi-
task training, selecting samples over 90% correc-
tion probability as positive samples and random
correct queries. Using Algorithm 1, we constructed
negative samples s—, generating 40 million sam-
ples with a 1:1 positive-to-negative ratio across
five tasks. In the SFT and inference stage, we
used the title data and entity information extracted
from the WuDAO dataset(Yuan et al., 2021) as
our entity-title corpus and retrieved the top four
results with the highest cosine similarity for each
piece of data, creating 400000 samples for the SFT
stage. Smaller models like BERT and SM-BERT
were directly trained on all data. For RACQC, we
fine-tuned Qwen2-1.5B with Adam (initial learning
rate: le-5, batch size: 64), using a cosine sched-
ule for one epoch in multi-task training and three
epochs in SFT. Adopt cross-entropy for all train-
ing loss functions. Our retriever always uses bge-
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MODEL P R F4 DATASET | CORPUS P R F

RACQC 75.0 493 595 entity only | 74.6 49.8 59.7
RACQC w/o ec gene 68.5 429 528 MDCQC title only 74.6 529 619
RACQC w/o ec scoring | 73.4 47.2 57.5 entity-title | 78.2 54.5 64.2
RACQC w/o ed 749 47.6 582 entity only | 81.0 80.7 80.9
RACQC w/o ecrerank | 71.4 48.9 58.0 MCSC title only 824 823 824
RACQC w/o CoT 723 49.5 58.8 entity-title | 84.3 84.0 84.2

Table 4: Abalation studies of RACQC on MDCQC.

large-zh-v1.5(Xiao et al., 2023) for both entity and
title retrieval. All experiments are performed on 8
NVIDIA A100 80GB GPUs.

4.3 Main Results

The main results on the MCSC and MCDQC bench-
marks are presented in Table 2, and the results on
the LEMON benchmark are presented in Table 3.
Key observations include: (1)Our RACQC method
achieved SOTA performance on all three datasets,
affirming the effectiveness of our multi-task train-
ing and introduction of RAG information to en-
hance LLMs’ ability in the CSC task. (2) RACQC
consistently surpasses direct SFT on LLMs across
all benchmarks, highlighting the necessity of our
multi-task training paradigm. This approach en-
ables LLMs to acquire diverse error correction ca-
pabilities, which synergistically enhance each other.
(3) The introduction of RAG information yields sig-
nificant performance improvements on MDCQC
and MCSC, datasets rooted in real search scenarios.
This divergence underscores the prevalence of long-
tail entity challenges in actual search scenarios and
validates our approach in addressing them. On the
LEMON dataset, RAG integration yielded minimal
impact, because LEMON is a general error correc-
tion dataset, and most of the entities it involves are
relatively common and can be directly covered by
LLM. (4)LLMs like GPT-4 demonstrate stronger
zero-shot performance on MCSC than on MDCQC,
highlighting MDCQC'’s heightened complexity in
real-world entity correction, where its entities ex-
ceed the scope of the model’s pre-training knowl-
edge. To further understand the model’s capability
in addressing over-correction issues, we provide a
more fine-grained analysis in the Appendix 1.

5 Analysis

5.1 Ablation Study

During the multi-task training phase, RACQC
leverages five tasks: error detection data(ed), er-
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Table 5: The effect of RACQC under different text
corpus settings.All entities and titles are dumped from
real online scenario.

ror correction scoring data(ec scoring), error cor-
rection generation data(ec gene), chain of thought
data(CoT), and error correction re-ranking data(ec
re-rank). We conduct ablation studies by removing
each task individually to assess its contribution to
CSC. The ablation results on the MDCQC dataset
are presented in Table 4. We have the following
observations.

Ablation of the error correction generation
task. With the ablation of the ec gene task, we
observed that both precision and recall have signif-
icantly decreased. It means a considerable drop in
the model’s performance. This proves that the ec
gene task is the most important among five tasks
because it directly gives model the ability to cor-
rect errors and further enhances its ability to detect
erTors.

Ablation of error correction scoring, re-rank
and CoT task. With the ablation of these tasks, we
observed a marginal decline in precision and recall.
This suggests that the primary role of these tasks
is to further enhance the model’s error detection
ability, error correction generation ability, and the
ability to prioritize high-quality error correction
results.

Ablation of error detection task. With the abla-
tion task, we observed that the precision remained
stable with a significant decline in recall. The
overall F'; score exhibits a marginal degradation.
This suggests that the ed task mainly strengthens
the model’s understanding of errors, allowing the
model to recall erroneous sentences accurately.

5.2 Corpus Build

Corpus quality critically influences RAG perfor-
mance. This section examines how different corpus
configurations affect RACQC, specifically compar-
ing three settings: title-only, entity-only, and a com-
bined entity-title corpus. To better reflect online
deployment conditions, we replace WuDao data



DATASET | MODEL P R F,
directly SFT | 583 33.7 427
MDCQC | woRAG | 614 403 487
RACQC 724 445 55.1
directly SFT | 71.1 72.0 715
MCSC w/oRAG | 68.1 68.1 68.1
RACQC 771 770 771

Table 6: The results of transferring the base model into
LLAMA3-1B. "directly SFT" indicates fine-tuning the
model only using SFT data, while "w/o RAG" denotes
the exclusion of RAG information.

with real-world online entities and titles.

Experimental results in Table 5 reveal: (1) The
entity-only setting underperforms on MCSC and
MDCQC, primarily because the corpus limited to
entity names fails to provide the model with suffi-
cient context to understand entity specifics or facili-
tate direct error correction based on retrieved entity
information. (2)The title-only setting suffers from
real-world noise, which undermines the model’s
effectiveness. To address this, we ultimately com-
bine entity and title information to construct a more
robust entity-title corpus.

5.3 Transferability of RACQC

To demonstrate the transferability of our RACQC
method, we migrated the base model of RACQC
from Qwen2-1.5B to LLAMA3-1B(Dubey et al.,
2024). The results are presented in Table 6. From
the results, it can be observed that our five train-
ing tasks consistently deliver robust results on
LLAMA3-1B. This indicates that the five training
tasks we propose exhibit transferability. Further-
more, observations from the ablation study on RAG
information reveal that our attempt to incorporate
the RAG method into the CSC task is effective.
In summary, our proposed method can seamlessly
integrate into existing CSC approaches.

5.4 Efficiency Analysis

To evaluate RAG’s impact on efficiency, we com-
pare RACQC’s latency with various baselines, as
shown in Figure 3. Although RACQC has slightly
higher latency than online BERT-like models due to
the RAG process and increased model parameters,
it significantly improves performance metrics.

To address latency in real-world large-scale
search scenarios, we implemented several optimiza-
tion strategies, primarily including INT-8 quanti-
zation and techniques based on caching. Through

ERNIE-4.0+ }1682.3 ms

RACQC

RACQC-online |32.0 ms (QPS:56)
RACQC+w/o RAGH izz.‘) ms

SM-BERT —Dﬁ.l ms

132.7 ms

/1
T 74 T

T T T T T
80 100 120 2500 2750 3000

0 20 40 60

Inference Lantency (ms)

Figure 3: Average latency performance of different base-
lines and RACQC. "-online" indicates the optimized on-
line deployment latency for actual search scenarios. All
experiments were conducted on the MDCQC dataset.

Source O HILK
Target CHLK
GPT4 522 Kk

RACQC ZEK

RAG  entity: B VLK title: 4 OB T K!
Source {/i{2£2 7]
Target 1122 7]
GPT-4 JIRZ7]

RACQC Ti1E27]
RAG title: 77122 T] B -TERTE TN

Table 7: Case studies selected from MDCQC. Red indi-
cates errors, green indicates correct corrections.

these optimization strategies, we reduced the av-
erage inference latency by 4.14x in real-world on-
line deployment compared to offline testing, while
maintaining near-lossless performance in online
evaluations. The optimized average latency meets
the low-latency requirements of real online deploy-
ment, enabling application in real-world scenarios.
Details of the online optimization mechanisms are
provided in Appendix J.

5.5 Case Studies

We analyzed two representative samples from the
MDCQC dataset, as shown in Table 7. In the first
case, /ALK (Okkotsu Yiita), a character from
the anime Jujutsu Kaisen (2021), is mistakenly en-
tered as ZEH LK. Due to a lack of knowledge
Tai Chi". This represents a significant discrepancy
from the actual needs of the user. If enhancement
is only based on the title information, errors may
occur because "[" is wrongly spelled as "JL" in

682



Metric
Lift Rate

QCR({) BR(1)
-1% +1.5%

USR(1)
+1.15%

Table 8: Online Experimental Results. Lift Rate denotes
the relative change compared to the online baseline; 1
indicates higher is better, | indicates lower is better.

the title. However, the entity information is correct,
enabling RACQC to correct the correction. In the
second case, we can make similar observations.

5.6 Online Results

To further validate the effectiveness of our pro-
posed RACQC framework, we deployed the entire
system online and conducted a performance com-
parison with the original online system. The online
experiments primarily employed the following met-
rics:

* Query Change Rate (QCR): The average
number of query modifications per page view.
A lower QCR indicates better system perfor-
mance.

¢ Bounce Rate (BR): The ratio of clicks with
redirections to total page views. A higher BR
suggests better performance.

 User Satisfaction Rate (USR): The propor-
tion of satisfactory page views to total page
views. A higher USR reflects better user expe-
rience. (A “satisfactory page view” is defined
as one in which the user clicks and remains on
the page for a duration exceeding a predefined
threshold.)

The experimental results are summarized in Ta-
ble 8. Our online evaluation demonstrates that
the proposed RACQC framework significantly en-
hances the error correction capability of the online
system compared to the original baseline, achieving
substantial improvements across multiple key user
experience metrics. These results further validate
the effectiveness of the RACQC system.

6 Conclusion

This paper highlights the over-correction issues
LLMs face in real-world CSC scenarios due to
their limited error correction capacity and knowl-
edge gap. To address this issue, we propose a novel
framework, RACQC. It encompasses five different
types of training tasks to enhance the model’s error
correction capability. Concurrently, we construct

an entity-title corpus to employ the RAG method-
ology to resolve the problem of the model lacking
external knowledge. Experimental results indicate
that RACQC achieves SOTA performance on both
search and general datasets.

7 Limitations

Our work is designed for error correction in the
chinese domain, so it may struggle with english
error correction. Meanwhile, for the retrieval strate-
gies of titles and entities, this work adopts a text
vectorization-based approach. Employing more ad-
vanced methods, such as knowledge graph-based
retrieval strategies, may further enhance perfor-
mance. Furthermore, our multitask training re-
quires additional training overhead, which may
need to be improved in the future.
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A Training instructions

Training instructions

ed task:

You are an expert in query text correction
for search engines. Your task is to: deter-
mine whether the query has grammatical or
factual errors.

ec ranking:

You are an expert in search engine query
text correction. Your task is to:
1)determine whether there are grammatical
or factual errors in the query

2)determine whether the correction result
is correct based on the given search query
correction result

ec gene:

You are an expert in search engine query
text correction. Your task is to:

1) determine whether there are grammatical
or factual errors in the query

2) If there are errors,analyze the user’s
search intent, and provide possible correc-
tion results.

ec rerank:

You are a search engine text correction spe-
cialist.

Your task is to:

I)rank given correction options for a query
2)identify the most suitable one with mini-
mal changes and no errors

3)output its number

CoT:

You are a search engine text correction spe-
cialist. Your task is to:

Correct the original sentence with minimal
changes and no errors.

You're also required to explain your thought
process in making the correction.

B Discussion of Multi-task Building

In our early exploration of fine-tuning LLMs di-
rectly on ec gene task, we observed a critical limita-
tion: the model tended to memorize high-frequency
entities (e.g., erroneously correcting “PAVA algo-
rithm” to “JAVA algorithm”,) rather than learning
genuine error correction patterns.

To address this issue, we drew inspiration from
our online cascading error correction system con-

sisting of two key stages: error detection and cor-
rection scoring. These stages effectively capture
the model’s error correction capability, which mo-
tivated our design of the ec scoring task and error
detection task.

Building upon this foundation, we further argue
that introducing more sophisticated correction tasks
can push the boundaries of model performance.
This rationale led to the development of our more
challenging ec rerank and CoT tasks.

Ablation experiments demonstrated that all tasks
positively influenced the experimental results. This
exploration, in fact, highlights the upper limits of
LLMs’ capabilities in the field of error correction.
The joint fine-tuning across these five distinct task
types serves to enhance the model’s genuine error
correction ability, rather than merely promoting
memorization of training data.

C Prompt for generating CoT task

prompt for generating CoT task

2 — PRI Equery LA U &
K NRHVESS &

DH Wrquerys& 5 H 18 15 B0 E F S0
%

2)%h A S5 f5 Hquery, 1EIR#NFE RS 1
R

WA, JRiAH)querys&: {original_query)
A5 J5 BIquery A& : { correct_query}
EERiy I an ek
CREDEE:
Hiquery M IZAE": ""}
English translation:
You are a search engine query text correc-
tion expert, your tasks are:

Determine whether the query has grammati-
cal or factual errors;

After providing the corrected query, please
supplement your thought process.

Now, the original query is:{orginal_query}
The corrected query is:{correct_query}
Please output in the following format:
{"Thought process": "", "Corrected query
should be": ""}

"2 IE B8 iR e

D More detailed discussion on the CoT
task.

Previous studies have not attempted to introduce
CoT tasks in the CSC task, often because the CSC
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LEMON MCSC
Ratio | 6% 19%

MDCQC
37%

Table 9: Detailed Analysis of Long-Tail and Temporal
Entity Distributions. Here, Ratio denotes the percentage
of these two entity types within the sample.

task is generally considered to be relatively local
and surface-level, and does not require complex
reasoning. In fact, regarding the CoT data, we aim
to guide the model in learning complex corrections
for real search scenarios. A key challenge involves
resolving logical inconsistencies in user queries
- for instance, correcting “F £ FLHLE]“(Chun
Hua Yan TV series) to “F& £/ FE LB (Kill Me
Love Me TV series). The model needs to first
understand that “F{E/K” is a novel, while “F&
kA is a TV series. Then, based on the user’s
query, it should reason that the user’s intent is to
search for a TV series, and use this as the basis
for correction. By introducing CoT, we aim to
teach the model to correct high-difficulty erroneous
queries like this, thereby enhancing the model’s
performance ceiling.

E Entity Corpus Construction Process

To construct the entity corpus, we first employ
a pre-trained Named Entity Recognition (NER)
model to extract entities from the titles. To ensure
the accuracy of the extracted entities, we perform
a secondary verification process using the title in-
formation to validate the entities. Specifically, for
each extracted entity;, we retrieve the top 10 titles
with the highest similarity to it. Subsequently, we
calculate the frequency k at which entity; appears
within these ten titles. Finally, we retain all enti-
ties with £ > 5, which are verified by titles, thus
obtaining a high-quality entity corpus.

F Further analysis of the MDCQC
benchmark

To further demonstrate the importance of the MD-
CQC dataset, we conducted additional statistical
analyses on MDCQC, LEMON, and MCSC. From
a random sample of 100 entries, we defined the
following two categories:

» Temporal entities: Entities that emerged after
2023.

¢ Long-tail entities: Entities with fewer than
or equal to 10 monthly searches.

We computed the proportions of both entity
types within the dataset and report the results in
Table 9. The results indicate persistent discrepan-
cies in long-tail and temporal entity distributions
between conventional benchmark datasets (MCSC,
LEMON) and search-oriented MDCQC dataset.

G Prompts for calling GPT and Ernie-4.0

Prompts for calling GPT and Ernie-4.0

T/J\E—/\%E/% 5% queryj(zliﬂ['f %
KARENES =2

1)#‘” Lﬁqueryfé ?:? HEE A B LS
li,

)R B B R A H A 55 TS W query, - B
ZREBh /N -

NREE G Equery 2 B H
&, BN A

W Rqueryix B 5 1%, EYESEIRE

B B

fqueryF B N A A& N 45 HAREIA
FROER .

TE IR N A% Uk

{"query; 2 B H " ", "WIEHRE

AIquery N IZA&": "}

I, querys&:{query}

English translation:

You are a search engine query text correc-
tion expert, your tasks are:

1.Determine whether the query has gram-
matical or factual errors;

2.If there are errors, provide the corrected
query with minimal changes.

If there is an error, output “yes”
“Does the query have errors?” field,
otherwise output “no

If the query is correct, the “Corrected query
should be” field should be left blank;
otherwise, provide your correction

Please output in the following format:
{"Does the query have errors?": "", "Cor-
rected query should be": ""}

Now, the query is: {query}

in the
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H Prompts for calling RACQC

Prompts for calling RACQC

IR — R 5] Equery LA L R
KARHIESS 2

D Wrquery & T H L EUE F LM
=

)R B IR, A H Al 45 5 Wquery, 3 B
BREEN AR/ -

4 B R 5] % HE Zoph) B B 45 R
H[{titles}]
TEHEIR A A% U
{"querys& % H "
HIquery V1% A" ""}
ILE, querys&:{query}

English translation:

You are a search engine query text correc-
tion expert, your tasks are:

Determine whether the query has grammati-
cal or factual errors;

If there are errors, provide the corrected
query with minimal changes.

The current top-ranked display results of
the search engine are [titles]

Please output in the following format:
{"Does the query have errors?": "", "Cor-
rected query should be": ""}

Now, the query is: {query}

nn’ ”él’l_[E%:E]: i%}a

I Further analysis on mitigating
over-correction

To further investigate how our method addresses
over-correction, we conducted a more detailed
analysis of the results on the MDCQC test set.
First, we identified two key manifestations of over-
correction:

* Correct-to-Incorrect: The model modifies
originally accurate sentences into incorrect
ones.

¢ Incorrect-to-Worse: The model exacerbates
already erroneous sentences.

The experimental results are presented in the ta-
ble 10. The results indicate that RACQC reduces
over-correction instances by 20.3% compared to
the SFT baseline, demonstrating its effectiveness
in mitigating this type of error.

Model Over-correction Lift Rate
gwen2-1.5B+SFT|359 -
RACQC 286 20.3%

Table 10: Detailed Analysis of Over-Correction Phe-
nomena.

J Online optimization mechanisms

In our production deployment, we apply INT-8
quantization to the RACQC model. Online exper-
imental results demonstrate that this quantization
approach maintains acceptable accuracy with min-
imal degradation. What’s more, we implement a
caching mechanism for entity-title corpus retrieval
results. This model’s processing time can meet
the requirements of our online system, as it can
be executed in parallel with other query analysis
operators to enable real-time service.

To further optimize latency, we have imple-
mented an additional caching and large-small
model collaboration strategy: upon the first oc-
currence of a query, it is processed through the
RACQC and online small model cascade system
via a consumption queue, and the computed results
are stored in a monthly cache. If the same query
is submitted again and a corresponding result ex-
ists in the cache, it is directly retrieved and served.
This approach enables highly efficient online serv-
ing while preserving near-perfect user experience,
as over 99.9% of queries occur at least twice per
month. For the retrieval process, we also use a
similar caching strategy, where queries can directly
access the cache to obtain the necessary entity-title
corpus information.
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