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Abstract

We present MedCOD (Medical Chain-of-
Dictionary), a hybrid framework designed
to improve English-to-Spanish medical trans-
lation by integrating domain-specific struc-
tured knowledge into large language models
(LLMs). MedCOD integrates domain-specific
knowledge from both the Unified Medical
Language System (UMLS) and the LLM-as-
Knowledge-Base (LLM-KB) paradigm to en-
hance structured prompting and fine-tuning.
We constructed a parallel corpus of 2,999 En-
glish—Spanish MedlinePlus articles and a 100-
sentence test set annotated with structured med-
ical contexts. Four open-source LLMs (Phi-4,
Qwen2.5-14B, Qwen2.5-7B, and LLaMA-3.1-
8B) were evaluated using structured prompts
that incorporated multilingual variants, med-
ical synonyms, and UMLS-derived defini-
tions, combined with LoRA-based fine-tuning.
Experimental results demonstrate that Med-
COD significantly improves translation qual-
ity across all models. For example, Phi-4
with MedCOD and fine-tuning achieved BLEU
44.23, chrF++ 28.91, and COMET 0.863, sur-
passing strong baseline models like GPT-40
and GPT-40-mini. Ablation studies confirm
that both MedCOD prompting and model adap-
tation independently contribute to performance
gains, with their combination yielding the high-
est improvements. These findings highlight the
potential of structured knowledge integration
to enhance LLMs for medical translation tasks.

1 Introduction

Electronic Health Records (EHRs) have become an
integral part of modern healthcare, serving as a crit-
ical medium for enhancing patient engagement and
facilitating better communication between health-
care providers and patients (Delbanco et al., 2012;
Gabay, 2017; Walker et al., 2019). Recognizing the
value of EHRs, the Centers for Medicare & Medi-
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caid Services (CMS) Incentive Programs have pro-
moted the meaningful use of EHRs, empowering
patients to access and manage their health infor-
mation electronically. However, the full benefits
of EHR accessibility are not uniformly realized,
particularly among patients with limited English
proficiency (Liu and Cai, 2015a; Root et al., 2016;
Kayastha et al., 2018).

As of 2021-2022, Hispanics account for approx-
imately 19% of the U.S. population (around 63
million people) (Zong, 2022; Wikipedia contrib-
utors, 2025a). Individuals with Limited English
Proficiency (LEP) represent about 8% of the total
U.S. population, and Hispanics make up 62% of
the LEP group (Haldar et al., 2023). This trans-
lates to roughly 31-32% of Hispanics having lim-
ited English skills. Language barriers have a well-
documented impact on health care access and com-
prehension. Nearly half of LEP adults report en-
countering challenges in the past three years, such
as difficulty filling out medical forms (34%), com-
municating with health professionals (33%), un-
derstanding physician instructions (30%), or fol-
lowing prescription guidelines (27%) (Haldar et al.,
2023). Research further shows that LEP is associ-
ated with reduced medication adherence and poorer
health outcomes, particularly among Hispanic pa-
tients with chronic conditions like asthma (Mc-
Quaid and Landier, 2018). Conversely, when pa-
tients are matched with language-concordant physi-
cians, studies report significant improvements in
satisfaction and chronic disease management out-
comes (Wikipedia contributors, 2025b).

To address these challenges, machine translation
(MT) technologies have been explored for medical
communication. Traditional statistical MT (SMT)
and neural MT (NMT) systems (Brown et al., 1990;
Riina et al., 2024) demonstrate promise but often
struggle with domain-specific terminology, abbrevi-
ations, and context preservation. General-purpose
MT systems such as Google Translate and Bing
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English sentence 1

Veins and arteries vary in size from one
patient to another and from one side of the
body to the other. Obtaining a blood sample
from some people may be more difficult than
from others.

GT spanish sentence:

Las venas y las arterias varian en tamafio de
un paciente a otro y de un lado del cuerpo a
otro, razén por la cual extraer sangre de
algunas personas puede ser mas dificil que
de otras.

—

Las venas y arterias
varian en tamafio de un
paciente a otro y de un
lado del cuerpo al otro.
Obtener una muestra de
sangre de algunas
personas puede ser mas

| % Wultilingual

of each
-- veins: French: "veines", Portuguese: "veias", German: "Venen",
Spanish: "venas"

-- arteries: French: "artéres", Portuguese: "artérias", German: "Arterien",
Spanish: "arterias"

-- blood sample: French: "échantillon de sang", Portuguese: "amostra de
sangue", German: "Blutprobe”, Spanish: "muestra de sangre"

-- obtaining: French: "obtention", Portuguese: "obteng&do", German:
"Erwerb", Spanish: "obtencion"

from LLM-KB: \

enas y las arterias
varfan en tamafio de un
paciente a otro y de un
lado del cuerpo al otro.
Obtener una muestra de
sangre de algunas
personas puede ser mas

MedCOD

dificil que de otras. x

dificil que de otras. (/4

—

(oo

LLM

English sentence 2

Fever is the classic symptom and may
persist for days before any other
symptoms appear.

GT spanish sentence:

La fiebre es el sintoma
clasico y puede persistir
durante dias antes de

La fiebre es el sintoma clasico y puede

KSynonyms of each concept derived from LLM-KB:

-- fever: English: [fever, pyrexia, high temperature]; French: [fiévre,
hyperthermie]; Portuguese: [febre, hipertermia]; German: [Fieber,
Hyperthermie]; Spanish: [fiebre, hipertermia]

-- persist: English: [continue, endure, persevere, last, remain]; French:

/
~

La fiebre es el sintoma
clasico y puede persistir
por dias antes de que

——

continuer, 8"

tenir]; Portuguese: [persistir,

[lee]

persistir durante dias antes de que que aparezcan otros continuar, perseverar, manter, durar]; German: [bestehen, fortdauern, sintomas. [
aparezcan otros sintomas. sintomas. anhaltend, durchhalten, verweilen]; Spanish: [persistir, continuar,
N - N . perseverar, mantenerse, durar] j NS

English sentence 3

Transposition of the great vessels is a
heart defect that occurs from birth
(congenital). The two major vessels that
carry blood away from the heart -- the
aorta and the pulmonary artery -- are
switched (transposed).

GT spanish sentence:

Es un defecto cardiaco que ocurre
desde el nacimiento (congénito), en el
cual los dos vasos principales que
llevan sangre lejos del corazén,

la aorta y la arteria pulmonar, estan
intercambiados (transpuestas).

0‘\

Transposicion de
grandes vasos es un
defecto cardiaco que
ocurre desde el
nacimiento (congénito).
Los dos grandes vasos
que transportan sangre
desde el corazén - la
aorta y la arteria
pulmonar -- estan
intercambiados

(transpuestas) x

Vasos

Translation dictionary based on UMLS : \
Transposition of the great vessels means Transposicion de las grandes
embarcaciones means Transposition des gros vaisseaux means
Transposition der groRen GefaRe means Transposi¢ao dos Grandes

-- heart defect means defecto cardiaco means Cardiopathies
congénitales means Herzfehler, kongenitale means Cardiopatias
Congénitas @

-- congenital means congénito means Hypothyroidie congénitale
means Kongenitale Hypothyreose means Hipotireoidismo Congénito
-- pulmonary artery means arterias pulmonares means Artére
pulmonaire means Arteria pulmonalis means Artéria Pulmonar

defecto cardiaco que
ocurre desde el
nacimient

Los dos ¢

lejos del c n,
aorta y la arteria
pulmonar, estan
invertidos

(transpuestas). J
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Figure 1: Overview of the MedCOD framework for improving English-to-Spanish medical translation. The figure
illustrates three representative English medical sentences (left), their initial LLM-generated Spanish translations
(middle), and how MedCOD enhances them (right) by utilizing structured domain knowledge. Specifically,
MedCOD integrates: (a) multilingual term mappings from a large language model knowledge base (LLM-KB);
(b) synonym expansion from LLM-KB to match concept variations; and (c) concept-aligned UMLS dictionary
translations with disambiguation support. For example, Sentence 3 demonstrates MedCOD’s ability to correct
terminology by disambiguating "transposition of the great vessels" and “carry blood away from the heart,” improving
grammaticality, semantics, and clinical accuracy, e.g., using "la transposicién de los grandes vasos" and "llevan la
sangre lejos del corazén." These enhancements ensure accurate, fluent, and medically faithful Spanish outputs.

Translator, while widely accessible, frequently fail
to ensure clinical accuracy in longer or complex
sentences (Liu and Cai, 2015a; Kapoor et al., 2022;
Turner et al., 2019). Although LLMs have recently
achieved remarkable advances in general-domain
multilingual translation, their potential for translat-
ing biomedical texts, particularly EHRs, remains
underexplored (Riina et al., 2024).

In this study, we propose a novel transla-
tion framework named MedCOD, which builds
upon Chain-of-Dictionary Prompting (COD) (Lu
et al., 2024). MedCOD integrates structured
medical knowledge from the Unified Medical
Language System (UMLS) (Lindberg et al.,
1993) and an LLM-as-Knowledge-Base (LLM-
KB) with COD prompting strategies to enhance
English-to-Spanish biomedical translation. Specifi-
cally, MedCOD incorporates multi-layered domain
knowledge, combines structured prompting with
lightweight fine-tuning, and systematically evalu-
ates multiple open-source LLMs under different
adaptation settings. Our results demonstrate that
MedCOD substantially improves translation qual-

ity, clinical accuracy, and contextual integrity, en-
abling open-source models to rival or even surpass
proprietary systems.

Specifically, MedCOD differs from previous
work in three key aspects: 1) it incorporates multi-
layered domain knowledge, including translated
medical terms, synonyms, and multilingual map-
pings from both UMLS and LLM-KB, to provide
richer structured context during translation; 2) it
combines structured prompting with lightweight
fine-tuning, allowing models to better adapt to spe-
cialized biomedical content; and 3) it systemat-
ically evaluates multiple open-source LLMs un-
der different adaptation settings, highlighting that
domain-specific enrichment can enable open mod-
els to achieve or even surpass proprietary systems’
performance. Figure 1 illustrates how MedCOD
systematically improves clinical translation quality
by aligning with medical semantics and grammat-
ical correctness across multiple translation chal-
lenges. Using established evaluation metrics such
as SacreBLEU, ChrF++, and COMET, we demon-
strate that integrating structured medical context
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through MedCOD significantly enhances transla-
tion quality.

Our experiments * show that applying Med-
COD with fine-tuning yields substantial perfor-
mance improvements across various open-source
models. For instance, Phi-4 (14B) improves from
a baseline BLEU score of 24.47 to 44.23 after
MedCOD prompting and fine-tuning. Similarly,
Qwen2.5-14B achieves 41.95 BLEU, and other
models like Meta-Llama-3.1-8B also show notable
gains. These results underscore the potential of
combining domain-specific knowledge with open-
source LLMs to advance high-quality, clinically
meaningful medical translation.

2 Methods

2.1 Overview

We evaluated open-source LLMs for their effec-
tiveness in translating medical text from English to
Spanish, comparing their performance across dif-
ferent strategies. Figure 2 provides an overview of
our framework, which involves the Medline dataset,
various LLMs, and prompting methods. Our anal-
ysis investigates the impact of different prompt-
ing styles based on our framework to identify the
most suitable augmented knowledge (referred to
as contextual information in this paper) for trans-
lation. Additionally, we assess the effectiveness of
fine-tuning techniques in enhancing model perfor-
mance.

2.2 Data source

The ESPACMedlinePlus dataset is derived from
the NIH’s MedlinePlus website, which provides
medical articles on various health topics (Liu and
Cai, 2015b). Most English articles on the site have
corresponding human-translated Spanish versions.
Following (Liu and Cai, 2015a), we utilized a col-
lection of 2,999 such translated articles to construct
a parallel-aligned corpus.

After data cleaning and sentence alignment, we
obtained a training set of 143,760 sentences. To
optimize testing, domain experts manually selected
100 instances from the Medline dataset, ensuring
a balanced distribution of sentence lengths for ro-
bust evaluation. Although MedlinePlus content
originates from medical articles on various health
topics, it has been demonstrated that its language

“The source code is released at: https://github.com/
shahidul@34/NoteAid-translation-EngToSpa with CC-
BY-NC 4.0 license.

Start: Medline
Dataset (143,860
instances)

Analyze results
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sacreBLEU,
chrF++, COMET

Test open/closed
source models

Incorporate 3
prompt strategies
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source models
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translations of |___ _
each concept

metadata (LLM-
KB, UMLS)

obtained from

2. Synonyms
of each concept
derived from
LLM-KB

Create prompts.
for LLMs using
structured context

3. Translation
dictionary based
on UMLS

Figure 2: Flowchart for illustrating the process of med-
ical dataset preprocessing, structured prompt creation,
and model evaluation for fine-tuning.

and terminology are sufficiently representative of
electronic health record (EHR) notes, making it a
practical proxy for clinical text in translation tasks.
The test set size was kept small due to the sub-
stantial computational costs of generating three
types of prompting strategies for each sentence us-
ing LLM-KB and UMLS, a process that is both
resource-intensive and time-consuming.

Table 1: Prompt Structures for Contextual Information

Prompt Structure

Multilingual translations of each concept obtained from LLM-KB

- <Concept X>: <Auxiliary language 1>: <Word X in auxiliary-language 1>,
<Auxiliary language 2>: <Word X in auxiliary-language 2>.

- <Concept Y>: <Auxiliary language 1>: <Word Y in auxiliary-language 1>,
<Auxiliary language 2>: <Word Y in auxiliary-language 2>.

Synonyms of each concept derived from LLM-KB

Synonyms of <Concept name> in different languages: <Auxiliary language 1>:
[synonym1, synonym2, ...]; <Auxiliary language 2>: [synonyml, ...].

Translation dictionary based on UMLS
<word X in source-language> means <word X in target-language>.

<word X in auxiliary-language 1> means <word X in auxiliary-language 2>.

2.3 UMLS- and LLM-KB-Enriched Medical
Chain-of-Dictionary Framework

We developed two types of prompts: general
prompts and structured prompts. General prompts
were mainly used for direct translation without con-
textual information about the sentence, while struc-
tured prompts provided additional information to
the models, enhancing sentence coherence and im-
proving translation accuracy. The overall pipeline
is illustrated in Figure 2.

In our implementation, LLM-KB (Large Lan-
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guage Model as Knowledge Base) refers to using a
pre-trained large language model (GPT-40-mini) to
retrieve structured medical knowledge, including:
(1) multilingual translations of medical terms, and
(2) synonyms of each medical concept across lan-
guages. These outputs form a lightweight knowl-
edge base used to construct structured prompts for
downstream translation tasks. Specifically, LLM-
KB is queried with templated prompts to extract
relevant information for each identified medical
concept in the input, leveraging the model’s im-
plicit medical and multilingual knowledge without
requiring access to external structured databases
beyond UMLS.

Following this approach, we first extracted medi-
cal keywords from sentences using LLM-KB, treat-
ing them as medical concepts for prompt develop-
ment. To create effective prompts, we used both
LLM-KB and UMLS as sources. For each medi-
cal concept in our testing set, we gathered various
types of information, including synonyms from
UMLS, synonyms derived from LLM-KB, and
multilingual translations obtained from LLM-KB.
We then designed three different structured prompt
formats incorporating enriched medical concept
metadata, enabling the model to better understand
sentence meaning and structure. These structured
prompts were compared against general prompts
to evaluate which types of structured information
were most critical for accurate translation. Re-
sults, summarized in Table 1, show that the optimal
prompt type varied across models.

2.4 Fine-tuning with Low-Rank Adaptation
(LoRA) and hyperparameter tuning

As shown in Figure 2, the MedCOD framework
can function purely as a prompting strategy to pro-
vide external knowledge to LLMs. In addition, for
open-source LLLMs, we can further enhance per-
formance by fine-tuning the model to better utilize
the provided contextual information. Specifically,
we employ LoRA (Hu et al., 2021), a popular and
lightweight fine-tuning technique that significantly
reduces the number of trainable parameters. LoORA
achieves this by injecting a small set of trainable
weights into the model while keeping the original
parameters frozen. This approach enables faster
training, increased memory efficiency, and results
in compact model weight files (only a few hundred
megabytes), making them easier to store and share.

2.5 Experimental Setup
2.5.1 Models

We evaluated open-source LLMs, including Phi-4
(14B) (Abdin et al., 2024), Qwen2.5-14B (Team,
2024), Qwen2.5-7B (Team, 2024), Meta-LLaMA-
3.1-8B (Grattafiori et al., 2024), and used GPT-40
(OpenAl, 2024b), GPT-40 Mini (OpenAl, 2024a),
and NLLB-200 3.3B (Team et al., 2022) as base-
line models. More detailed explanations of those
models are given in the appendix.

2.5.2 Datasets

As described in Section 2.2, we use the ES-
PACMedlinePlus (Liu and Cai, 2015b), a paral-
lel English—Spanish medical corpus derived from
NIH’s MedlinePlus, for in-depth ablation studies
and qualitative analysis of MedCOD.

WMT24 To assess MedCOD’s applicability
to diverse language pairs and broader medi-
cal translation scenarios, we incorporated the
WMT 2024 Biomedical test set (Neves et al.,
2024), which provides paragraph-level medical
translation tasks across six language pairs:
Portuguese-English,  Spanish—-English, = Rus-
sian—English, German—English, French-English,
and Italian—English, in both directions. For each
language direction, we sampled 50 paragraph-level
examples, resulting in a total of 600 test instances.

MultiClinSum To further evaluate MedCOD’s
applicability beyond translation, we utilized the
MultiClinSum dataset (Rodriguez-Ortega et al.,
2025), which contains clinical case reports de-
signed for multilingual summarization tasks across
four languages: English, Spanish, French, and Por-
tuguese. The dataset comprises 3,396 full-text clin-
ical cases in English, 3,406 in Spanish, 3,469 in
French, and 3,442 in Portuguese. We also used
the MultiClinSum large-scale training datasets for
model training across four languages. Each dataset
contains 25,902 full-text and summary pairs in En-
glish, Spanish, French, and Portuguese.

2.5.3 Evaluation

For Machine Translation, we evaluated transla-
tions against Spanish references using three met-
rics: SacreBLEU (Post, 2018), ChrF++ (Popovicé,
2017), and COMET (Rei et al., 2022). Sacre-
BLEU and ChrF++ measure surface similarity at
the word and character levels, respectively, while
COMET uses neural models fine-tuned on human
judgments to assess semantic adequacy and fluency.
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Figure 3: Performance comparison of four open-source LLMs (Phi-4, Qwen2.5-14B, Qwen2.5-7B, and LLaMA-
3.1-8B) on ESPACMedlinePlus under two settings: base model (light) and MedCOD-enhanced fine-tuning (dark).
Evaluation is conducted using BLEU, chrF++, and COMET metrics. Error bars indicate 95% confidence intervals.
The horizontal dashed line represents the performance of GPT-40-mini. Results show that MedCOD + FT consis-
tently improves model performance across all metrics, with Phi-4 (14B) achieving the best results overall. Note:
The COMET score of the Phi-4 (14B) base model is too low (0.643 [0.639, 0.648]) and falls below the visible y-axis

range, so it is not shown in the figure.

For Multilingual Medical Text Summarization,
we evaluated summarization performance using
two widely adopted metrics: ROUGE (Lin, 2004)
and BERTScore (Zhang et al., 2020). ROUGE
measures sentence-level overlap between gener-
ated and reference summaries by focusing on the
longest common subsequence. It is well-suited for
extractive summarization. BERTScore evaluates
semantic similarity between generated and refer-
ence summaries using contextual embeddings from
pre-trained BERT models, capturing meaning be-
yond exact token matches. It reports Precision,
Recall, and F1, offering a balanced assessment of
summary quality. Complete metric definitions and
formulas are provided in Appendix A.3.2.

3 Main Results

ESPACMedlinePlus Figure 3 presents the
overall performance comparison of four open-
source LLMs (e.g., Phi-4 (14B), Qwen2.5-14B,
Qwen2.5-7B, and LLaMA-3.1-8B) under base
and MedCOD-enhanced fine-tuning conditions.
All models were evaluated using BLEU, chrF++,
and COMET, with GPT-40-mini/GPT-40/nllb-
200-3.3B as the baseline references (BLEU =
43.57/43.89/43.43, chrF++ = 22.13/24.52/23.25,
COMET = 0.8615/0.8628/0.8648). MedCOD + FT
consistently improves model performance across
all metrics and models. Notably, Phi-4 (14B)
with MedCOD + FT achieves the best results
overall: BLEU = 44.23 (95% CI: 43.82-44.64),
chrF++ = 28.91 (28.29-29.53), and COMET =
0.863 (0.860-0.866), all exceeding GPT-40-mini
and GPT-40. Other models also show substantial

gains. For example, Qwen2.5-14B improves from
BLEU = 31.23 (base) to 41.95, and chrF++ from
18.01 to 25.93; LLaMA-3.1-8B increases from
BLEU = 27.65 to 34.47 and chrF++ from 14.98
to 23.25. Importantly, all fine-tuned models sur-
pass GPT-40-mini in chrF++, indicating enhanced
character-level translation quality.

WMT24 Appendix Table 6 summarizes Med-
COD’s extension to paragraph-level medical trans-
lation in WMT?24, covering 12 directions across six
language pairs (50 high-complexity clinical para-
graphs per direction). Sentence length analysis
(Table 5) highlights the substantial output lengths
(up to 2,124 tokens) and supports context length
configuration. Without fine-tuning, MedCOD-style
contextual augmentation yields consistent gains in
BLEU/chrF++ scores, particularly for morpholog-
ically rich or low-alignment pairs (e.g., en—ru,
en—de). With fine-tuning, most directions fur-
ther improve, with the largest boosts in BLEU
for de—en (+9.29) and es—en (+11.21) over non-
fine-tuned baselines. These results demonstrate
that MedCOD’s benefits generalize beyond En-
glish—Spanish to multiple high-value medical trans-
lation settings.

MultiClinSum Appendix Table 7 presents the
overall performance on MultiClinSum. Across
all four languages in MultiClinSUM (Rodriguez-
Ortega et al.,, 2025), Qwen2.5-14B-Instruct
achieved its strongest performance when equipped
with both MedCOD fine-tuning and contextual
augmentation, with the most pronounced gains
in recall-oriented metrics such as ROUGE-R and
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BERTScore-R (e.g., 0.8136 for English, 0.8100
for Spanish). While improvements were largest
for high-resource pairs, consistent benefits were
also observed in French and Portuguese, indicating
MedCOD’s ability to recover salient medical in-
formation across languages. Removing either fine-
tuning or contextual augmentation substantially de-
graded performance, especially in BERTScore-F
and ROUGE-L, underscoring their complementary
contributions. Together with our multilingual trans-
lation experiments, these results reinforce Med-
COD’s robustness and generalizability across (1)
different tasks (e.g., translation and summariza-
tion), (2) diverse languages, and (3) long, high-
stakes medical texts.

4 Ablation Study

Model \ BLEU
Block 1: w/o MedCOD, w/o FT

chrF++ COMET

Phi-4 (14B) 1877 (18.65, 18.89)  8.79 (8.61,8.97)  0.643 (0.639, 0.648)
Qwen2.5-14B | 31.23(31.14,31.32)  18.01 (17.91, 18.12)  0.830 (0.830, 0.830)
Qwen2.5-7B 2691 (26.91,2691)  20.29 (20.29,20.29)  0.800 (0.798, 0.800)
LLaMA-3.1-8B | 27.65(26.63,28.67)  14.98 (13.78,16.18)  0.797 (0.785, 0.809)

Block 2: w/ MedCOD, w/o FT (An asterisk (¥) indicates a significant difference from Block 1.)

Phi-4 (14B) 32.71*%(32.18,33.24) 21.86* (21.41,22.31) 0.819* (0.818, 0.820)
Qwen2.5-14B 35.55%(35.17,36.58)  22.09* (21.98,22.68)  0.848* (.832, .876)
Qwen2.5-7B 33.40% (33.40, 33.40)  20.35% (20.35,20.35)  0.845* (0.845, 0.845)

LLaMA-3.1-8B | 30.22% (29.23,31.22) 20.07* (19.26, 20.88)  0.798 (0.788, 0.808)
Block 3: w/o MedCOD, w/ FT (An asterisk (*) indicates a significant difference from Block 1.)

Phi-4 (14B) 42.52% (42.11,42.93)  28.35% (27.73,28.97) 0.862* (0.859, 0.864)
Qwen2.5-14B | 38.63* (38.52,38.74) 23.53* (23.36,23.70) 0.849* (0.849, 0.849)
Qwen2.5-7B | 39.09% (38.87,39.31) 23.94% (23.87,24.01) 0.856* (0.855, 0.856)

LLaMA-3.1-8B | 34.47* (33.39, 35.55) 22.11* (21.69, 22.53)  0.850* (0.849, 0.852)
Block 4: w/ MedCOD, w/ FT (An asterisk (*) indicates a significant difference from Block 3.)

Phi-4 (14B) 44.23% (43.82,44.64)  28.91(28.29,29.53)  0.863 (0.860, 0.866)
Qwen2.5-14B 41.95% (41.69,42.21)  25.93* (25.81,26.05) 0.861* (0.861, 0.862)
Qwen2.5-7B 39.09* (38.87,39.31)  24.10(23.90,24.30)  0.857* (0.856, 0.857)
LLaMA-3.1-8B | 34.47 (33.39,35.55)  23.25%(22.79,23.71) 0.853* (0.851, 0.855)

Table 2: Performance of LLMs (with or without Med-
COD and finetuning (FT) Across Contextual and Fine-
tuning Settings (95% CI) on ESPACMedlinePlus. An
asterisk (*) indicates a statistically significant difference
compared to the baseline condition described at the start
of each block (p < 0.05). Bold values represent the
best-performing configuration per model.

Due to space limitations, our ablation study
mainly revolves around ESPACMedlinePlus.

Contributions of MedCOD Prompting and Fine-
Tuning To understand how MedCOD contributes
to performance improvements, Table 2 presents a
block-wise ablation study under four settings: (1)
base model without MedCOD or fine-tuning, (2)
MedCOD only, (3) fine-tuning only, and (4) Med-
COD + FT. Comparing Block 1 and Block 2, con-
textual augmentation alone significantly enhances
performance even without model fine-tuning. For

instance, Phi-4 (14B) improves from BLEU = 18.77
to 32.71, and Qwen2.5-14B from BLEU = 31.23
to 35.55. These results demonstrate that struc-
tured prompts derived from UMLS and LLM-KB
effectively enrich domain-specific understanding.
In addition, while BLEU, chrF++, and COMET
generally yield consistent evaluations, we observe
occasional divergences that reflect their distinct
emphases. For example, Qwen2.5-7B (Block 1:
w/o MedCOD, w/o FT) achieves relatively higher
chrF++ (20.29) despite a lower COMET score
(0.800), while Qwen2.5-14B (Block 2: w/ Med-
COD, w/o FT) presents the opposite trend with
chrF++ = 22.09 and a much stronger COMET
= 0.848. This indicates that chrF++ favors out-
puts with higher character-level overlap, such as
morphologically accurate translations, whereas
COMET emphasizes semantic preservation and
fluency even when surface forms differ. These
metric differences highlight the necessity of multi-
dimensional evaluation in high-stakes domains like
medical translation.

From Block 1 to Block 3, we observe the impact
of fine-tuning in the absence of MedCOD. Phi-4
(14B) improves from BLEU = 18.77 to 42.52, and
COMET increases from 0.643 to 0.862. Likewise,
Qwen2.5-14B improves from BLEU = 31.23 to
38.63, and LLaMA-3.1-8B increases from 27.65
to 34.47. These consistent gains confirm that fine-
tuning itself is a strong performance enhancer even
without external context.

Finally, comparing Block 3 and Block 4 reveals
that MedCOD significantly enhances performance
when applied to fine-tuned models. For example,
Qwen2.5-14B improves from BLEU = 38.63 to
41.95, and COMET from 0.8491 to 0.8614. Simi-
larly, Phi-4 (14B) experiences additional improve-
ments, with BLEU increasing from 42.52 to 44.23
and COMET rising from 0.8616 to 0.8630. These
gains, though smaller in absolute magnitude, are
statistically significant and indicate that contextual
augmentation complements fine-tuning, pushing
model performance beyond what fine-tuning alone
can achieve.

Prompting Strategies and Model-Specific Vari-
ations To further investigate the impact of dif-
ferent types of structured context, Table 3 com-
pares multilingual translations, synonym expan-
sion, and UMLS-based translation dictionaries.
Across both fine-tuned and non-fine-tuned settings,
multilingual translation prompts generally yield
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Model LLM-KB-Multilingual LLM-KB-Synonyms UMLS-Dict Direct Translation
BLEU chrF++ COMET | BLEU chrF++ COMET | BLEU chrF++ COMET | BLEU chrF++ COMET
Phi-4 14B (FT) 4423 2891 0.8630 | 42.10 2947  0.8627 | 41.38 2539  0.8541 | 4252 2835 0.8616
Phi-4 14B (No FT) 2447 1289  0.7900 | 32.71 21.86 0.8190 | 35.89 20.17  0.8350 | 18.77 8.79 0.6430
Qwen2.5 14B (FT) 4195 2593 0.8614 | 39.17 23.82  0.8572 | 3947 2628 08511 | 38.63 2353  0.8491
Qwen2.5 14B (No FT) 3555 22.08 0.8480 | 33.05 21.60 0.8420 | 34.18 21.77  0.8399 | 31.23 18.01 0.8300
LLaMA-3.1-8B (FT) 33.15 19.67 0.8481 | 3447 2325 0.8526 | 3447 21.10 0.8483 | 33.12 22.11 0.8502
LLaMA-3.1-8B (No FT) | 28.64 21.84  0.8083 | 30.22 20.07 0.7980 | 27.54 1923  0.7921 | 27.65 1498  0.7970
Qwen2.5 7B (FT) 38.86 22.80  0.8565 | 3843  24.05 0.8580 | 39.09 24.10 0.8565 | 38.86 2394  0.8555
Qwen2.5 7B (No FT) 3340 2035 0.8451 | 31.07 19.14  0.8211 | 2450 1658  0.7607 | 2691 20.29  0.8000

Table 3: Mean Scores for Different Models Grouped by Context Type on ESPACMedlinePlus. Bold indicates the
best performance prompts obtained by each LLM under MedCOD + (FT or No FT) settings. LLM-KB-Multilingual:
Multilingual translations of each concept obtained from LLM-KB; LLM-KB-Synonyms: Synonyms of each concept
derived from LLM-KB; UMLS-Dict: Translation dictionary based on UMLS.

the highest scores. For instance, in the Phi-4 (FT)
setting, multilingual prompts yield a COMET of
0.86299 and a BLEU of 44.23, outperforming syn-
onyms (COMET = 0.86270) and UMLS dictionar-
ies (0.85409). Similarly, in Qwen2.5-14B (FT),
multilingual prompts again yield the best BLEU
(41.95) and COMET (0.8614) scores. However, no
single prompt structure is universally best across all
models. For example, Phi-4 (No FT) achieves the
highest BLEU (35.89) and COMET (0.835) using
UMLS dictionary prompts, while LLaMA-3.1-8B
(FT) achieves slightly better chrF++ (23.25) and
COMET (0.8526) using synonym-based prompts.
These results suggest that all three prompt types
consistently outperform direct translation across
models; however, the optimal prompting strategy
may depend on the model architecture and fine-
tuning status. Overall, multilingual prompting
emerges as the most robust choice, but synonym-
and dictionary-based prompts remain valuable, par-
ticularly in resource-constrained or base-model set-
tings. This highlights a promising direction for
future work in adaptive prompt selection based on
model behavior and task requirements.

5 Discussion

Overall Effectiveness of MedCOD Our study
demonstrates that the integration of domain-
specific structured knowledge via the MedCOD
framework substantially enhances the medical
translation capabilities of open-source LLMs. As
shown in Figure 3 and Table 2, combining Med-
COD prompting with fine-tuning enables models
such as Phi-4 (14B) and Qwen2.5-14B to not only
surpass their base performance but also exceed
proprietary systems like GPT-40 on key metrics
such as SacreBLEU, chrF++ and COMET. These

findings reinforce the central hypothesis that clin-
ical translation quality can be improved through
both external knowledge (via LLM-KB/UMLS)
and task-specific adaptation (e.g., fine-tuning).

Beyond aggregate scores, qualitative analysis
further supports this conclusion. In Table 8, we
compare translation outputs from GPT-40 and
MedCOD-enhanced Phi-4 (14B). While both cap-
ture the overall meaning, Phi-4 produces a more
medically accurate and professionally phrased out-
put, e.g., using “sistema inmunitario” instead of
“sistema inmunoldgico,” and “dificultad para res-
pirar” rather than the more colloquial “falta de
aliento.” Although Phi-4 introduces a minor gram-
matical error (“la trasplante™), it maintains the clini-
cal register more faithfully. This case demonstrates
how MedCOD-equipped open-source models can
rival and even surpass proprietary systems in terms
of biomedical translation fidelity.

While the three evaluation metrics generally re-
flect similar performance trends, they emphasize
different aspects of translation quality. SacreBLEU
and chrF++ measure surface-level similarity, cap-
turing lexical and structural overlap between pre-
diction and reference. In contrast, COMET pri-
oritizes semantic adequacy and fluency, aligning
more closely with human assessments of meaning.
This distinction explains occasional discrepancies
between scores and underscores the importance of
combining form- and meaning-based metrics to
assess clinical translation quality comprehensively.

Contributions of Prompting and Fine-Tuning
The ablation analysis further reveals the step-
wise contribution of each component in MedCOD.
Contextual prompting alone significantly boosts
performance even in non-finetuned models (e.g.,
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Phi-4: BLEU +74.3%); similarly, fine-tuning in-
dependently improves translation accuracy (e.g.,
Qwen2.5-14B: BLEU +23.6%). Notably, the joint
application of MedCOD and fine-tuning consis-
tently yields the best performance across all models.
Table 9 qualitatively illustrates these trends: Case
A shows how fine-tuning restores syntactic fluency
(“y obtener una muestra”); Case B highlights Med-
COD’s ability to recover complete noun phrases
and terminological precision (“las venas y las arte-
rias”); Case C demonstrates the cumulative bene-
fits of both strategies, reinforcing grammatical cor-
rectness (“transpuestos’’) and domain-appropriate
phrasing (“la transposicion de los grandes vasos”).
Together, these examples align with the quantitative
gains in BLEU, chrF++, and COMET, confirming
the complementary nature of structured prompting
and model adaptation.

Prompting Strategies and Model-Specific Varia-
tions Table 3 further explores the impact of differ-
ent types of structured prompts. Multilingual trans-
lation prompts outperform synonym expansion and
UMLS dictionaries in most settings, especially for
fine-tuned models like Phi-4 (COMET = 0.8630)
and Qwen2.5-14B (BLEU = 41.95, COMET =
0.8614). However, prompt effectiveness varies de-
pending on the LL.M architecture and fine-tuning
status. For instance, UMLS dictionary prompts
yield the best BLEU (35.89) in Phi-4 without FT,
and synonyms perform best in LLaMA-3.1-8B with
FT. This variability suggests that a one-size-fits-all
prompting strategy may be suboptimal, and future
work could explore model-aware prompt selection
or automatic ensemble prompting.

Error Analysis Despite these substantial quanti-
tative and qualitative gains, our detailed error anal-
ysis reveals several key limitations in both propri-
etary and MedCOD-enhanced open-source models.
As shown in Table 10, issues such as lexical in-
accuracies, grammatical inconsistencies, stylistic
awkwardness, and improper register still persist,
albeit to varying degrees across models. These is-
sues not only affect output quality but also point
to critical directions for future refinement, espe-
cially in high-stakes biomedical translation. For
instance, GPT-40 occasionally uses informal or col-
loquial terms such as “falta de aliento” for ““short-
ness of breath,” which may reduce medical clar-
ity. It also fails to maintain formal tone (“Ob-
tienes hierro””) and sometimes omits articles re-
quired for grammatical correctness (‘“el espalda”™).

In contrast, Phi-4-MedCOD-FT generally adheres
to domain-appropriate vocabulary and formality
but is not immune to errors, e.g., the incorrect ar-
ticle in “ ” and over-literal phrasing
like “esto la hace sentir incomoda.” A particularly
nuanced example occurs in medical terminology:
GPT-40 uses “IRM” (a French-derived abbrevia-
tion for MRI), while Phi-4 correctly uses “resonan-
cia magnética” but inaccurately refers to metastasis
with “extendido” instead of the medically precise
“diseminado.” These examples demonstrate that
while MedCOD substantially improves translation
quality, there remains a need for more robust han-
dling of grammatical gender, medical term disam-
biguation, and context-aware register control. Fu-
ture work may benefit from integrating error-type-
aware reward models, curated medical glossaries
with formality tags, or reinforcement learning with
fine-grained human feedback to further reduce er-
TOr1S.

Inference Efficiency Analysis To assess the ef-
ficiency of the MedCOD pipeline, we measured
the average per-sentence processing time (aver-
aged over 100 test cases on a single NVIDIA A100
GPU). Table 4 presents a breakdown across four
main components. While structured prompting
adds an overhead of approximately 1.43 seconds
before final translation, the major cost is from the
final inference step when using large models with
long prompts. This trade-off between translation
quality and computational cost will be further ex-
plored in future optimization efforts (e.g., caching,
lightweight term retrieval).

Component Avg. Time (sec)
Keyword Extraction 0.8712
Keyword Translation (per keyword) 0.1038
Quality Check for Translated Terms 0.4537
Final Sentence Translation (with Prompt) 8.5765
Total Average Time per Sentence 10.01

Table 4: Average per-sentence processing time for the
MedCOD pipeline.

6 Related Works

Machine Translation Machine translation has
long been a core NLP task, evolving from rule-
based and statistical systems (Koehn et al., 2003;
Och, 2003; Tillmann, 2004; Chiang, 2007; Gal-
ley et al., 2004) to neural approaches (Costa-Jussa
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et al., 2022; Yao et al., 2023a; Hendy et al., 2023;
Brown et al., 2020b) that significantly improved
fluency and coherence. Beyond improving archi-
tectures, researchers have explored incorporating
external lexical resources into MT. Earlier meth-
ods integrated bilingual dictionaries into NMT as
hard constraints (Hokamp and Liu, 2017; Post and
Vilar, 2018) or soft constraints (Song et al., 2019;
Dinu et al., 2019; Chen et al., 2021). For example,
Zhang et al. (Zhang and Zong, 2016) leveraged
dictionary information for rare word translation,
while Arthur et al. (Arthur et al., 2016) combined
lexicons with attention mechanisms. More recently,
Lu et al. (Lu et al., 2023) introduced the Chain-of-
Dictionary (COD) framework, showing that struc-
tured lexical knowledge can substantially enhance
translation quality in specialized domains. In par-
allel, large language models (LLMs) such as GPT,
Claude, and LLaMA have demonstrated strong
zero- and few-shot performance in general multilin-
gual translation, often surpassing traditional NMT
systems (Yao et al., 2023a; Hendy et al., 2023).

Medical Translation Medical translation intro-
duces unique challenges due to domain-specific
terminology, complex syntax, and the high stakes
of clinical accuracy (Mehandru et al., 2022; Dusek
et al., 2014; Dew et al., 2018; Vieira et al., 2021).
General-purpose MT systems such as Google
Translate work for simple texts but frequently fail
on longer or ambiguous sentences (Liu and Cai,
2015a; Zeng-Treitler et al., 2010). Earlier ef-
forts (Weng et al., 2019; Chen et al., 2017; Patil
and Davies, 2014) attempted to address these is-
sues by constructing medical corpora, fine-tuning
on terminology datasets, and evaluating MT on ma-
terials such as EHRs, patient education documents,
and public health texts. Riina et al. (Riina et al.,
2024) evaluated GPT-40’s English-to-Spanish med-
ical translation, finding high fluency but persistent
clinical inaccuracies and context errors.

LLMs in Medical Translation Building on
their success in general MT, LLMs have recently
been explored in biomedical and clinical settings.
State-of-the-art models such as GPT-4, Claude,
and LLaMA exhibit strong capabilities in trans-
lation, domain adaptation, and knowledge inte-
gration (Achiam et al., 2023a; Liu et al., 2024;
Touvron et al., 2023; Achiam et al., 2023b; Tran
et al., 2024). Prior work has shown that LLMs can
achieve high-quality translation even without task-
specific training (Brown et al., 2020a; Lin et al.,

2022). In healthcare, LLMs and related Al systems
have been tested for tasks ranging from diagnos-
tics (McDuff et al., 2023; Tu et al., 2024; Yang
et al., 2025; Yao et al., 2024) to health communica-
tion (Wang et al., 2023; Tran et al., 2025; Yao et al.,
2023b), yet they remain underutilized in routine
practice (Pagallo et al., 2024; Yao and Yu, 2025).
Importantly, while LLM-based translations are of-
ten linguistically natural, existing studies (Riina
et al., 2024) indicate that they still struggle with
biomedical context preservation and clinical accu-
racy.

Building upon these insights, our MedCOD
framework leverages multi-layered knowledge
from the UMLS and an LLM-KB. By combin-
ing UMLS concept relations, synonym expansions,
and multilingual mappings with COD-style prompt-
ing strategies, MedCOD enriches the translation
process with structured, context-sensitive medical
information. We further incorporate lightweight
domain-specific fine-tuning to adapt open-source
LLMs to the biomedical domain. Our experiments
demonstrate that this hybrid strategy significantly
improves translation quality, enhances clinical ac-
curacy, and preserves contextual integrity, enabling
open-source models to achieve or even surpass the
performance of proprietary systems.

7 Conclusion

MedCOD provides a scalable and effective frame-
work for enhancing biomedical translation by lever-
aging structured domain knowledge and targeted
fine-tuning. Our results show that open-source
LLMs, when equipped with rich medical context
via UMLS and LLM-KB, can rival and even outper-
form proprietary systems like GPT-40 in clinical
translation accuracy. By combining prompting and
lightweight adaptation, MedCOD offers a practical
pathway to improve cross-lingual health communi-
cation for underrepresented populations.

8 Limitations

This study presents several limitations that suggest
directions for future research.

Firstly, the translation dataset is derived exclu-
sively from MedlinePlus articles, which, while
medically accurate and publicly available, tend to
follow standardized formatting and controlled lan-
guage. This may not fully capture the linguistic
diversity and complexity found in other clinical
domains, such as discharge summaries, progress
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notes, or specialty-specific documentation.

Secondly, our work focuses solely on English-
to-Spanish translation. While this language pair is
highly relevant in the U.S. context, further studies
are needed to evaluate the adaptability of Med-
COD to other language pairs, particularly those
with lower resource availability or significant mor-
phological divergence from English.

Thirdly, while MedCOD integrates domain
knowledge using UMLS and LLM-KB, these
knowledge sources have inherent limitations. Cer-
tain emerging medical concepts, abbreviations, or
context-dependent expressions may be missing or
incompletely represented. This could restrict the
completeness of the structured prompts in specific
scenarios.

Finally, although the evaluation includes widely
used automatic metrics (e.g., BLEU, chrF++, and
COMET), each captures different aspects of trans-
lation quality and may not fully reflect downstream
clinical usability. Expanding evaluation to task-
specific settings, such as cross-lingual question an-
swering or information extraction, could provide
more application-aligned assessments.
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A Appendix

A.1 Models

Phi-4 (14B) Phi-4 is a 14-billion-parameter lan-
guage model developed by Microsoft, emphasiz-
ing data quality through the strategic incorporation
of synthetic data throughout its training process.
Unlike its predecessors, which primarily distilled
capabilities from a teacher model (specifically GPT-
4), Phi-4 surpasses its teacher in STEM-focused
question-answering tasks. This improvement is
attributed to enhanced data generation and post-
training techniques, even though the architecture
remains largely unchanged from Phi-3.
Qwen2.5-14B and Qwen2.5-7B Qwen2.5 is
a series of large language models developed by
Alibaba Cloud, designed to meet diverse needs.
Compared to previous iterations, Qwen2.5 has
been significantly improved during both the pre-
training and post-training stages. The pre-training
dataset was expanded from 7 trillion to 18 trillion
tokens, enhancing the models’ common sense, ex-
pert knowledge, and reasoning capabilities. Post-
training involved intricate supervised fine-tuning
with over 1 million samples and multistage rein-
forcement learning. The Qwen?2.5 series includes
various model sizes, with the 14B and 7B parame-
ter models being part of the open-weight offerings.
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GPT-40 GPT-40 ("0" for "omni") is OpenAl’s
flagship multimodal large language model intro-
duced in May 2024. It natively processes and
generates text, audio, and images within a unified
architecture, enabling real-time, emotionally nu-
anced voice interactions and multilingual capabil-
ities across over 50 languages. GPT-40 achieves
state-of-the-art performance on benchmarks such
as MMLU (88.7%) and supports a 128K token
context window. It is optimized for speed and cost-
efficiency, offering twice the speed and half the
cost of GPT-4 Turbo.

GPT-40 Mini GPT-40 Mini is a lightweight vari-
ant of GPT-40, designed for cost-effective deploy-
ment without significant performance trade-offs.
Released in July 2024, it supports text and image
inputs and delivers high performance on bench-
marks like MMLU (82%), MGSM (87.0%), and
HumanEval (87.2%). With a 128K token context
window and improved multilingual understanding,
GPT-40 Mini offers a practical solution for appli-
cations requiring efficient multimodal reasoning.

NLLB-200 3.3B NLLB-200 3.3B is a multilin-
gual machine translation model developed by Meta
Al, supporting translation across 200 languages,
including many low-resource languages. Utilizing
a Sparsely Gated Mixture of Experts architecture,
it achieves a 44% BLEU score improvement over
previous state-of-the-art models. Evaluated using
the FLORES-200 benchmark, NLLB-200 3.3B em-
phasizes translation quality and safety, contributing
significantly to inclusive global communication.

A.2 Training Settings

For our implementation of LoRA for training
and inference, we utilized Unsloth Al python li-
brary (Daniel Han and team, 2023). Key hy-
perparameters significantly influence model train-
ing. We set “max_seq_length” to 2048, leveraging
ROPE scaling for efficient long-context process-
ing. The LoRA adaptation rank (r) is 16, balanc-
ing model capacity and efficiency. Additionally,
“lora_alpha” is set to 16 to scale LoRA updates,
while “lora_dropout” is 0, optimizing performance
by disabling dropout. For training, we config-
ure “per_device_train_batch_size” to 2 and “gradi-
ent_accumulation_steps” to 4, effectively manag-
ing batch processing. The “learning_rate” is 2e-4,
optimizing training dynamics, while “max_steps”
is set to 60, limiting the training duration. These
choices collectively enhance memory efficiency,
processing speed, and model accuracy.

Hardware Settings All experiments were per-
formed with two Nvidia A100 GPUs, each with 40
GB of memory, an Intel Xeon Gold 6230 CPU, and
192 GB of RAM.

A.3 Evaluation Metrics
A31
We evaluate machine translation results using
SacreBLEU (Post, 2018), ChrF++ (Popovié, 2017),
and COMET (Rei et al., 2022). We evaluated mod-

els using direct Spanish reference text from the
dataset using those metrics.

Machine Translation

* SacreBLEU: A standardized BLEU score
implementation ensuring reproducibility.
BLEU = exp (227:1 Wy, logpn> x BP,
where p,, is the modified n-gram precision,
wy, are typically uniform weights, and BP is
the brevity penalty.

e ChrF++: A character-level metric that com-
bines character n-gram precision and recall,
incorporating word-level features, computing

_ (148%)-P-R
F-score as ChrF++ = “BIPIR where P
and R denote precision and recall, and 3 con-

trols recall emphasis.

* COMET: COMET(Crosslingual Optimized
Metric for Evaluation of Translation) is a
neural-based evaluation metric for machine
translation quality. Unlike traditional metrics
that rely purely on surface similarity, COMET
leverages pre-trained language models and re-
gression networks fine-tuned on human judg-
ments to predict translation quality. Given
a source sentence s, a machine translation
hypothesis h, and a human reference trans-
lation 7, COMET predicts a quality score
q as: ¢ = fo(s,h,r) where fy is a neural
network model parameterized by 6, typically
fine-tuned to approximate human evaluation
scores. COMET models use contextual em-
beddings (e.g., from XLM-R or similar multi-
lingual encoders) to capture semantic relations
between source, hypothesis, and reference,
providing more accurate and robust evalua-
tion than purely lexical metrics .

A.3.2 Summarization

ROUGE-L-Sum ROUGE-L-Sum calculates the
longest common subsequence (LCS) between ref-

Other training settings can be found in Appendix A.2.
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erence () and candidate (c) sentences, and derives
recall, precision, and F1-score:

Recall (R)¢s)
~ LCS(r,c)
les = length(r)
Precision (F¢s)
LCS(r, c)
fos length(c)
F1-Score (Fjcs)
Hcs _ 2 Rlcs : Plcs
Rlcs + Hcs

BERTScore BERTScore computes contextual
embeddings for tokens in reference (z) and can-
didate (Z) sentences, measures pairwise cosine sim-
ilarity, and aggregates via greedy matching:

Let z = (z1,...,x) with embeddings x; and
& = (Z1,...,2;) with embeddings X;.
Recall (RBERT)

k
1 o
RpgrT = % Z a.%l(XZTXj)
Precision (Pggrt)

!
1 .
PgertT = 7 § man(X?Xj )
= ..

F1-Score (FBERT)

Farr = 2 PRERT - RBERT
Pggrr + RBERT

A.4 Confidence Interval Computation

For each prompt strategy, we ran the model five
times under different temperature settings (0.2, 0.3,
0.4, 0.5, and 0.6). For each run, we computed
BLEU, chrF++, and COMET scores. The 95%
confidence intervals were computed as follows:

1. Calculate the sample mean Z and sample stan-
dard deviation s.
2. Compute the standard error:

S
SE= -2, n=5
VIO

3. Use the t-critical value for 95% confidence
with degrees of freedom df =n — 1 =4:

t* ~ 2.776
6593

4. Compute the margin of error:

ME = t* x SE

5. Report the confidence interval as:

Tz +ME



Language Pair  Avg. Input Length (chars) Avg. Output Length (tokens) 95th %ile Output Tokens Max Output Tokens

en — fr 1317.56 456.52 746 930
fr = en 1726.62 310.68 471 1634
en — de 1428.88 470.90 787 938
de —en 1465.38 278.08 441 588
en — it 1504.04 511.24 824 1072
it —en 1595.20 290.30 566 702
en — es 1340.70 429.12 652 749
es — en 1909.44 356.42 546 2124
en — ru 1305.20 459.46 779 871
ru — en 1225.98 243.68 465 555
en — pt 1341.94 419.32 654 727
pt —en 1382.54 294.42 450 499

Table 5: Sentence length statistics for WMT24 medical translation tasks (50 high-complexity paragraphs per
direction). Token counts are measured using the unsloth/Qwen2.5-14B-Instruct tokenizer.

Without Finetune With Finetune

Languages No Context With Context No Context With Context
BLEU chrF++ COMET | BLEU chrF++ COMET | BLEU chrF++ COMET | BLEU chrF++ COMET

en — fr 38.12  61.55 0.3430 | 4195 68.06 0.3496 | 4234  67.73 0.3285 | 44.21  68.85 0.3245
en — de 18.68  46.81 0.4017 | 22.44 5491 0.4011 | 20.74  51.99 0.4100 | 21.39  53.35 0.3835
en — ru 2381 54.89 0.3967 | 2628  57.98 04191 | 26.02  56.37 0.3804 | 2795 57.79 0.4052
en — pt 43.17  66.71 0.3896 | 4537  70.82 0.3782 | 44.04 69.74 0.3939 | 4392  69.82 0.4011
en — es 4257 6721 0.3861 | 42.02 67.03 0.3468 | 4231  66.48 0.3916 | 44.15 67.78 0.3717

en — it 24778  55.16 0.2773 | 2493 5499 0.2578 | 25.75  56.01 0.2725 | 25.75 56.01 0.2725
de — en 3030  55.79 0.5294 | 3044  57.06 0.5785 | 39.59  66.66 0.4450 | 39.89  66.77 0.4573
fr —+en 33.57  56.98 0.4874 | 34.09 57.57 0.4615 | 46.21  69.93 0.3961 | 45.04 68.42 0.4025

ru —en 2469 4782 0.4730 | 26.20 51.10 0.4827 | 38.02 66.08 0.4456 | 37.03  65.06 0.4485
es — en 3591  60.08 0.4644 | 37.87  62.39 04811 | 47.12 7243 0.3434 | 47.08 72.04  0.3606
pt —en 35.03  58.54 0.5035 | 3643  60.93 0.4984 | 4576  70.24 0.4172 | 4645  70.59 0.4058
it —en 26.66 5292 0.5093 | 30.90  60.58 0.5152 | 33.06 62.69 04233 | 33.10 62.98 0.4203

Table 6: WMT24 medical translation results for MedCOD-style contextual augmentation. Metrics reported: BLEU,
chrF++, COMET.
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Model Language | Finetuned | Context | ROUGE-P | ROUGE-R | ROUGE-L | BERTScore_P | BERTScore_ R | BERTScore F
GPT-40-mini | English No - 0.265 0.239 0.2514 0.7656 0.8327 0.7974
Spanish No - 0.272 0.249 0.2596 0.7739 0.8267 0.7992
French No - 0.248 0.228 0.2377 0.7813 0.8265 0.8031
Portuguese No - 0.236 0.213 0.2237 0.7649 0.8178 0.7902
Qwen2.5 English No No 0.271 0.256 0.2632 0.7863 0.7914 0.7883
Yes Yes 0.275 0.264 0.2697 0.7635 0.8136 0.7869
Yes No 0.268 0.262 0.2649 0.7849 0.7723 0.7772
No Yes 0.237 0.222 0.2288 0.7603 0.7691 0.7637
Spanish Yes Yes 0.266 0.252 0.2590 0.7721 0.8100 0.7903
Yes No 0.270 0.259 0.2648 0.7863 0.7803 0.7825
No Yes 0.239 0.229 0.2337 0.7712 0.7608 0.7650
No No 0.056 0.051 0.0531 0.6273 0.5774 0.6010
French Yes Yes 0.222 0.212 0.2171 0.7644 0.7826 0.7725
No Yes 0.179 0.170 0.1747 0.7596 0.7212 0.7383
Yes No 0.223 0.215 0.2192 0.7235 0.7102 0.7152
No No 0.057 0.051 0.0535 0.6318 0.5873 0.6084
Portuguese Yes Yes 0.223 0.211 0.2169 0.7634 0.7892 0.7755
Yes No 0.253 0.241 0.2469 0.7792 0.7702 0.7740
No Yes 0.212 0.198 0.2050 0.7635 0.7537 0.7577
No No 0.105 0.096 0.1009 0.6668 0.6345 0.6493
Phi-4 English Yes No 0.260 0.243 0.2510 0.7610 0.8175 0.7873
Yes Yes 0.258 0.242 0.2503 0.7582 0.8150 0.7847
No No 0.270 0.252 0.2605 0.7798 0.7846 0.7814
No Yes 0.260 0.246 0.2527 0.7655 0.7774 0.7704
Spanish Yes Yes 0.260 0.247 0.2529 0.7669 0.8002 0.7826
Yes No 0.241 0.229 0.2344 0.7641 0.7983 0.7800
No Yes 0.239 0.226 0.2323 0.7628 0.7654 0.7632
No No 0.145 0.134 0.1390 0.6846 0.6615 0.6719
French Yes No 0.255 0.236 0.2450 0.7805 0.7963 0.7877
Yes Yes 0.240 0.225 0.2324 0.7736 0.7846 0.7784
No Yes 0.202 0.189 0.1954 0.7475 0.7379 0.7418
No No 0.139 0.126 0.1326 0.6971 0.6676 0.6808
Portuguese Yes No 0.225 0.209 0.2170 0.7527 0.7896 0.7702
Yes Yes 0.220 0.208 0.2140 0.7373 0.7816 0.7584
No Yes 0.168 0.153 0.1601 0.7254 0.6950 0.7083
No No 0.145 0.134 0.1393 0.6957 0.6723 0.6819

Table 7: Comparison of MultiClinSum performance across four languages using ROUGE-L (F1), ROUGE Precision,
ROUGE Recall, and BERTScore metrics.

Source Sentence

Reference (Spanish)

GPT-40 Output

Phi-4 (MedCOD + FT)

If you have a weakened im-
mune system due to AIDS, can-
cer, transplantation, or corticos-
teroid use, call your doctor if you

Si usted tiene un sistema inmuni-
tario debilitado a causa del SIDA,
céncer, trasplante o uso de corti-
costeroides, llame al médico si pre-

Si tiene un
sistema inmunoldgico debil-
itado debido al SIDA, cancer,
trasplante o uso de corticos-

Si usted tiene un sistema inmuni-
tario debilitado debido al SIDA,
el cancer, la trasplante o el uso de
corticosteM& al médico

senta fiebre, tos o dificultad para | teroides, llame a su médico
respirar. si desarrolla tos, fiebre o
falta de aliento.

si presenta tos, fiebre o dificultad
para respirar.

develop a cough, fever, or short-
ness of breath.

Table 8: Comparison of biomedical translation output between proprietary GPT-40 and MedCOD-enhanced
open-source Phi-4 (14B). While both capture the overall meaning, GPT-40 uses less precise terms (e.g.,
“sistema inmunoldgico” vs. “sistema inmunitario”) and informal expressions (e.g., “falta de aliento” instead of
“dificultad para respirar’’). Phi-4 (MedCOD + FT) correctly uses “sistema inmunitario” and “dificultad para respirar,”
but introduces minor errors such as article mismatch (“la trasplante” instead of “‘el trasplante”) and extra definite
article before “cancer.” Despite these, it better preserves the professional and clinical tone. This supports our finding
that MedCOD-equipped open-source models can rival or surpass proprietary systems in biomedical translation
fidelity.
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Case Source Reference Base Output (Direct / | Improved  Output | Observation
Sentence (Spanish) FT) (MedCOD / FT /
(English) Both)
A. FT vs | Veins and ar- | Las venas y las | Las venas y arterias | Las venas y las arterias | Fine-tuning restores
Base teries vary in | arterias varfan | varfan en tamafio... | varfan en tamafio... y | conjunction and im-
size... en tamafio... Obtener una muestra... | obtener una muestra... | proves fluency.
B.MedCOD | Veins and ar- | Las venas y las | Las venas y arterias | Las venas y las arte- | MedCOD restores
vs Base teries vary in | arterias varfan | varfan en tamaio... | rias varfan en tamafo... | noun phrase com-
size... en tamafio... Obtener una muestra... | Obtener una muestra... | pleteness and lexical
precision.
C. Med- | Transposition | Es un defecto | Transposicién de los | La transposicion de | MedCOD+FT  rein-
COD+FT vs | of the great | cardiaco  que | grandes vasos es un de- | los grandes vasos es un | forces  grammatical
FT vessels  is | ocurre desde el | fecto... estdn cambia- | defecto... estdn cambi- | accuracy and domain
a heart de- | nacimiento... dos (transpuesto) ados (transpuestos) phrasing.
fect...

Table 9: Stepwise impact of fine-tuning, MedCOD prompting, and their combination on biomedical translation
quality. Bold text highlights restored noun phrase structure or domain-specific terminology. Underlined text indicates
syntactic fixes such as conjunctions (“’y”) or added articles (“La transposicion”). lzalic text denotes grammatical
agreement corrections (e.g., singular to plural “transpuestos”). Case A shows how fine-tuning improves fluency by
reinserting coordinating conjunctions. Case B demonstrates MedCOD’s enhancement of phrase completeness and
lexical precision. Case C illustrates the combined benefits, improving both grammatical correctness and biomedical
appropriateness. These qualitative examples reinforce the quantitative findings in Table 2.
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victima.

Original English gptdo < err. type Phi-4-MedCOD-FT < err. type | Analysis

If you have a weakened | Si tiene un sistema in- | 1. Lexical Er- | Si usted tiene un sistema | 1. Phi-4-

immune system due to | munoldgico debilitado de- | ror: Incorrect | inmunitario debilitado de- MedCOD-FT is
AIDS, cancer, trans- | bido al SIDA, cancer, | term "falta de | bido al SIDA, el cancer, "la | better in terms
plantation, or corticos- | trasplante o uso de cor- | aliento". o el uso | trasplante” of terminology
teroid use, call your | ticosteroides, llame a su | 2. de corticosteroides, llame | (should and maintains
doctor if you develop | médico si desarrolla tos, In- | al médico si presenta tos, | be "el | the original
a cough, fever, or short- | fiebre o falta de aliento. | correct word or- | fiebre o dificultad para res- | trasplante"). | meaning more
ness of breath. der "tos, fiebre". | pirar. accurately.

Do NOT place the per- | No coloque a la persona | 1. No coloque a la persona | 1. Style | Phi-4-

son in this position if | en esta posicion si se en esta posicién si se | Error: "esto | MedCOD-FT

a head, neck, back, or | sospecha de una lesién en | Missing articles | sospecha de una lesién en | la hace sentir | maintains

leg injury is suspected | la cabeza, "el cuello, el | lacabeza, el cuello, la es- | incomoda" grammatical

or if it makes the vic- o pierna, o si le | espalda". palda o la pierna, o siesto | (less natu- | accuracy with
tim uncomfortable. causa incomodidad a la la hace sentir incomoda. | ral). proper articles.

CT scan or MRI to | Tomografia computa- | 1. Lexical Er- | Tomografia computa- | 1. Lexical | gpt4o maintains

confirm that there is a | rizada o IRM para | ror: Incorrect | rizada o  resonancia | Error: "ex- | correct terminol-

growth, and to see if | confirmar que hay un | term "IRM" | magnética para confirmar | tendido" ogy ("IRM" is

the cancer has spread | crecimiento y para ver si | (should be | que hay un crecimiento y | (Iless accu- | a less common

to lymph nodes in the | el cdncer se ha propagado | "resonancia para ver si el cancer se ha | rate than | form).

neck a los ganglios linfaticos | magnética"). extendido a los ganglios | "disemi-

en el cuello. linfaticos del cuello. nado").

Fever is the classic | La fiebre es el sintoma | 1. Lexical Er- | La fiebre es el sintoma | No errors. Phi-4-

symptom and may per- | cldsico y puede persistir | ror: "durante | cldsico y puede persis- MedCOD-FT

sist for days before | durante dias antes de que | dias" instead of | tir por dias antes de que maintains better

any other symptoms | aparezcan otros sintomas. | "por dias". aparezcan otros sintomas. alignment with

appear. the original.

You get iron through | Obtienes hierro a través | 1. Register | Usted obtiene hierro a | No errors. Phi-4-

certain foods, and your | de ciertos alimentos, y tu | Error: Informal | través de ciertos alimentos MedCOD-FT

body also reuses iron | cuerpo también reutiliza | tone ("Ob- | y el cuerpo también reuti- maintains  for-

from old red blood | hierro de los glébulos ro- | tienes" should | liza hierro de los glébulos mal register,

cells. jos viejos. be "Usted ob- | rojos viejos. which is more
tiene"). appropriate for

medical text.

Table 10: Detailed comparison of medically relevant sentence translations between GPT-40 and Phi-4-MedCOD-FT.
Color-coded annotations highlight key translation issues: Lexical Errors (e.g., terminology mismatch or incorrect
word choice), (e.g., article agreement, sentence structure), Style Errors (e.g., unnatural phrasing),
and Register Errors (e.g., inappropriate formality). While GPT-40 occasionally uses accurate yet informal or less
standard terms, Phi-4-MedCOD-FT better maintains domain formality and clinical tone, despite some minor
grammatical or lexical mismatches. This qualitative analysis complements quantitative results and highlights the
nuanced challenges in clinical translation.
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