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Abstract

The use of large language models (LLMs) as
judges, particularly in preference comparisons
has become widespread, but this reveals a no-
table bias towards longer responses, undermin-
ing the reliability of such evaluations. To better
understand such bias, we propose to decompose
the preference evaluation metric, specifically
the win rate, into two key components: desir-
ability and information mass, where the for-
mer is length-independent and related to trust-
worthiness such as correctness, toxicity, and
consistency, and the latter is length-dependent
and represents the amount of information in
the response. We empirically demonstrated the
decomposition through controlled experiments
and found that response length impacts eval-
uations by influencing information mass. To
derive a reliable evaluation metric that assesses
content quality without being confounded by
response length, we propose AdapAlpaca, a
simple yet effective adjustment to win rate mea-
surement. Specifically, AdapAlpaca ensures a
fair comparison of response quality by align-
ing the lengths of reference and test model re-
sponses under equivalent length intervals.

1 Introduction

As LLMs are increasingly deployed across vari-
ous domains of artificial intelligence, from natural
language processing to complex decision-making
systems (Song et al., 2024b, 2025a; Zhang et al.,
2024b; Hu et al., 2025a; Liu et al., 2025a; Lian
et al., 2024; Hu et al., 2025b), ensuring their perfor-
mance, reliability, and fairness has become a criti-
cal challenge (Hu et al., 2024a; Liu et al., 2025b;
Wang et al., 2023b; Song et al., 2023; Wang et al.,
2024; Lei et al., 2024b; Li et al., 2025; Song et al.,
2025b). LLM-based auto-evaluators have emerged
as a crucial tool in this context, offering a cost-
effective and scalable alternative to labor-intensive
human evaluations (Li et al., 2024a,b; Dubois et al.,
2024b; Huang et al., 2025; Song et al., 2024a; Zhan
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et al., 2025). Despite their advantages, these auto-
mated systems are not without their shortcomings,
particularly concerning the introduction and per-
petuation of biases (Wang et al., 2023a; Ma et al.,
2025; Wang et al., 2025; Song et al., 2025c). One of
the important biases observed in LLM-based evalu-
ations is the preference for longer textual responses.
Previous empirical studies have explored a strong
correlation between the length of response and its
perceived quality represented by win rate (Zhao
et al., 2024; Dubois et al., 2024a; Park et al., 2024).
However, it is not reasonable to simply attribute the
preference to length since length is only the surface
factor for the quality of a sentence. Therefore, in
this work, we investigate the following question:
what are the major factors contributing to the win
rate?

To solve this problem, we propose a new frame-
work that decomposes the quality of a response,
as measured by its win rate in pairwise compar-
isons, into two distinct components: (1) desirabil-
ity, which is independent of length and reflects the
trustworthiness of the response, encompassing fac-
tors such as correctness, toxicity, and consistency;
and (2) information mass, which is dependent on
length and represents the amount of information
in the response, measurable through conditional
entropy. We validate our hypothesis by testing win
rates in two different scenarios: (i) comparing nor-
mal responses with those differing in desirability
(e.g., Logical to be desired and Biased not desired),
and (ii) comparing normal responses with concise
and detailed responses, which vary in information
mass. Our experiments demonstrate that responses
with negative desirability significantly decrease the
win rate, whereas information mass, when not neg-
atively influenced by desirability, is positively cor-
related with the win rate, thus confirming the ef-
fectiveness of our metric. Following this finding,
we design a new prompt called "Quality Enhance-
ment" to improve information mass with positive
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Figure 1: Comparison between AlpacaEval and Ada-
pAlpaca (Ours). In AlpacaEval, the reference answer
has a fixed length, regardless of the length of the test
model’s answer. In contrast, AdapAlpaca dynamically
selects a reference answer that matches the length of the
test model’s answer.

desirability. This prompt enables GPT-4 to achieve
state-of-the-art results on AlpacaEval, increasing
the win rate from 50.00% to 70.16%.

Through our decomposition of the quality of a
response, we observe that response length impacts
evaluations primarily by influencing information
mass. However, a reliable evaluation metric should
assess content quality without being confounded
by extraneous factors such as response length (Koo
et al., 2023; Ye et al., 2024; Dubois et al., 2024a),
we further propose AdapAlpaca, a benchmark de-
signed to improve evaluation fairness. By ensuring
that responses are compared at the same length in-
tervals, AdapAlpaca effectively mitigates length
bias, enabling accurate content quality assessments
(see Figure 1). With AdapAlpaca, we further ana-
lyze length bias in Direct Preference Optimization
(DPO) (Rafailov et al., 2023) to examine the find-
ings in prior work (Gu et al., 2024; Ivison et al.,
2023; Liu et al., 2024) that DPO lengthens model
responses. Specifically, we test TULU2 (Ivison
et al., 2023) and TULUZ-dpo models at 7B, 13B,
and 70B scales on AlpacaEval and AdapAlpaca.
Our results indicate that DPO leads to higher hu-
man preference, but this gain is amplified by re-
sponse length, with AlpacaEval showing higher
win rates gain than AdapAlpaca. Our major find-
ings and contributions are as follows:

* We propose a novel interpretation of win rate,
emphasizing desirability and information mass,
offering a more precise LLM performance mea-
sure. Based on this interpretation, we develop
the "Quality Enhancement" prompt, which im-
proves win rates by boosting information mass
with positive desirability. This prompt improves
win rates across multiple LLMs, with average
increases of 23.44% for GPT-3.5, 16.48% for
GPT-4, 22.28% for LLAMA3-70b, and 20.40%
for Qwenl1.5 72B.

* To mitigate length bias, we introduce AdapAl-
paca, a method that aligns the response lengths
of the reference and test model, enabling a fair
comparison of desirability and information mass
under the same length intervals.

* Using both AlpacaEval and AdapAlpaca, we
analyze the impact of length bias in DPO. Our
experiments with TULU2 and TULU2-dpo mod-
els at 7B, 13B, and 70B scales show that DPO
leads to higher human preference, but this gain is
amplified by response length, with AlpacaEval
showing higher win rates gain than AdapAlpaca.

2 Related Work

Reference-free Evaluation Metrics. Reference-
free evaluation metrics have a long history (Louis
and Nenkova, 2013), which evaluates the generated
text based on intrinsic properties and coherence
with the context. Although they achieve high accu-
racy on matching inner-annotator, the achievement
suffers from spurious correlations such as perplex-
ity and length (Durmus et al., 2022). Recently, peo-
ple have started using a strong model (e.g., GPT-4)
as an evaluator to perform a zero-shot reference-
free evaluation on the weak models (Shen et al.,
2023; Dubois et al., 2024b; Lei et al., 2024a; Chen
et al., 2023; Park et al., 2024). However, leveraging
a strong model’s intrinsic knowledge to perform
reference-free evaluation ignores the prompt prefer-
ence of the strong model, for example, the prompt’s
length.

Correlation Between Length and Win Rate. Pre-
vious research reveals that sentence length will
influence the evaluation of trustworthiness. Specif-
ically, when using a GPT-4 to represent human
preference, it will prefer to choose a long sen-
tence rather than a short sentence (Dubois et al.,
2024a; Ivison et al., 2023; Gu et al., 2024; Hu et al.,
2024b; Koo et al., 2023; Wang et al., 2023a; Wu
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and Aji, 2023; Dubois et al., 2024b; Chen et al.,
2023; Hu et al., 2024c¢). Such preference will intro-
duce a length-correlated bias and help the model
with long-generation sentences gain a high score
on human preference evaluation. Although these
approaches show a high correlation to human pref-
erence, debiasing such as automated evaluation is
highly valuable. (Dubois et al., 2024a) proposes a
length-controlled (LC) win rate by removing the
length-correlated term in the win rate regression
model. The new LC win rate shows an even per-
formance between concise and verbose input and
a higher correlation when compared with human
preference.

3 Understanding the Major Factors of Win
Rate

To interpret the correlation between length and win
rate, we propose a new framework based on guality,
which includes desirability (length-independent,
related to trustworthiness) and information mass
(Iength-dependent, represented by conditional en-
tropy). We validate our hypothesis through two
scenarios: (1) testing the impact of different desir-
ability on win rate with the same information mass,
and (2) testing the influence of different informa-
tion mass on win rate with the same desirability.

3.1 Preliminary

Evaluation protocol. We utilize the AlpacaEval
dataset (Li et al., 2023b) to assess human prefer-
ences. AlpacaEval is a reference-free evaluation
dataset for LLMs, encompassing 805 instructions
that reflect human interactions on the Alpaca web
demo. To ensure a comprehensive evaluation of
human preferences, we extend our testing to ad-
ditional datasets, including LIMA (Zhou et al.,
2023), Vicuna (Chiang et al., 2023), Koala (Vu
et al., 2023), Wizardlm (Xu et al., 2023), and Self-
Instruct (Wang et al., 2022), in line with previous
studies (Chen et al., 2023; Zhang et al., 2024a; Du
et al., 2023; Zhao et al., 2024; Li et al., 2023a).

Base Models. In our experiments, we follow the
setup in the AlpacaEval Leaderboard !, using the
GPT-4 Preview (11/06) as Baseline and the An-
notator. The references to GPT-3.5, LLAMAS3-
70b, and Qwen1.5 72b in the main text denote gpt-
3.5-turbo-0125, meta-llama/Meta-Llama-3-70B-
Instruct (Al@Meta, 2024), and Qwen/Qwenl.5-
72B-Chat (Bai et al., 2023), respectively. Follow-

"https://tatsu-lab.github.io/alpaca_eval

ing previous work (Wei et al., 2024), we calculate
conditional entropy using the method described in
(Von Neumann, 1932). Further details are provided
in Appendix A.6.

Win rate. Assume we have a set of instructions x.
We prompt a test model m to generate a response
zm for each instruction. Similarly, we prompt a
reference model b (referred to as the "baseline"
in AlpacaEval) to generate a response z; for each
instruction.” An annotator then evaluates these
responses based on their quality and assigns a pref-
erence y € {m,b}, indicating which model’s re-
sponse is superior. To properly understand the con-
cept of win rate, we first need to define what we
mean by response quality:

Definition 1 (Response Quality), denoted as
Qc(z|z), quantifies the effectiveness of the model’s
response z in addressing the given instruction z,
as evaluated by an annotator e. Annotator prefer
responses with higher quality.

By leveraging the definition of quality, we can now
formulate the win rate as the comparison of sen-
tence quality as follows:

WinRate(m, b) = Ey [1q, (2,,)>Qe(zpl)] » (1)

where 1 is an indicator function and
L1Q(2m|2)>Qe(z]x) Tepresents the preference
distribution for each individual. Previous
works (Chen et al., 2023; Li et al.,, 2023b;
Dubois et al., 2024a,b) utilize LLMs as zero-shot
evaluators due to their exceptional performance on
real-world tasks. Our experimental setup adheres
to the AlpacaEval Leaderboard (Li et al., 2023b)
guidelines, employing the GPT-4 Preview (11/06)°
as both the Baseline b and the Annotator e.

3.2 Quality Decomposition

Before discussing the composition of quality, we
first define two key concepts: desirability and in-
formation mass. Desirability reflects the inherent
quality attributes of a response that make it reliable
and valuable, irrespective of its length, while infor-
mation mass captures the quantity of information
in the response, with longer responses generally
containing more content. The definitions of desir-
ability and information mass are as follows:

%In this context, m stands for "model" and b denotes "base-
line", which in this paper follows the AlpacaEval Leader-
board’s use of GPT-4 Preview (11/06).

3In this paper, unless specified otherwise, GPT-4 refers to
GPT-4 Preview (11/06).
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Figure 2: Validation of desirability’s impact on quality for GPT-4. The results demonstrate that desirability influences

the win rate.

Definition 2 (Desirability), denoted as D.(z|x),
measures the probability that annotator e will ac-
cept the response z given an instruction x. It can
be influenced by factors such as consistency and
toxicity and is independent of response length.

Definition 3 (Information mass), denoted as
H.(z|x), measures the amount of information in
a response z given an instruction x, as evaluated
by annotator e. It is represented by conditional
entropy and is directly with response length.

Details on the design rationale are provided in Ap-
pendix F. With these definitions in place, we now
present our main hypothesis on answer quality,
starting with an assumption:

Assumption 1 (Quality Decomposition). For a
given answer z and instruction x, the quality
Qc(z|x) recognized by annotator e can be viewed
as a function of two key components:

Qe(2|z) = {De(2[x), He(2[2)}, @

where D.(z|x) denotes the desirability of the re-
sponse, and H.(z|x) represents the information
mass.

To systematically verify our hypothesis, we con-
duct two experiments targeting the manipulation
of these key components in GPT-4’s responses in
Section 3.3 and Section 3.4. Additional results
with more test and annotator models are provided
in Appendix N and Appendix O.

3.3 Desirability Influences Quality

To evaluate the impact of desirability on quality,
we design experiments using eight strategies to
manipulate response desirability. These strategies
include: (1) Origin: No prompt restrictions. (2)
Copy-paste: Copy GPT-4’s response three times.
(3) Biased: Provide biased responses, favoring cer-
tain ideas without justification. (4) Inconsistent:
Provide contradictory information to create confu-
sion. Illogical: Give responses based on flawed
logic or irrelevant information. (5) Verbose: Pro-
vide lengthy responses filled with broad, unrelated
details. (6) Toxic: Use offensive language with an
aggressive tone. (7) Relevant: Provide responses
that align with the query. (8) Logical: Base re-
sponses on sound reasoning and valid arguments.
The results are shown in Figure 2. To eliminate
the impact of information mass on win rate, we
use conditional entropy to represent information
mass and ensure the information mass of Origin
and the other prompts remains as consistent as
possible. The entropy values shown in the Fig-
ure 2 represent the average conditional entropy of
the responses for each prompt. Details for these
prompts and relevant implementation are shown
in Appendix M, Appendix A.2 and Appendix A.3.
First, we observe that although the Copy-paste
and Origin prompts maintain identical information
mass (as simply replicating text does not increase
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Figure 3: Validation of information mass’s impact on quality for GPT-4. The results demonstrate that information

mass influences the win rate.

information), the win rates of Copy-paste fall be-
low Origin (50%) due to significant consistency
impairments. Second, responses generated from
negative prompts (i.e., Biased, Inconsistent, II-
logical, Verbose, and Toxic) exhibit low desirabil-
ity, resulting in win rates substantially lower than
Origin (50%), despite having similar information
mass. Conversely, prompts enhancing desirability
(i.e., Consistent and Logical) yield increased win
rates compared to Origin. In summary, desirability
plays a significant role in determining quality.

3.4 Information Mass Influences Quality

To evaluate the impact of information mass on qual-
ity, we designed experiments using three distinct
strategies to manipulate the information mass of
responses. These strategies include: (1) Origin:
No prompt restrictions. (2) Concise: Request brief
responses focusing on the most crucial points. (3)
Detailed: Request comprehensive responses cov-
ering all relevant aspects thoroughly. The corre-
sponding results are illustrated in Figures 3. Im-
portantly, to isolate the effect of information mass,
we ensured that the prompts did not impose any
constraints on desirability, ensuring comparability.
Details of the prompts and implementation are in
Appendix M, Appendix A.1 and Appendix A.4.
Our findings indicate that information mass signifi-
cantly affects the win rate without a negative desir-
ability prompt. Specifically, responses with higher
information mass, measured by conditional entropy,
consistently achieved higher win rates. Thus, we
observe the following relationship: Detailed > Ori-
gin > Concise. These results confirm that informa-
tion mass is a crucial factor influencing the quality

of responses.

Table 1: The content of the "Quality Enhancement”
prompt, designed to elevate both the information mass
and desirability of responses, thereby enhancing win
rates. Keywords such as "relevant” and "logical" are
used to enhance desirability, while "detailed" is used to
boost information mass.

Quality Enhancement

You are an expert assistant, delve deeply into
the core of the topic, providing a richly de-
tailed response that explores all its dimen-
sions. Ensure each part of your response is
relevant to the query in a logical manner.
Your response should provide comprehensive
information and thoroughly cover all relevant
aspects with accuracy and depth.

3.5 Quality Enhancement Prompt

Our decomposition reveals that responses with
good desirability and higher information mass are
generally more favored. Building on this insight,
we propose the *Quality Enhancement’ prompt (Ta-
ble 1), designed to improve both desirability and in-
formation mass, thereby increasing win rates. The
keywords "relevant" and "logical" are used to en-
hance desirability, while "detailed" is used to boost
information mass. Their effectiveness is validated
in Section 3.3 and Section 3.4. We evaluated this
prompt across multiple models, including GPT-3.5,
GPT-4, LLAMA3-70b, and Qwenl.5 72B. The re-
sults, summarized in Table 2, with benchmarks
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Table 2: Win rates with and without the "Quality Enhancement" prompt, along with the corresponding win rate
gains (WR Gain). "WR Gain" represents the increase in win rate due to the use of the "Quality Enhancement".

Models Methods AlpacaEval LIMA Koala Self-Instruct Vicuna Wizardlm Avg.
w/o Quality Enhancement 15.47 9.67 11.39 21.46 8.75 16.82 13.93
GPT-3.5 with Quality Enhancement 29.89 36.53 40.34 45.93 35.88 35.62 37.36
WR Gain 14.42 26.86 28.95 24.47 27.13 18.80 23.44
w/o Quality Enhancement 50.00 50.00 50.00 50.00 50.00 50.00 50.00
GPT-4 with Quality Enhancement 70.16 65.84  58.90 67.06 73.13 63.76 66.48
WR Gain 20.16 15.84  8.90 17.06 23.13 13.76 16.48
w/o Quality Enhancement 34.32 36.63 40.12 39.70 36.74 36.99 37.81
LLAMA3-70b  with Quality Enhancement 56.50 60.39  61.30 64.81 63.49 51.70 59.70
WR Gain 22.18 23.76  21.18 25.11 26.75 14.71 22.28
w/o Quality Enhancement 28.27 28.40 35.25 33.81 33.70 31.80 32.67
Qwenl.572b  with Quality Enhancement 48.87 53.34 5540 52.43 56.49 47.13 52.28
WR Gain 20.60 2494 20.15 18.62 22.79 15.33 20.40
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Figure 4: Correlation between information mass and word count for responses of GPT-4. As the word count

increases, the information mass also increases.

such as LIMA, Vicuna, Koala, Wizardlm, and Self-
Instruct. The consistent improvement in win rates
across all tested models underscores the critical
role of response quality in LLM evaluation.

4 Adaptive AlpacaEval

Here, we analyze the phenomenon observed in
prior works (Dubois et al., 2024a; Chen et al.,
2023; Dubois et al., 2024b), which highlights a
positive correlation between response length and
win rate. Intuitively, longer responses tend to en-
compass more information. To rigorously quantify
this relationship, we use conditional entropy as in-
formation mass in a response z given an instruction
x. This analysis is conducted without constraints
on response desirability, ensuring the correlation
between length and information mass remains in-
dependent of desirability factors. As shown in Fig-
ure 4, our analysis demonstrates a clear trend: as

the length of a response increases, the information
mass also grows. By integrating this observation
with the findings from Section 3.2, we conclude
that the primary mechanism through which length
affects win rate is its contribution to the overall
information mass.

Adaptive AlpacaEval (AdapAlpac) is based on the
premise that a reliable evaluation metric should not
only assess the content quality but also ensure that
the assessment is not confounded by extraneous
factors such as the length of the response. Cen-
tral to this approach is the concept of information
mass, which is inherently dependent on response
length and can be quantified using conditional en-
tropy. Our primary aim is to mitigate scenarios
where merely extending the length of a response
artificially inflates its conditional entropy and, thus,
its perceived quality by annotators. This approach
involves dynamically adjusting the evaluation cri-
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You are given a tweet and you should decide whether it's offensive or not.
She has certainly taken some heat for being such an....well idiot.

Which answer do
you prefer? — : - : :
Human ana Deciding whether a tweet is offensive requires analysis of the tweet

GPT-4  content, context, use of language, and potential for harm or insult to
Vote _ individuals or groups.
[Omitted 575 reasoning words]

In determining whether a tweet is offensive, it's vital to understand

not only the explicit content of the message but also its context,

the nuances of the language used, and the potential impact it could

have on the individuals or groups mentioned or involved.
[Omitted 545 reasoning words]

Such an approach not only elevates the level of discourse but also

helps in fostering a more inclusive and respectful environment.

GPT-4
Vote
-

LLM Answer

Preference
Aligned

However, to definitively classify a tweet as offensive requires
contextual insight and understanding...

Answer from AdapAlpaca

Human

Determining whether a tweet or any other statement is offensive can
> be subjective and often depends on various factors including the
context in which it was said, the audience, and cultural norms.
[Omitted 159 reasoning words]|

Vote

Answer from AlpacaEval

Figure 5: Case study on comparing GPT-4 and human vote on AlpacaEval and AdapAlpaca. In AlpacaEval, GPT-4
votes for the verbose answer, but humans vote for the concise reference answer, while in AdapAlpaca, GPT-4 and
humans vote for the same answer, demonstrating a better LLM-human alignment on AdapAlpaca.

teria based on response length, thereby providing a
more equitable and accurate measure of a model’s
performance. More discussion can be found in
Appendix C and E.

4.1 Dataset Generation

To support the development of Adaptive AlpacaE-
val, we first generate a diverse dataset using a
modified prompting strategy with GPT-4, designed
to produce responses within specific word count
ranges. Specifically, we analyzed the word count
distribution within the AlpacaEval dataset, observ-
ing that responses predominantly fall within the
0-1000 word range. This range was chosen to
encompass the full spectrum of response lengths
present in the original AlpacaEval dataset, ensuring
comprehensive evaluation coverage. To systemat-
ically explore this range, we divided it into five
equal segments, each representing a distinct dataset:
AdapAlpaca-200: 0-200 words, AdapAlpaca-400:
200-400 words, AdapAlpaca-600: 400-600 words,
AdapAlpaca-800: 600-800 words, AdapAlpaca-
1000: 800-1000 words. Each segment is populated
by generating responses using the dataset genera-
tion prompt, with GPT-4 configured to produce re-
sponses that strictly conform to the specified word
counts. The data generation prompt and additional
details for AdapAlpaca can be found in Appendix J.

4.2 Case Study

To demonstrate the superiority of AdapAlpaca, we
present a case study. In Figure 5, for the given
instruction, we generate a redundant model answer
(shown in the blue box). When evaluated using

the current AlpacaEval response (shown in the red
box), the annotator (i.e., GPT-4) selected this re-
dundant answer, which is significantly unaligned
from human preference, as the simplicity of the
question does not warrant such extensive verbosity.
The reason GPT-4 chose this answer is that the
excessive length increases the information mass, ar-
tificially inflating the perceived quality. In contrast,
when using AdapAlpaca, it allows us to control for
content while varying the length, thereby isolating
the effect of length from that of content quality.

Table 3: The subscripts in the LCWR and WR columns
indicate the differences between these metrics and the
corresponding Human WR. A larger absolute value de-
notes a greater disparity between the annotator’s evalua-
tion and Human Preference. "LLM Response" denotes
different responses to AlpacaEval questions for GPT-4,
with detailed content available in Section 3.2.

LLM Response AlpacaEval AdapAlpaca
Human LCWR WR Human WR
Concise 1081 35.1642435 15964515 29.56  28.44_;12
Detailed 61.61  54.13_748 65.834420 56.02  55.36_¢.78
Quality Enhancement ~ 66.70  49.37_1733 70.16434¢ 58.88  57.814107

4.3 Result of Human Evaluation

Table 3 presents the results of the human study,
with details provided in Appendix D and you can
find more results in Appendix I. First, we test the
results of concise, detail, and quality enhancement
(descriptions provided in Section 3 and 3.5) using
AlpacaEval, followed by AdapAlpaca. From the
gap values between LCWR and human evaluations,
we observe significant misalignments, indicating
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inherent problems with the LCWR metric. In con-
trast, the win rate calculated using AdapAlpaca
closely aligns with the human results, showing an
average difference of 0.99% (1.12% + 1.07% +
0.78% / 3). Additionally, we find that the differ-
ence between human evaluation and WR decreases
as the quality of responses improves (from con-
cise to detailed to Quality Enhancement). This
suggests that as response quality increases, the
preferences of annotators and human evaluators
converge. Moreover, we found that the smallest
difference in win rate between GPT-4 and human
evaluations occurs when using the "Quality En-
hancement" prompt, which has the highest levels
of desirability and information mass. This further
underscores the importance of enhancing both de-
sirability and information mass in model responses.
Overall, while both AdapAlpaca and LCWR aim
to mitigate length bias in evaluating human prefer-
ences, their approaches differ fundamentally. Ada-
pAlpaca eliminates length bias from the outset,
whereas LCWR attempts to correct for length bias
after it has already influenced the evaluation. The
inherent issue with LCWR is that length signifi-
cantly impacts human preference, and adjusting for
length retrospectively is not a reliable approach.

4.4 DPO and Its Length Bias

Previous work (Gu et al., 2024; Ivison et al., 2023)
has shown that DPO (Rafailov et al., 2023) tends
to make model responses longer, raising a natural
question: Does the increase in human preference
brought by DPO partly stem from the length of
the responses? In other words, does DPO generate
longer replies, thereby increasing their win rate?
To investigate this issue, we conducted tests using
the widely-used TULU2 (Ivison et al., 2023) series
models. As shown in Table 4, we tested the models
at 7B, 13B, and 70B scales on both AlpacaEval and
AdapAlpaca to measure their win rates and corre-
sponding response lengths. The results from Al-
pacaEval and AdapAlpaca indicate that while DPO
does lead to longer model responses, it enhances
the model’s human preference capability (as evi-
denced by the increased win rate in AdapAlpaca).
However, this gain is amplified by the response
length (as the win rate in AlpacaEval is higher than
in AdapAlpaca). Additionally, we found that all
models have higher win rates on AdapAlpaca com-
pared to AlpacaEval. This is because the responses
from GPT-4 (1106) on AlpacaEval are longer (363
words, see Appendix J.1), which unfairly amplifies

Table 4: Win rate and response length comparison for
TULU2 models (7B, 13B, and 70B) on AlpacaEval
and AdapAlpaca. The results indicate that while DPO
increases response length and improves win rate, the
win rate gain is further amplified by the response length,
leading to higher performance in AlpacaEval compared
to AdapAlpaca.

Size Model Winrate (%) Avg. Length
AlpacaEval AdapAlpaca
TULU 2 3.60 5.84 203.60
7B TULU 24DPO 8.33 9.04 282.92
Gain from DPO 4.73 3.20
TULU 2 4.35 8.07 192.58
3B 1Ly 24DPO 10.82 13.17 276.96
Gain from DPO 6.47 5.10
TULU 2 7.34 10.94 184.26
7B TLU2+DPO  15.67 17.90 267.23
Gain from DPO 8.33 6.96

the capabilities of GPT-4 due to its length. These
results emphasize the need for length control in
evaluations to reflect true model performance.

5 Length Bias Originating from RLHF

Preference for "Chosen Responses"
T

—-=- 50% Ratio
AnthropicHH

HC3
SHP
WebgptCom

Preference700K
PreMix
Ultrafeedback
Argilla

Lmsys
Policyl.4b
Prometheus2
Combined

ElixLatent

45 50 55 60 65 70 75 80
Ratio (%)

Figure 6: Analysis of the 14 commonly used preference
datasets on Hugging Face. The analysis shows that the
lengths of chosen responses are generally longer than
those of rejected responses, indicating a length bias in
human preference labeling.

We believe that the length bias observed
in LLMs essentially originates from the
RLHF (Ouyang et al, 2022) process. As
shown in Figure 7, during the RLHF process,
humans may generally prefer more detailed
responses when labeling preference data. This
leads to ranking data where longer responses are
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Table 5: Scores given by commonly used reward models to concise, detailed, and original responses from GPT-4.
The analysis shows that the scores consistently decrease from detailed to concise responses, highlighting the length

bias within the reward model.

LLM Response Reward Model Avg.
Eurus Grmdis Grmsft UniF Debba Bebla FsfairRM Gerew Misrmr InteRM

Concise 1.819 1984 -2919 0.064 2229 4.159 -1.404 -0.456  5.661 0426 1.156

Origin 3.564 4.009 -0.505 2901 3305 5.142 1.830 1.066  9.440 1.558  3.231

Detailed 3986  4.646 1458 3.263 3.759 5.450 2.684 2.630 10.616 2416 4.090
R S evaluations, which undermines the reliability of
cmpRnandkf'?i?hTt:m MG Reward Model win rate metrics. By decomposing win rate into
\ ) . ) desirability and information mass, we offer a nu-
Labelng Gutdes trlning anced understanding of response quality. Our pro-
S S posed framework, AdapAlpaca, effectively miti-
Juman The(:gfgigg“gé’ﬁfiner gates length bias by dynamically adjusting refer-
- - ence answer lengths to match test model responses,

Figure 7: RLHF process contributing to length bias in
LLMs. Human labelers often prefer detailed responses,
leading to ranking data where longer responses are
ranked higher. This creates a spurious correlation that
the reward model learns and propagates to the aligned
model.

generally ranked higher than shorter ones, causing
the reward model to learn this spurious correlation
and incorrectly assume that length is a factor in
human preference. This bias is further propagated
to the aligned model during the training process
using the reward model.

To verify our idea, we first analyze 14 commonly
used preference datasets in huggingface, shown
in Figure 6. We found that the lengths of chosen
responses are generally longer than those of re-
jected responses. As detailed in Table 5, we also
analyze the scores given by 10 commonly used
reward models (Lambert et al., 2024) to detailed,
original, and concise responses from GPT-4. The
detailed description of these three prompts can be
found in Section 3.4. We find that the scores con-
sistently decrease across all reward models. The
details of these datasets and reward models can be
found in Appendix H. However, attributing human
preference solely to response length is an oversim-
plification, as length is merely a superficial factor
in how humans judge the quality of a sentence.

6 Conclusion

In this paper, we identify and address the criti-
cal issue of length bias in LLM-based preference

ensuring fairer evaluation metrics. Additionally,
our analysis of DPO demonstrates that its gains
in human preference are influenced by response
length, underscoring the importance of unbiased
evaluation benchmarks. Overall, AdapAlpaca pro-
vides a robust tool for advancing reliable and equi-
table model evaluation.

7 Limitations

This study recognizes several limitations that define
the scope of our current work and suggest direc-
tions for future research. First, AdapAlpaca adjusts
the length of reference answers to match test model
responses, but this assumes that content quality
is preserved across varying lengths. In practice,
truncating or expanding a response may distort its
meaning or quality, introducing unintended arti-
facts into the evaluation. Second, while our work
primarily focuses on length bias, other biases in
LLM evaluations—such as stylistic preferences,
formatting, or cultural influences—remain unex-
plored. These factors could also shape win rates
and deserve systematic attention in future studies.
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A Implementation Detail

A.1 Experiment Setup

In our experiments, we follow the setup in the
AlpacaEval Leaderboard*, using the GPT-4 Pre-
view (11/06) as Baseline and the Annotator.
The references to GPT-3.5, LLAMA3-70b, and
Qwenl.5 72b in the main text denote gpt-3.5-turbo-
0125, meta-llama/Meta-Llama-3-70B-Instruct >,
and Qwen/Qwen1.5-72B-Chat ©, respectively.

A.2  Ensuring Information Mass Consistency

To ensure the information masses across prompts
were consistent in Section 3.3, we followed an ap-
proach similar to the methodology in Yuan et al.
(2024). Specifically, we prompted the LLM to gen-
erate responses multiple times for each condition.
For each generation, we constrained the word count
to align with the Origin responses and computed
the conditional entropy of the generated response.
We repeated this process iteratively, fine-tuning
the constraints until the conditional entropy of the
responses matched that of the Origin responses
within a tolerance of +0.005.

A.3 Case Study for Desirability Prompt

Here, we provide a case study comparing the re-
sponses generated by the "Origin" (Table 6) and
"Logical" (Table 7) prompts in Section 3.3. This
case study demonstrates that the Logical prompt
indeed produces responses that are more coherent
and logically structured.

A.4 Word Count Statistics of Figure 3

To facilitate a clearer interpretation of the dif-
ferences among Concise, Origin, and Detailed
responses in Figure 3, we present the average
word counts for each response style across vari-
ous datasets in Table 8.

AS

We use GPT-4 as an Al assistant during the prepa-
ration of this manuscript.

Information About Use Of AI Assistants

A.6 Conditional Entropy Calculation

In our experiments, conditional entropy serves as
a crucial metric for measuring and ensuring con-
sistent information mass across different response

*https://tatsu-lab.github.io/alpaca_eval
5https://huggingface.co/meta—llama/
Meta-Llama-3-70B-Instruct

https://huggingface.co/Qwen/Quent.5-72B-Chat

conditions. We calculate conditional entropy fol-
lowing the definition used in prior work on quan-
tum information theory (Wei et al., 2024; Von Neu-
mann, 1932). Specifically, the conditional ma-
trix entropy of response Z given the instruction
X is expressed as H(Z | X) = H(X,Z) —
H(X). Here, H(X,Z) = —tr(Xxz log¥xz)
represents the joint entropy of X and Z, while
H(X) = —tr(Xx log ¥ x) represents the entropy
of X. To ensure proper normalization, we de-
fine iX = Zxx/tr<zxx), where X x x is the
covariance matrix of X, normalized to have a trace
of 1. This normalization step allows for consis-
tent entropy calculations across different condi-
tions, ensuring a fair comparison of conditional
entropy values. To compute the joint covariance
matrix X x 7, we first concatenate each instruction
z; € RYX and response z; € R% into a single
vector u; = [?] € Rix+dz_ We then compute
7
the mean embedding 4 = + Zf\; 1 u; and nor-
malize each vector by centering and scaling it as
u;—u

W = o als Finally, the joint covariance matrix
T

. . 1N = =T

is obtained as X xz = Zi:l u;u; . The result-
ing covariance matrix X x z can be expressed as a
block matrix of the form

2(Zog?dlag) Sy )

where Y x x corresponds to the block associated
with X.

B Dataset

AlpacaEval (Dubois et al., 2024b) comprises
805 instructions, including 252 from the self-
instruct test set (Wang et al., 2022), 188 from the
Open Assistant (OASST) test set, 129 from An-
thropic’s helpful test set (Zhou et al., 2023), 80
from the Vicuna test set (Chiang et al., 2023), and
156 from the Koala test set (Vu et al., 2023).

LIMA (Zhou et al., 2023) compiles a training
dataset of 1000 prompts and responses, designed to
ensure stylistic consistency in outputs while main-
taining diverse inputs. It also provides an open-
source test set of 300 prompts and a development
set of 50. The dataset is sourced from a variety of
platforms, mainly community Q&A websites such
as Stack Exchange, wikiHow, and the Pushshift
Reddit Dataset (Baumgartner et al., 2020), along
with manually curated examples. Within these
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Question

What breed dog s smallest?

Left

The Chihuahua is generally considered the smallest dog breed. They typically weigh between 2 to 6 pounds and stand
about 6 to9inches tall.

Left Win

Undo

Thes

Right Win

Save Progress

Download export json

Label

Figure 8: Example of the evaluation interface used in the human study, showing two outputs for a single input
query. Participants assessed which output more accurately addressed the query, demonstrating the interface’s role in

ensuring unbiased evaluation.

Q&A communities, highly upvoted answers on
Reddit often have a humorous or trolling tone, re-
quiring extra effort to align them with the intended
helpful chat assistant style. In contrast, responses
from Stack Exchange and wikiHow naturally align
with this style. The inclusion of human-authored
examples further enhances the dataset’s diversity.
Our research specifically utilizes the test set from
the LIMA dataset to evaluate our models.

Vicuna (Chiang et al., 2023) divides 80 test
instructions into eight distinct categories: Fermi
problems, commonsense, roleplay scenarios, cod-
ing/math/writing tasks, counterfactuals, knowledge,
and generic questions. This categorization is in-
tended to thoroughly evaluate multiple aspects of
a chatbot’s performance. Prior research indicates
that the Vicuna dataset generally includes instruc-
tions of lower difficulty and complexity (Xu et al.,
2023). In our study, we used the Vicuna test set
to specifically evaluate the performance of large
language models across these varied instruction
categories.

Self-Instruct  (Wang et al., 2022) consists of
252 human-created test instructions, each associ-
ated with a carefully designed output. This test
set is curated to reflect the real-world applicability
of instruction-following models, covering a broad
spectrum of domains including email composition,
social media, productivity software, and coding.
The test instructions vary in style and format, in-
corporating different task lengths and diverse in-
put/output types such as bullet lists, tables, code
snippets, and mathematical equations. We em-
ployed the Self-Instruct test set in our research to
rigorously assess our model’s capability to com-
ply with precise instructions across these varied
domains.

Wizardlm (Xu et al., 2023) comprises a train-
ing set of 70k examples with varied complexities,
initiated from 52k instructional data provided by
Alpaca. Following M = 4 evolutionary cycles, the
collection expands to 250k instructions. In each
cycle, from the six newly generated prompts—five
via in-depth evolution and one through in-breadth
evolution—one is chosen randomly for each in-
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Table 6: Case Study Comparison: Origin Response.

Instruction "How to improve instance segmentation AP metrics with human knowledge"

Origin Response # Improving the Average Precision (AP) Metric for Instance Segmentation
Improving the Average Precision (AP) metric for instance segmentation with human
knowledge involves leveraging domain expertise and data curation techniques to
refine the model’s performance. Here are several strategies to consider:

## 1. **Data Quality and Annotation** - Ensure high-quality, accurate annotations.
Human experts should meticulously label the instances in the training data. - Include
challenging cases in the dataset that the model struggles with, such as occlusions,
varying scales, and uncommon poses or appearances. - Review and correct annota-
tions regularly to prevent propagating errors through the model.

## 2. **Class Balance and Diversity** - Balance the dataset so that all classes are
well-represented, avoiding class imbalance that can bias the model. - Introduce
diversity in the training data, including different lighting conditions, backgrounds,
and object orientations.

## 3. **Domain-Specific Augmentations** - Apply data augmentation techniques
informed by human knowledge about the domain, such as realistic transformations,
to make the model more robust to variations in new data.

## 4. **Incorporate Expert Knowledge into Features** - Design or select features
that are relevant to the task, possibly guided by domain experts who understand the
nuances of the data. - Use human expertise to create rules or heuristics that can aid
the model, especially in edge cases where data is scarce.

## 5. **Model Architecture Customization®** - Adapt or design neural network
architectures that are better suited for the specific characteristics of the data, possibly
with input from domain experts. - Use architectures that have proven successful in
similar tasks or domains.

## 6. **Transfer Learning** - Apply transfer learning by starting with a model
pre-trained on a large, diverse dataset and fine-tuning it on your specific dataset with
human-verified labels.

## 7. **Active Learning®* - Use an active learning loop where the model is trained
on a subset of data, then human experts annotate the most informative samples based
on the model’s uncertainty.

## 8. **Error Analysis** - Perform thorough error analysis with experts to un-
derstand the types of mistakes the model is making and address them specifically
through training data improvements or model adjustments.

## 9. **Ensemble Methods** - Combine predictions from multiple models (ensem-
ble) to improve overall performance. Experts can help select models that complement
each other’s strengths and weaknesses.

## 10. **Curriculum Learning®* - Implement curriculum learning strategies where
the model is first trained on easier examples and progressively exposed to more
complex cases, guided by human understanding of the task difficulty hierarchy.

## 11. **Semantic Guidance** - Introduce additional semantic information into
the model, such as object relationships or scene context, which might be obvious to
humans but not inherently learned by the model.

## 12. **Post-Processing™* - Use expert knowledge to design post-processing
steps that can refine the model’s raw output, such as graph-based optimization or
conditional random fields (CRFs).

## 13. **Human-in-the-Loop** - Implement a human-in-the-loop system where
difficult cases are flagged for human review and correction, and the model is contin-
uously updated with this feedback.

By combining machine learning techniques with human expertise, you can iteratively
improve the instance segmentation model’s performance and achieve higher AP
metrics. Remember that improving AP is often an iterative process of hypothesis,
testing, and refinement.

struction. ChatGPT then generates responses, re-
sulting in 52 X 4 x 3 = 624k instruction-response
pairs. The training subset selected for the Evol-
Instruct dataset contains 70k of these instructions.
The test set, which includes 218 instructions, is
sourced from a variety of platforms such as open-
source projects and online forums, encapsulating

29 unique skills identified from authentic human
tasks. These skills range from Coding Generation
& Debugging to Reasoning, Mathematics, Writ-
ing, Handling Complex Formats, and Mastery over
Extensive Disciplines. In our study, we utilized
the Wizardlm test set to thoroughly evaluate our
model’s ability to adhere to detailed instructions.
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Table 7: Case Study Comparison: Logical Response.

Instruction "How to improve instance segmentation AP metrics with human knowledge"

Logical Response # Improving Instance Segmentation AP Metrics with Human Knowledge
Improving instance segmentation Average Precision (AP) metrics through the integra-
tion of human knowledge requires a strategic blend of domain expertise, algorithmic
enhancements, and fine-tuning of model processes. Below is a structured approach
to achieve this improvement.

## 1. Understanding Instance Segmentation AP Instance segmentation AP measures
how effectively a model detects and delineates individual objects within an image.
It is computed by comparing predicted segmentation masks against ground truth
at various Intersection over Union (IoU) thresholds, capturing both precision and
recall. Common factors that degrade AP include inaccurate boundaries (leading to
low IoU), overlapping objects that the model confuses, or a high frequency of false
positives and negatives.

## 2. Role of Human Knowledge Human expertise can fill gaps that purely data-
driven approaches may miss. Experts can identify subtle yet crucial details—such as
fine edges in biomedical imaging or nuanced object shapes in autonomous driving
scenarios—that generic datasets or fully automated processes might overlook. By
embedding this human knowledge into the data lifecycle, models become more
robust, accurate, and better aligned with real-world conditions.

## 3. Strategies to Leverage Human Knowledge

### A. Data Annotation and Augmentation 1. **Improved Labeling Quality**
Expert annotators meticulously outline object boundaries and resolve ambiguities
in crowded scenes. High-quality annotations directly translate into higher-quality
model predictions. 2. **Domain-Specific Data** Curate datasets that accurately
reflect target scenarios. In medical imaging, for instance, radiologists or pathologists
can ensure that rare but critical cases are included, preventing gaps in training. 3.
**Augmentation with Expert Context** Beyond basic flips and rotations, incorporate
domain-relevant transformations, such as controlled brightness shifts for nighttime
driving or synthetic noise to simulate real-world sensor data.

### B. Model Design and Training 1. **Loss Function Customization** Adapt loss
functions to emphasize IoU-sensitive metrics, for example, through focal loss or
boundary-aware losses. This alignment ensures that improvements in segmentation
boundaries lead to tangible AP gains. 2. **Pretraining on Similar Domains**
Leverage pretrained models from closely related tasks, allowing experts to guide
architecture selection. This shortcut often yields faster convergence and higher final
accuracy. 3. **Human-Guided Active Learning** Experts can identify misclassified
or underrepresented samples. Iteratively retraining the model on these challenging
instances refines its ability to generalize to complex scenarios.

### C. Post-Processing Enhancements 1. **Refinement Using Rules** Introduce
domain-specific heuristics to remove implausible predictions. For example, dis-
card detections that violate known object size constraints or positional rules. 2.
**Combination with Traditional Methods** Fuse deep learning outputs with clas-
sical techniques (e.g., edge detection, shape constraints) that human experts have
validated over time. Such hybrid approaches can further refine object boundaries and
minimize false positives.

## 4. Iterative Feedback Loops Establish a continuous feedback mechanism. Domain
experts periodically review model outputs to identify systemic errors. These insights
drive subsequent annotation improvements and retraining cycles, fostering a more
resilient system over time.

## Conclusion By strategically integrating human expertise throughout the data
pipeline, from annotation to post-processing, instance segmentation models can
achieve more accurate and reliable results. This synergy of human insight and
machine learning algorithms is pivotal for addressing complex or domain-specific
challenges, ultimately elevating AP scores and ensuring robust performance in
diverse real-world applications. We compare the GPT-4 “Origin” answer with the
“Logical” answer. From this comparison, it is clear that the “Logical” approach
yields a more coherent and logically consistent response.

Koala (Vu et al., 2023) consists of 180 authen-  queries cover a diverse array of topics and are gen-
tic user queries obtained from the Internet. These  erally characterized by a conversational tone, under-
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Table 8: Average Word Counts for Concise, Origin, and Detailed Responses across Different Datasets.

Response Style  AlpacaEval LIMA Koala Self-Instruct Vicuna WizardLM
Concise 112.27 83.93 187.44 81.29 44.55 199.47
Origin 372.73 325.00 345.23 170.45 379.30 327.20
Detailed 488.49 416.65 423.64 239.49 462.99 423.00

scoring their applicability to real-world chat-based
applications. To prevent test-set leakage, we ex-
clude any query that achieves a BLEU score over
20% when compared to examples from our training
set. Furthermore, we do not consider queries re-
lated to programming or non-English languages, as
the capabilities of our crowd-sourced raters—who
form our evaluation team—do not extend to effec-
tively assessing such content. We have exclusively
utilized the Koala test set to assess our model’s
capability to process and respond to genuine user
inquiries in a conversational setting.

C Discussion on Length Bias

In this section, we discuss length bias from two
perspectives: model output and evaluation. From
a model-output perspective, generating sufficiently
detailed responses can indeed enhance user satis-
faction by providing relevant, in-depth informa-
tion. Length alone is not inherently detrimental if it
serves a clear purpose: a well-reasoned, thorough
response can be beneficial for clarity and user en-
gagement. However, verbosity that merely inflates
the text without offering meaningful content can
degrade readability and detract from the user expe-
rience. As shown in Table 3, responses with Quality
Enhancement achieve higher human win rates and
win rates. From an evaluation perspective, length
bias poses a risk of distorting model performance
comparisons by rewarding verbosity over precision.
This concern is evident in benchmarks such as Al-
pacaEval (Li et al., 2023b), where longer outputs
can artificially inflate perceived quality, even when
additional content is only marginally relevant. To
address this issue, metrics such as LCWR (Dubois
et al., 2024a) normalize output length to offer a
more equitable assessment of content quality. Our
proposed AdapAlpaca further adopts a proactive
stance by mitigating length bias early in the evalu-
ation pipeline, thus ensuring that win rates reflect
genuine improvements in response quality rather
than inflated text length.

D Human Evaluation Process

D.1 Implementation Details

To ensure the robustness of our findings and com-
plement the automated evaluations, a thorough hu-
man evaluation was conducted. The human eval-
uation involved 25 participants, all of whom are
professionals or researchers in the tech industry
with specific expertise in language models. These
individuals were carefully selected to represent a
broad spectrum of perspectives and expertise lev-
els, ranging from early-career to senior researchers.
Each participant was assigned randomly to differ-
ent segments of the dataset to ensure a balanced
and unbiased input across all items evaluated. The
dataset, comprising 805 responses generated for
each prompt and compared against a default ref-
erence, was strategically divided into eight dis-
tinct parts, each containing approximately 100 re-
sponses. This division was structured to facilitate
manageability and focus during the evaluation pro-
cess. By dividing the dataset into smaller, more
manageable segments, we aimed to optimize the
evaluation process without overwhelming the eval-
uators, thus maintaining a high standard of analysis
quality. Each of these eight segments was then ran-
domly assigned to five different participants. This
approach ensured that every subset of the dataset
was evaluated by multiple individuals, enhancing
the reliability and diversity of perspectives in the
assessment process. Random assignment of partic-
ipants to each segment helped minimize any poten-
tial bias, providing a balanced evaluation across all
parts of the dataset. This method of segmenting
the data and assigning evaluators ensured that each
response received sufficient attention, contribut-
ing to the robustness and credibility of the evalua-
tion results. By implementing this straightforward
and strategic approach to data handling and eval-
uator assignment, we maintained a high standard
of reliability and fairness throughout the evalua-
tion process. The evaluation was facilitated using
a custom-built interface on Gradio ’, an open plat-

"https://github.com/gradio-app/gradio
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form known for its robustness in sharing interactive
machine learning models. Detailed instructions
were provided to each participant to minimize user
error and bias. The interface displayed questions
along with two model outputs side-by-side, labeled
"Left" and "Right," with their positions random-
ized to prevent positional bias. Figure 8 illustrates
this setup. This comprehensive human evaluation
process not only validated the effectiveness of our
proposed methodologies but also provided critical
insights that significantly enriched our understand-
ing of automated metric evaluations.

D.2 Inter-Rater Consistency Analysis

To assess the consistency of human evaluations
across different raters, we conducted an inter-rater
reliability analysis using Fleiss’ Kappa, a standard
metric for evaluating multi-rater categorical agree-
ment. We illustrate this with the human study con-
ducted under the Concise prompt setting of Ada-
pAlpaca. In this study, each segment was evaluated
by five raters, and the Kappa values for each seg-
ment are presented in Table 9.

Table 9: Fleiss’ Kappa values for inter-rater agreement
on different segments in the Concise prompt setting of
AdapAlpaca. Higher Kappa indicates stronger consen-
sus among the five raters assigned to each segment.

Segment ID #Responses #Raters Fleiss’ Kappa
Segment 1 101 5 0.72
Segment 2 101 5 0.69
Segment 3 101 5 0.70
Segment 4 101 5 0.66
Segment 5 101 5 0.74
Segment 6 100 5 0.71
Segment 7 100 5 0.68
Segment 8 100 5 0.73

The Kappa values range from 0.66 to 0.74, in-
dicating moderate to substantial agreement across
raters. These results demonstrate that, despite dif-
ferent segments being allocated to different groups
of participants, the raters assigned to each segment
generally reached a consistent judgment. This level
of agreement supports the reliability and robustness
of our human evaluation process. By maintaining a
high degree of consensus across raters, we ensure
that subjective biases are minimized and that the
evaluation results reflect an objective and repro-
ducible assessment of response quality.

E Addressing Confounding Factors in
Evaluation Metrics

Evaluating the quality of responses solely based
on win rates can be misleading when external fac-
tors, such as response length, unduly influence out-
comes. Longer responses may appear more infor-
mative or thorough, thereby increasing the likeli-
hood of higher win rates, even when the additional
content consists of redundant or irrelevant informa-
tion. This phenomenon has been noted in widely
used benchmarks like AlpacaEval (Li et al., 2023b),
where verbosity can artificially inflate perceived
quality by virtue of longer outputs. Consequently,
it creates an unintended bias, favoring models that
produce lengthier responses over those that prior-
itize clarity and precision. To address this issue,
various strategies have been proposed to debias
response length. For example, Length-Controlled
Win Rate (LCWR) (Dubois et al., 2024a) ensures
that win rates are assessed under similar length con-
ditions, thereby mitigating the inadvertent benefit
conferred by verbosity. Our work adopts a similar
principle through the design of AdapAlpaca, which
seeks to remove length bias from the outset rather
than correcting for it post hoc. By focusing on the
core qualities of content—such as relevance, accu-
racy, and coherence—rather than conflating these
qualities with response length, the evaluation better
reflects genuine human preferences. Ultimately, a
reliable evaluation metric should measure content
quality without being confounded by extraneous
factors. Ensuring that both length and other po-
tential confounders (e.g., formatting quirks, stylis-
tic flourishes) do not overshadow intrinsic content
quality is essential for fair model comparison and
for fostering genuine advancements in natural lan-
guage generation.

F Design Rationale for Desirability and
Information Mass

The concepts of Desirability and Information Mass
were deliberately designed based on foundational
principles in response evaluation to distinguish the
trustworthiness of content from the quantity of in-
formation provided. These metrics were developed
not through purely manual heuristics but rather
through a combination of theoretical reasoning and
empirical validation. Specifically, Desirability cap-
tures qualitative aspects of a response, such as co-
herence, logical consistency, and correctness, while
Information Mass focuses on quantitative elements
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like completeness and level of detail. This distinc-
tion ensures a more comprehensive and balanced
evaluation of response quality. A core motivation
for separating Desirability and Information Mass is
that certain trustworthiness attributes, such as tox-
icity, are fundamentally independent of response
length or information density. For example, a short
sentence can be as toxic as a much longer one. Tox-
icity relates to the emotional and semantic impact
of language on humans, rather than the number
of words or sentence length. Consider the follow-
ing examples: Short toxic sentence: “This person
is stupid.” Long toxic sentence: “This person is
so unbelievably incompetent and ignorant that it’s
embarrassing to even be in the same conversation
as them. People like this are the reason nothing
ever gets done properly—they’re a complete waste
of space and time.” In both cases, the content is
toxic due to its demeaning and hostile nature, re-
gardless of sentence length. Therefore, attributes
such as toxicity cannot be quantified based on word
count or sentence length and instead depend on the
semantic content and emotional tone. This inde-
pendence from length underscores why Desirabil-
ity and Information Mass need to be treated as
distinct dimensions of response evaluation. Empiri-
cally, we validated the independence of Desirability
and Information Mass through controlled experi-
ments in Section 3.3 and Section 3.4. Our results
show that changes in correctness and logical con-
sistency (Desirability) significantly influence win
rates even when response length remains constant.
Conversely, variations in meaningful content (In-
formation Mass) also affect win rates but are inde-
pendent of trustworthiness and logical correctness.
These findings confirm that Desirability and Infor-
mation Mass represent distinct yet complementary
aspects of response quality.

G Potential Negative Societal Impacts

While this research contributes to reducing bias in
language model evaluations, it is important to con-
sider potential indirect societal impacts that might
arise:

Dependence on Automated Decision-Making.
This study’s focus on enhancing the accuracy of
automated evaluations may inadvertently promote
an over-reliance on Al-driven decision-making pro-
cesses. While beneficial in many respects, such
reliance could diminish the value placed on hu-
man judgment and intuition in areas where nu-

anced understanding and ethical considerations are
paramount.

Perception and Trust in AI. By highlighting the
capabilities and improvements in Al evaluations,
there might be an overestimation of Al reliability
and fairness among the public and policymakers.
This could lead to misplaced trust in Al systems,
overlooking their limitations and the necessity for
continuous oversight and human intervention.

H Preference Dataset and Reward
Models

In this appendix, we provide detailed information
about the preference datasets and reward models
used in Section 5.

H.1 Preference Datasets

AnthropicHH : The AnthropicHH dataset eval-
uates the ULMA technique by replacing positive
samples in a preference dataset with high-quality
"golden’ data from GPT-4, aiming to enhance align-
ment methods like RLHF, DPO, and ULMA.

HC3 °: The HC3 dataset, presented in "How Close
is ChatGPT to Human Experts? Comparison Cor-
pus, Evaluation, and Detection," offers a pioneering
human-ChatGPT comparison corpus. It enables nu-
anced evaluations of ChatGPT’s performance and
its closeness to human expert outputs.

SHP '°: The SHP dataset, from the Stanford Hu-
man Preferences project, collects 385K human pref-
erences across 18 subject areas, utilizing naturally
occurring human-written responses on Reddit to
enhance RLHF reward models and NLG evaluation.
This dataset emphasizes the utility of response help-
fulness over harm reduction.

WebgptCom '!: The WebgptCom dataset com-
prises 19,578 comparisons from the WebGPT
project, designed for reward modeling. It features
pairs of model-generated answers to questions,
each scored by humans to determine preference,
supporting the training of a long-form question an-
swering model aligned with human preferences.

8https://huggingface.co/datasets/
Unified-Language-Model-Alignment/Anthropic_
HH_Golden

‘https://huggingface.co/datasets/
Hello-SimpleAI/HC3

lOht’cps://huggingface.co/datasets/s’canfordn1p/
SHP

11https://huggingface.co/datasets/openai/
webgpt_comparisons
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Helpsteer '2: The Helpsteer dataset, utilized for
refining reward models in conversational Al, in-
cludes preference data distinguishing helpful from
unhelpful responses. It consists of paired entries
labeled as ’chosen’ and ’rejected’, with respective
scores reflecting their utility. The dataset includes
37,131 examples in the training split, emphasizing
its scale for robust model training.
Preference700K '3: The Preference700K dataset
comprises 700,000 preference comparisons be-
tween two conversational responses, chosen’ and
‘rejected’, related to the same prompt. This large-
scale dataset is structured to train and evaluate
models on their ability to discern more favorable
conversational outcomes based on user interaction
dynamics.

PreMix ' The PreMix dataset features
528,029 comparisons from preprocessed prefer-
ence datasets, focusing on dialogues structured
with a chosen’ and ’rejected’ response based on the
same prompt. This dataset aids in training models
to discern the more favorable responses in conver-
sational settings.

Ultrafeedback '°: Ultrafeedback is an improved
version of the original dataset, now cleaned and
binarized using average preference ratings. It elim-
inates problematic data from earlier versions, no-
tably those influenced by the Truthful QA dataset,
and removes contributions from ShareGPT sources,
ensuring cleaner and more reliable data for fine-
tuning conversational Al on preference discern-
ment.

Argilla '6: The Argilla dataset is a refined ver-
sion of the UltraFeedback dataset, used to train
the Zephyr-7B-/3 model. This dataset features 64k
prompts with binarized completions, categorizing
the highest scored as ’chosen’ and one of the re-
maining as ‘rejected’. It supports various training
techniques including supervised fine-tuning, prefer-
ence modeling for reward systems, and generation
techniques like rejection sampling.

Lmsys !”: The Policy1.4b dataset incorporates la-

Zhttps://huggingface.co/datasets/RLHFlow/
Helpsteer-preference-standard
13https://huggingface.co/datasets/hendrydong/
preference_700K
14https://huggingface.co/datasets/weqweasdas/
preference_dataset_mix2
Bhttps://huggingface.co/datasets/argilla/
ultrafeedback-binarized-preferences-cleaned
16https://huggingface.co/datasets/csarron/

argilla-ultrafeedback-binarized-preferences-cleaned

17https://huggingface.co/datasets/lmsys/
Imsys-arena-human-preference-55k

bels from the AlpacaFarm dataset and utilizes gen-
erated answers from a 1.4 billion parameter Pythia
policy model. Responses are evaluated using the
‘reward-model-human’ as a gold standard. This
dataset is pivotal for refining Al policy models
through precise human preference feedback.
Policy1.4b '3: The Prometheus2 dataset, trans-
formed from the "prometheus-eval/Preference-
Collection", is crafted to enhance fine-grained eval-
uation capabilities in language models. This dataset
pairs instructions with two responses, scored and
chosen based on preference, facilitating nuanced
evaluation and comparison aligned with human
judgment.

Prometheus2 !°: The Prometheus2 dataset, trans-
formed from the "prometheus-eval/Preference-
Collection", is crafted to enhance fine-grained eval-
uation capabilities in language models. This dataset
pairs instructions with two responses, scored and
chosen based on preference, facilitating nuanced
evaluation and comparison aligned with human
judgment.

Combined *°: The Combined dataset integrates
multiple preference datasets into a unified resource,
all examples binarized and standardized. It aggre-
gates data from diverse sources to create a com-
prehensive set for training and evaluating language
models on preference understanding.

ElixLatent ?': The ElixLatent dataset, designed
around GPT-4, serves as a resource for training and
evaluating latent preference modeling. It provides
pairs of latent responses ("yw’ and ’yI’) and their
corresponding contexts ("x’), allowing researchers
to explore the nuances of preference dynamics in
generated text.

H.2 Reward Models

Eurus ?2: Eurus is a reward model trained

on Ultralnteract, UltraFeedback, and UltraSafety
datasets. It excels in complex reasoning tasks and
outperforms larger models, including GPT-4, by
significantly enhancing language models’ reason-
ing capabilities.

Bhttps://huggingface.co/datasets/t1c4418/1.
4b-policy_preference_data_gold_labelled
l‘)https://huggingi‘"ace.co/datasets/RLHFlow/
Prometheus2-preference-standard
20https://huggingface.co/datasets/yoonholee/
combined-preference-dataset
21https://huggingface.co/datasets/Asap7772/
elix_latent_preferences_gpt4
Zhttps://huggingface.co/openbmb/Eurus-RM-7b
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Grmdis >*: Generalizable Reward Model (GRM),
uses hidden state regularization to enhance general-
ization in reward models for large language models
(LLMs). Initially built on fixed weights from a
Llama-3-based model and fine-tuned only on a re-
ward head, it significantly improves on standard
benchmarks, demonstrating enhanced reasoning
and safety metrics over existing models.

Grmsft >*: It is part of the Generalizable Reward
Model (GRM) series, aimed at enhancing LLMs
through hidden state regularization. It excels across
various complex evaluative tasks, outperforming
other high-capacity models in reasoning and safety.
UniF »: It is a reward model finetuned on the
’Ilm-blender/Unified-Feedback’ dataset using the
Mistral-7B-Instruct architecture. Achieving an ac-
curacy of 0.7740 on test sets, it excels at modeling
human preferences. The model integrates diverse
preference data from multiple sources, enhancing
its applicability in aligning LLMs to human judg-
ments across various conversational contexts.
Debba 2°: Debba is a reward model utilizing
Deberta-v3-base, trained to evaluate QA models
and serve as a reward mechanism in RLHF by pre-
dicting which generated answer aligns better with
human judgment. It is trained on datasets such as
webgpt_comparisons, summarize_from_feedback,
and synthetic-instruct-gptj-pairwise, ensuring a
consistent validation approach across varying do-
mains.

Bebla ?’: It is a reward model trained to assess
the quality of responses in QA evaluations and
to provide scoring in RLHF. It was developed
with datasets such as webgpt_comparisons, sum-
marize_from_feedback, and synthetic-instruct-gpt;j-
pairwise, ensuring it can reliably predict human
preferences across diverse contexts.

FsfairRM 23: It is designed for RLHF applications
including PPO, iterative SFT, and iterative DPO.
This state-of-the-art reward model is licensed un-
der PKU-Alignment/PKU-SafeRLHF-30K, demon-
strating high performance across diverse metrics

Bhttps://huggingface.co/Ray2333/
GRM-1lama3-8B-distill
24https://huggingface.co/Ray2333/
GRM-1lama3-8B-sftreg
25https://huggingface.co/Ray2333/
reward-model-Mistral-7B-instruct-Unified-Feedback
Phttps://huggingface.co/OpenAssistant/
reward-model-deberta-v3-base
27https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large
28https://huggingface.co/sfairXC/
FsfairX-LLaMA3-RM-v@.1

like chat, safety, and reasoning in Reward-Bench.
Gerew 2 It is trained us-
ing BT loss on the weqweas-
das/preference_dataset_mixture2_and_safe_pku
dataset. This model is designed for efficiently
evaluating and aligning LLMs, offering a baseline
performance that is well-suited for smaller-scale
applications requiring rapid assessment of
language model outputs.

Misrmr *°: It is a reward model tailored for itera-
tive Synthetic Frontier Tuning (SFT) and Dynamic
Policy Optimization (DPO). Trained to enhance
language generation tasks, it supports fine-grained
reward modeling to improve the alignment and ef-
ficacy of language models in diverse applications.
InteRM 3': It is a reward model trained on the
foundation of InternLM2-Chat-1.8B-SFT. This
model has been trained using over 2.4 million pref-
erence samples, both human-annotated and Al-
synthesized, achieving outstanding performance
while ensuring a balance between helpful and harm-
less.

I Human study with More Model

To provide a more comprehensive view of our
human evaluation study, we conducted experi-
ments on more LLLMs, including Llama3-70B and
Qwenl.5-72B. The results are summarized in Ta-
bles 11 and 12. These results further validate
AdapAlpaca as a robust metric for aligning model
evaluations with human preferences, effectively ad-
dressing the shortcomings of LCWR.

J Dataset Information

The data generation prompt, as outlined in Table 13,
is carefully crafted to instruct GPT-4 to generate re-
sponses within predefined word limits. This prompt
directed the model to generate content that is rel-
evant to the given question and strictly adheres to
the specified length constraints.

J.1 Analysis of the Generated Data

The analysis is structured to quantify each dataset’s
basic characteristics, followed by a comparative
assessment to identify any significant differences

Phttps://huggingface.co/Ray2333/
Gemma-2B-rewardmodel-baseline

30https://huggingface.co/hendrydong/
Mistral-RM-for-RAFT-GSHF-v@

31https://huggingface.co/internlm/internlm2—1_
8b-reward
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Table 10: Comparison of five quantitative metrics related to quality: Vocabulary Size, Win Rate relative to
AlpacaEval (AlpacaWR), Entropy, Inter-sample N-gram Frequency (INGF), and Word Counts.

Interval Vocabulary Size AlpacaWR Entropy INGF Word Counts
All  Ans Avg. WR LCWR All Ans Avg.
AlpacAns Origin 38474 47.79 50.00 50.00 408.83 0.5686 7376.92 363.85
AdapAlpaca-200 22612 28.08 20.73 43.81 363.55 0.5056 1618.69 145.72
AdapAlpaca-400 36943 45.89 4734 4740 41439 0.5763 6003.87 355.20
AdapAlpaca-600 47691 59.24 62.58 5097 43477 0.6046 9086.01 540.95
AdapAlpaca-800 55362 68.77 71.20 5431 44748 0.6223 10320.11 708.36
AdapAlpaca-1000 66095 82.10 6698 3624 45632 0.6346  10981.84 913.44

Table 11: The subscripts in the LCWR and WR columns
indicate the differences between these metrics and the
corresponding Human WR. A larger absolute value de-
notes a greater disparity between the annotator’s evalua-
tion and Human Preference. "LLM Response" denotes
different responses to AlpacaEval questions for Llama3-
70B, with detailed content available.

LLM Response AlpacaEval AdapAlpaca
Human LCWR WR Human WR

Concise 567  25.7342006 11104543 724 6.10_114

Detailed 4612 3862750 50.80,ugs 4199  42.98,000

Quality Enhancement 5348  42.59_1989 56.504302 51.63  50.89_0.74

Table 12: The subscripts in the LCWR and WR columns
indicate the differences between these metrics and the
corresponding Human WR. A larger absolute value de-
notes a greater disparity between the annotator’s eval-
uation and Human Preference. "LLM Response" de-
notes different responses to AlpacaEval questions for
Qwenl.5-72B.

LLM Response AlpacaEval AdapAlpaca
Human LCWR WR Human WR
Concise 9.24  31.0342179 13.201396  8.56 7.40_1.16
Detailed 4552 38.50_702 42.70_282 3997 38.92_;05
Quality Enhancement ~ 46.61  40.62_599 48.8742906 43.18 44.01.9%3

attributable to the varying response lengths. Ta-
ble 10 presents a comprehensive overview, pro-
viding a snapshot of the informational content
across different datasets. Specifically, it includes
vocabulary size, inter-sample N-gram Frequency
(INGF) (Mishra et al., 2020), word counts of
the generated dataset, win rate, length-controlled
win rate, and entropy for AlpacaEval-Origin and
AdapAlpaca-200, AdapAlpaca-400, AdapAlpaca-
600, AdapAlpaca-800, and AdapAlpaca-1000. Our
findings indicate the following: 1) Longer re-
sponses generally exhibit higher vocabulary sizes
and word counts, suggesting a richer linguistic
structure. 2) The INGF metric reveals that while

Table 13: Prompt for dataset generation, with {max
word }-{min word} ranges set as 0-200, 200-400, 400-
600, 600-800, and 800-1000.

Dataset generation prompt

You are a helpful assistant, highly attentive to
the specified token range required from user.
Respond to the following question, your reply
must only be within {max word}-{min word}
words.

longer responses tend to include more common N-
grams, there is significant variability in the types
of N-grams used, indicating a creative and diverse
use of language. 3) Under Win Rate (WR) metrics,
longer responses disproportionately receive higher
preference scores due to their higher information
mass. However, applying the length-controlled
win rate (LCWR) significantly mitigates this bias,
leading to a more balanced distribution of scores
across different response lengths. This analysis
aims to ascertain whether this phenomenon is in-
trinsic to the response quality or merely a byprod-
uct of increased length. Our results demonstrate
that although longer responses generally possess
higher information mass, the quality of informa-
tion, as measured by win rate, does not necessarily
increase proportionally. Excessively lengthy re-
sponses can result in a decline in desirability, such
as reduced consistency. For instance, in Table 10,
the win rate of AdapAlpaca-1000 is lower than that
of AdapAlpaca-800.

J.2 Dataset Documentations.

The dataset comprises five JSON files for the
AdapAlpaca-200, AdapAlpaca-400, AdapAlpaca-
600, AdapAlpaca-800, and AdapAlpaca-1000.
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Each file is generated using our length control
prompt technique with the Alpaca dataset employ-
ing the GPT-4 1106 model.

Each data file contains a list of items with the
following fields:

e instruction: the prompt is given to generate
the response.

e generator: identifies the model used.
» dataset: specifies the dataset used.

e output_word_count: the word count of the
generated response.

e output:
model.

the actual text generated by the

J.3 Intended Uses.

The provided datasets, AdapAlpaca-200,
AdapAlpaca-400, AdapAlpaca-600, AdapAlpaca-
800, and AdapAlpaca-1000, are specifically
designed for researchers and practitioners in
machine learning, natural language processing,
and related fields. These datasets are intended to
facilitate the evaluation of models that generate
responses of similar lengths. They provide a
standardized framework to repeatedly test and
compare the performance of different models as
detailed in our accompanying paper. This aims to
ensure consistent evaluation and benchmarking
of models under controlled conditions that mimic
real-world application scenarios.

K Human Study on More Artifacts

To ensure that length-controlled generation in Ada-
pAlpaca does not introduce unintended artifacts
that compromise content quality, we conduct a
human evaluation study assessing the presence of
three types of artifacts across different response
lengths: confusion, redundancy, and dilution of
meaning. We design this study in response to the
concern that length-conditioned generation may
introduce semantic or stylistic shifts, potentially
affecting the fidelity of the response beyond the
scope of information mass. While our method
does not forcibly compress or expand existing
responses, it uses GPT-4 to regenerate answers
that naturally fall within specific word-length
intervals using carefully crafted prompts. This
raises the question: Do these generations maintain
high clarity, specificity, and non-redundancy,

regardless of their length? To assess this, we
sample responses from five buckets of AdapAl-
paca—AdapAlpaca-200, AdapAlpaca-400,
AdapAlpaca-600, AdapAlpaca-800, and
AdapAlpaca-1000—each containing responses
targeting a distinct word count interval. For
each bucket, we randomly sample 50 instruction-
response pairs. Each response is evaluated
independently by five trained annotators along
three dimensions, using a 5-point Likert scale (1
= best, 5 = worst): (1) Confusion. Defined as
the degree of unclear logic, ambiguous phrasing,
or inconsistent reasoning within the response.
(2) Redundancy. Defined as the amount of
unnecessary repetition, verbose restatements, or
filler content that does not add informational value.
(3) Dilution of Meaning. Defined as the extent
to which the response includes vague or generic
content that weakens the informativeness or
specificity. Their Prompt can be found in Table 15.
All annotators received detailed scoring rubrics and
example-based guidelines for consistent judgment.
The following average scores were computed
across the 250 samples in each artifact category.
As shown in Table 14, all three metrics remain
below 2.0 across all length intervals, indicating a
low level of confusion, redundancy, and dilution of
meaning—even for longer responses. While there
is a mild upward trend as length increases (partic-
ularly in redundancy), the absolute magnitude of
change is small and does not suggest significant
degradation in response quality. These results
validate the design of our controlled generation
setup: by guiding GPT-4 to produce responses
that naturally fall into target length ranges, we
preserve semantic coherence and content fidelity
across varying information mass levels. We
believe this supports the core assumption behind
AdapAlpaca—that matched-length comparisons
can be made fairly without introducing spurious
artifacts in the responses themselves.

Length Bucket Confusion Redundancy Dilution
AdapAlpaca-200 1.23 1.33 1.37
AdapAlpaca-400 1.24 1.37 1.43
AdapAlpaca-600 1.25 1.44 1.46
AdapAlpaca-800 1.24 1.51 1.49
AdapAlpaca-1000 1.29 1.57 1.53

Table 14: Average artifact scores (1 = best, 5 = worst)
across different response length intervals in AdapAl-
paca. All values are averaged over 5 annotators and 50
samples per bucket.
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L Motivation for Quality Decomposition

Our proposed decomposition of response quality
into desirability and information mass is grounded
in both practical considerations from LLM evalua-
tion and theoretical intuitions derived from commu-
nication and information theory. While many prior
works have treated response length as a confound-
ing factor in evaluation (Dubois et al., 2024a; Koo
et al., 2023), we posit that length itself is not in-
herently problematic. Rather, its influence emerges
through two intertwined but distinguishable dimen-
sions: how much conftent is conveyed (i.e., infor-
mation mass) and whether that content is desirable
in terms of trustworthiness and utility. Desirability
refers to qualities of a response that are invariant to
length, such as factual correctness, logical coher-
ence, non-toxicity, and consistency with the prompt.
These properties reflect whether a response is ac-
ceptable or useful to a human annotator, regardless
of verbosity. From a decision-theoretic perspec-
tive, desirability can be understood as a measure
of alignment between the generated output and the
implicit reward signal used in preference modeling.
Information mass, on the other hand, captures the
amount of content present in a response. We draw
on classical information theory, where entropy mea-
sures the uncertainty or information content of a
message (Von Neumann, 1932). In conditional set-
tings—i.e., given an instruction—responses with
more unique, relevant, and elaborated content ex-
hibit higher conditional entropy. We operationalize
this using a language model to compute the average
token-level conditional entropy, which serves as a
tractable proxy for the richness of the response.
This decomposition is also motivated by cogni-
tive theories of communication, which suggest that
human preference judgments are influenced both
by what is said (informativeness) and how well
it is said (coherence, fluency, and alignment with
norms). By modeling response quality as a function
of these two components, we obtain a framework
that explains why longer responses often receive
higher win rates: they accumulate more informa-
tion mass, which is rewarded by LLM-based an-
notators—even when desirability remains constant.
Moreover, this formulation enables targeted inter-
vention. For example, when a model’s win rate is
low despite acceptable desirability, it may benefit
from generating responses with higher information
mass. Conversely, increasing length without regard
to desirability may artificially inflate quality judg-

ments without improving actual usefulness. Our
experiments empirically validate that win rate is
influenced by these two components in separable
and predictable ways.

M Prompt Content

Here, we show the 6 prompts in Table 16 we used
to generate the AlpacaEval answers.

N Quality Decomposition Across Diverse
Test Model

To ensure our conclusions are not restricted to
specific model architecture, we use LLAMA3-
70b (Al@Meta, 2024), Qwenl.5-72b (Bai et al.,
2023), GPT4-0 (Achiam et al., 2023) and GPT-
3.5 (Achiam et al., 2023) as the backbone model.
The results in Figure 9, Figure 10, Figure 11, Fig-
ure 12, Figure 13, Figure 14, Figure 15 and Fig-
ure 16 show that different model backbone does
not change the conclusions we derived.

O Quality Decomposition Across Diverse
Annotator Model

To ensure our conclusions are not restricted to
specific model architectures, we used Llama3-8B
and Llama3-70B as annotator models, as illus-
trated in Figures 17, 18, 19, and 20. Our findings
show that at larger model scales, such as Llama3-
70B (AI@Meta, 2024), the results are consistent
with those obtained using GPT-4 (1106) (Achiam
et al., 2023) in the main text. However, when us-
ing Llama3-8B (Al@Meta, 2024) as the annotator
model, we observe a more pronounced length bias.
This is evidenced by a significantly higher win rate
for longer, copy-pasted responses, indicating that
weaker models are more affected by length bias.
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Table 15: Evaluation Prompts: Confusion, Redundancy, Dilution Rating Scales.

Prompt Instruction Content

Confusion ### [Question]
*(the question.)*
### [ Answer]
*(the answer.)*
### Evaluation Guidelines:
Confusion refers to unclear logic, ambiguous phrasing, inconsistent reasoning, or
abrupt shifts in topic within the response.
Please assign a rating from 1 to 5 according to the following scale:
- 1 (No confusion): The answer is clear, coherent, and logically consistent throughout.
- 2 (Slight confusion): The answer is mostly clear, with minor confusing elements
that do not significantly hinder understanding.
- 3 (Moderate confusion): The answer contains noticeable points of confusion
(e.g., ambiguous wording or unclear logic), though the overall meaning can still be
understood.
- 4 (High confusion): The answer frequently exhibits confusing elements that sub-
stantially impact its clarity and readability.
- 5 (Severe confusion): The answer is largely incoherent, confusing, or impossible to
understand clearly.

Redundancy ### [Question]
*(the question.)*
### [ Answer]
*(the answer.)*
### Evaluation Guidelines:
Redundancy refers to unnecessary repetition of information, overly verbose expres-
sions, or prolonged restatements that do not contribute additional meaningful content.
Please assign a rating from 1 to 5 according to the following scale:
- 1 (No redundancy): The answer is concise and does not contain unnecessary
repetition.
- 2 (Slight redundancy): The answer occasionally repeats information, but overall
readability and clarity remain strong.
- 3 (Moderate redundancy): The answer has noticeable repetitive phrasing or ideas
that slightly reduce clarity or conciseness.
- 4 (High redundancy): The answer frequently repeats information, negatively im-
pacting readability and efficiency of communication.
- 5 (Severe redundancy): The answer is dominated by repetitive or verbose content,
significantly reducing clarity or informational value.

Dilution ### [Question]

*(the question.)*

### [ Answer]

*(the answer.)*

### Evaluation Guidelines:

Dilution of meaning refers to the presence of vague, generic, or filler content in the
answer, resulting in reduced informativeness and specificity.

Please assign a rating from 1 to 5 according to the following scale:

- 1 (No dilution): The answer consistently provides specific, informative, and mean-
ingful content.

- 2 (Slight dilution): The answer is generally specific but contains minor instances of
vague or filler content.

- 3 (Moderate dilution): The answer includes several sections with general or nonspe-
cific information, noticeably reducing its informativeness.

- 4 (High dilution): The answer mostly consists of generic statements or filler material,
offering limited specific insights.

- 5 (Severe dilution): The answer is overwhelmingly vague, generic, or lacking
specific information, providing minimal to no meaningful content.
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Table 16: The content of Concise, Detail, Toxic, Inconsistent, Biased, Illogical and Verbose Prompt.

Concise

Provide concise responses. Limit details to the most crucial points only.

,
\

Detail

Respond with detailed information. Cover all relevant aspects thoroughly.

(
\

Toxic

Use language that may be considered offensive or inappropriate. Prioritize aggressive tones and
disregard for sensitivity. Include harsh criticisms, derogatory remarks, and inflammatory language.

(
\

Inconsistent

Deliberately provide responses that contradict earlier answers or established facts, creating confusion.
Make sure the inconsistency is noticeable and disrupts the coherence of the information provided.

r
|

Biased

Deliver responses that show a clear prejudice, favoring certain ideas or opinions without justification.
Ignore impartiality and balance in your explanations and arguments. Focus on promoting a specific
viewpoint or agenda, disregarding evidence that might contradict it.

r
L

Illogical

Construct arguments based on flawed logic, superstitions, or irrelevant information, avoiding sound
reasoning. Include fallacies, such as slippery slopes, straw man arguments, and non-sequiturs, to
ensure the responses lack coherence and rational basis.

r
L

Verbose

Tasked with providing a verbose response filled with trivial information. Diverge from the core topic,
introducing broad, unrelated details and tangential anecdotes.

r
L

Relevant

Dive deeply into the core issues of the query. Address the query directly while enriching the
understanding by exploring how each related aspect is crucial to the main issue. Focus on elements
that significantly strengthen the central argument or analysis.

,
\

Ensure that your response provides a clear and logical progression from initial assumptions to final

conclusions. Focus on connecting all elements of the discussion seamlessly, emphasizing the rationale
behind each step to clarify the topic comprehensively.
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Figure 9: Validation of desirability’s impact on quality for LLAMA3-70b.
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Figure 10: Validation of information mass’s impact on quality for LLAMA3-70b.
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Figure 11: Validation of desirability’s impact on quality for Qwen1.5-72b.

N Win Rate 0 Lose Rate Entropy
Copy-paste 051
(a) AlpacaEval
s Win Rate [0 Lose Rate Entropy
Copy-paste 0.50
Biased 0.50
Inconsistent 049
Tllogical 0.49
Verbose 0.51
Toxic 049
(d) Self-Instruct
B Win Rate [ Lose Rate oy
Origin 0.51
Detailed 0.58
Concise 0.43

s Win Rate

(a) AlpacaEval

0 Lose Rate Entropy

Origin
Detailed

Concise

0.50

0.54

0.41

(d) Self-Instruct

Bmm Win Rate 0 Lose Rate Entropy
Origin 0.52
Detailed 0.57
Concise 0.41
(b) LIMA
m Win Rate 0 Lose Rate Entropy
Origin 0.57
Detailed 0.60
Concise 0.42

(e) Vicuna

Bmm Win Rate 0 Lose Rate Entropy
Origin 0.48
Detailed 0.53
Concise 0.45
(c) Koala
m Win Rate 0 Lose Rate Entropy
Origin 0.46
Detailed 051
Concise 0.39

() Wizardlm

Figure 12: Validation of information mass’s impact on quality for Qwen1.5-72b.
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Figure 13: Validation of desirability’s impact on quality for GPT4-o.

s Win Rate [ Lose Rate Entropy
Copy-paste 0.56
Biased 056
Inconsistent 0.56
Tllogical 0.56
Toxic 055
Relevance _ 056
(a) AlpacaEval
s Win Rate [0 Lose Rate Entropy
Copy-paste 0.54
Inconsistent 053
Toxic 0.54
Relevance _ 054
Logical _ 0.54
(d) Self-Instruct
B Win Rate 0 Lose Rate Entropy
Origin 0.56
Detailed 0.60
Concise 0.49
(a) AlpacaEval
B Win Rate W0 Lose Rate Entropy
Origin 0.54
Detailed 0.58
Concise 0.44

(d) Self-Instruct

Bmm Win Rate

0 Lose Rate Entropy

Origin 0.56
Detailed 0.61
Concise 0.47

(b) LIMA
m Win Rate 0 Lose Rate Entropy
Detailed - 0.61
Concise 0.50

(e) Vicuna

Bmm Win Rate

0 Lose Rate Entropy

Origin
Detailed

Concise

0.57

0.61

0.53

(c) Koala
m Win Rate 0 Lose Rate Entropy
Detailed - 0.61

() Wizardlm

Figure 14: Validation of information mass’s impact on quality for GPT4-o.
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Figure 15: Validation of desirability’s impact on quality for GPT-3.5.
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Figure 16: Validation of information mass’s impact on quality for GPT-3.5.
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Figure 17: Validation of desirability’s influence on quality for GPT-4 (using Llama3-8B as the annotator model).
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Figure 18: Validation of information mass’s influence on quality for GPT-4 (using Llama3-8B as the annotator

model).

6793



mm Win Rate [ Lose Rate  Enropy
Origin _ 0.57
Copy-paste _ 0.57
Inconsistent 0.56
Illogical 0.59
Verbose 058
Toxic 0.59
Relevance _ 0.57
Logical _ 0.57
(a) AlpacaEval
s Win Rate [ Lose Rate  Epropy
Origin _ 0.53
Biased 054
Inconsistent 0.53
Tllogical 055
Verbose 054
Toxic 055
Relevance _ 053
Logical _ 0.53

(d) Self-Instruct

mmm Win Rate 0 Lose Rate Epgropy

Origin _ 0.57
Copy-paste _ 057
Biased _ 058
Inconsistent _ 057
Tllogical 0.59
Verbose _ 059
Toxic 0.60
Relevance _ 0.57
Logical _ 0.57
(b) LIMA
N Win Rate % Lose Rate ppiropy
Origin 059

Copy-paste
Biased
Inconsistent
Tllogical
Verbose
Toxic

Relevance

3
]

Logical

(e) Vicuna

s Win Rate [ Lose Rate  Eptropy

Origin _ 0.57
Copy-paste _ 0.57
Biased _ 058
Inconsistent o ws 057
Illogical 0.58
Verbose _ 058
Toxic 059
Relevance _ 0.57
Logical _ 0.57

(c) Koala
mmm Win Rate [0 Lose Rate  Epropy

Origin _ 0.57

Copy-paste _ 0.57

Inconsistent 0.56
Illogical 0.58
Verbose 058

Relevance _ 0.57

Logical _ 0.57

(f) Wizardlm

Figure 19: Validation of desirability’s influence on quality for GPT-4 (using Llama3-70B as the annotator model).
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Figure 20: Validation of information mass’s influence on quality for GPT-4 (using Llama3-70B as the annotator

model).
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