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Abstract

Aspect-Opinion Pair Extraction (AOPE) and
Aspect Sentiment Triplet Extraction (ASTE)
have drawn growing attention in NLP. How-
ever, most existing approaches extract aspects
and opinions independently, optionally adding
pairwise relations, often leading to error prop-
agation and high time complexity. To ad-
dress these challenges and being inspired by
transition-based dependency parsing, we pro-
pose the first transition-based model for AOPE
and ASTE that performs aspect and opin-
ion extraction jointly, which also better cap-
tures position-aware aspect-opinion relations
and mitigates entity-level bias. By integrat-
ing contrastive-augmented optimization, our
model delivers more accurate action predic-
tions and jointly optimizes separate subtasks
in linear time. Extensive experiments on four
commonly used ASTE/AOPE datasets show
that, our proposed transition-based model out-
perform previous models on two out of the four
datasets when trained on a single dataset. When
multiple training sets are used, our proposed
method achieves new state-of-the-art results
on all datasets. We show that this is partly
due to our model’s ability to benefit from tran-
sition actions learned from multiple datasets
and domains. Our code is available at https:
//github.com/Paparare/trans_aste.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is a
fine-grained sentiment analysis task that identi-
fies specific aspects in text and analyzes the sen-
timents linked to them (Hu and Liu, 2004; Liu,
2012; Wang et al., 2024). As shown in Figure 1,
ABSA involves subtasks such as Aspect Extraction
(AE) and Opinion Extraction (OE)—identifying
mentioned aspects and their related opinions, or
the combination—Aspect-Opinion Pair Extraction.
Once the aspect and opinion have been extracted,

∗∗ Corresponding Author: Hai Hu.

Figure 1: Demonstration of the processing steps in both
classic and transitional methods for extracting aspect-
opinion pairs. Importantly, our proposed transitional
method predicts transition actions, and performs pair
extraction after the aspect–opinion relationship has been
established, allowing the model to capture contextual
relationships more effectively.

a sentiment is usually computed, and this more
complicated task is often referred to as Aspect-
Sentiment Triplet Extraction (ASTE). For instance,
given the sentence: “Gourmet food is delicious.
Good service, but not so welcoming”, AE identifies
gourmet food and service as aspects, while OE
extracts delicious, good, and not so welcoming
as opinions. These outputs are then combined to
form aspect-opinion pairs, with a separate senti-
ment tagging system assigning polarities to cre-
ate triplets (Jiang et al., 2023; Wang et al., 2023;
Chakraborty, 2024).

ASTE is the most integrated task for aspect-
based sentiment analysis, for which diverse models
leveraging various methodologies have been de-
veloped, including pipeline-based approach (Peng
et al., 2020), sequence-to-sequence method (Yan
et al., 2021), sequence-tagging method (Wu et al.,
2020; Xu et al., 2020), to name just a few. De-
spite these efforts and growing interests, the accu-
racy of recent models remains suboptimal, with
the best systems scoring 60% or 70% (Sun et al.,

6706

https://github.com/Paparare/trans_aste
https://github.com/Paparare/trans_aste


2024). There are two key challenges that hinder
performance: (1) Disconnected Aspect-Opinion
Extraction: Opinions are often extracted indepen-
dently from their corresponding aspects (Liang
et al., 2023; Sun et al., 2024). While positional
relationships can be added as an auxiliary factor
to assist pair extraction (Liu et al., 2022; Wang
et al., 2023), this approach loses critical contex-
tual information by treating aspects and opinions
as separate entities. This limits the effectiveness
of many token-based extraction methods. (2) High
time complexity with longer sequences: Meth-
ods using 2D matrix tagging (Liang et al., 2023;
Sun et al., 2024) to capture relationships between
tokens face significant increases in time complex-
ity as the length of the token sequence increases.
This computational burden restricts their scalability,
especially for longer texts in practical applications.

To address these two challenges, we present the
first transition-based AOPE system named Trans-
AOPE that (1) extracts the Aspect and the Opin-
ion at the same time, and (2) has a time com-
plexity of O(n). We also introduce a contrastive-
augmented optimization method to enhance model
efficiency. We conduct experiments on 4 com-
monly used ABAS datasets, and compare our sys-
tem with previous models. Our results show that
Trans-model achieves state-of-the-art performance
on all datasets we tested. We conduct comprehen-
sive ablation studies to evaluate the contribution
of optimization components and perform extensive
training on various datasets to identify precisely
where our model and baselines derive their learn-
ing.

Our contributions are: (1) We propose the first
transition-based model that extracts aspect-opinion
pairs based on relational aspects, rather than us-
ing relational factors as supplementary references
or confirmation, with linear time complexity. (2)
We experiment with a contrastive-augmented opti-
mization method and find that balanced weighting
yields faster, more stable improvements, emerging
as the optimal training configuration. (3) We ex-
plore various training strategies and show that our
proposed method achieves optimal performance on
four datasets when trained on combined training
sets, with better cross-dataset generalization.

2 Related Work

Previous methods on ASTE Pipeline-based ap-
proaches, such as Peng-Two-stage (Peng et al.,

2020), decompose the task into multiple stages for
modular refinement. Sequence-to-sequence frame-
works like BARTABSA (Yan et al., 2021) employ
pretrained transformers to generate triplets flexibly.
Sequence-tagging methods, including GTS (Wu
et al., 2020) and JET-BERT (Xu et al., 2020), an-
notate tokens for precise identification of relation-
ships. Machine Reading Comprehension (MRC)-
based models, such as COM-MRC (Zhai et al.,
2022) and Triple-MRC (Zou et al., 2024), reframe
the task as query answering for efficient extraction.
Graph-based approaches such as EMC-GCN (Chen
et al., 2022), BDTF (Chen et al., 2022), and DGC-
NAP (Li et al., 2023) use graph structures to cap-
ture semantic and syntactic interactions. Tagging
schema-based models, exemplified by STAGE-3D
(Liang et al., 2023), use hierarchical schemas for
multi-level extraction, while lightweight models
like MiniConGTS (Sun et al., 2024) focus on effi-
ciency with reduced computational costs.

Table 1 summarizes these baseline methods,
along with our proposed model, in terms of their
core approaches and time complexities.

Transition-based Methods in NLP Transition-
based approaches are widely used in dependency
parsing, leveraging shift-reduce and bidirectional
arc actions (left-arc, right-arc) for efficient O(n)
parsing (Aho and Ullman, 1973; Nivre, 2003; Cer
et al., 2010). These parsers maintain stack, buffer,
and arc relations to track transitions and then build
up dependency relations between tokens.

Transition-based methods have also been ap-
plied to various NLP tasks, including token seg-
mentation (Zhang et al., 2016), argument mining
(Bao et al., 2021), constituency parsing (Yang and
Deng, 2020), AMR parsing (Zhou et al., 2021),
and sequence labeling (Gómez-Rodríguez et al.,
2020), among others. Transition-based methods
have been explored in emotion analysis (Fan et al.,
2020; Jian et al., 2024). In sentiment analysis, how-
ever, transition-based models have not been widely
adopted. One exception is their use in generating
graph structures for opinion extraction (Fernández-
González, 2023), although this design relies on
graph embeddings and thus results in a time com-
plexity of O(N2), with performance that lags be-
hind more recent AOPE and ASTE approaches.

Contrastive-based Optimization Contrastive
learning powers state-of-the-art token-independent
extraction (MiniconGTS (Sun et al., 2024)), im-
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Method Approach Time Complexity

Peng-Two-stage (Peng et al., 2020) Two-Stage Pipeline: entity identification and relation formation O(n+ k2)
BARTABSA (Yan et al., 2021) Generative-based Aspect-based Sentiment Analysis O(m · v)
GTS (Wu et al., 2020) Grid Matrix-based Tagging O(n2)
JET-BERT (Xu et al., 2020) Position-Aware Sequence Tagging O(n)
COM-MRC (Zhai et al., 2022) Compositional Machine Reading Comprehension O(r · n2 · h)
Triple-MRC (Zou et al., 2024) Multi-turn Machine Reading Comprehension O(r · n2 · h)
EMC-GCN (Chen et al., 2022) Multi-channel Graph Convolutional Network O(m · n2 · h)
DGCNAP (Li et al., 2023) Graph Convolutional Network w/ Affective Knowledge O(m · n2 · h)
MiniConGTS (Sun et al., 2024) Lightweight Grid Matrix-based Tagging System O(n2)

Trans-model (Ours) Transition-based Action Prediction for Simulating Relation Formation and Pair Extraction O(n)

Table 1: An overview of previous methods and models (which will serve as baselines in this study), their approaches,
and corresponding time complexities. Here, the hidden size for LSTM d is simplified; n is the sequence length; m
is the number of graph channels; v is the vocabulary size; k is the number of extracted terms; r is the number of
query rounds, and h is the hidden size of the encoder.

proves few-shot prompt learners via view augmen-
tation (Jian et al., 2022), supplies a principled
loss for goal-conditioned RL (Eysenbach et al.,
2023), and benefits from margin studies that stress
positive-sample weighting (Rho et al., 2023). Its
versatility prompts us to embed a contrastive loss in
our transition-based AOPE and ASTE, sharpening
representations and boosting accuracy.

3 The Trans-AOPE/ASTE Model

We recast aspect–opinion extraction as a parsing-
guided graph-construction problem in two stages:
Trans-AOPE incrementally extracts aspect–opinion
pairs from context-rich inputs, and Trans-ASTE
tags the recovered pairs. The parser tracks five
working structures—stack, buffer, aspect set, opin-
ion set, and pair set—extending the three used in
earlier systems and enabling joint recovery of as-
pects and opinions.

3.1 Transitional Operations and State Change
Phrase relations are modeled as directed edges be-
tween two tokens N1 and N2. We denote a right-
ward (aspect-to-opinion) link by RR : N1

l−→ N2

and a leftward link by LR : N1
l←− N2, where

l ∈ {lL, lR} covers causal (bidirectional) labels.
Aspect (A) and opinion (O) spans may contain sev-
eral tokens (e.g., gourmet food, not bad), so merge
operations are allowed.

For the ASTE task we use seven transition ac-
tions that (i) retrieve tokens, (ii) terminate, or
(iii) merge spans. Each parser state is the tuple
T = (σ, β,A,O,R) of stack, buffer, current as-
pect, current opinion and accumulated relations.
Default actions are always available, primary ac-
tions create or merge spans, and secondary actions
add relations once the relevant spans exist. Verbal

and symbolic definitions of every action follow.

Default Actions:
1. Shift (SF ) moves a token from the tokenized

stack into the buffer for further processing.
2. Stop (ST ) halts the process when only one

token remains in the buffer, and the stack is
empty.

Primary Actions:
1. Merge (M ) combines multiple tokens in the

buffer into a single compound target.
2. Left Constituent Removal (Ln) removes the

left constituent from the buffer.
3. Right Constituent Removal (Rn) removes the

right constituent from the buffer.

Secondary Actions:
1. Left-Relation Formation (LR) creates a re-

lation from the right aspect constituent to the
left opinion constituent.

2. Right-Relation Formation (RR) creates a re-
lation from the left aspect constituent to the
right opinion constituent.

Table 2 provides a symbolic illustration of how
the symbolic state is constructed and utilized. Take
the sentence "Gourmet food is delicious" as an
example. Table 3 demonstrates the process of mov-
ing tokens from the buffer to the stack, deciding
whether they should be merged into a single en-
tity or removed, and finally evaluating them for
relation formation. It is important to note that
the set of actions shown in the figure is not the
only way to extract the "Gourmet food" and "deli-
cious" aspect-opinion pair. An alternative approach
use the stack’s capacity of holding multiple tokens,
moving "is" to the stack (β3 → σ3) before merging
"Gourmet" and "food" ([σ1, σ2, σ3]→ [σ1&2, σ3]).
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Action Symbolic Expression
Shift (SF ) (σ0, β0 | β1, A,O,R)

SH−−→ (σ0 | σ1, β1, A,O,R)

Stop (ST ) (σ0, , A,O,R)
ST−−→ (, , A,O,R)

Merge (M ) (σ0 | σ1, β1 | β2, A,O,R)
M−→ (σ0&1, β1 | β2, A,O,R)

Left Constituent Removal (Ln) (σ0 | σ1, β0, A,O,R)
Ln−−→ (σ1, β0, A,O,R)

Right Constituent Removal (Rn) (σ0 | σ1, β0, A,O,R)
Rn−−→ (σ0, β0, A,O,R)

Left-Relation Formation (LR) (σ0 | σ1, β0, A,O,R)
LR−−→ (σ0 | σ1, β0, A ∪ σ1, O ∪ σ0, R ∪ σ0 ←− σ1)

Right-Relation Formation (RR) (σ0 | σ1, β0, A,O,R)
RR−−→ (σ0 | σ1, β0, A ∪ σ0, O ∪ σ1, R ∪ σ0 −→ σ1)

Table 2: Symbolic Expressions for the Proposed Actions. Here, σ represents the stack, β represents the buffer, A
denotes the aspect, O denotes the opinion, and R consist of an aspect and an opinion.

Phrase Action Stack (σ) Buffer (β) Aspect Opinion Pair
– – [] [β1, β2, β3, β4] – – –
1 SF [σ1] [β2, β3, β4] – – –
2 SF [σ1, σ2] [β3, β4] – – –
3 M [σ1&2] [β3, β4] – – –
4 SF [σ1&2, σ3] [β4] – – –
5 Rn [σ1&2] [β4] – – –
6 SF [σ1&2, σ4] [] – – –
7 RR [σ1&2, σ4] [] [σ1&2] [σ4] (σ1&2 → σ4)
9 ST [] [] [σ1&2] [σ4] (σ1&2 → σ4)

Table 3: State changes for "Gourmet food is delicious" using symbolic representation. Here, σ1 corresponds to
"Gourmet", σ2 to "food", σ3 to "is", and σ4 to "delicious". Similarly, β1, β2, β3, and β4 correspond to tokens in the
buffer in sequence.

Figure 2: The complete process of the transition-based
model is illustrated. Purple highlights represent the
transition-based pair extraction actions, while orange
indicates the final step of sentiment tagging.

3.2 Trans-AOPE State Representation

The model we propose consists of two core stages:
pair extraction with a designed transitional action
slot (in purple) and pair-based sentiment tagging
(in orange), as illustrated in Figure 2.

In the first stage, the input, denoted as In1 =
(t1, t2, . . . , tn), is a sequence of tokens. The out-
put is a sequence of actions, represented as Am

1 =
(a1, a2, . . . , am). This process can be conceptual-

ized as a search for the optimal action sequence,
A∗, given the input sequence In1 . At each step n,
the model predicts the next action based on the
current system state, S, and the sequence of prior
actions, An−1

1 The updated system state, Sn+1 , is
determined by the specific action at. We define
rn as a symbolic representation for calculating the
probability of the action an at step n. This proba-
bility is computed as follows:

p(an|rn) =
exp(w⊤

anrn + ban)∑
a′∈A(S) exp(w

⊤
a′rn + ba′)

(1)

Here, wa is a learnable parameter vector, and ba is a
bias term. The setA(S) represents the legal actions
available given the current parser state. The overall
optimization objective for the model is defined as:

(A∗, S∗) = argmax
A,S

∏

n

p(an, Sn+1|An−1
1 , Sn)

= argmax
A,S

∏

n

p(an|rn)

(2)
We recast ASTE as a transition-based action pre-
diction problem. At each step the model, given
the current state and action history, greedily selects
the highest-probability action until parsing termi-
nates. This yields an efficient parser that avoids
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information leakage and supports flexible relation
construction.

3.3 Transition Implementation with Neural
Model

This section introduces a transition-based parsing
process. RoBERTa (Liu et al., 2019) encodes the
text, while UniLSTM (Hochreiter and Schmidhu-
ber, 1997) and BiLSTM (Graves and Schmidhuber,
2005) capture transitions. The parser state evolves
through a sequence of actions, with LSTMs pro-
cessing each token once. This yields a time com-
plexity of O(n · d2), typically simplified to O(n)
under fixed d. Finally, an MLP classifies the sen-
timent for each pair or triplet based on the final
parser state.

Token representations Consider the process of
parsing a text dn1 = (p1, p2, . . ., pn) , consisting of
n phrases. Each phrase pi = (wi1, wi2, . . ., wil)
contains l tokens. A phrase can be represented as
a sequence xi = ([CLS], ti1, . . ., til, [SEP]), where
[CLS] is a special classification token whose final
hidden state serves as the aggregate sequence fea-
ture, and [SEP] is a separator token. The hidden
representation of each phrase is computed as hpi
= RoBERTa(xi) ∈ Rdb×|li|, where db is the hid-
den dimension size, and |li| is the length of the
sequence xi. Finally, the entire text dn1 is repre-
sented as a list of tokens: hd = [hp1 , hp2 , . . ., hpn].

State Initialization At the start of the parsing
process, the parser’s state is initialized as (β =
∅, σ = [1, 2, . . . , n], E = ∅, C = ∅, R = ∅),
where σ is the stack, β is the buffer, and E, C,
and R are empty sets representing different outputs.
The state evolves through a sequence of actions,
progressively consuming elements from the buffer
β and constructing the output. This process contin-
ues until the parser reaches its terminal state when
there is only one token left in buffer, represented
as (β = [SEP ], σ = ∅, E, C,R).

Step-by-Step Parser State Representation. For
the action sequence, each action a is mapped to
a distributed representation ea through a lookup
table Ea. An unidirectional LSTM is then utilized
to capture the complete history of actions in a left-
to-right manner at each step t:

αt = LSTMa(a0, a1, . . . , at−1, at) (3)

Upon generation of a new action at, its correspond-
ing embedding eat is integrated into the rightmost

position of LSTMa. To further refine the represen-
tation of the pair (σ1, σ0), their relative positional
distance d is also encoded as an embedding ed from
a lookup table Ed. The composite representation of
the parser state at step t encompasses these varied
features.

The parser state is represented as a triple
(βs, σs, At), where σs denotes the stack sequence
(σ0, σ1, . . . , σn), βs represents the buffer sequence
(β0, β1, . . . , βn), and At encapsulates the action
history (a0, a1, . . . , at−1, at). The stack (σn) and
buffer (βn) are encoded using bidirectional LSTMs
as follows:

[st, bt] = BiLSTM((σn, β0), (σn−1, β1),

. . . , (σ0, βn))
(4)

Here, st and bt are the output feature representa-
tions of the stack and buffer, respectively. Each
of these representations consists of forward and
backward components: σt = (−→σt ,←−σt) and βt =

(
−→
βt ,
←−
βt). The forward and backward components

are matrices in Rdl×|σt| and Rdl×|βt|, respectively,
where dl is the hidden dimension size of the LSTM,
and |σt|, |βt| are the lengths of the sequences σt
and βt.

3.4 Optimization Implementation
We compare two optimization strategies: regu-
lar optimization using Cross-Entropy Loss and
contrastive-based optimization, which aligns pre-
dicted and true action embeddings. A weight study
will evaluate the impact of the positioning of two
components in augmented optimization on model
performance. Both action and sentiment classifica-
tion tasks are optimized using the Cross-Entropy
Loss as base optimization, defined as follows:

L = − 1

N

N∑

i=1

M∑

j=1

yji log(p
j
i ), (5)

where N is the number of samples, M is the num-
ber of classes (either action or sentiment classes),
yji is a binary indicator (0 or 1) indicating whether
class j is the correct class for sample i, and pji is
the predicted probability for class j for sample i.
For AOPE task, total loss is action loss Laction, and
for ASTE task, is the sum of the losses for both
tasks: Lbase = Laction + Lsentiment.

Given action and sentiment logits Alogits and
ground-truth labels Atrue, the predicted actions
are Apred = argmax(softmax(Alogits)). Pre-
dicted and true actions are embedded as Epred =
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Embed(Apred) and Etrue = Embed(Atrue). The
cosine-similarity matrix is S = cos(Epred,Etrue) ∈
RN×N ; its diagonal gives positive pairs. Define
epos = exp(S ⊙Mpos) and eall = exp(S), where
Mpos is the diagonal mask and ⊙ denotes element-
wise multiplication. Contrastive loss is computed
as

Lcon = − 1

N

N∑

i=1

log

(
e
(i)
pos

e
(i)
all

)
, (6)

and the total loss is the addition of two weighted
losses

Ltotal = ω1 Lbase + ω2 Lcon. (7)

4 Experimental Setups

4.1 Datasets and preprocessing

We benchmark on four standard ABSA datasets:
14lap and 14res (SemEval-2014)(Pontiki et al.,
2014), 15res (SemEval-2015)(Pontiki et al., 2015),
and 16res (SemEval-2016)(Pontiki et al., 2016);
statistics are in Table6. 14lap contains laptop re-
views, while the others comprise restaurant reviews,
and all are widely used for aspect-based sentiment
extraction (Xu et al., 2021). For ASTE we follow
the practice of previous studies like Sentic-GCN
(Liang et al., 2021) and SK-GCN (Zhou et al.,
2020) to construct sentiment-aware dependency
graphs: SpaCy supplies syntactic edges (Honni-
bal et al., 2020), SenticNet provides sentiment
weights (Cambria et al., 2017), and the resulting
weighted adjacency matrices, paired with tokenized
sentences and aspect–opinion–sentiment triplets,
feed model training and evaluation.

4.2 Training settings

We experiment with two settings for training data.
In this setting, we train with one of the four datasets
and test on the test set of the same dataset (In-
domain training), e.g., train on 14lap and test on
14lap. Since our method depends on the model
learning the correct action to pair an aspect with an
opinion from the training data, we hypothesize that
it will have the advantage of being able to make
use of training data from diverse domains to learn
various actions. Thus we experiment with training
on two or more training sets combined (Combined
training), to observe whether there is performance
gain when more actions are learned. Specifically,
we train on several training sets together, and eval-
uate on a single test set.

Figure 3: Mean batch time (s) and mean batch memory
usage (MB) for Trans-ASTE, STAGE-3D, MiniCon-
GTS, and BARTABSA

4.3 Baselines

We benchmark our model against three represen-
tative baselines—STAGE-3D (Liang et al., 2023),
MiniConGTS (Sun et al., 2024), and BARTABSA
(Yan et al., 2021). STAGE-3D is included through
the scores reported in its original paper because no
runnable code is available. MiniConGTS, the cur-
rent state of the art for both ASTE and AOPE with
quadratic complexity O(n2) (fixed constants omit-
ted), is re-trained using the authors’ public imple-
mentation; we keep all original hyper-parameters
and preprocessing steps, modifying only the train-
ing data where necessary to incorporate every split
(14lap, 14res, 15res, and 16res). BARTABSA, an
earlier single-stage AOPE model of linear com-
plexity O(n), is re-trained under the same protocol.
After re-training, each baseline is evaluated sepa-
rately on the four test sets. Results for additional
published baselines—CMLA, GTS, Triple-MRC,
EMC-GCN, DGCNAP, and others—are presented
in Appendix A.2.

5 Results and Analysis

We study wall-clock training time per batch and
peak GPU memory per batch because these two
metrics jointly determine scalability (how fast
larger datasets can be processed) and deployabil-
ity (whether the model fits on commodity GPUs).
As shown in Figure 3, Trans-ASTE has the small-
est footprint on both counts. Then, we present
results obtained under various training-data con-
figurations and compare our model with previous
methods (Section 5.1). Finally, we assess the im-
pact of adding a contrastive-loss term and identify
the optimal loss configuration (Section 5.2), and
section 5.3 provides a detailed discussion of these
findings.
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14res 14lap 15res 16res

In-domain training setting P R F1 P R F1 P R F1 P R F1

O(n) | BARTABSA (Yan et al., 2021) ⋄ - - 77.68 - - 66.11 - - 67.98 - - 77.38
O(n2) | MiniConGTS (Sun et al., 2024) ⋆ - - 79.60 - - 73.23 - - 73.87 - - 76.29

O(n) | Trans-AOPE (Ours) 78.89 65.98 71.86 66.31 55.51 60.43 93.20 85.31 89.08 78.16 81.73 79.91

Combined-train setting (Training Sets)

MiniConGTS (14lap & 14res) 75.72 78.20 76.94 71.05 68.64 69.83 63.30 69.90 66.44 68.13 72.54 70.27
MiniConGTS (14res, 15res, & 16res) 78.68 76.78 77.72 56.86 48.31 52.23 94.54 92.48 93.50 77.65 75.22 76.42
MiniConGTS (14res, 14lap, 15res, & 16res) 78.22 77.11 77.66 76.32 64.19 69.74 93.35 91.99 92.67 76.27 76.79 76.53
BARTABSA (14res, 14lap, 15res & 16res) 75.40 76.76 76.07 72.36 63.40 67.59 93.56 94.43 93.56 87.06 87.32 87.19

Ours
Trans-AOPE (14lap & 14res) 91.95 83.24 87.38 90.60 79.88 84.91 73.99 73.19 73.59 74.84 69.94 72.31
Trans-AOPE (14res, 15res & 16res) 74.34 62.29 67.78 91.03 78.11 84.07 95.66 88.04 91.69 90.63 80.65 85.35
Trans-AOPE (14res, 14lap, 15res & 16res) 92.92 83.61 88.02 92.20 80.47 85.94 96.17 90.94 93.48 93.75 84.82 89.06

Table 4: Comparison of different models on multiple datasets for AOPE task. Recall and precision values are omitted
where they are not reported. The former best scores are underlined, and current best scores are bold. Highlights are
used for analysis. ⋄ are retrieved from Yan et al., 2021. • is retrieved from Zhao et al., 2020, and ⋆ are retrieved
from Sun et al., 2024

5.1 Main Results

On AOPE In the in-domain setting (upper half
of Table 4), Trans-AOPE outperforms the base-
lines only on the 15res and 16res test sets.1 Once
we switch to the combined-train regime, Trans-
AOPE eclipses MiniConGTS and BARTABSA in
every train–test combination. Training on all four
datasets boosts Trans-AOPE’s F1 by roughly 20
points across the board—for example, from 71.86
→ 88.02 on 14res and from 60.43 → 85.94 on
14lap—whereas MiniConGTS gains meaningfully
only on 15res and even declines on 14res and
14lap (BARTABSA shows the same pattern). Do-
main mixing is especially telling on the laptop set:
adding restaurant data catapults Trans-AOPE from
50.94 → 84.91, but drags MiniConGTS down from
73.23 → 69.83. Remarkably, even when trained
only on the three restaurant corpora, Trans-AOPE
still reaches 84.07 F1 on 14lap—virtually match-
ing its 84.91 when 14lap is included—whereas
MiniConGTS collapses to 52.23. Taken together,
these results demonstrate that Trans-AOPE trans-
fers knowledge across domains far more robustly
than previous models.

On ASTE Table 5 echoes the pattern seen with
AOPE. In the strict in-domain setup, Trans-ASTE
trails on the 14res and 14lap test sets but outper-
forms its peers on 15res and 16res. Once the train-
ing data are pooled (combined-train), however, it

1Scores for earlier models are taken from their original
papers; we assume they were trained solely on the correspond-
ing in-domain data, although most papers do not state this
explicitly.

outshines the baselines on every dataset. Simply
adding 14lap to the 14res training set propels Trans-
ASTE’s F1 from 65.92 to 85.20, while MiniCon-
GTS slips a bit (75.59 → 73.28) and BARTABSA
gains only modestly (65.25 → 71.68). With all
four corpora in the training mix, Trans-ASTE leads
every test set except 15res—often by wide mar-
gins—and is the only model to secure a dramatic
jump on 14lap (53.36 → 81.26). An exception
appears when the model is trained on the three
restaurant corpora and evaluated on 14lap (high-
lighted in yellow): Trans-ASTE plunges to 36.58
F1, far below the 84.07 recorded by its AOPE coun-
terpart. We attribute this gap to domain-specific
sentiment-polarity labels, whose transfer proves
more fragile than the transfer of aspect–opinion
spans themselves.

5.2 Study on Contrastive Loss
To investigate the impact of different weight con-
figurations between the base loss and contrastive
loss in Equation 7, we tested loss-weight ratios
wbase : wcon ∈ {1:0, 1:1, 1:10, 0:1, 10:1} with
a batch size of 4. On the 14lap AOPE bench-
mark (Fig. 4), the balanced 1:1 setting climbed
fastest and reached higher early F1 values, while
contrastive-only training stalled. ASTE showed
the same pattern (Fig. 5), and results were con-
sistent on additional datasets. We therefore adopt
wbase : wcon = 1:1 in all remaining experiments.

5.3 When and Why is Trans-model Better?
When: Trans-model is better with combined
training sets and in multi-domain generaliza-
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14res 14lap 15res 16Res

In-domain training setting P R F1 P R F1 P R F1 P R F1

O(n) | BARTABSA (Yan et al., 2021) ⋄ 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62
O(n2) | STAGE-3D (Liang et al., 2023) ⋆ 78.58 69.58 73.76 71.98 53.86 61.58 73.63 57.90 64.79 76.67 70.12 73.24
O(n2) | MiniConGTS (Sun et al., 2024) ⋆ 76.10 75.08 75.59 66.82 60.68 63.61 66.50 63.86 65.15 75.52 74.14 74.83

O(n) | Trans-ASTE (Ours) 72.25 60.61 65.92 61.49 47.13 53.36 91.30 83.05 86.98 77.95 79.90 77.95

Combined-train setting (Training Sets)

MiniConGTS (14lap & 14res) 72.11 74.48 73.28 62.50 60.38 61.42 56.48 62.38 59.28 64.57 68.75 66.59
MiniConGTS (14res, 15res, & 16res) 74.64 72.84 73.73 52.12 44.28 47.88 92.31 90.29 91.29 74.42 72.10 73.24
MiniConGTS (14res, 14lap, 15res & 16res) 73.89 72.84 73.36 68.26 57.42 62.37 90.64 89.32 89.98 72.73 73.21 72.97
BARTABSA (14res, 14lap, 15res & 16res) 71.05 72.33 71.68 63.66 56.01 59.59 91.30 92.99 92.13 83.82 84.07 83.95

Ours
Trans-ASTE (14lap &14res) 88.05 80.51 84.11 88.11 74.56 80.77 69.55 67.03 68.27 64.53 62.80 63.65
Trans-ASTE (14res, 15res & 16res) 73.53 61.74 67.12 42.25 32.25 36.58 89.89 86.96 88.40 81.19 77.08 79.08
Trans-ASTE (14res, 14lap, 15res & 16res) 89.56 81.24 85.20 86.87 76.33 81.26 94.34 90.58 92.42 90.03 83.33 86.55

Table 5: Comparison of different models on multiple datasets for ASTE task. Recall and precision values are
omitted where they are not reported. Highlights are used for analysis. The former best scores are underlined, and
current best scores are bold. ⋆ are retrieved from Sun et al., 2024, and ⋄ is retrieved from Yan et al., 2021.

tion. From the results above, it seems clear that
the Trans-model in the two tasks are better when
trained on multiple datasets combined, rather than
one dataset alone. Our results also suggest that
the added training data do not have to be in the
same domain: when trained on 14lap & 14res and
tested on either 14lap or 14res, the F1 score is at
least about 10 percentage points better than trained
on only one of the two datasets. It shows that our
Trans-model is capable of learning from multiple
domains, and seems to be able to transfer its knowl-
edge from the laptop domain to the restaurant do-
main and vice versa, unlike MiniConGTS, which
seems to be more sensitive to the domain of the
data. However, further research is need to better
understand the discrepancy between Trans-AOPE
and Trans-ASTE models in cross-domain transfer,
and improve the cross-domain transfer ability of
the sentiment tagger.

Why: Trans-model can learn more actions in
data from diverse domains. We believe that the
proposed trans-models excel when trained on mul-
tiple datasets and show considerable generalization
ability for two main reasons. First, by predict-
ing actions instead of tokens, it avoids token-level
biases and prevents overfitting on token-level pat-
terns specific to restaurant datasets. Additionally,
trans-models perform pair extraction after the as-
pect–opinion relationship is established, which en-
ables the model to capture contextual relationships
more effectively. These design decisions work to-
gether to significantly enhance the overall effective-
ness and robustness of the trans-models.

6 Conclusion and Future Work

In this paper, we present an efficient transition
pipeline for the extraction of aspects-opinion pairs
with linear time complexity O(n), enhanced by a
contrastive-based optimization method. This ap-
proach obviates the need to directly identify and
extract individual tokens, thereby mitigating token-
level bias. It can be trained on a combination of
diverse datasets that offers the most comprehen-
sive coverage of the actions needed, resulting in
significant performance improvements across vari-
ous datasets. Specifically, training our model on a
well-covered fused dataset enables it to learn robust
action patterns, leading to superior performance on
all datasets. Our model surpasses retrained baseline
models on the same fused dataset, establishing new
state-of-the-art results for both AOPE and ASTE
tasks.

As transition-based methods have remained rela-
tively less explored in sentiment-related tasks, we
believe our work shows a promising direction to
employ such methods in aspect-based sentiment
analysis. Future work can further examine the
potential of transition-based models in other sen-
timent analysis tasks, as well as the generaliza-
tion ability of these models in situations of multi-
domain data. It is also important to better under-
stand the cross-domain and multi-domain general-
ization ability of transition models, by experimen-
tation on more domains, since only two domains
are involved in this work.
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Limitation

Although the Trans-model demonstrates robust gen-
eralization capability, its reliance on larger datasets
to effectively learn action patterns remains a no-
table limitation of the transition-based pipeline.
This issue is evident in our results: while it is not
necessary to use the same dataset for both train-
ing and testing, the model performs better when
trained on blended datasets rather than on a sin-
gle, limited one. Consequently, if the training data
lack sufficient action patterns, the model’s ability
to handle nuanced or previously unseen contexts
can be significantly compromised. These findings
underscore the importance of training on a com-
bined or broader dataset to enhance the model’s
overall effectiveness.
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A Appendix

A.1 Datasets Details

We conduct all experiments on the four benchmark
corpora that originate from the SemEval Aspect-
Based Sentiment Analysis (ABSA) shared tasks.2

Table 6 summarises their key statistics. The two
restaurant collections, 14res and 16res, are the
largest, containing 2068 and 1393 sentences and
3909 and 2247 annotated aspect–sentiment–target
triplets, respectively. 14lap covers the laptop do-
main and is both smaller and more sentiment-
balanced: although it includes only 1453 sentences,
the proportion of negative triplets (33 %) is compa-
rable to the positive ones, reflecting the more crit-
ical tone of consumer-electronics reviews. 15res
sits between the two 2014 datasets in size but ex-
hibits the sparsest neutral category, with merely 61
neutral annotations out of 1747 triplets, making it
effectively a polar dataset. Across all four corpora,
positive opinions dominate (66–72 %), while neu-
tral labels remain scarce; this imbalance motivates
the macro-averaged metrics reported in Section 5.

214RES and 14LAP were released in SemEval-2014 Task
4, whereas 15RES and 16RES come from the 2015 and 2016
restaurant subtasks, respectively.

Datasets #S #POS #NEU #NEG #T

14res 2068 2869 286 754 3909

14lap 1453 1350 225 774 2349

15res 1075 1285 61 401 1747

16res 1393 1674 90 483 2247

Table 6: Statistics of four datasets. #S denotes the
number of sentence, #POS, #NEU, #NEG the number
of positive, neutral and negative sentiment labels, and
#T the total number of triplets.

A.2 Other Baselines

To provide a fuller historical context we also re-
benchmark a broad set of earlier end-to-end sys-
tems—including CMLA (Wang et al., 2017), Peng-
Two-stage (Peng et al., 2020), Dual-MRC (Mao
et al., 2021), SpanMlt (Zhao et al., 2020), JET-
BERT (Xu et al., 2020), COM-MRC (Zhai et al.,
2022), Triple-MRC (Zou et al., 2024) under the
same four-dataset protocol. Their precision, recall
and F1 scores for the AOPE and ASTE tasks are
reported in Tables 7 and 8, respectively, which are
placed in the appendix for completeness. These
supplementary results serve as additional reference
points but are not central to the main narrative of
the paper.

A.3 Effect of Contrastive Loss

Figures 4 and 5 show that blending cross-entropy
and contrastive loss with equal weight (1 : 1) pro-
vides the most effective training signal: the F1
curve climbs steeply from the earliest epochs, sur-
passes the cross-entropy-only baseline roughly two
epochs sooner, and finishes with the highest scores
on both aspect–opinion pair and triplet extraction.
In contrast, weighting the objectives 10 : 1 or
1 : 10 slows this ascent and trims the final per-
formance, while relying on contrastive loss alone
stalls learning entirely. These results indicate that
cross-entropy supplies essential label supervision,
contrastive loss sharpens representation learning,
and their balanced combination accelerates conver-
gence and yields the best accuracy; consequently,
we adopt the 1 : 1 setting for all subsequent experi-
ments.

A.4 Error Analysis

Training difficulty on the two 2014 corpora stems
from different corpus pathologies. In 14res, the
restaurant set, dense annotation leads to structural
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14res 14lap 15res 16res

Additional AOPE Baselines P R F1 P R F1 P R F1 P R F1

CMLA+ (Wang et al., 2017) – – 48.95 – – 44.10 – – 44.60 – – 50.00
Peng-Two-Stage (Peng et al., 2020) – – 56.10 – – 53.85 – – 56.23 – – 60.04
Dual-MRC (Mao et al., 2021) – – 74.93 – – 63.37 – – 64.97 – – 75.71
SpanMlt (Zhao et al., 2020) – – 75.60 – – 68.66 – – 64.68 – – 71.78

Table 7: Baseline results (%) on the Aspect–Opinion Pair Extraction (AOPE) task. A dash indicates that the
corresponding precision or recall was not reported in the source paper.

14res 14lap 15res 16res

Additional ASTE Baselines P R F1 P R F1 P R F1 P R F1

Peng-Two-Stage (Peng et al., 2020) 43.24 63.66 51.46 38.87 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
JET-BERT (Xu et al., 2020) 70.56 55.94 62.40 55.39 43.57 51.04 64.45 51.96 57.53 70.42 58.37 63.83
COM-MRC (Zhai et al., 2022) 75.46 68.91 72.01 58.15 60.17 61.17 68.35 61.24 64.53 71.55 71.59 71.57
DGCNAP (Li et al., 2023) 72.90 68.69 70.72 62.02 53.79 57.57 62.23 60.21 61.19 69.75 69.44 69.58
Triple-MRC (Zou et al., 2024) – – 72.45 – – 60.72 – – 62.86 – – 68.65

Table 8: Baseline results (%) on the Aspect–Sentiment–Target Extraction (ASTE) task.

Dataset #Triples Mean Dist. Median Dist. A→O O→A Overlap

14res 3 909 3.39 2 2 091 1 796 22
14lap 2 349 3.75 2 1 090 1 257 2
15res 1 747 3.26 2 1 039 707 1
16res 2 247 3.21 2 1 302 944 1

Table 9: Statistics of ASTE triples in the four benchmark datasets. A→O denote aspect appears prior to opinion,
and O→A is the other way around; overlap indicate the overlapping between aspect and opinion.

Figure 4: F1 score as a function of training epochs in
the combined-train condition for the AOPE task on the
14lap test set, with various loss weight configurations.
w1=base loss; w2=contrastive loss.

ambiguity: it contains the most triples and the high-
est number of bidirectional aspect–opinion links,
with 22 explicit overlaps (Table 9). Because most
aspect–opinion pairs are separated by only two
tokens, the model must assign multiple, often con-
flicting, roles within very narrow contexts. The

Figure 5: F1 score as a function of training epochs in
the combined-train condition for the ASTE task on the
14lap test set, with various loss weight configurations.
w1=base loss; w2=contrastive loss.

extreme lexical skew illustrated in Figure 6 fur-
ther concentrates gradients on a handful of high-
frequency tokens, encouraging overfitting and leav-
ing rare aspects under-represented.

Conversely, 14lap challenges the model through
lexical sparsity. Figure 7 shows a much flatter to-
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(a) 14res – Aspect token ratios (b) 14res – Opinion token ratios

Figure 6: Token-ratio distributions for the 14res restaurant–review dataset.

(a) 14lap – Aspect token ratios (b) 14lap – Opinion token ratios

Figure 7: Token-ratio distributions for the 14lap laptop-review dataset.

(a) 15res – Aspect token ratios (b) 15res – Opinion token ratios

Figure 8: Token-ratio distributions for the 15res restaurant–review dataset.

(a) 16res – Aspect token ratios (b) 16res – Opinion token ratios

Figure 9: Token-ratio distributions for the 16res restaurant–review dataset.
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ken distribution, indicating a larger type–token ra-
tio and limited repetition for each specialised noun
or adjective. Combined with the longest mean as-
pect–opinion distance in Table 9, this diversity pro-
vides too little evidence for reliable embedding up-
dates while simultaneously requiring the encoder
to integrate information across wider spans. In
short, 14res confounds the model with overlapping,
tightly packed signals, whereas 14lap disperses
supervision across a broad, domain-specific vocab-
ulary, and both factors are largely absent from the
2015 and 2016 restaurant datasets.

B Ablation Study: Impact of Adding
Sentiment Pre-knowledge

We conducted an ablation study to evaluate the con-
tribution of sentiment embedding in our approach.
Table 10 compares our model’s performance with
and without sentiment ground truth against two
strong baselines (MiniConGTS and BARTABSA)
across four benchmark datasets.

Dataset Method F1 (%)

14lap

Ours (w/o Sentiment) 70.67
Ours (w/ Sentiment) 81.26
MiniConGTS (w/ Sentiment) 62.37
BARTABSA (w/ Sentiment) 59.59

14res

Ours (w/o Sentiment) 78.85
Ours (w/ Sentiment) 85.20
MiniConGTS (w/ Sentiment) 73.36
BARTABSA (w/ Sentiment) 71.68

15res

Ours (w/o Sentiment) 84.73
Ours (w/ Sentiment) 92.42
MiniConGTS (w/ Sentiment) 89.98
BARTABSA (w/ Sentiment) 92.13

16res

Ours (w/o Sentiment) 86.06
Ours (w/ Sentiment) 86.55
MiniConGTS (w/ Sentiment) 72.97
BARTABSA (w/ Sentiment) 83.95

Table 10: Performance comparison (F1 scores) with and
without sentiment ground truth. Bold values indicate
the best performance for each dataset.

The results demonstrate that incorporating sen-
timent ground truth consistently improves perfor-
mance, with gains ranging from 0.49 to 10.59 per-
centage points across datasets. The laptop domain
(14lap) shows the most substantial improvement
(+10.59%), while restaurant datasets show more
varied gains (14res: +6.35%, 15res: +7.69%, 16res:

+0.49%). Remarkably, even without sentiment
ground truth, our model outperforms both base-
lines on three datasets (14res, 15res, 16res), in-
dicating that our architecture effectively captures
sentiment-relevant features from contextual repre-
sentations alone. With sentiment ground truth, our
approach achieves the best performance on three
out of four datasets, demonstrating its effectiveness
in leveraging explicit sentiment information when
available. These findings suggest that while senti-
ment ground truth provides valuable improvements,
our model maintains competitive performance even
in its absence, offering flexibility for deployment
in scenarios where sentiment annotations may be
unavailable or expensive to obtain.
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