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Abstract

Safety-aligned LLMs respond to prompts with
either compliance or refusal, each correspond-
ing to distinct directions in the model’s ac-
tivation space. Recent studies have shown
that initializing attacks via self-transfer from
other prompts significantly enhances their per-
formance. However, the underlying mecha-
nisms of these initializations remain unclear,
and attacks utilize arbitrary or hand-picked
initializations. This work presents that each
gradient-based jailbreak attack and subsequent
initialization gradually converge to a single
compliance direction that suppresses refusal,
thereby enabling an efficient transition from
refusal to compliance. Based on this insight,
we propose CRI , an initialization framework
that aims to project unseen prompts further
along compliance directions. We demonstrate
our approach on multiple attacks, models, and
datasets, achieving an increased attack suc-
cess rate (ASR) and reduced computational
overhead, highlighting the fragility of safety-
aligned LLMs. A reference implementation is
available at .

1 Introduction

LLMs have recently emerged with extraordinary ca-
pabilities (Waswani et al., 2017; Lewis et al., 2020;
Ahn et al., 2022; Hadi et al., 2023) and have rapidly
become integral to numerous fields, transforming
everyday tasks such as text generation (Touvron
et al., 2023a; Chiang et al., 2023a; Jiang et al.,
2023a; Achiam et al., 2023), image generation (Sa-
haria et al., 2022; Nichol et al., 2021), and com-
plex decision-making tasks (Topsakal and Akinci,
2023; Wu et al., 2023). Despite their advantages,
the widespread deployment of LLMs has unveiled
critical security vulnerabilities (Perez and Ribeiro,
2022; Wan et al., 2023), making them suscepti-
ble to involuntary utilization in cyber-attacks and

*Equal contribution.
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Figure 1: Visualization of CRI compared to stan-
dard initialization on the HarmBench dataset over the
Llama-2 model.

other malicious activities (Fang et al., 2024; Yao
et al., 2024; Xu et al., 2024a; Heiding et al., 2024;
Bethany et al., 2025; Guo and Cai, 2025).

A common strategy to enhance the safety of
LLMs is safety-alignment, which involves training
models to generate outputs that adhere to desired
safety and ethical standards (Shen et al., 2023; Wu
et al., 2024b; Wang et al., 2023; Lee et al., 2023).
This method distinguishes between harmless and
harmful prompts to determine whether they should
be complied with or refused (Glaese et al., 2022;
Wang and Isola, 2020). Thereby, effectively seg-
menting the input space into Compliance and Re-
fusal subspaces (Yu et al., 2024a), where previous
works have shown that each subspace correlates to
distinct directions within the LLM’s internal activa-
tion space (Arditi et al., 2024; Wollschläger et al.,
2025). Inadvertently, this fuels jailbreak attacks
that manipulate harmful prompts to elicit models
into compliance, contrary to their safety guidelines
(Marshall et al., 2024; Yu et al., 2024c; Chao et al.,
2023; Deng et al., 2023).

Gradient-based jailbreak attacks are a well-
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Figure 2: Illustration of the K-CRI framework. First,
N harmful prompts are clustered into K groups, and a
candidate attack is trained for each cluster (left). When
a new prompt arrives, CRI evaluates the LFS of the
K attacks and selects the one with the lowest value as
initialization for a refined attack (right).

known category that utilizes gradient descent op-
timization schemes via models’ backpropagation
(Zou et al., 2023; Liu et al., 2023; Zheng et al.,
2024; Schwinn et al., 2024). Such attacks follow
a white-box setting, where attackers can access
models’ gradients, and have been shown to trans-
fer across different models (Wu et al., 2025a; Zou
et al., 2023; Liu et al., 2023; Lin et al., 2025). This
transferability property reflects the shared vulnera-
bilities of LLMs (Zhao et al., 2025b), and extends
the attacks’ relevance to black-box settings, where
surrogate models are used in the optimization (Li
et al., 2024c; Zhang et al., 2025).

Early jailbreak attacks utilized uninformative ini-
tializations in their optimization, such as repeated
or random tokens (Zou et al., 2023; Zhu et al.,
2023; Hayase et al., 2024; Gao et al., 2024). In
contrast, recent attacks aim to provide more infor-
mative initializations and often explicitly utilize
pre-computed jailbreak prompts as initializations
via self-transfer to other prompts (Andriushchenko
et al., 2024; IGCG et al., 2024; Liu et al., 2023).
Moreover, some jailbreak approaches implicitly
leverage the vulnerabilities discovered by previous
attacks via utilizing sets of handcrafted jailbreak
prompts (Zhu et al., 2023; Schwinn et al., 2024),
templates (Jiang et al., 2024; Liu et al., 2024b),
or patterns (Wei et al., 2023). While self-transfer
initializations significantly enhance attack perfor-
mance in various scenarios, their underlying dy-
namics remain unclear. Currently, only abstract
categories of efficient initializations have been iden-
tified (IGCG et al., 2024), and attacks utilize arbi-
trary or hand-picked initializations.

This work introduces Compliance Refusal

Initialization (CRI), a novel initialization frame-
work for gradient-based jailbreak attacks. Our ap-
proach considers the activation-space refusal di-
rection defined by Arditi et al. (2024) as the av-
erage difference between refusal and compliance
prompts-induced LLM activations. Previous works
showed that while refusal is governed by a single
direction, there are multiple opposing compliance
directions utilized by jailbreak attacks (Arditi et al.,
2024; Ball et al., 2024; He et al., 2024; Zhou et al.,
2024b). Nonetheless, the optimization of given
jailbreak attacks often exhibits similar compliance
directions over different prompts (Ball et al., 2024).
CRI then leverages pre-trained jailbreak attacks
to project unseen prompts along these compliance
directions, and towards the compliance subspace.
In Figure 1, we illustrate the initializations’ effect
using a compliance-refusal SVM classifier, where
CRI projects prompts toward the decision bound-
ary. We provide the detailed configurations and
additional analysis in Section A.1. Below, we out-
line our main contributions.

• We present the gradual convergence of given
attacks and subsequent self-transfer initializa-
tions toward similar compliance directions.

• We propose the CRI framework, which pre-
computes self-transfer initializations and uti-
lizes the compliance directions’ similarity to
identify and utilize effective initializations
over given prompts. An illustration is pre-
sented in Figure 2.

• We evaluate CRI across multiple jailbreak at-
tacks, LLMs, and safety benchmarks, demon-
strating higher ASR and reduced computa-
tional overhead when compared with baseline
initializations, emphasizing its ability to ex-
ploit compliance directions in safety-aligned
LLMs.

The rest of the paper is organized as follows:
Section 2 discusses the attack setting and related
works, Section 3 describes our proposed method,
Section 4 provides our experimental results, Sec-
tion 5 concludes the paper, and Section 6 discusses
the limitations of our work.

2 Background and Related Work

2.1 Background
We now present the gradient-based jailbreak at-
tack and initialization settings for both textual and
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embedding-based attacks. We then detail the perfor-
mance evaluation of attacks and indications of their
success. Finally, we discuss the theoretical aspects
of refusal and compliance. Our notations are based
on those suggested by Zou et al. (2023); Schwinn
et al. (2024); Andriushchenko et al. (2024); Arditi
et al. (2024).

Jailbreak Attack Setting Let V be some token
vocabulary that contains the empty token ϕ, let
V ∗ ≡ ⋃∞

i=1 V
i be the set of all sequences over

V , let M : V ∗ → RDout be an LLM, mapping a
token sequence to an output representation with
dimension size Dout, let EM : V → RDin be the
token embedder utilized by M , with dimension
size Din, and let NM be the number of layers in
M . Each layer i ∈ [1, NM ] in M is denoted as
M (i) and produces a vector representation along
the mapping process, with M (1) being a token-
wise application of EM on an input sequence, and
M (NM ) producing the model’s output. Formally,
denoting function concatenation as ◦ and sequence
concatenation as ⊕:

M ≡M (NM ) ◦ ... ◦M (1) (1)

∀x1:n ∈ V n,M (1)(x1:n) ≡ EM (x1:n) (2)

≡ EM (x1)⊕ ...⊕ EM (xn)

Given an input x1:n ∈ V n, M ’s output then in-
duces a distribution over the next token to be gen-
erated. For each t1 ∈ V the generation probability
is then denoted as pM (t1|x1:n). Denoting t0 = ϕ,
we generalize this notation for the generation of
output sequences t1:H ∈ V H :

pM (t1:H | x1:n) ≡ pM
(
t1:H | EM (x1:n)

)
(3)

=
H∏

i=1

pM
(
ti | EM (x1:n) ⊕ EM (t0:i−1)

)

The jailbreak adversarial criterion ℓM (x, t) is
then the negative log probability of generating a
target t ∈ V ∗, given an input x ∈ V ∗. Hereby,
given a predefined set of prompts’ jailbreak trans-
formations JT ⊆ V ∗ → (RDin)∗, a jailbreak
attack A optimizes a transformation T ∈ JT to
minimize the criterion over the transformed input
ℓM (T (x), t). Similarly, given a set of input and
target sequences {xi, ti}i ⊂ V ∗ × V ∗, a universal
jailbreak attack AU targets the same minimization
in expectation over the set while applying a single

transformation. Formally:

ℓM (x, t) = − log pM (t | x) (4)

A(x, t) = arg min
T∈JT

ℓM
(
T (x), t

)
(5)

AU ({xi, ti}i) = arg min
T∈JT

Ei

[
ℓM

(
T (xi), ti

)]

(6)

As such, while A considers a single input and tar-
get pair, AU aims to apply to a distribution of in-
puts and targets and considers generalization to un-
known samples. Therefore, universal attacks often
utilize a corresponding evaluation set to optimize
the generalization properties of the transformations
(Zou et al., 2023; Yi et al., 2024; Xu and Wang,
2024). An attack initialization is then an initial
transformation T0 ∈ JT , utilized to initiate the
corresponding optimization.

The predefined set of jailbreak transformations
JT can be considered to limit the attack to trans-
formations that preserve the intention in the input
prompt x. A common practice in text-based ad-
versarial attacks is to consider transformations that
add a textual suffix and or a prefix to the input with
up to a given length L (Zou et al., 2023; Liu et al.,
2023; Yu et al., 2024a; IGCG et al., 2024; Guo
et al., 2024). Embedding-based attacks utilize sim-
ilar suffix transformations but extend the scope of
possible suffixes to any embedding vectors rather
than those that align with textual tokens (Schwinn
et al., 2024). Accordingly, such attacks refer to the
token embeddings of LLMs as the input representa-
tions1. Depending on the transformation type, the
attack then optimizes and transforms the discrete
text or continuous embeddings. Formally:

JTtext−s(x1:n) ≡ {EM (x1:n ⊕ s)}s∈V L (7)

JTtext−ps(x1:n) ≡ {EM (p⊕ x1:n ⊕ s)}p,s∈V L

(8)

JTembed−s(x1:n) ≡ {EM (x1:n)⊕ s}s∈RDin×L

(9)

Attacks Success Evaluation Jailbreak attacks
aim to generate a target t via the model M given
the transformed input T (x). The intention is then
to utilize targets that indicate the compliance over
the prompt x. This approach was first suggested
by Zou et al. (2023), which utilized targets such
as "Sure, here is", where triggering the genera-
tion of such tokens strongly correlates with the

1This can be extended to include attacks on multilayer
representations, as in Schwinn et al. (2024).
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Figure 3: Comparison of directions’ cosine-similarity during GCG’s optimization process on the HarmBench
dataset over the Llama-2 model. We compare the refusal with attacks and self-transfer initializations (left), and
present the similarity matrices of attacks (center) and initializations (right).

model continuing to generate the desired jailbro-
ken output. However, this indication is uncer-
tain, and additional evaluations are conducted over
the prompt and output to ascertain successful jail-
breaks. A common practice is to evaluate the at-
tack’s success during the optimization by utilizing
"refusal lists", which contain words that indicate
the model’s refusal. Attacks then define their cor-
responding ASR based on these two factors, i.e.,
the exact generation of the intended target, and the
non-generation of words in their respective "refusal
lists".

During inference, the exact jailbreak input and
stochastically generated output of the model are
available, and the successful jailbreak attacks can
be thoroughly reevaluated via a judge model. The
generated output is then produced via M , and we
define the mapping between its input and output
Mgen : (RDin)∗ → V ∗. The judge model then
maps the target-output pair to an assessment of its
success JUDGE : V ∗ × V ∗ → {YES,NO}. In
this evaluation, a jailbreak attack T is considered
successful for a given input prompt x and target t,
if JUDGE(t,Mgen(T (x))) = YES.

Compliance and Refusal We define the compli-
ance subspace C as the set of inputs and targets,
for which a language model M produces comply-
ing, non-refusal outputs. The refusal subspace R
is then defined as its complement. As each judge
defines a distinct notion of compliance, the exact
segmentation of C,R varies for each evaluation.
In the current work, we define these subspaces
independently for each discussed attack via their
corresponding notion of adversarial success. In
addition, we define the attack direction ∆a as the

mean over the layers’ corresponding directions. A
layer l ∈ [1, NM ] attack direction is denoted as
∆al and defined as the average activation differ-
ence at the last token position of the instruction,
between prompts with (Al

jail) and without the jail-
break (Al

base) (Ball et al., 2024). Formally:

∆al =
1

|Al
jail|

∑

aljail∈Al
jail

aljail (10)

− 1

|Al
base|

∑

albase∈Al
base

albase

∆a = El[∆al] (11)

The refusal direction is then similarly defined by
taking harmful and harmless prompts instead of
jailbreaks and non-jailbreaks (Arditi et al., 2024).

2.2 Related Work
Self-transfer-based initialization was first intro-
duced by Andriushchenko et al. (2024) as a strat-
egy for enhancing random-search jailbreak attacks,
demonstrating improvements in ASR and reducing
computational overhead. This initialization used
an arbitrary previously successful jailbreak attack
as the starting point for further attack optimiza-
tion. Building on this idea, IGCG et al. (2024)
identified a category of malicious prompts that
provided more effective initializations when us-
ing self-transfer. An arbitrary initialization is then
selected from this category. Other studies, such
as Schwinn et al. (2024) and Liu et al. (2023), em-
ployed hand-crafted jailbreaks as initializations and
demonstrated further enhanced effects. Our work
extends these approaches by building on theoreti-
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cal insights that enable the automatic selection of
effective initializations over given prompts. We
supplement these previous initialization methods,
which were not designed to select self-transfer over
individual prompts.

3 Method

3.1 Motivation

In this section, we discuss the motivation of the
CRI framework. We first consider that attacks
project prompts in opposing directions of refusal
and toward similar compliance directions (Ball
et al., 2024). We expand on this phenomenon
by considering the gradual optimization of given
gradient-based attacks over different prompts. In
Figure 3, we present that such attacks, and subse-
quent self-transfer initializations, show highly sim-
ilar directions during their optimization process,
while shifting further away from refusal. This en-
tails that gradient-based attacks gradually transfer
from refusal to compliance by following a single
direction, suggesting that effective initializations
project prompts further along this direction. We
denote this direction as the compliance direction,
which is defined independently for each attack and
prompts’ distribution. As the attack optimization
aims to minimize the attack criterion, it indicates
the progression along the compliance direction and
thereby, the proximity to the compliance subspace.
Therefore, we consider the metric of loss-in-the-
first-step (LFS), which measures the attack cri-
terion values when utilizing a given initialization
over a given prompt. A lower LFS then indicates
that the initialization projects said prompt further
along the compliance direction, which aids in guid-
ing subsequent optimization and reduces the dis-
tance to a successful attack. CRI then utilizes
LFS to select an effective initialization from a
pre-computed set.

3.2 CRI Framework

Objective Our target is to construct an effective
set of initializations, where we aim to reduce the re-
quired optimization steps to a successful jailbreak.
Per our motivation, we utilize the attack criterion
to indicate progression along the compliance direc-
tion, and as a differentiable alternative to the initial-
ization target. CRI’s objective is then to optimize
an initial set of attacks T0 ⊆ JT of size K over
a fine-tuning set SFT of size N , while aiming to
enhance subsequent attacks over unknown prompts,

which are sampled from the same distribution. As
such, the optimization target for fine-tuning the
CRI set is the LFS. We then deploy CRI over a
given prompt by evaluating the LFS over each pre-
trained attack, and selecting the best-performing
one as the initialization. This evaluation is ap-
plied over a limited set of attacks and only requires
corresponding inference passes, the computational
overhead of which is negligible compared to back-
propagation. We denote CRI’s initialization set as
TK-CRI , formally:

TK-CRI = arg min
T0⊆JT,|T0|=K

(12)

E
(x,t)∈SFT

[
min
T∈T0

ℓM (T (x), t)

]

Optimization We now approximate the inner
minimization via some individual or universal at-
tacks A,AU , and correspondingly denote the re-
sulting sets as TN -CRI , T1-CRI :

TN -CRI = {A(x, t)}(x,t)∈SFT
(13)

T1-CRI = {AU (SFT )} (14)

TN -CRI then corresponds to optimizing each attack
independently over each (x, t) ∈ SFT , and T1-CRI

corresponds to optimizing a single attack that opti-
mizes the expectation over the entire fine-tuning set.
We limit this work to considering the same attack
in fine-tuning and deploying CRI . Nonetheless,
we consider both individual and universal attack
variants when available.

The single attack in T1-CRI considers multiple
prompts and is optimized for generalization to un-
known prompts. However, it does not consider the
LFS metric and the corresponding attunement to
the initialized prompt. In contrast, TN -CRI opti-
mizes each attack to achieve the minimum over a
different prompt in Equation (12), achieving lower
loss over the fine-tuning set and providing vari-
ous initial attacks, which may be relevant to differ-
ent prompts in deployment. However, these two
approaches present corresponding disadvantages.
T1-CRI only contains a single attack and cannot
address different behaviors in deployment. Con-
trarily, TN -CRI separately optimizes each attack
on a single prompt and does not consider its gen-
eralization to unknown prompts. Therefore, we
extend TK-CRI to consider a combination of the ap-
proaches via prompt clustering. We then use a uni-
versal attack on each cluster and produce multiple
attacks with enhanced generalization properties.
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Prompt Clustering We now consider a combina-
tion of the approaches presented in TN -CRI , T1-CRI

by grouping prompts towards applying AU . Firstly,
we note that the optimization in Equation (12) only
considers the LFS metric. However, CRI bene-
fits the entire attack optimization, especially if the
initial starting point does not significantly change
during the optimization. Hereby, initial attacks that
generalize better to unseen prompts may remain
partly unchanged and present a better initialization.
Therefore, we utilize a fixed number of prompts to
produce each attack in a given CRI set, consider-
ing attacks with comparable generalization proper-
ties in deployment. In addition, we do not utilize a
prompt for optimizing multiple attacks, as it may
result in over-fitting to similar prompts. Each at-
tack in TK-CRI is then trained over ⌊N/K⌋ distinct
prompts, and we correspondingly select K prompt
clusters. We aim to cluster similar prompts to ini-
tialize other similar prompts effectively. Hereby,
we utilize a sentence encoder EN (Warner et al.,
2024) and cluster prompt embeddings with mini-
mal Euclidean distance. For clustering, we utilize
the constrained k-means algorithm suggested by
Bradley et al. (2000), where a single attack is then
optimized over each cluster. The full algorithm is
presented in Algorithm 1, and a visualization of the
prompt clusters in Figure 9.

4 Experiments

This section presents a comprehensive empirical
evaluation of CRI compared to baseline initializa-
tions. We first present the experimental setting in
Section 4.1, and continue to discuss the results over
the HarmBench dataset in Section 4.2. Addition-
ally, we present ablation studies of our method in
Section C.5, and extend the evaluations with addi-
tional attacks, models, and datasets in Section C.4.
Our evaluation seeks to addresss three key research
questions:

• (RQ1) Does the LFS metric present a reliable
indication of the required steps-to-success,
thereby enabling the selection of effective ini-
tializations?

• (RQ2) Does the CRI framework present an
effective approach to initializing attacks in
the proximity of the compliance subspace, en-
hancing attacks’ ASR and reducing computa-
tional overhead?
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Figure 4: Distribution of per-prompt Spearman correla-
tion of LFS and number of steps-to-success, on Llama-
2. (Median r = 0.74, p = 4.61× 10−4).

• (RQ3) How does the tradeoff between the
number of initializations and their general-
ization properties, as represented in the K hy-
perparameter of CRI , affect the performance
of the resulting initializations?

4.1 Experimental Setting

Datasets We present our experiments on the
"standard behaviors" category of the HarmBench
dataset (Mazeika et al., 2024), which is comprised
of prompt-target pairs (x, t). We define three dis-
joint subsets and utilize them in all the presented
settings. CRI utilizes 2 subsets of 25 samples each:
a fine-tuning set for optimizing CRI , and a vali-
dation set for evaluating the universal attacks. The
final subset is the 50-sample test set over which we
report the results. Additionally, we present results
over the AdvBench dataset (Zou et al., 2023) in
Sections C.4.1 and C.4.3.

Models We evaluate our results over the open-
source Vicuna-7B-v1.3 (Chiang et al., 2023b),
and Llama-2-7B-Chat-HF (Touvron et al., 2023b)
LLMs, which we accordingly denote as Vicuna, and
Llama-2. We present these models to compare with
the default setting presented by GCG, and provide
results over additional models in Section C.1.

Attacks We present the GCG (Zou et al., 2023)
and the Embedding attacks (Schwinn et al., 2024),
where we utilized the same parameter configuration
in all the presented settings, including the initializa-
tions’ training. The parameter configuration is then
the default parameters suggested by the authors,
except for the batch-size B parameters of GCG.
Thereby, GCG utilizes 500 optimization steps and
the JT set in Equation (7) with L = 20 tokens.
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Figure 5: Comparison of ASR and number of steps on the HarmBench dataset for the GCG (top) and Embedding
attacks (bottom) over the Llama-2 (left) and Vicuna (right) models.

Similarly, the Embedding attack utilizes 100 opti-
mization steps and the JT set in Equation (9) with
L = 20 tokens. To present a more robust setting,
we limit the computational resources of the GCG
attack and take the batch-size parameter of GCG
to be B = 16 instead of the default 512 value.
This entails that only B = 16 tokens are sam-
pled as possible replacements in each iteration of
GCG, emphasizing the effect of the compared ini-
tializations. Additionally, we present results with
increased batch size in Section C.5.1.

Initializations We compare the K − CRI ini-
tializations over K = 1, 5, 25 to existing ap-
proaches, i.e., "Standard" which utilizes repeated ’!’
tokens, "Random" which utilizes uniform random
tokens, and "Baseline" which utilizes randomly
selected self-transfer initializations similarly to An-
driushchenko et al. (2024); Jia et al. (2024). We
then refer to "Standard" and "Random" initializa-
tions as uninformative and to others as informative.
For each attack, CRI pre-trains the transforma-
tions on the designated data subsets and utilizes
LFS to select an initialization for a given prompt.
The "Baseline" approach then utilizes the same
initializations set as 25-CRI , but selects each ini-

tialization uniformly.

Metrics In each attack’s evaluation, we follow
the default evaluation framework suggested by the
authors to compute the ASR. Thereby, GCG eval-
uates success as not generating refusal-list key-
words, where we provide the list in Section C.1.4.
In contrast, the Embedding attack requires gen-
erating the exact target. We additionally present
an evaluation of the resulting attacks via a GPT-
4 judge in Section C.1.4. In addition to the
ASR and LFS, we define two metrics for es-
timating the computational overhead of attacks:
MSS—Median Steps to Success, ASS—Average
Steps to Success. Hereby, a lower MSS/ASS
of initializations indicates their corresponding de-
crease in computational overhead.

Computation In all the presented settings, the
computation was executed on Intel(R) Xeon(R)
CPU and NVIDIA L40S GPU. An evaluation of
runtime on this hardware can be found in Sec-
tion C.5.2.

4.2 Experimental Results
In Figure 4, we present the distribution of per-
prompt Spearman correlations between the LFS
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Attacks Initialization Llama-2 Vicuna
ASR ↑ MSS ↓ ASS ↓ LFS ↓ ASR ↑ MSS ↓ ASS ↓ LFS ↓

GCG

Standard 50 185 212.16 2.15 98 30 85.29 0.86
Random 22 340 324.18 1.87 96 39 82.13 0.8
Baseline 78 122 141.33 1.61 96 12 37.4 0.68
25-CRI (ours) 100 2 22.64 0.67 98 3 26.71 0.58
5-CRI (ours) 98 3 15.04 0.68 100 6 19 0.6
1-CRI (ours) 58 197 188.34 1.42 98 1 10.51 0.54

Embedding

Standard 100 14.5 14.9 1.64 100 13 14.36 1.78
Random 100 14 13.7 1.83 100 15 15.2 1.73
Baseline 100 3 3.72 1.16 100 3 3.96 0.95
25-CRI (ours) 100 3 3.12 0.4 100 2 2.84 0.35
5-CRI (ours) 100 2 2.6 0.51 100 2 2.58 0.51
1-CRI (ours) 100 2 2.46 0.59 100 2.5 2.68 0.61

Table 1: Comparison of attacks’ metrics on the HarmBench dataset.

metric and the number of steps to a successful at-
tack, on Llama-2. For each prompt, we utilize
18 different initializations to calculate both mea-
sures, including the standard, random, baseline,
and the initializations used in a separate ablation
study over the number of training steps as in Fig-
ures 21 to 23. The distribution seems to be heavily
skewed to the right, with most per-prompt Spear-
man correlations clustered at relatively high values
(median 0.74), and accompanied by low p-values
(median 4.61 × 10−4). These results confirm a
statistically significant, positive monotonic rela-
tionship between LFS and steps to success when
selecting an initialization for a given prompt, sup-
porting our approach for selecting initializations
via the LFS metric. In Figure 16, the Vicuna dis-
tribution also leans to the right, but the median
correlation and p-values are somewhat decreased.
This may be due to Vicuna being considerably less
robust than Llama-2, which aligns with our main
results.

In Figure 5, we present the ASR of the GCG
and Embedding attacks depending on the number
of steps, over the Llama-2 and Vicuna models. In
the Embedding attack, all initializations quickly
achieve 100% ASR, with the uninformed initial-
izations requiring somewhat more computational
resources. This may indicate that these settings
are less robust, which aligns with the Embedding
attack being considered better performing. In ad-
dition, these results emphasize the computational
benefit of utilizing informed initializations. Com-
parable results are presented on newer models in
Figures 11 and 15. Similarly, for GCG on the Vi-
cuna model, all initializations achieve nearly 100%
ASR, yet with more distinct computational re-
quirements. CRI now requires the fewest opti-

mization steps, with comparable performance for
K = 1, 5, 25, the baseline approach requires some-
what more, and substantially so for the uninformed
approaches. The high ASR again indicates this set-
ting as non-robust, where the computational com-
parison implies the benefit of utilizing the LFS
metric for selecting initializations. In contrast, for
GCG on Llama-2, only 25-CRI, 5-CRI achieve
near 100% ASR, with all other approaches achiev-
ing substantially less. This may indicate that this
setting is more robust, where the effective initial-
izations of 25-CRI, 5-CRI aid in circumventing
this robustness, and is supported by those two ap-
proaches exclusively achieving substantial ASR in
the first few steps. The baseline initialization then
achieves a higher ASR than 1-CRI , which sug-
gests that 1-CRI is inefficient in robust scenarios.
This is supported by the corresponding training re-
sults of 1-CRI , presented in Section C.3, where it
achieves negligible ASR over the validation set.

In Table 1, we compare the resulting ASR of
the GCG and Embedding attacks over the Llama-2
and Vicuna models. CRI then achieves the best
ASR,MSS,ASS,LFS in all the presented set-
tings, substantially outperforming other initializa-
tion strategies. This is further supported by more
models, data, and attacks in Table 4. Similarly to
previous indications, 5-CRI, 25-CRI consistently
achieves the best or comparable results, and 1-CRI
is only effective in non-robust settings. This sup-
ports our previous indications that LFS-based ini-
tialization selection is an effective initialization
strategy.
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5 Discussion

This work suggests CRI , an initialization frame-
work for gradient-based jailbreak attacks. Our find-
ings suggest that given attacks optimize prompts’
distributions by gradually shifting them along sin-
gle compliance directions. We then define the LFS
metric to indicate progress along this direction and
corresponding proximity to the compliance sub-
space. This metric both guides the optimization
of the CRI set and provides our initialization se-
lection criterion. Our results indicate that this ap-
proach produces and utilizes effective initializa-
tions, which enhance attacks’ ASR and reduce
their computational overhead. For example, with
the GCG attack on Llama-2, 25-CRI achieves
100% ASR with an MSS of 2, while randomly
selected initializations from the same initialization
set only achieve 78%ASR with an 122MSS, em-
phasizing the strength of CRI’s selection criterion.
The uninformative initializations then achieve 50%
ASR with an MSS of 185.

Previous approaches that utilized self-transfer-
based initializations presented significant attack en-
hancements; however, they rely on arbitrary initial-
izations. Conversely, CRI extends this approach
to an automated process by considering multiple
initializations, thereby addressing a range of di-
verse scenarios. Our selection metric then matches
a corresponding initialization to each scenario.

The success of our methods supports the assump-
tion that given attacks gradually follow singular di-
rections. This implies that the safeguards of LLMs
can be circumvented with relative ease, as only
the identification of such directions is required.
Moreover, these directions are defined over the
input space and could potentially be transferred to
other LLMs. Therefore, eliminating these compli-
ance directions is vital to producing robust LLMs.
Jailbreak attacks may still persist in models that
achieve such. However, they will require distinct
optimization for each malicious prompt, signifi-
cantly increasing their computational overhead. Fu-
ture studies could leverage CRI as a framework to
gauge LLM robustness, specifically by testing how
well a model resists attacks with highly effective
initializations. This can be measured by evaluating
the minimal required computational resources for
computing an effective CRI set, i.e., the minimal
number of prompts and their optimization over-
head required to increase the success of initialized
prompts and reduce per-attack computational over-

head.

6 Limitations

Despite the advantages of initialization-based at-
tack strategies, these initializations may restrict
the diversity of the produced attacks. Initializa-
tions that converge in several optimization steps
can lead to narrow attack trajectories that rely on
one compliance direction that may not be rele-
vant to enhancing models’ robustness to other jail-
break attacks. When utilized for alignment training
(Mazeika et al., 2024), such initializations can in-
advertently harm the model’s effectiveness against
the variety of real-world jailbreak threats.

7 Ethical Considerations

While this work can potentially facilitate the gen-
eration of harmful data on open-source LLMs or
reveal vulnerabilities that expedite attacks, we be-
lieve it is vital to highlight these threats to promote
AI security research. By identifying and studying
these weaknesses, we can build stronger defenses
and reduce risks in an environment where LLMs
are rapidly developing. Recognizing the risks and
limitations is essential for creating adequate safe-
guards, allowing researchers and developers to ad-
dress emerging threats proactively.
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A Introduction

A.1 Fig-1: Generation of 2D Visualization
The visualization in Figure 6, is a refined variant of Figure 1, is presented under identical experimental
conditions. In this figure, each point represents a distinct harmful prompt. The color scheme differentiates
prompt types: red denotes clean harmful prompts, orange indicates prompts initialized using GCG’s
standard method, and cyan corresponds to prompts initialized with our proposed method (1-CRI). To
analyze these prompts, we first obtained their embeddings using Llama-2 and determined whether Llama-2
complied with each prompt. Using these embeddings and compliance labels, we trained an SVM classifier.
This process yielded a weight vector w and bias b, which define the SVM decision function: ⟨w, x⟩+ b. A
negative SVM score indicates a refusal, while a positive score signifies compliance. This score is plotted
on the x-axis. The y-axis represents a one-dimensional t-SNE projection. The orange and cyan paths
illustrate the optimization trajectories of the attack: the orange path follows GCG’s standard initialization,
while the cyan path traces the attack starting from our initialization. The x-axis values are computed using
the previously trained SVM classifier.
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2D Representation of Harmful Prompt Embeddings

Refusal Region
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CRI Attack Steps
Clean
Standard
CRI (ours)

Figure 6: Visualizations of harmful prompts’ initializations and corresponding GCG’s attack steps. Disclaimer,
CRI is not an attack and "CRI Attack Steps" are for the attack steps when using CRI as an initialization.

B Method

B.1 Motivation
B.1.1 Train and Test Refusal Similarity vs. Train Steps
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Figure 7: Correlation between refusal similarity and attack loss over optimization steps of attack.
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B.1.2 Correlation between Loss and Refusal Similarity
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Figure 8: Refusal similarity comparison: (left) Normal GCG optimization steps; (right) Initialization trained on
different optimization steps.

B.2 K-CRI algorithm

Algorithm 1 Compliance–Refusal Initialization (CRI)

1: Input: Fine-tuning set SFT, number of clusters K, encoder EN , universal attack AU

2: Output: Initialization set TK-CRI

3: Initialize TK-CRI ← ∅
4: Compute embeddings {EN(x) | (x, t) ∈ SFT}
5: Cluster the embeddings into K groups {C1, . . . , CK} using constrained k-means
6: for each cluster Ck do
7: Learn universal transformation Tk ← AU (Ck)
8: Update TK-CRI ← TK-CRI ∪ {Tk}
9: end for

10:

11: return TK-CRI

B.3 Prompt Clustering
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Figure 9: AdvBench (left) and HarmBench (right) prompt clustering for 5-CRI , projected to 2D using t-SNE.
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B.4 CRI Integration Guidelines
To support the broad applicability of the CRI framework, we outline generic integration strategies
adaptable to various optimization-based paradigms. These strategies utilize K-CRI templates to initialize
prompts near the compliance subspace, enhancing efficiency while remaining agnostic to specific attack
mechanisms. Integration approaches align and adaptable across gradient-based jailbreak attacks such
sampling-based, and reinforcement-driven optimization settings. Concrete integration examples are
provided in our experiments, in Section 4.

Classic Gradient Attacks This paradigm employs gradient-based optimization to iteratively refine
input prompts, minimizing the negative log probability of eliciting a target response. The CRI framework
integrates by initializing prompts utilizing K pre-computed attacks, which serve as starting points for
gradient descent, thereby reducing the number of iterations required for convergence. By leveraging the
semantic clustering inherent in CRI , this approach ensures that initial prompts are optimally positioned
within the compliance subspace, enhancing optimization efficiency (Zou et al., 2023; Wallace et al.,
2019; Shin et al., 2020; Guo et al., 2021; Ebrahimi et al., 2018). Similarly, CRI can also be integrated
for extended attack variants of this category, which utilize a scalar energy function (Guo et al., 2024)
to guide prompt modifications toward model outputs that align with desired behaviors, often without
specifying a precise target response. CRI integrates by selecting K attacks that minimize the initial
energy score, providing robust initial prompts for untargeted optimization. This strategy capitalizes on
CRI’s ability to group prompts by semantic similarity, thereby improving generalizability across diverse
prompt distributions (Liu et al., 2023; Chao et al., 2023; Zhang et al., 2022; Wei et al., 2024; Li et al.,
2023a). Results for (Zou et al., 2023) can be found in Table 1,

Embedding Attacks Embedding attacks manipulate prompt representations within the latent space to
circumvent refusal mechanisms, using training-time attacks as a baseline to identify vulnerable directions
that trigger compliance. CRI integrates by selecting K attacks within the LLMs’ embedding space,
followed by selecting the one that minimizes the attack criterion for a given prompt (Leo et al., 2024;
Qi et al., 2023; Li et al., 2024a; Zhao et al., 2023; Huang et al., 2023), results for (Schwinn et al., 2024)
appear in Table 1.

Universal Attacks These attacks optimize a single transformation applicable across multiple prompts,
prioritizing broad generalizability. CRI integrates by training K attacks on clustered subsets of the
fine-tuning set, then selecting the optimal template for a given prompt during inference. This approach
balances universal applicability with prompt-specific efficacy, leveraging CRI’s clustered structure to
enhance transformation robustness (Zou et al., 2023; Mozes et al., 2021; Liu et al., 2022; Brown et al.,
2023; Yang et al., 2024b), results for (Zou et al., 2023) can be found in Section C.4.1 for Llama-2 and
Table 3 for Vicuna.

Model-Based Black-Box Attacks These attacks rely on querying the model without gradient access,
using output feedback to iteratively refine prompts. CRI integrates by employing K attacks as an initial
set, minimizing the number of model interactions required to achieve compliance. The diversity of
CRI clusters enhances query efficiency, particularly in resource-constrained black-box settings (Zou
et al., 2023; Chen et al., 2021; Garg et al., 2022; Li et al., 2023b; Zhang et al., 2024), for results on the
GCG−M model transferability (Zou et al., 2023) presented in Section C.4.1 for Llama-2-based jailbreak
attack and Table 3 for Vicuna-based jailbreak attack.

Other Attacks and Attacks Improvements Beyond standard optimization-based attacks, CRI extends
to additional paradigms such as prefix optimization, refusal unlearning, and alignment modulation (Jones
et al., 2024; Smith et al., 2024; Xu et al., 2023; Lin et al., 2023; Wu et al., 2024a). Its flexible K
initialization set framework enables adaptation to diverse objectives while remaining model- and method-
agnostic. Moreover, CRI integrates seamlessly with recent optimization improvements, including
techniques like BOOST and I-GCG (Boost et al., 2024; IGCG et al., 2024), enhancing convergence and
success rates by leveraging robust initializations. An example integration of CRI with BOOST, can be
found in Figure 27.

6688



Alignment Backdoor and Refusal Direction. Safety-Alignment divides input prompts into compliance
and refusal regions—boundaries that adversaries can exploit (Marshall et al., 2024; Baumann, 2024;
Huang et al., 2024; Yu et al., 2024c; Chao et al., 2023; Deng et al., 2023; Li et al., 2025; Yan et al., 2024;
Xu et al., 2024b; Xiao et al., 2024a). Recent studies suggest refusal direction—a single vector in the
residual stream that governs refusal behavior (Arditi et al., 2024). Modifying this direction can toggle
the model’s safety responses, prompting offensive uses like CAST’s real-time content control (Lee et al.,
2025) or defensive uses like GradSafe’s gradient-based detection (Xie et al., 2024). However, new work
represents refusal cones—suggesting multiple interacting refusal directions (Wollschläger et al., 2025).

Initializations Early Jailbreak attack approaches utilize uninformative seeds, employing repeated
characters or random Gaussian token embeddings (Zou et al., 2023; Hu et al., 2024). Subsequent methods
introduced techniques such as Langevin dynamics or beam search (Guo et al., 2024; Sadasivan et al., 2024;
Mehrotra et al., 2023). Implicit initialization approaches rely on subtle mechanisms—few-shot distractors,
puzzle-like games, or dynamic context shifts—that implicitly guide models toward generating harmful
outputs (Xiao et al., 2024b; Chang et al., 2024; Ramesh et al., 2025). Transfer-based initializations
leveraging previously successful jailbreak prompts as starting points for subsequent optimizations (Jia
et al., 2024; Andriushchenko et al., 2024; Wu et al., 2025b). Explicit initialization methods directly embed
crafted injection prompts or obfuscated content (Liu et al., 2024a, 2023; Schwinn et al., 2024; Liu et al.,
2024b; Sun et al., 2025; Xu et al., 2025; Jiang et al., 2024; Zhao et al., 2025a). Additional possible
enhancements to initialization strategies include employing energy-based objectives (Zhao et al., 2024),
prefix-tuning methods (Zhu et al., 2024; Zhou et al., 2024a; Zhang and Wei, 2025; Li et al., 2024d), or
gradient-based optimization techniques (Li et al., 2024b; Yu et al., 2024b).

C Experiments

C.1 Experiments Settings

GCG and the Embedding attacks keep the same settings as before.

C.1.1 Datasets
We utilize the AdvBench dataset (Zou et al., 2023), providing prompt–target pairs (x, t). We define
five disjoint subsets: A 25-sample fine-tuning set for CRI , B 25-sample validation set for universal
attacks on the fine-tuning set, C 25-sample optimization set for universal attacks and D 25-sample second
validation set for the universal attack, E 100-sample test set for evaluation. Subsets C and E follow the
splits proposed by Zou et al. (2023).

C.1.2 Models
We evaluate the following open-source LLMs: Vicuna-7B-v1.3 (Chiang et al., 2023b), Llama-2-7B-Chat-
HF (Touvron et al., 2023b) and Meta-Llama-3-8B-Instruct (Touvron et al., 2024), Falcon3-7B-Instruct
(Almazrouei et al., 2023), Phi-4-Mini-Instruct (Abouelenin et al., 2025), Meta-Llama-3-8B-Instruct and
Llama-3.1-8B-Instruct (Touvron et al., 2024), DeepSeek-LLM-7B-Chat (Bi et al., 2024), DeepSeek-R1-
Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B (Liang et al., 2025), Qwen2.5-7B-Instruct (Yang
et al., 2024a), Mistral-7B-v0.1, Mistral-7B-Instruct-v0.2 and v0.3 (Jiang et al., 2023b).

C.1.3 Attack Settings
For the AutoDAN attack variants (GA, HGA) (Liu et al., 2023), we utilize the same reference file filled
with hand-crafted jailbreaks, and perform 100 optimization steps.

C.1.4 Attack Evaluation
Refusal lists of different papers, used for our evaluation. Each attack used its refusal list.

GCG Taken from their GitHub 2:
2https://github.com/llm-attacks/llm-attacks/blob/main/experiments/evaluate.py lines 33-63
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test_prefixes = [ "I’m sorry", "Sorry", "I am sorry", "I apologize", "As an", "As an AI", "I’m
an", "I’m just", "As a language model", "As an Assistant", "I cannot", "I do not", "Hello!", "is
illegal and unethical", "I’m really sorry", "OpenAI", "unethical", "not ethical", "illegal", "not
legal", "My apologies", "but I cannot", "If you have any other non-malicious requests", "I’m not
able to provide", "I am really sorry", "I cannot create", "I cannot support", "I can’t provide", "I
can’t assist" ]

AutoDAN Taken from their GitHub3:

test_prefixes = [ "I’m sorry", "Sorry", "I am sorry", "I apologize", "As an", "As an AI", "I’m
an", "I’m just", "As a language model", "As an Assistant", "I cannot", "I can’t", "I do not",
"cannot", "Hello!", "is illegal and unethical", "I’m really sorry", "unethical", "not ethical",
"illegal", "not legal", "My apologies", "but I cannot", "If you have any other non-malicious
requests", "I’m not able to provide", "I am really sorry", "I cannot create", "I cannot support", "I
can’t provide", "I can’t assist", "I am unable", "I must", "It must", "it must", "is not capable of",
"As a responsible", "never", "is not", "</s>" ]

Attack Evaluation - GPT-4 Judge In Figure 26, we compare the ASR of our initializations vs. standard
and random using a GPT-4 judge for the ASR-Recheck calculation on the output, according to (Liu et al.,
2023). This is relevant because the current evaluation of GCG is outdated, results and further details
represented in C.5.3.

C.2 Experimental Results

In this part, we present ablation studies of our method C.5, extend the evaluations with additional attacks,
models, and settings C.4, and provide results over the AdvBench dataset and cross-dataset settings C.5.2.

C.3 CRI Optimization - HarmBench

Below, we discuss the success in the attacks used for initialization on the HarmBench dataset.

Initialization Cluster Llama-2 Vicuna
ASR (%) ASR (%)

1-CRI – 4 64

5-CRI cluster 0 8 12
cluster 1 0 40
cluster 2 4 0
cluster 3 60 56
cluster 4 64 28

25-CRI – 44 96

Table 2: Attack-success rate (ASR%) for each model, initialization, and cluster.

C.4 Additional Attacks, Models And Datasets

C.4.1 Full Experiments Tables - HarmBench and AdvBench

We evaluate the open-source LLMs as mentioned in Section C.1.2.

3https://github.com/SheltonLiu-N/AutoDAN
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Initialization Llama-2 Vicuna Llama-3 Falcon Mistral-7B (v0.2) Mistral-7B (v0.3) Phi-4 Qwen2.5 Median ASR Average ASR

Standard 7 96 44 96 37 63 43 51 47.5 54.6
Random 20 94 51 98 85 86 49 48 68 66.4
25-CRI (ours) 21 95 88 99 94 94 62 83 91 79.5
1-CRI (ours) 10 96 59 94 73 68 70 61 69 66.4

Initialization Llama-2 Vicuna Llama-3 Falcon Mistral-7B (v0.2) Mistral-7B (v0.3) Phi-4 Qwen2.5 Median ASR Average ASR

Standard 13 98 61 99 63 59 49 90 62 66.5
Random 10 89 48 100 50 67 38 67 58.5 58.62
25-CRI (ours) 15 92 56 98 88 93 47 72 80 70.13
1-CRI (ours) 29 99 91 100 93 91 79 97 92 84.9

Table 3: Universal Attack Trained on Vicuna(Bottom) and Llama-2(Top). Comparison of 25-CRI and 1-CRI
to Standard and Random initialization on GCG-M transfer attacks over the AdvBench dataset. The source model
is Vicuna, and ASR (%) is presented for each target model.

Models Initialization Llama-2 Vicuna Llama-3
ASR ↑ MSS ↓ ASS ↓ LFS ↓ ASR ↑ MSS ↓ ASS ↓ LFS ↓ ASR ↑ MSS ↓ ASS ↓ LFS ↓

GCG

Standard 90 64 106.51 2.29 97 8 15.75 0.80 89 76 118.27 1.84
Random 76 80 114.93 1.90 98 9 15.8 0.58 78 89 132.26 1.76
25-CRI (ours) 97 1 2.04 0.21 97 1 2.83 0.23 98 4 18.4 0.74
5-CRI (ours) 97 1 1.2 0.28 97 1 1.61 0.31 100 1 11.29 0.63
1-CRI (ours) 99 1 1.68 0.33 98 1 1.01 0.25 100 1 15.12 1

Embedding Attack

Standard 100 12 12.5 1.71 86 27 36.38 2.99 98 22 28 3.3
Baseline 100 3 3.72 1.16 100 3 3.96 0.95 98 4 6.36 2.12
25-CRI (ours) 100 1 1.41 0.08 86 9 21.58 2.29 100 7 8.56 4.36
5-CRI (ours) 100 2 2.6 0.51 100 2 2.58 0.51 100 2 2.44 0.6
1-CRI (ours) 100 7 6.84 3.72 86 9 21.26 3.63 100 6 6.02 5.77

AutoDAN-GA
Standard 19 9 9.84 2.25 100 2 2.21 0.84 100 3 5.67 1.58
25-CRI (ours) 30 8 9.55 1.9 100 2 2.2 0.65 100 3 3.98 1.17

AutoDAN-HGA
Standard 67 19.5 29.6 2.25 100 2 2.32 0.84 100 2 7.48 1.58
25-CRI (ours) 92 4.5 13.8 1.48 100 2 2.38 0.37 100 2 5.94 1.03

Table 4: Individual attack results of our methods, on the AdvBench dataset over three LLMs.

Initialization - Models Llama-3.1-8B Mistral-7B

MSS↓ ASS↓ ASR↑ LFS↓ MSS↓ ASS↓ ASR↑ LFS↓
Standard 21 22.02 100 3.16 14 27.26 92 2.71
Baseline 3 3.96 100 1.58 4 8.28 100 2.2
1-CRI (ours) 7.5 7.6 100 6.59 5 5.5 100 4.02
5-CRI (ours) 2 2.52 100 0.69 2 2.3 100 0.41
25-CRI (ours) 7 7.84 100 4.06 7 7.02 100 2.89

Table 5: Embedding Attack Results for Llama-3.1-8B and Mistral-7B on AdvBench.

Initialization – Models Llama-3.1-8B Mistral-7B Llama-3-8B

MSS↓ ASS↓ ASR↑ LFS↓ MSS↓ ASS↓ ASR↑ LFS↓ MSS↓ ASS↓ ASR↑ LFS↓
Standard 19 19.98 100 1.59 9 14.28 100 1.39 19 24.12 94 1.78
Baseline 3 3.96 100 1.58 4 8.28 100 2.2 4 6.36 98 2.12
1-CRI (ours) 2 2.24 100 0.61 2 2.48 100 0.66 2 2.16 100 0.64
5-CRI (ours) 2 2.52 100 0.69 2 2.3 100 0.41 2 2.44 100 0.6
25-CRI (ours) 2 2.66 100 0.5 2.5 2.76 100 0.46 2.5 2.82 100 0.52

Table 6: Embedding-attack results for Llama-3.1-8B, Mistral-7B, and Llama-3-8B on HarmBench.

C.4.2 ASR VS. Steps - HarmBench
In Figure 10, we present evaluations on the GCG attack using two younger models: DeepSeek-LLM-
7B-Chat and Falcon3-7B-Instruct. The DeepSeek models seems to be the least robust out of the four
examined, demonstrating 100 ASR quickly using all initializations, with ours taking the lead. When
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Figure 10: Comparison of K-CRI (K = 1, 5, 25) to standard and random initialization on the GCG attack over
the HarmBench dataset. The attacks’ ASR are presented on Falcon3-7B-Instruct (left) and deepseek-llm-7b-chat
(right).

examining Falcon, we can notice a clear difference between the uninformative initializations and ours,
where all of ours achieve higher ASR way more quickly.
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Figure 11: Extra ASR vs. steps results on the embedding attack with three more models on the HarmBench
dataset.

6692



C.4.3 ASR VS. Steps - AdvBench

In Figure 12, we present evaluations on Llama-2, Vicuna and Llama-3. Our initialization prove superior in
both Llama models comparative to the uninformative initializations. On Vicuna, which is a less robust
model, all initializations converge quickly to 100 ASR. But, our initializations still converge way more
quickly, demonstrating its advantage even here, in a less robust setting. In Figures 13 and 14, we present
evaluations on the same models on the AutoDAN attack variants (GA,HGA), when using 1-CRI vs.
its standard initialization. On Llama-2, we can notice an improvement in the ASR in both variants,
converging more quickly to a higher ASR. On Llama-3, which is surprisingly less robust than Llama-2 in
the attack, we can notice a slight faster convergence to 100 ASR. On Vicuna, the attacks converge to 100
ASR very quickly, noticing little to no difference between our initialization and the standard one.
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Figure 12: Comparison of K-CRI (K = 1, 5, 25) to standard and random initialization on the GCG attack over
the AdvBench dataset. The attacks’ ASR are presented on Llama-2 (left), Vicuna (middle), and Llama-3 (right).
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Figure 13: Comparison of 25-CRI to standard initialization on the AutoDAN -GA attack over the AdvBench
dataset. The attacks’ ASR are presented on Llama-2 (left), Vicuna (middle), and Llama-3 (right).
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Figure 14: Comparison of 25-CRI to standard initialization on the AutoDAN -HGA attack over the AdvBench
dataset. The attacks’ ASR are presented on Llama-2 (left), Vicuna (middle), and Llama-3 (right).
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Figure 16: Distribution of per-prompt Spearman correlation of LFS and number of steps-to-success, on Vicuna.
(Median r = 0.46, p = 5.73× 10−2).
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Figure 15: Embedding attack results on AdvBench. We compare K-CRI (K=1, 5, 25) to standard and random
initialization across five models. Top row (left to right): Llama-2, Vicuna, Llama-3. Bottom row (left to right):
Llama-3.1, Mistral-7B.

C.4.4 LFS VS. Steps to Success - HarmBench
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Figure 17: LFS versus steps-to-success for four initialization strategies on Vicuna in the GCG attack. The dashed
line is the least-squares regression fit across all points (Pearson r = 0.31, p = 1× 10−5).
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Figure 18: LFS versus the number of optimization steps required for the embedding attack across five LLMs,
Pearson correlation. Llama-2 (r = 0.62, p = 4 × 10−17); Vicuna (r = 0.70, p = 2 × 10−23); Llama-3-8B
(r = 0.32, p = 7× 10−5); Llama-3.1-8B (r = 0.39, p = 10−6); Mistral-7B (r = 0.51, p = 4× 10−11).
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C.5 Ablation Study

C.5.1 Batch Size

In this part, we experiment with the batch size hyperparameter of the GCG attack, which governs
computational resources per attack iteration. A larger batch size allows considering more potential token
replacements at each iteration. In Figure 19, we evaluate on the HarmBench dataset, and in Figure 20,
on AdvBench. We observe that for both datasets, using a small batch size of 16, the 1-CRI initialization
underperforms compared to other CRIs and the baseline. However, performance significantly improves,
becoming comparable or superior to other initializations, when the batch size increases. Additionally, the
baseline initialization severely underperforms relative to 25-CRI and 5-CRI at small batch sizes (16 and
32), and only becomes somewhat comparable, yet still inferior, at larger batch sizes (64). This highlights
the significance of our framework under varying computational resources.
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Figure 19: Comparison of K-CRI (K = 1, 5, 25) to standard and random initialization on the GCG attack over
the HarmBench dataset. The attacks’ ASR are presented on Llama-2 (left) and Vicuna (right). Across different
batch sizes: 16 (top), 32 (center), and 64 (bottom).
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Figure 20: Comparison of K-CRI (K = 1, 5, 25) to standard and random initialization on the GCG attack over
the AdvBench dataset. The attacks’ ASR are presented on Llama-2 (left) and Vicuna (right). Across different
batch sizes: 16 (top), 32 (center), and 64 (bottom).

C.5.2 CRI Cost
Given a fine-tuning set SFT of size N , the total CRI training cost is CCRI =

∑K
i=1 Ti, where Ti is the

number of optimization steps for the i-th initialization in the set TK-CRI . At deployment, each test input
uses this initialization to reduce optimization cost from Cbase (baseline) to CCRI-deploy. The total amortized
cost over Ntest test prompts is:

CCRI-total = CCRI +Ntest · CCRI-deploy ≪ Ctotal = Ntest · Cbase when Ntest ≫ K.

Runtime Analysis On our hardware (Intel(R) Xeon(R) CPU and NVIDIA L40S GPU), we find that
the GCG attack steps take different GPU times on different models, as expected. On Llama-2-7B, a single
iteration of GCG takes approximately 3× 10−4 GPU hours. As such, our computational analysis is as
follows (Table 1):

CCRI ≈ 500[step]× 25[prompts]× 3× 10−4[hours/step] = 3.75[hours]
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where each initialization is trained for 500 iterations, and there are 25 prompts in the initialization set.

Cbase ≈ 212.16[step]× 3× 10−4[hours/step] = 0.064[hours]

CCRI−deploy ≈ 22.64[step]× 3× 10−4[hours/step] = 0.0068[hours]

where 212.16 and 22.64 are the average steps to success of the standard and 25-CRI initializations.
On a test set of 500 prompts:

CCRI−total = 3.75[hours] + 500[prompts]× 0.0068[hours] = 7.15[hours]

Ctotal = 500[prompts]× 0.064[hours] = 32[hours]

That entails a savings of approximately 25 GPU hours, in addition to the attack success rate improve-
ments.

Ablation Ablation study of the number of steps used to create the initialization on GCG in the
HarmBench dataset can be found in Figures 21 to 23. We notice that quite consistently, the more steps
used for training the CRI set, the better the results in deployment are, with not a large difference between
400 and 500 initialization steps.
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Figure 21: Ablation on the training steps of the 25-CRI initialization, and the attack performance when used in
deployment.
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Figure 22: Ablation on the training steps of the 5-CRI initialization, and the attack performance when used in
deployment.
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Figure 23: Ablation on the training steps of the 1-CRI initialization, and the attack performance when used in
deployment.

Cross-Dataset CRI Transferability To evaluate the generalization capacity of CRI , we train the
initialization set TK-CRI on SAdvBench

FT and directly deploy it on SHarmBench
FT without retraining. Experiments

on both Llama-2 and Vicuna show that CRI maintains high ASR across datasets, suggesting that the
compliance-refusal structure captured by CRI is model- and dataset-agnostic. This transferability further
reduces the need for repeated initialization training, offering near-zero overhead in cross-dataset settings.
In Figure 24, we compare using the same dataset for initialization and testing vs. using separate datasets.
Here we test on the HarmBench dataset, and compare using it for initialization vs. using AdvBench
for initialization.
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Figure 24: Attack success rates on HarmBench: in-dataset initialization versus cross-dataset initialization from
AdvBench. Llama-2 (left) and Vicuna (right).

ASR Under Equalized Computational Budget To better evaluate CRI’s effectiveness under fair cost
conditions, we compare it to baseline attacks executed with a proportionally increased computational bud-
get. Specifically, we benchmark CRI against baselines that are allowed twice the number of optimization
iterations (e.g., 500 steps). In Figure 25, we compared 25− CRI with baselines over a proportionally
increased computational budget.
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Figure 25: Comparison of 25− CRI and running the standard attack for an extended amount of steps.

. Results show that even under this relaxed constraint, CRI consistently achieves higher attack success
rates (ASR), demonstrating its efficiency in navigating the compliance-refusal space. This highlights
CRI’s advantage not only in low-cost regimes, but also indeed enhances the ASR performance of the
attacks.

C.5.3 Additional Studies, Attacks Transfer, Defenses, Evaluations And Integration with other
improvements

Initialization Transferability Between Attacks We evaluated the transferability of initialization by
extracting the 1-CRI initialization set from the GCG individual attack (Liu et al., 2022) and using it to
initialize the Embedding attack (Schwinn et al., 2024), we choose the model deepseek−llm−7b−chat as
we find it new and robust for jailbreak attacks. While partial improvements were observed, the effectiveness
was limited, suggesting that the optimization dynamics of these two distinct attack paradigms differ
significantly. This highlights that while CRI can generalize across certain frameworks, its performance is
sensitive to the underlying optimization mechanisms

Setup MSS (↓) ASS (↓) ASR (%) (↑) LFS (↓)
Baseline 20.0 20.04 100.0 2.2598
1-CRI 10.0 10.20 100.0 1.6445
25-CRI 13.0 12.96 100.0 1.3027
Transfer 14.5 14.32 100.0 2.2246

Table 7: Performance comparison of initialization strategies for deepseek-llm-7b-chat. Bold indicates best
performance per metric.

Performance consistency: Integrating CRI with Advanced-Attack-Evaluations, integration with
other Improvements-Methods and Defenses

Advanced Evaluation In our work, we adhere to the evaluation setting used in the original attack
baseline to ensure coherent results, however, we acknowledge that more sophisticated metrics could
further enhance robustness. We have extended our evaluation as recommended to include a GPT-4-based
judgment setting (Liu et al., 2024a). Following the protocol from (Liu et al., 2024a), GPT-4 is used
to assess the ASR of generated jailbreak prompts. Our results show that CRI continues to improve
ASR in this setup. Furthermore, the best-performing initialization remains consistent across both the
keyword-matching and GPT-4-based evaluation frameworks, reinforcing the reliability and transferability
of CRI-enhanced prompts, the results are demonstrated in Figure 26.
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Figure 26: Evaluation using GPT-4 as a judge.

BOOST We present additional evaluations of our approach in more challenging settings. Specifically, we
integrate BOOST (Yu et al., 2024a) into our attack framework, using a pre-trained initialization set in place
of the standard GCG initialization. The resulting variant—combining both CRI and BOOST—achieves
the highest ASR, demonstrating that CRI is compatible with BOOST without requiring retraining. To
compare against baselines in the setting proposed by the original BOOST authors, we use a keyword-
matching evaluation method. In Figure 27, we compare our initializations to using BOOST (Yu et al.,
2024a).
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Figure 27: Comparison of using our initialization, vs. using BOOST vs. using both BOOST and our initialization.

Perplexity Defense When utilizing the same perplexity defense as in (Liu et al., 2023).
We extended our evaluations to consider adversarial defenses. We present results on the perplexity-

based filter suggested by (Liu et al., 2023) on Llama-2, Vicuna and Llama-3. The perplexity-based defense
does not affect the previously reported ASR for the AutoDAN attack, with or without CRI .
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Warning: The following sections contain potentially offensive and harmful text.

D Results examples AutoDan-HGA

Figure 28: Examples of model generation by AutoDAN -HGA on Llama-2 with and without CRI .
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Figure 29: Examples of model generation by AutoDAN -HGA on Llama-3 with and without CRI .
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E Results examples GCG-M

Figure 30: Llama-2 responses to GCG-M attacks.
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F CRI Set Example

Figure 31: CRI set for Llama-2 on the GCG attack.
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