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Abstract

Large language models (LLMs) have achieved
remarkable success across various natural lan-
guage processing (NLP) tasks. However, recent
studies suggest that they still face challenges
in performing fundamental NLP tasks essential
for deep language understanding, particularly
syntactic parsing. In this paper, we conduct
an in-depth analysis of LLM parsing capabili-
ties, delving into the underlying causes of why
LLMs struggle with this task and the specific
shortcomings they exhibit. We find that LLMs
may be limited in their ability to fully lever-
age grammar rules from existing treebanks, re-
stricting their capability to generate syntactic
structures. To help LLMs acquire knowledge
without additional training, we propose a self-
correction method that leverages grammar rules
from existing treebanks to guide LLMs in cor-
recting previous errors. Specifically, we auto-
matically detect potential errors and dynami-
cally search for relevant rules, offering hints
and examples to guide LLMs in making correc-
tions themselves. Experimental results on three
datasets using various LLMs demonstrate that
our method significantly improves performance
in both in-domain and cross-domain settings.

1 Introduction

LLMs have exhibited significant success across a
wide range of NLP tasks and applications (Kojima
et al., 2022; Raunak et al., 2023; Chiang and Lee,
2023). However, in the field of syntax parsing,
enabling LLMs to achieve a deep structural un-
derstanding of sentences remains challenging (Bai
etal., 2023; Li et al., 2023; Tian et al., 2024). Al-
though non-LLM parsers have achieved over 95%
F-scores in the newswire domain, the performance
of LLMs falls significantly short. This discrepancy
inevitably raises two questions: Where exactly
does the parsing capability of LLMs fall short?
What specific knowledge are LL.Ms lacking?

* Corresponding author.

Prior works have provided some findings about
the parsing capabilities of LLLMs. For instance, Bai
et al. (2023) pointed out hallucinations in LLM
outputs, while Tian et al. (2024) highlighted that
they tend to be much flatter than gold trees. How-
ever, existing works primarily analyze high-level
performance metrics without delving into the de-
tailed shortcomings or the underlying causes. To
address these gaps, we conduct an in-depth analysis
of LLM parsing capabilities, examining both the
structural characteristics of their outputs and the
specific types of errors they exhibit. Our findings
suggest that the inability to fully utilize grammar
rules in the training data is a potential reason why
LLMs fail. Unlike non-LLM parsers, which can
comprehensively learn rules from extensive train-
ing data, LLMs solely rely on limited contextual
examples provided during few-shot learning. This
fundamental difference distinguishes LLM parsing
performance from non-LLM parsers.

Motivated by the above analysis, we are inter-
ested in methods that allow LLMs to learn struc-
tural knowledge without additional training. The
method is not intended for making LLM parsers
practical (competitive to non-LLM parsers), but for
analyzing the performance of LLMs on the parsing
task. Therefore, in this work, we propose a self-
correction method that first identifies errors in the
initial answer, then searches the treebank for rele-
vant examples based on the characteristics of differ-
ent types of errors, and finally guides LLMs in cor-
recting errors via hints and examples. This method
effectively enables LLMs to reduce all types of
errors in their parsing results, thereby improving
the overall parsing performance. Experimental re-
sults prove that our method achieves significant
improvement in both in-domain and cross-domain
settings.

In conclusion, our contributions are three-fold:

e We conduct an in-depth analysis of LLM pars-
ing capabilities from the perspective of the overall
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parsing performance, the characteristics of their
parsing results over grammar rules, and the four
types of errors they make.

e We propose a self-correction method that en-
ables LLMs to learn from existing treebanks and
correct all types of errors in their previous pre-
dictions, enhancing parsing capability without the
need for additional training.

e We conduct extensive experiments on vari-
ous LLMs, and our method achieves consistent
improvements across different datasets. Further
analysis demonstrates that our method effectively
mitigates the limitation of LLM parsing.

Our code is available at https://github.com/
zzy@509/Self-Correction-Parsing.

2 In-depth Analysis of LLM Parsing
Capability

LLMs have demonstrated impressive performance
in a wide range of NLP tasks (Brown et al., 2020;
Wei et al., 2022). However, recent studies indicate
that LLMs face significant challenges when per-
forming syntactic parsing tasks, such as producing
parse trees that are flatter than gold trees (Bai et al.,
2023; Tian et al., 2024). Although previous studies
have explored the parsing capability of LLMs to
some extent, they remain relatively limited in pro-
viding deep insights into the potential reason why
LLMs fail. Both studies lack a comprehensive anal-
ysis of the reasons behind the weak performance
and the specific types of errors LLMs make.

To gain a deeper understanding of the con-
stituency parsing capacity of LLMs, we conduct
an in-depth analysis from the perspectives of the
overall parsing performance, the characteristics of
their parsing results, and the types of errors they
make. Specifically, we first evaluate the parsing
performance of different LLMs under the few-shot
setting, comparing these results to those from one
of the non-LLM SOTA models, the Berkeley parser
(Kitaev and Klein, 2018). Second, we compare
the parsing results of LLMs with both gold trees
and those produced by SOTA non-LLM parsers,
aiming to analyze the distinct characteristics of
LLMs and non-LLM parsers and uncover reasons
for the significant performance gap between them.
Finally, we categorize the parsing errors made by
LLM:s into four types and analyze the error distribu-
tion, and conduct an in-depth examination to reveal
which types of errors LLMs commonly make.

Dataset | Model | R P F
Berkeley 9556 96.10 95.82
LLaMa-8B 11.39 1191 11.64

PTB LLaMa-70B | 45.02 51.24 47.92
GPT-3.5 62.24 71.62 66.60
GPT-4 69.97 77.14 7338
Berkeley 88.76  92.82 90.74
LLaMa-8B 7.01 11.68 8.77

CTB5 Qwen-72B 3445 4560 39.24
DeepSeek-v3 | 4349 5271 47.65
GPT-3.5 27.19 4584 34.14
GPT-4 4044 4995 44.69
Berkeley 86.38 88.50 87.43
LLaMa-8B 9.67 9.48 9.57

MCTB | LLaMa-70B | 40.77 48.40 44.26
GPT-3.5 5171 6271 56.68
GPT-4 6229 6798 65.01

Table 1: The overall parsing performance of different
models on the PTB, CTBS5, and MCTB datasets.

2.1 Overall Parsing Performance of LLMs

We evaluate the capability of LLMs in both in-
domain and cross-domain settings. For in-domain
evaluation, we use the original test sets of the Penn
Treebank (PTB) (Marcus et al., 1993) and Chi-
nese Penn Treebank 5 (CTB5) (Xue et al., 2005).
For cross-domain evaluation, to manage costs, we
use a subset of the Multi-domain Constituent Tree-
bank (MCTB) (Yang et al., 2022b), randomly sam-
pling 200 sentences from each domain of MCTB,
which covers Dialogue, Forum, Law, Literature,
and Review domains, resulting in a 1,000 sen-
tences test set. We examine whether these datasets
have been leaked to the LLMs in Appendix A.3.
Our experiments include both open-sourced LLMs,
i.e., LLaMA-3-8B !, LLaMA-3-70B (Meta, 2024),
Qwen-2.5-72B (Yang et al., 2024) and DeepSeek-
v3 (DeepSeek-Al et al., 2024), and closed-sourced
LLMs, i.e., GPT-3.5 2 and GPT-4 3. To understand
the gap between LLMs and non-LLMs, we also
report the performance of Berkeley Neural Parser
(Kitaev and Klein, 2018), an existing SOTA neural
parser. For the in-domain setting, we train Berkeley
on the train set of PTB and CTBS, respectively. For
the cross-domain setting, we train Berkeley on the
train set of PTB and evaluate on the MCTB.
Following standard practice in previous works,
we sample five examples in PTB/CTB-train for the
few-shot setting. We set temperature to O follow-

'We use the English version of LLaMA-3 from
https://huggingface.co/meta-llama and the Chinese version
from https://github.com/ymcui/Chinese-LLaMA-Alpaca-3.

2https://platform.openai.com/docs/models/gpt-3.5-turbo

3https://platform.openai.com/docs/models/gpt-4
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ing prior works while retaining default settings for
other parameters. After generation, we process the
tree valid by adding left or right brackets when
the brackets of LLMs are mismatched. Finally,
we evaluate the performance of models with the
standard evaluation toolkit EVALB*. Details of the
LLM parsing prompt are shown in Appendix A.1.
Table 1 presents the results of various LLMs
on different test sets. From the results, we can
draw the following conclusions. First, the perfor-
mance of all LLMs shows a significant decrease
compared to that of the traditional non-LLM parser.
This may be because the non-LLM parser has thor-
oughly learned the structures present in the exist-
ing treebanks while LLMs may not. We will dis-
cuss this in more detail in Section 2.2. Second,
among all LLMs, closed-source LLMs (GPT-3.5
and GPT-4) deliver better results than open-source
LLMs. Third, when adapted to the cross-domain
test set, all the parsers exhibit a large performance
drop. This indicates a notable gap between specific-
domain and general-domain data, highlighting the
greater challenges posed by cross-domain parsing.
The above results naturally give rise to two im-
portant considerations: 1) the specific limitations
of LLMs in parsing capabilities compared to non-
LLM parsers, and 2) the unique characteristics of
LLM-generated parse results in comparison to gold-
standard trees. Therefore, we conduct a more in-
depth analysis in Section 2.2 and Section 2.3.

2.2 Analysis over Grammar Rules

Previous study (Dakota and Kiibler, 2021) has
proved that parsers tend to generate structures that
have been seen in the train set, and most of these
known structures are parsed correctly.> Unlike non-
LLM parsers that can learn from the entire train set,
LLMs are limited to a few examples in the prompt,
thus lacking approaches to all grammar rules. To
investigate whether these known grammar rules
are significant factors that affect performance, we
present rule statistics of the parsing results in Table
2. The third column represents the absolute number
of rules in the parsing results. The fourth column
gives the number of known rules. The fifth and
sixth columns show the accuracy of known rules
and unknown rules, respectively.

“https://nlp.cs.nyu.edu/evalb/

>In this paper, “structures” refers to rules, which are de-
fined as subtrees invlove a parent node and its child nodes. For
example, the subtree “the proposed $ 7 billion bill” in Figure
1(b) corresponds to the rule “NP — DT VBN ADJP”.

# Total Accuracy (%)

Dataset Model parsed known known unknown
Berkeley 46,441 26,745 96.20 60.18
LLaMa-8B 42,710 13,616 26.88 193
PTB LLaMa-70B 38,895 19,597 68.11 19.82
GPT-3.5 38,958 18,409 79.47 33.11
GPT-4 40,166 20,291 81.44 37.14
Berkeley 8,601 6,198 90.19 76.82
LLaMa-8B 5,792 1,993 36.78  4.53
CTB5 Qwen-72B 6,851 3,043 59.19 13.81
DeepSeek-v3 7,491 4,259 64.94 23.33
GPT-3.5 5,480 2,489 55.85 11.07
GPT-4 7,342 3,479 59.73 17.19
Berkeley 17,744 9,916 86.24 68.19
LLaMa-8B 17,587 5,688 35.07 2.15
MCTB LLaMa-70B 14,457 7,518 64.34 16.50
GPT-3.5 14,155 7,091 73.01 27.34
GPT-4 15,731 8,329 73.54 33.27

Table 2: Rule statistics of the parsing results from dif-
ferent models across different datasets.

We observe that the parsing results from non-
LLM parsers contain more numbers of known rules
compared to those from LL.Ms. Further analyzing
the accuracy of these rules, we find that known
rules from non-LLM achieve a high accuracy rate
of 86.24% to 96.20% , whereas those from LLMs
are much lower. This suggests that non-LLM
parsers effectively learn common and valid rules
from existing treebanks and apply them during pars-
ing on different domains. For LLMs, they show a
significant decrease in performance on both known
rules and unknown rules. However, the deeper rea-
son behind this is that a portion of known rules in
the parsing results are incorrectly predicted as un-
known rules, as the absolute number and proportion
of known rules differ significantly from those of the
non-LLM. Moreover, performance improves as the
total number and accuracy of known rules increase.
Therefore, we speculate that LLMs may have rarely
encountered the grammar rules during pre-training,
leading to a failure to apply them during parsing.
The total number and accuracy of known rules are
the main factors affecting the performance, and the
known rules are the specific knowledge that LLMs
lack. The significant performance gap between
LLMs and non-LLM parsers may arise from LLMs
not systematically learning these rules during train-
ing, which increases the likelihood of generating
invalid structures during parsing.

2.3 Analysis over Four Types of Errors

Motivated by previous works (Dakota and Kiibler,
2021; Kummerfeld et al., 2013), we divide parsing
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[ — | \ [
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| I
students laugh loudly
Label: CC NP VP CC NP NP

(d) Deepness Error

Figure 1: Four types of errors.

errors into four types, as illustrated in Figure 1.
Note that we define parsing errors of subtrees by
considering two levels: the root node and its child
nodes, while disregarding the internal structure of
the lower layers within the subtree.

Span Errors. We define “span” as a sequence
of words from word; to word; that forms a con-
stituent and we do not consider the label, as it will
be involved when identifying label errors. There-
fore, span error represents that the boundary of the
parent node does not align with the gold. For in-
stance, the span of the subtree “a young man” in
Figure 1(a) ranging from “a” to “man” does not
exist in the gold “a young man ’s sport”.

Label Errors. The predicted subtree has the
same span with the gold subtree, but one or more
constituent labels are predicted incorrectly, as
shown in Figure 1(b). It could be an error in the
label of the parent node or the child nodes.

20000

Span
Label
16000 = Flatness

® Deepness
12000

8000

4000 ‘

2 o u

Berkeley GPT-35 GPT-4 Ours (GPT-3.5) Ours (GPT-4)

Figure 2: The overview of the four types of errors made
by different models on the PTB.

Flatness Errors. The predicted subtree is flatter
than the gold subtree, which represents the parent
node in the predicted subtree contains more child
nodes, as shown in Figure 1(c).

Deepness Errors. Contrary to flatness errors, the
predicted subtree is deeper than the gold subtree,
which represents the parent node contains fewer
child nodes, as shown in Figure 1(d).

Given a subtree, we first determine whether it is
a span error or one of the other three error types
by checking if the span of the parent node corre-
sponding to the subtree appears in the gold tree.
Furthermore, we use the number of child nodes to
determine which of the three error types it is. In
this way, these four types of errors can encompass
all the mistakes made by the parsers. Certainly,
compound situations may occur, such as a label
error within a flatness error or a deepness error, but
we do not further categorize these.

Figure 2 shows an overview of the error types
made by Berkeley, GPT-3.5 and GPT-4 on the PTB.
As expected, the total number of errors increases as
the performance of models declines, and LLMs
make significantly more errors than non-LLMs.
Among all four types of errors, span errors ac-
count for the largest proportion and the direct cause
might be the inability of LLMs to correctly delin-
eate spans. For flatness errors, they make up a
relatively larger proportion among the remaining
three types of errors that occur within subtrees. For
deepness error, the parsing results of LLM contain
fewer deepness errors than those of non-LLM in
the in-domain setting. We hypothesize that this
is due to the characteristic of LLMs to generate
flatter structures, which results in a greater number
of flatness errors. Because of this characteristic,
there are fewer instances where the predicted trees
are deeper than the gold trees, leading to a fewer
number of deepness errors compared to non-LLMs
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in the in-domain setting. We provide the distribu-
tions of errors across different models and different
dataset in Appendix A.8.

3 Our Self-Correction Approach

The above results and analysis help us better un-
derstand the shortcomings of LLM parsing results
and encourage us to propose targeted methods for
enhancing LLM parsing capabilities. Since Sec-
tion 2.2 has proved that the low performance of
LLMs may stem from their lack of known rules in
the existing treebanks, thereby we are interested
in exploring methodologies that enable LLMs to
effectively assimilate knowledge from the existing
treebanks without the need for additional training
to improve their constituency parsing capabilities.
Furthermore, we aim at a method based on the
four types of parsing errors mentioned in Section
2.3 to effectively address all errors made by the
LLM. In this work, we propose a self-correction
method based on the rules from the existing tree-
bank, guiding LLLMs to correct errors in the previ-
ous answers. Consistent with the common process
of self-correction in previous works (Pan et al.,
2024; Tong et al., 2024), we first prompt LLM to
generate a base answer, identify potential errors
in it, and then guide LLM to correct these errors
through specific hints and examples.

Specifically, based on the characteristics of pars-
ing results, we categorize self-correction into two
parts: sentence mismatch correction and tree struc-
ture correction. First, we perform mismatch cor-
rection to ensure the alignment of the leaf nodes
between the predicted trees and gold trees. Then
we make structure correction, which addresses four
types of structural errors introduced in 2.3.

3.1 Sentence Mismatch Correction

We find that LLMs often make changes on their
own, leading to parse trees containing new words
which do not exist in the original sentence. This
phenomenon has also been demonstrated by Bai
et al. (2023), leading to a significant impact on the
performance. Therefore, we first make sentence
mismatch correction. After obtaining base answers,
we identify errors and design different hints for
different errors, letting LLLM generate a new answer.
The detail of hints is shown in Appendix A.2.

3.2 Tree Structure Correction

After ensuring the alignment of the leaf nodes be-
tween predicted trees and gold trees, we make tree

structure correction. Specifically, we identify er-
rors by comparing them with grammar rules in the
existing treebank and correct subtrees of different
heights from the top to the bottom. Compared
with previous works that focus on the design of the
prompt, the advantages of our method are three-
fold: 1) Previous work (Huang et al., 2023) has
shown that without external knowledge, it is diffi-
cult for LLMs to achieve intrinsic self-correction
solely on their own capabilities. Therefore, con-
sidering that the number and accuracy of known
rules are decisive factors influencing performance,
we leverage existing treebanks as external tree-
bank to enable LLMs quickly acquire struc-
tural knowledge. 2) Previous work (Tyen et al.,
2023) has shown that the difficulty of intrinsic self-
correction lies in the inability of LLMs to identify
the location of errors, rather than their inability to
correct errors. Therefore, we directly rely on the
rules in the treebank to identify errors, avoid-
ing the issue where LLMs fail to locate the er-
rors. Our method preserves the correct parts of
the parsing results and focuses solely on correcting
the potentially incorrect parts, which greatly saves
time and resources. 3) Qur correction covers all
types of parsing errors. For different errors, our
proposed method can dynamically search rules in
the existing treebanks to serve as hints to guide the
correction. As shown in Figure 3, our tree structure
correction can be divided into four detailed steps:

1) Identifying Errors Based on Rules. To iden-
tify errors in the base answer, we extract rules of the
subtree and search it in the existing treebanks® . If
the rule is not found in the treebank, we determine
it is likely incorrect and requires correction.

2) Processing Rules based on Errors. Once an
error is identified, we aim at searching rules that
can guide the correction of the current error. There-
fore, we traverse rules in the existing treebanks and
process them based on the characteristics of differ-
ent errors so that the correction involves all types
of errors. The main idea is that if the predicted
rule and the traversed rule can be transformed into
the same form after applying a specific processing
method, we can infer that the predicted rule has
made the corresponding error. As is shown in Fig-
ure 1, for label error, we directly take the predicted
rule and the traversed rule. For flatness error, we re-
place the child nodes of the traversed rule with their

®We use the train sets of PTB and CTBS as the existing
treebanks for English and Chinese, respectively.
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oun:
(c) Identify RSN ERNE (VB learn) (NP (NN snow)
LCS: 1 (NN skiing))))

PRP$ NN VP < PP NP VP PP
Not found VBD :/D

PP NP VP PP

Figure 3: The process of structure correction. For clarify, we provide a typical example of rule for each processing
method in the figure. In practice, each rule needs to undergo three types of processing methods and be ranked.

own child nodes. For deepness error, on the con-
trary to flatness error, we replace the child nodes
of the predicted rule with their own child nodes.

3) Ranking Based on the Similarity. After pro-
cessing, our goal is to find rules most similar to the
gold trees to serve as examples. If two rules ex-
hibit significant similarity following the application
of specific processing method, the traversed rules
are considered close to the gold, and can provide
valuable structural information to LLMs. To deter-
mine the similarity, we take the constituent labels
of the child nodes to form label sequences as shown
in Figure 3 and use the Longest Common Subse-
quence (LCS) as the metric. If there are rules with
the same LCS, we prioritize the rule that appears
more frequently in the treebank. Then we rank
traversed rules and select the top five rules, consid-
ering them can guide the LLM in self-correction.

4) Guiding LLM in Making Self-Corrections.
Finally, we sample examples corresponding to
these rules from the treebank and incorporate them
into the prompt to guide the LLM in generating
new answers. Notably, our approach avoids exces-
sive interference with the self-correction process.
The entire procedure relies solely on the own capa-
bilities of LLMs, allowing it to either reference the
provided examples to produce new answers or re-
tain its original results, with the final determination
entirely left to the their judgment.

Through different processing methods, our
method can directly correct label , flatness, and
deepness error. Different from these three types,
span error occurs outside the subtree (rules) and
cannot be resolved by making corrections to the
subtrees. However, since our method starts from
the top of the entire tree and correct subtrees of dif-

Dataset | Model ‘ R P F
GPT-3.51 72.48 84.86 78.18
GPT-4" 77.74 89.04 83.00
PTB LLaMa-8B 29.42+13_()3 38‘27&5,36 33.27+21_53
LLaMa-70B 54.90,988  61.49.1025  58.01410.00
GPT-3.5 74.5941235  80.11 4849  77.2541065
GPT-4 82.27,1230 84.78 1764 83.50.10.12
LLaMa-8B 22.63+15_¢,2 34.22442,54 27.24+1s_47
CTB5 QWCH-72B 40.12 +5.67 52.18 +6.58 45.36 +6.12
DeepSeek-v3 | 57.33,1384  65.0841237  60.9641331
GPT-3.5 39.5041231 571241108 46.7041256
GPT-4 61.67.2123  68.69.1574  64.99.2030
LLaMa-8B 259141624 34.0140453  29.41.19384
MCTB LLaMa-70B 48.31 +7.54 55.68 +7.28 51.73 +7.47
GPT-3.5 60.14 ;843 71.71 4890 6541 4573
GPT-4 T171 w040 7713 1015 7432 193

Table 3: The main result of our self-correction method.
The "Bold" identifies the best performance. The | de-
notes the results referred from Tian et al. (2024). The
subscript , indicates the improvement.

ferent heights from top to bottom, we speculate that
this process can also indirectly help resolve span
errors, which has been proven in Experiments 4.4.
Additionally, we only consider the constituency la-
bels within the subtree, ignoring the label of root
node. Because we assume that the label of root
node has already been corrected during the correc-
tion of higher subtrees. Also, setting a constraint
that the label of root node must match the predicted
rules during traversing significantly helps reduce
time. We also compare our method with random
selection in Appendix A.4 and investigate the ef-
fect of different numbers of final rules and different
searching strategies in Appendix A.5 and A.6.

4 Experiments

We conduct experiments to verify the effectiveness
of our self-correction method and perform a de-
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Figure 4: The effect of different corrections. “mismatch”
represents sentence mismatch correction and “h” repre-
sents the height of subtrees in tree structure correction.

tailed analysis to gain insights into what LLMs
have learned through our method. All experimen-
tal settings remain consistent with those in direct
LLM-based parsing, as described in Section 2.1.

4.1 Main Results

The main experimental results of our method are
listed in Table 3. Compared to the results of di-
rectly using LLM for parsing with five-shot learn-
ing in Table 1, our proposed self-correction method
achieves substantial and consistent improvements
across all datasets. In particular, for the in-domain
setting, our method achieves an improvement of
over 10 F1 scores on both PTB and CTBS5. For
cross-domain settings, despite the gap between the
general treebank and the target domain test set, our
method still brings consistent improvements.

Compared to the result of Tian et al. (2024),
which first prompts LLMs for chunking and then
use the chunking results to guide LLM parsing,
though our result with GPT-3.5 is 0.93 F1 score
lower on PTB, the result with GPT-4 is 0.5 F1
score higher. We hypothesize that this is because
our method requires LLMs to learn from examples
and make independent judgments by themselves.
Therefore, the stronger the capability of an LLM,
the greater its performance improves. Overall, our
method consistently achieves significant improve-
ments under both in-domain and cross-domain set-
tings , effectively mitigating the limitation of overly
flatter parsing results from LLMs.

4.2 The Effect of Different Corrections

To analyze the effectiveness of sentence mismatch
correction and tree structure correction, we evalu-
ate their respective improvements across varying
tree heights with GPT-4 on the PTB. As shown in
Figure 4, first, LLMs generate a substantial number
of mismatched trees during parsing, which greatly
affects the parsing performance. By implementing

1320 3505
33% 2.4%

Correct
15807 Unknown

16995
Total number o oun 1396% Incorect  gog, 1Otal NUMber

10875 ofrulest 5050y 13400 ofrules:  [60py 121928
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Incorrect Incorrect
4394 4078
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(a) GPT-4 (b) GPT-4 (Ours)

Figure 5: Rule statistics of the parsing results gener-
ated from GPT-4 before and after applying our self-
correction method on the PTB dataset.

our method, the number of mismatched trees is
significantly reduced, yielding substantial perfor-
mance gains. Second, tree structure correction also
significantly enhances the performance. Specif-
ically, the improvement rate of the performance
increases as the height of subtrees decrease, which
means correcting lower subtrees is more effective.
This may be because the rules of lower subtrees
have a higher overlap rate between the treebank
and the test set.

4.3 Has LLMs Truly Acquired Knowledge?

To investigate whether the LLM truly learns struc-
tural knowledge during self-correction, we com-
pare the rule statistic before and after applying our
method with GPT-4 on the PTB. As shown in Fig-
ure 5, we categorize rules into known rules and
unknown rules and further analyze their accuracy.
First, our method significantly increases the abso-
lute number of rules, bringing it closer to that of the
gold trees. Second, consistent with our motivation
that enable LLMs to assimilate knowledge from
existing treebank without training as illustrated in
Section 3, our method effectively enhances both
the number of known rules and their accuracy. Sur-
prisingly, our method also raises the accuracy of
unknown rules. This demonstrates that our method
not only enables LLMs to learn knowledge from
the treebank, but also enhances their capability to
generate correct rules, regardless of whether they
have encountered those rules before.

4.4 Which Types Do LLMs Correct?

Although our method specifically targets four types
of parsing errors, we further investigate which er-
ror types are most effectively mitigated by LLMs.
Therefore, we analyze the number of different er-
rors after applying our method with GPT-3.5 and
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NP Interal PP Single Word Different Clause Modifier NP VP

Structure Attachment Phrase Label Attachment Attachment Attachment Attachment
GPT-4 1736 1390 1258 728 664 454 451 130
GPT-4 (Ours) 774 1263 973 688 673 420 453 128

Table 4: Deeper error analysis of GPT-4 before and after applying our self-correction method on the PTB dataset.

Basque French German Hebrew Hungarian Korean Polish Swedish
GPT-4 40.47 41.66 32.68 52.16 61.07 4777  61.68 61.97
GPT-4 (Ours) 4639  50.42 42.91 63.31 69.33 55.63  73.50 66.17

Table 5: Results on the SPMRL dataset.

GPT-4. As is shown in Figure 2, we observe con-
sistent reduction across all error categories, con-
firming the empirical efficacy of our approach. Our
method addresses span errors the most, which are
the most frequent errors in the parsing results. As
we hypothesized, although span errors cannot be
directly corrected, our method can indirectly re-
duce these errors through the top-down correction
process. The number of the other three error types
also reduce significantly, demonstrating that our
method enables LLMs to identify and prioritize
rules similar to the gold ones.

Moreover, we also incorporate enhanced analy-
sis from the perspective of grammar rules. Our ap-
proach demonstrated significant effectiveness in re-
ducing structural errors for NP and ADVP through
treebank rule enforcement: specifically, the “NP
— CD NN error decreased from 57 to 22 cases,
“NP — NNP NNP NNP” errors dropped from 39
to 18 instances. This phenomenon may stem from
the comparative simplicity of these structures and
their high frequency of occurrence in treebanks.
However, quantifier-related structural errors, an
inherent weakness in LLMs, showed limited im-
provement, exemplified by persistent challenges
in “QP — CD CD” and “QP — RB CD” patterns
where rule-based corrections proved insufficient.

4.5 The Effect of Our Method on the
Unknown Rules

Our method primarily aims to enhance the parsing
performance of LLMs through known rules, but
we are also curious whether it can contribute to
predicting unknown rules. Experimental results
show that after applying our method, the accu-
racy of unknown rules increased from 35.3% to
48.0%. This indicates that our approach not only
preserves the inherent capability of LLMs to han-
dle unknown rules but also systematically enhances

their overall parsing capacity through known rules,
consequently achieving significant accuracy im-
provement on unknown rules. This phenomenon
may be attributed to the ability of LLMs to extract
similar structural patterns or localized information
from the exemplars, even when some rules are not
fully aligned with those in the treebank, thereby
still contributing to parsing capability.

4.6 Deeper error analysis of LLM behavior

To conduct a deeper error analysis of LLM behav-
ior, we also conduct additional experiments follow-
ing the error analysis framework of Kummerfeld
et al. (2012) on PTB with GPT-4. As shown in Ta-
ble 4, after applying our method, most error types
have been significantly reduced. Specifically, our
approach demonstrates particular effectiveness in
addressing NP Internal Structure, PP Attachment,
and Single Word Phrase errors, with their counts
markedly decreasing. However, error types such as
VP Attachment and NP Attachment remain chal-
lenging for LLMs, maintaining nearly the same
error rates even after implementing our method.
This provides critical insights into the parsing ca-
pabilities of LLMs, particularly their strengths and
limitations.

4.7 Results on the Other Dataset

We also report our results on the SPMRL (Seddah
et al., 2013) with GPT-4, which contains eight dif-
ferent languages. We randomly sample 500 data
from each as the test set. As is shown in Table 5,
our method shows significant improvements in both
of these languages, indicating the effectiveness of
our method across different types of languages.

4.8 Whether Our method Add New Errors?

we conducte a detailed analysis of the instances
where originally correct parsing trees are corrected
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to be wrong during the process. Taking the pars-
ing results of GPT-4 on the PTB as an example,
initially, there are 24,203 grammar rules that were
correct and consistent with the gold trees. After
applying our method, 23,279 of these rules remain
correct, indicating that our method has a wrong
correction rate of only 4%. Considering that the
correction brings the improvement of over 10 F1
scores, it indicates that the correct corrections far
outweigh the adding errors.

5 Related Work

LLM Parsing. LLMs have achieved remarkable
success in various tasks and applications (Kojima
et al., 2022; Wei et al., 2022). However, recent
studies indicate that LLMs exhibit week capability
in parsing and show a noticeable gap compared
to that of non-LLM parsers. Bai et al. (2023) re-
vealed that LLMs suffer from hallucinations and
have limited ability to learn extremely long con-
stituents. Zhou et al. (2023) conducted experiments
on 24 LLMs and found that most of them have a
limited grasp of syntactic knowledge. Tian et al.
(2024) observed that LLMs are shallow parsers in
that they are ineffective at conducting fullparsing.
They propose a three-step approach that firstly use
LLMs for chunking and then add the chunks to
guide LLMs for parsing. These previous works
have gained insights into the parsing capability of
LLMs. However, they lack deeper analysis of the
reasons behind the low performance and the charac-
teristics of their parsing results. We first conduct an
in-depth analysis of LLM parsing capability, inves-
tigating the detailed shortcomings of their parsing
results and the underlying causes. Based on these
analyses, we design a method that enables LLMs
to obtain knowledge from the existing treebank,
enhancing their parsing ability significantly.

Self-Correction. To unleash the reasoning abil-
ities of LLMs, many recent work focus on design
prompt to instruct LLMs to solve problems with
human-like logic, such as Chain-of-Thought (Wei
et al., 2022), Self-Consistency (Wang et al., 2023)
and Self-Correction (Gao et al., 2023b; Madaan
et al., 2024). Self-Correction, which is defined as
the process of continuously evaluating and adjust-
ing previous responses to get better answers, has
attracted widespread researches due to its align-
ment with typical human learning strategy and its
notable effectiveness across various NLP tasks. It
can be divided into two types: one is that LLMs

correct entirely on their own knowledge and abil-
ity; The other is for LLMs to correct with external
feedback, such as knowledge sources Gao et al.
(2023a), other models or tools (Yang et al., 2022a).
Recent studies have questioned the efficiency of
intrinsic Self-Correction of LLMs. Huang et al.
(2023) revealed that without external feedback, it
is difficult for LLMsS to correct their own mistakes.
Tyen et al. (2023) proved that LLMs mainly fail in
finding errors in the answers, but can correct them
given the error location. To tackle these challenges,
we propose a self-correction method that automat-
ically identifies errors in the parsing results and
leverages the existing treebanks as external feed-
back to guide the corrections, thereby enhancing
the parsing capability of LLMs.

6 Conclusion

In this paper, we conduct an in-depth analysis of
LLM parsing capability from the perspective of
the overall parsing performance, the characteris-
tics of their parsing results based on the rules, and
the types of errors they made. Based on the anal-
ysis that the low performance of LLMs may stem
from their lack of known rules in existing treebanks,
we propose a self-correction method that enables
LLMs to efficiently acquire rules from treebanks
without additional training, thereby correcting er-
rors in the previous answer. Experimental results
demonstrate that our method consistently improves
performance, effectively guiding LLMs to correct
all types of errors made by themselves.

7 Limitations

There are several unexplored avenues of interest,
such as determining whether rules similar but not
identical to the gold trees can guide LLMs in mak-
ing corrections, and assessing the extent to which
LLMs actually learn from examples. These will be
addressed in future studies.
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LLM Prompt

You will be given one sentence for constituency parsing. Every word
that is separated by a space should be considered an independent
word and have its own constituency label. Please parse the sentence
with given words.

Here are some examples:

< sentence 1 > < parse tree 1 >

< sentence 2 > < parse tree 2 >

Input: Albany escaped embarrassingly unscathed .
Output: (S (NP (NNP Albany)) (VP (VBD escaped) (S (ADJP (RB
embarrassingly) (JJ unscathed)))) (. .))

Figure 6: The prompt for few-shot learning.

Method R P F

Other linearization method 65.36 75.20 69.93
Our method 69.97 77.14 73.38

Table 6: Results of different linearization methods.

A Appendix

A.1 Prompt for Constituency Parsing

Previous research (Bai et al., 2023; Tian et al.,
2024) has demonstrated that linearizing con-
stituency trees into sequences is effective when
using LL.Ms for tree parsing. Therefore, follow-
ing Bai et al. (2023), we represent constituency
tree structures using bracket notation, such as “(S
(NP (PRP He)) (VP (MD could) (RB not) (VP
(VB speak))))”. We conduct experiments under the
five-shot setting, randomly sampling five examples
from existing treebanks, as is shwon in Figure 6.
Additionally, we experimentally validate the lin-
earization format metioned in Vinyals et al. (2015),
such as “(S (NP PRP) (VP MD RB (VP VB)))” by
testing on PTB with GPT-4. As is shown in Table
6, our results show that the linearization method
employed in this paper outperforms this alternative
approach metioned in Vinyals et al. (2015).

A.2 Hint for Sentence Mismatch Correction

Following the evaluation script of EVALB, we cat-
egorize mismatch errors into two types: length
mismatch and word mismatch. Length mismatch
means the number of words in the predicted tree
differ from the original sentence, while word mis-
match indicates a word in the sentence has been
altered. As is shown in Figure 7, we design specific
hints for different errors. By highlighting in the
prompt the need to avoid mistakes from the previ-
ous answer, we guide the LLMs to generate a new
answer.
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Type Error LLM Output Hint
. (S (NP (DT That)) (VP (VBZ's) Do not additionally add any words,
CXIE (ADJP (RB really) (RB s0) (JJ cool)))) | especially “really”
L (S (NP (DT That)) (VP (VBZ's) P e
missing (ADIP (U] cool)))) Do not omit any words, especially “so’
Length
Mismatch (ot (S (NP (DT That)) (VP (POS ') (VBZ | *'” and “s” are considered as one word
Spi $) (ADJP (RB so) (1] cool)))) and should have a common label
} “That” and *'s” are considered as two
combined (Z(T\IP]()DT That)) (ADIP (RB $0) |15 and should be separated with each
(W cool))) having its own label
Word dified | (S(NP (DT That')) (ADIP (RBvery) | Do not make any changes to the word,
Mismatch | MO (I cool)) especially “s0”
1T /
Prompt + Hint

Please parse the sentence ©
Input: That's so cool

Output: (S (NP (DT That)) (VP
(VBZ's) (ADIP (RB s0) (JJ

cool)))) °

Figure 7: The process of sentence mismatch correction.

QQ%

WikiMIA PTB CTB MCTB
7.13 9.59 8.95 9.53

MKP

Table 7: The MKP of different datasets with Llama-8B.
A higher MKP suggests that the sentence is less likely
to be included in the pre-training data of LLMs.

A.3 The Examination of the Possibility of
Contamination in Test Set

To examine the possibility of contamination in test
set, we use the Min K% probability (MKP) (Shi
et al., 2023), as a metric to determine the extent to
which the datasets are included in the pre-training
data of LLMs. We follow the recommendation in
Shi et al. (2023), setting K value to 20% and calcu-
lating the MKP of sentences in the three datasets un-
der the Llama-8B model. We also report the MKP
of the WikiMIA dataset for reference, which is used
by Shi et al. (2023) to evaluate the identification
capabilities for detecting pre-training data, consists
of sentences from Wikipedia articles. Given the
popularity of Wikipedia as a pre-training source,
these sentences are highly likely to be part of the
pre-training data for LLMs. As is shown in Table
7, the MKP of all three datasets is significantly
higher than that of WikiMIA. This suggests that
these datasets are unlikely to have been included in
the pre-training data of Llama-8B.

A.4 Random Selection vs. Our Method

To further validate the effectiveness of our method,
we also compared it with randomly selecting exam-
ples for few-shot learning on the PTB with GPT-4.
As indicated in Table 8, our results significantly
surpass that of random selection, demonstrating
that our method can select more suitable examples

Method R P F

Random selection 71.47 79.25 75.16
Our method 82.27 84.78 83.50

Table 8: Results of random selection and our method on
the PTB with GPT-4.

R P F

80.75 85.08 82.85
82.27 84.78 83.50

3 rules*2=6 examples
5 rules*1=5 examples

Table 9: The results of different numbers of the final
examples.

for LLMs via ranking based on LCS.

A.5 The Effect of Different Numbers of the
Final Rules and Examples

To investigate the effect of different numbers of the
final rules and examples, we add the experiment
with the setting that select the top three rules with
each rule providing two examples as shown in the
first row of the Table 9. The second row shows the
setting in our paper. Obviously, the original setting
in our paper achieves better performance.

A.6 Different Searching Strategies

We also compare our method with searching ex-
amples with the most similar POS sequences. As
is shown in Table 10, our method based on the
error-specific processing and ranking according
to the label sequence significantly surpass rank-
ing according to the POS. The POS-based rank-
ing method only considers information from the
lowest level leaf nodes, ignoring the structured in-
formation at intermediate levels. In contrast, our
proposed method takes into account the structural
information and can cover four types of errors, thus
performing better.

A.7 The Assignment of Weights during the
LCS Calculation vs. Our Method

To investigate the effect of frequency on the selec-
tion of rules, we also carry out experiments on the
assignment of weights during the LCS calculation
with GPT-4 on the PTB. Specifically, we multiplie
LCS by the proportion of the current rule during
similarity calculation. As is shown in Table 11, the
results indicate that LCS-based similarity plays a
more crucial role than frequency in selecting rules.
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Method R P F

POS searching 78.07 84.09 80.97
Our method 82.27 84.78 83.50

Table 10: Results of searching based on the POS-tag
and our method on the PTB with GPT-4.

R P F

75.97 83.35 79.49
82.27 84.78 83.50

Assigning weights
Our method

Table 11: Results of assigning weights of frequency and
our method on the PTB with GPT-4.

Overemphasizing frequency tends to disrupt the
original ranking based on LCS.

A.8 The Distribution of Four Types of Errors
across Different models

We provide the distributions of four types of er-
rors across different models and different datasets
in Table 12, Table 13 and Table 14. Span error
and label error are the most and second most fre-
quent in the parsing results of different models.
Moreover, as the performance of models declines,
the proportion of span errors increases, indicating
that models with weaker parsing capabilities find it
more challenging to correctly segment spans.

Model | Span Label Flatness Deepness
Berkeley 1,386 944 2,736 2,985
LLaMa-8B 28,665 7,462 1,524 964
LLaMa-70B | 12,404 5364 3,364 1,492
GPT-3.5 7,712 3,383 4,776 1,991
GPT-4 4,944 3,228 3,791 1,254

Table 12: The overall of four types of errors made by
different models on the PTB.

Model | Span Label Flatness Deepness
Berkeley 1,394 1,397 1,153 1,246
LLaMa-8B 2,830 1,679 247 186
Qwen-72B 1,987 1,450 722 596
DeepSeek-v3 | 1,731 1,110 740 487
GPT-3.5 1,752 1,046 797 514
GPT-4 1,951 1416 864 732

Table 13: The overall of four types of errors made by
different models on the CTB.

Model | Span Label Flatness Deepness
Berkeley 463 562 600 140
LLaMa-8B 11,609 2,962 493 352
LLaMa-70B 4,704 2,434 1,162 449
GPT-3.5 3,364 1,857 1,483 718
GPT-4 1,570 1,379 939 808

Table 14: The overall of four types of errors made by
different models on the MCTB.

6762



