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Abstract

Fine-tuning large language models (LLMs)
is computationally expensive, and Low-Rank
Adaptation (LoRA) provides a cost-effective
solution by approximating weight updates
through low-rank matrices. In real-world sce-
narios, LLMs are fine-tuned on data from
multiple domains to perform tasks across var-
ious fields, embodying multi-task learning
(MTL). LoRA often underperforms in such
complex scenarios. To enhance LoRA’s ca-
pability in multi-task learning, we propose R-
LoRA, which incorporates Multi-Head Ran-
domization. Multi-Head Randomization diver-
sifies the head matrices through Multi-Head
Dropout and Multi-Head Random Initialization,
enabling more efficient learning of task-specific
features while maintaining shared knowledge
representation. Our approach not only im-
proves performance in MTL but also reduces
GPU memory usage and training time. Exper-
iments show that R-LoRA’s gains stem from
increased diversity in the head matrices, demon-
strating its effectiveness for multi-task learn-
ing. The code is available at https://github.
com/jinda-liu/R-LoRA

1 Introduction

In recent years, large language models (LLMs)
have manifested unprecedentedly superior per-
formance in various natural language processing
(NLP) tasks (Brown, 2020; Zhao et al., 2023;
Chang et al., 2024b). Due to their impressive capa-
bilities in language understanding and generation,
LLMs have gained extensive interest from both
academia and industry. Despite their high general-
izability, LLMs still require fine-tuning for specific
domains or updating the knowledge base (Agiza
et al., 2024; Xin et al., 2024).

Supervised fine-tuning (SFT) is crucial for align-
ing large language models (LLMs) with human
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instructions, which trains the model with a small
yet high-quality set of labeled data (Hu et al., 2021;
Xia et al., 2024). The vast number of parameters
in LLMs poses significant challenges regarding
computational efficiency and memory consump-
tion during full fine-tuning (FT), which updates all
parameters.

To address the issue of hardware require-
ments for LLM adaptation, a solution called
parameter-efficient fine-tuning (PEFT) has been
proposed (Han et al., 2024). PEFT methods reduce
VRAM usage of cached optimizer states by only op-
timizing a fraction of model parameters while keep-
ing the rest frozen. Various PEFT methods have
been widely studied(Li and Liang, 2021)(Liu et al.,
2024c)(Liu et al., 2022)(Hu et al., 2021)(Chang
et al., 2024a)(Chang et al., 2025). Among these
methods, LoRA has emerged as the mainstream
alternative to full parameter fine-tuning. Instead
of updating the original parameter matrix directly,
LoRA approximates the updated parameters us-
ing the product of two smaller matrices. During
inference, the output obtained from the original
parameter matrix is combined with the output from
the updated parameter matrices. However, LoRA
does not perform well in multi-task scenarios, par-
ticularly in dealing with complex datasets.

Recent LoRA variants have improved multi-task
learning by employing multiple LoRA adapters,
including Multi-LoRA (Wang et al., 2023), LoRA
MoE (Dou et al., 2023), MixLoRA (Li et al.,
2024), and MoeLoRA (Liu et al., 2024a). We
refer to this extended framework as the Multi-
Adapter LoRA architecture, which consists of mul-
tiple down-projection matrices (A) and their corre-
sponding head matrices (B), enabling task-specific
adaptation through diverse parameter sets. Notably,
LoRA-MoE and MoeLoRA further enhance this
architecture by introducing a Mixture of Experts
(MoE) mechanism to aggregate adapter outputs.
(Wang et al., 2024b) and (Tian et al., 2024) ob-
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Figure 1: Training architecture comparison. (a) Full parameter fine-tuning; (b) Vanilla LoRA; (c) Multi-Adapter
architecture; (d) Multi-Head/Asymmetric architecture.

serves that in the Multi-Adapter LoRA architecture,
the parameters of the down-projection matrices A
are relatively consistent, while the differences be-
tween the head matrices B are more pronounced,
which aids in capturing task-specific knowledge.
To leverage this property, MA-LoRA(Wang et al.,
2024b) and HydraLoRA (Tian et al., 2024) are pro-
posed to feature an asymmetric architecture with
one shared down-projection matrix A and multi-
ple task-specific head matrices B. Additionally,
HydraLoRA also employs an MoE mechanism to
aggregate the outputs of the head matrices. This
design achieves a good balance between training
performance and parameter efficiency. In this work,
we explicitly define asymmetric architecture as a
Multi-Head structure, and introduce Multi-Head
randomization to improve LLMs’ performance on
multi-task learning. The mathematical formaliza-
tion of the Multi-Head structure is detailed in Sec-
tion 2.2. Figure 1 illustrates the differences among
the aforementioned structures.

However, in the Multi-Head architecture, the pa-
rameter similarity among head matrices remains
high, hindering task-specific knowledge learning.
This is due to the zero initialization of head matri-
ces B, leading to similar update directions. To ad-
dress this limitation, R-LoRA employs multi-head
randomization, combining random initialization
with multi-head dropout. This approach diversifies
both the starting points and inputs of the head matri-
ces, enabling more effective task-specific learning
by breaking initial symmetry and promoting dis-
tinct optimization trajectories. Our work makes the
following key contributions:

- We reveal redundancy and symmetry in the
head matrices of Multi-Head LoRA, limiting its
ability to capture diverse task-specific knowledge.

- We propose R-LoRA, introducing Multi-Head
Randomization to enhance both performance and
efficiency in multi-task learning.

- Extensive experiments validate R-LoRA’s supe-
riority, with analysis showing performance gains
stem from diversified head matrices.

2 Related Works

2.1 LoRA

Current LLMs generally follow a decoder-only
structure, characterized by a series of blocks, each
comprising two key components with residual con-
nections: a multi-head self-attention (MHA) layer
and a feed-forward network (FFN) (Vaswani, 2017).
These layers involve using dense learnable matri-
ces.

There is a need to adapt LLMs for specific tasks
or domains with limited resources. To achieve this,
low-rank adaptation (LoRA) (Hu et al., 2021), in-
spired by the concept of low intrinsic dimension-
ality in LLMs, decomposes the weight gradient
∆W into low-rank matrices, thereby reducing the
number of trainable parameters. Specifically, for a
dense weight matrix W ∈ Rm×n, LoRA employs
two low-rank matrices, B ∈ Rm×r and A ∈ Rr×n,
to approximate the accumulated gradient updates
∆W. The rank r is chosen to be much smaller
than the minimum of d and k, effectively decreas-
ing the number of trainable parameters from m×n
to 2r(m× n). Consequently, the resulting weight
matrix is expressed as W +BA, and the output h
for an input x through this updated weight matrix
is formulated as:

h = (W +∆W)x = Wx+BAx (1)
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Typically, matrix B is initialized with zeros, while
matrix A is initialized using Kaiming Uniform (He
et al., 2015). This initialization strategy ensures
that the initial outputs remain consistent with the
pre-trained model, thereby avoiding the introduc-
tion of random disturbances.

Following LoRA, AdaLoRA (Zhang et al., 2023)
dynamically learns the rank size needed for LoRA
in each layer of the model. DeltaLoRA (Zi et al.,
2023) updates the original weights of the model
using parameters from adapter layers, enhancing
LoRA’s representational capacity. DoRA (Liu et al.,
2024b) introduces a magnitude component to learn
the scale of ∆W while utilizing the original AB as
a direction component of ∆W . BA-LoRA (Chang
et al., 2024a) and LoRA-MGPO (Chang et al.,
2025) are also notable developments in this area.
PiSSA (Meng et al., 2025), LoRA-GA (Wang et al.,
2024a) have improved the convergence speed and
performance of LoRA by refining its initialization
method. Their approaches focus on optimizing the
initial parameter settings, which enhances the train-
ing dynamics and leads to more efficient and stable
convergence.

2.2 Multi-Head architecture

MTL-LoRA (Yang et al., 2024), MALoRA(Wang
et al., 2024b), and HydraLoRA (Tian et al., 2024)
are pioneering methods that introduce the multi-
head architecture into LoRA. This architecture is
characterized by a central shared down-projection
matrix A and multiple distinct head matrices B,
enabling efficient and flexible adaptation across
diverse tasks. As shown in Figure 1, this architec-
ture differentiates task-specific information while
effectively capturing shared knowledge across var-
ious tasks. The Multi-Head architecture can be
formulated as:

W +∆W = W +
N∑

i=1

ωi ·BiA (2)

In MTL-LoRA (Yang et al., 2024) and Hy-
draLoRA (Tian et al., 2024), the weights wi are
computed through the routing matrix Wr and the
softmax function. It can be formulated as:

ω = Softmax(Wrx) (3)

2.3 Dropout

Dropout is a widely used technique to prevent over-
fitting in deep networks by randomly deactivating

units during training (Srivastava et al., 2014). This
process samples from an exponential number of
thinned networks, reducing unit co-adaptation and
enhancing noise robustness. The following is the
formulation of Dropout.

1. Mask vector: Generate a binary mask vector
m ∈ {0, 1}d, where each element mj in-
dependently takes the value 1 with probabil-
ity 1 − p and 0 with probability p: mj ∼
Bernoulli(p), j = 1, . . . , d

2. Apply the mask: During training, multiply the
input x or the activation values by the mask
m element-wise to get the masked output x̃:
x̃ = m⊙ x, where ⊙ denotes the Hadamard
product (element-wise multiplication).

3. Scale activation values: To maintain consis-
tent expected outputs between training and
testing, the retained neurons are typically
scaled (multiplied by 1

1−p ): x̃ = 1
1−pm⊙ x

Dropout operations require both the computation
and storage of masking vectors during training. At
test time, the full network is utilized, benefiting
from the ensemble effect of the thinned networks.
In our work, we adapt dropout to a novel context
within the multi-head structure of R-LoRA. Specifi-
cally, we employ dropout to differentiate the inputs
of the head matrices, ensuring that each head learns
distinct and complementary representations while
also reducing computational overhead.

3 Motivation

In this section, we analyze the parameter similar-
ity between different head matrices in the Multi-
Head LoRA architecture. To achieve our objec-
tives, we focus on HydraLoRA (Tian et al., 2024)
and use cosine similarity and the T-SNE method to
observe the parameters of the head matrices. We
fine-tune Qwen2.5-3B (Qwen Team, 2024) with
HydraLoRA (Tian et al., 2024) on five different
tasks. The details of the dataset can be referred to
Appendix C.1. First, we flatten the head matrices
into vectors and then calculate the cosine similarity
between the vectors to obtain a similarity matrix.
The average value of the matrix is regarded as the
similarity of the head matrix corresponding to the
parameter matrix. Additionally, we perform T-SNE
analysis(Maaten and Hinton, 2008) on all the head
matrices in Figure 6 of Appendix B.
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Figure 2: Cosine similarity among head matrices. "Overall mean" represents the average similarity across all layers.

As shown in Figure 2, the average similarity be-
tween different head matrices still reaches around
80%. With such a high similarity, the knowledge
learned between different head matrices is also
quite similar, which hinders the learning of task-
specific knowledge. To the best of our knowledge,
this is due to the zero initialization of the head
matrices. Tuning a pretrained LLM essentially
becomes optimizing in a much smaller parameter
space around the local optimum of pretrained mod-
els. After receiving the outputs from the shared
down-projection matrix A, the outputs of the head
matrices are highly similar in the early stages of
training, leading to highly similar update directions
during gradient updates.
Research Question: Is there a simple yet effective
approach to differentiate head matrices such that
they capture distinct task-specific knowledge for
efficient multi-task learning?

4 Method

In this work, we propose R-LoRA, which leverages
multi-head randomization to assist the model in
learning distinct knowledge. Multi-head random-
ization consists of two components: multi-head
dropout and random initialization. An overview of
R-LoRA is illustrated in Figure 3
Research Objective: To exploit randomization to
differentiate the head matrices, thereby facilitating
the optimization of their parameters to distinct re-

Figure 3: Overview of the R-LoRA.

gions and enhancing the diversity among the head
matrices.

4.1 Multi-Head Dropout

Multi-Head LoRA architecture is characterized by
a shared down-projection matrix A and several
distinct head matrices B. In HydraLoRA (Tian
et al., 2024), the head matrices receive the same
output from the shared matrix A. According to
(Hayou et al., 2024) and (Tian et al., 2024), the
down-projection matrix A and the head matrix
B in LoRA play distinct roles. Specifically, the
down-projection matrix A primarily captures task-
agnostic knowledge, encoding generalizable fea-
tures applicable across tasks, while the head matri-
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Method A Init B Init
LoRA U
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3
din
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3
din

)
0

HydraLoRA U
(
− 1

din
, 1
din

)
0

R-LoRA
4√dout√

γ ·N
(
0, 1

din

)
4√dout√

γ ·N
(
0, 1

dout

)

Table 1: Comparison of initialization.

ces specialize in task-specific knowledge, enabling
the model to adapt to the unique requirements of
individual tasks. This division of roles enhances
the model’s ability to balance generalization and
specialization in multi-task learning scenarios. We
propose employing multi-head dropout to differ-
entiate the outputs of the down-projection matrix
A, thereby ensuring that the head matrices produce
distinct outputs. The framework of Multi-Head
dropout and R-LoRA is shown in Figure 3. Our
architecture builds upon the multi-head structure of
LoRA by incorporating multi-head dropout. After
the input is processed by the down-projection ma-
trix A, it generates a task-agnostic representation.
Multi-head dropout then diversifies this represen-
tation, allowing the model to learn task-specific
knowledge from multiple perspectives and improv-
ing both generalization and task adaptability.

Additionally, R-LoRA’s multi-head dropout
mechanism offers practical advantages by reducing
computational overhead and memory usage. Un-
like the original LoRA and Multi-Head structure
LoRA, which perform dropout on the input X ∈
Rb×m, R-LoRA applies Multi-Head Dropout to the
intermediate representations. H ∈ Rb×r, r ≪ m.
Since dropout operations require both the compu-
tation and storage of masking matrices, applying
dropout to the lower-dimensional H results in re-
duced computational costs and lower GPU memory
consumption.

4.2 Multi-Head Random Initialization

The zero initialization of the head matrices results
in identical starting points for the different head
matrices during training, causing them to converge
to similar positions. As demonstrated in Table 1, To
address this limitation, we adopt random initializa-
tion to break the symmetry of initial head matrices
and diversify optimization trajectories, thereby en-
couraging them to converge to different positions.
To stabilize the magnitude of outputs and enhance
model performance, we incorporate a scaling co-
efficient into the initialization process of the head

matrices. Specifically, inspired by (He et al., 2015)
and (Wang et al., 2024a), we introduce a coeffi-
cient

4√dout√
γ or

4√din√
γ during initialization to the

matrices to ensure scale stability. The γ is a hy-
perparameter set to 64 based on empirical findings
from (Wang et al., 2024a). Notably, (Wang et al.,
2024a) theoretically analyzes that such a scaling
factor helps maintain the numerical stability of the
output magnitudes throughout training. When the
head matrices are initialized with non-zero values,
the initial ∆W0 is no longer zero. To maintain
consistency with the pre-trained model’s initial out-
puts and avoid random perturbations, we subtract
it from the original parameter matrix W during the
initialization phase. It can be formulated as:

W = W −∆W0 = W − 1

N

N∑

i=1

Bi0 ·A0 (4)

5 Experiments

In this section, we validate the effectiveness of R-
LoRA across various models and settings. Specifi-
cally, we evaluate R-LoRA’s multi-task adaptabil-
ity using Qwen2.5 (Qwen Team, 2024) in Setting
1 and its multi-task generalization capability us-
ing LLaMA-2 (Touvron et al., 2023) in Setting 2.
Model sizes range from 3B to 13B. An extensive
ablation study further demonstrates the effective-
ness of multi-head randomization in R-LoRA.

5.1 Experiment Settings
Datasets & Benchmarks: Setting 1: We fine-
tune Qwen2.5 on datasets covering commonsense
and mathematical reasoning tasks and evaluate
performance on their respective test sets. Set-
ting 2: We fine-tune LLaMA-2 on a subset of
the Flanv2 dataset (Brown, 2020), which includes
tasks grouped into 10 distinct task clusters. Per-
formance is measured using the Big-Bench Hard
(BBH) benchmark. Additional details about the
datasets and implementation details can be found
in Appendix C and Appendix D, respectively.

664



Schemes Task1 2 3 4 5 6 7 8 Avg %Par A B

Qwen2.5-3B

Base 70.32 38.21 56.31 52.87 59.33 71.06 60.43 28.35 54.61 - - -
LoRA*1 80.00 56.50 84.80 72.10 90.10 87.60 87.60 44.15 75.36 0.18 1 1
LoRA*2 86.30 56.40 84.70 72.60 91.40 87.90 87.60 44.80 76.46 0.45 1 1
Multi-LoRA 84.50 55.40 82.70 72.10 89.80 81.80 87.69 44.80 74.85 0.60 3 3
LoRA MoE 87.40 58.10 85.60 73.40 92.25 87.40 87.34 45.50 77.12 0.68 3 3
HydraLoRA 86.50 56.40 85.00 73.40 92.00 87.40 88.38 45.10 76.77 0.45 1 3
R-LoRA 87.10 57.90 88.13 73.90 94.70 88.25 88.26 45.60 77.98 0.45 1 3

Qwen2.5-7B

Base 75.14 47.22 67.87 66.53 76.79 71.06 68.43 33.21 63.28 - - -
LoRA*1 87.20 59.85 87.60 80.10 91.10 89.50 90.30 47.80 79.18 0.10 1 1
LoRA*2 88.40 60.80 88.40 81.50 93.60 91.20 91.80 48.10 80.48 0.25 1 1
Multi-LoRA 88.30 58.90 87.50 79.80 91.50 88.40 91.90 47.90 79.28 0.33 3 3
LoRA MoE 89.50 61.40 88.90 82.90 93.60 91.50 91.90 48.70 81.05 0.38 3 3
HydraLoRA 88.60 61.20 89.50 81.70 93.60 91.60 91.70 48.10 80.75 0.25 1 3
R-LoRA 89.80 62.50 89.40 83.70 95.10 92.10 92.17 50.80 81.95 0.25 1 3

Table 2: Comparison of different training schemes on multi-task reasoning datasets. The rank of LoRA*2 was set to
10 to ensure that its trainable parameters matched those of R-LoRA, while all other configurations used a rank of 4.

Metrics Base LoRA MultiLoRA LoRAHub* LoRA MoE* HydraLoRA R-LoRA
7B 31.6 37.1 39.2 39.7 40.3 41.5 42.2
13B 38.4 40.8 41.3 41.9 43.7 44.2 45.1
A/B for training - 1/1 10/10 48/48 48/48 1/10 1/10
A/B for inference - 1/1 10/10 20/20 48/48 1/10 1/10
% Param - 0.062 1.180 1.240 2.976 0.341 0.341

Table 3: Comparison of different training schemes on multi-tasks. * indicates results from (Tian et al., 2024).

Baselines: In Setting 1, we compare R-LoRA
with LoRA, Multi-LoRA, LoRA MoE, and Hy-
draLoRA. In Setting 2, the comparison includes
LoRAHub (Huang et al., 2023), which employs
black-box optimization for weighted averaging of
LoRAs, LoRA-MoE (Liu et al., 2024a), which in-
tegrates lightweight experts with a Mixture of Ex-
perts architecture, and HydraLoRA.

5.2 Performance of R-LoRA

The evaluation across diverse multi-task reasoning
datasets, as shown in Table 2 and Table 3, demon-
strates that R-LoRA achieves superior performance
compared to all other methods. By introducing
multi-head randomization, R-LoRA achieves sig-
nificantly improved multi-task adaptability and gen-
eralization capabilities. The performance gains
achieved by R-LoRA, driven by these innovations,
outperform LoRA and multi-head LoRA methods
like HydraLoRA. This highlights R-LoRA’s en-

hanced generalization and task adaptability. Addi-
tional results on the performance of R-LoRA under
single-task settings are provided in Appendix B.

5.3 Efficiency of R-LoRA
We conducted a comparative analysis of the mem-
ory usage and training time between R-LoRA
and the original Multi-head structure LoRA using
Qwen2.5-3B under various configurations. Table 4
demonstrates that R-LoRA’s multi-head dropout
approach reduces GPU memory consumption by
up to 20% and cuts training time by up to 8%, high-
lighting its superior efficiency in comparison to
traditional methods.

5.4 Parameter Analysis
In this section, we examine whether multi-head
randomization effectively enhances the acquisition
of diverse knowledge across the head matrices.

The methodology and experimental setup align
with those described in Section 3. As shown in
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Schemes 3 Heads(bfloat16) 5 Heads(bfloat16) 3 Heads(float32) 5 Heads(float32)
MD 18.53GB / 2.20h 22.05GB / 2.75h 34.23GB / 8.68h 41.24GB / 9.65h
ID 23.42GB / 2.41h 30.25GB / 3.25h 42.09GB / 9.08h 54.45GB / 10.31h

Table 4: Comparison of memory consumption and per-epoch training time across different dropout operations. MD
denotes our proposed Multi-Head Dropout, while ID represents input dropout applied to x in HydraLoRA.

Figure 4: Cosine similarity among head matrices in R-LoRA. "Overall mean" represents the average similarity
across all layers.

Figure 5: Gradient norm dynamics during training:
Comparison of conventional and multi-head randomized
configurations, highlighting enhanced stability through
diversified head matrices.

Figure 4, the parameter similarity between head
matrices in R-LoRA is reduced to below 70%. This
significant decrease indicates that multi-head ran-
domization effectively enhances the model’s ca-
pacity to learn task-specific knowledge, thereby

mitigating redundant learning and increasing the
diversity of acquired knowledge across tasks.

5.5 Training Process

In this section, we investigate whether multi-head
randomization impacts the stability of the training
process.

As illustrated in Figure 5, R-LoRA benefits from
multi-head randomization, exhibiting significantly
larger gradient norms in the early stages of training
compared to HydraLoRA. This drives the head ma-
trices to converge to distinct regions, enhancing the
model’s ability to capture diverse representations
and improving overall performance. Furthermore,
R-LoRA exhibits superior training stability, as evi-
denced by its more stable gradient norms through-
out the training process. This stability enables the
model to effectively acquire diverse knowledge
without compromising training efficiency and ro-
bustness.
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p Task1 2 3 4 5 6 7 8 Avg

0.1 96.42 83.12 85.34 86.49 71.96 73.45 86.18 88.94 83.99
0.2 96.42 83.27 85.34 86.49 72.84 73.86 86.24 88.94 84.18
0.3 96.31 83.27 85.21 86.55 72.84 73.86 86.21 88.94 84.15
0.4 96.4 83.12 85.34 86.49 72.84 73.86 86.05 88.94 84.13
0.5 96.31 83.04 85.45 86.15 72.57 73.57 86.45 88.94 84.06
0.6 96.15 83.04 85.34 85.97 72.46 73.91 86.18 88.94 84.00
0.7 95.97 83.49 85.45 85.97 71.89 73.57 86.05 88.72 83.90

Table 5: Performance under different dropout rates

γ Task1 2 3 4 5 6 7 8 Avg

16 96.42 83.02 85.34 86.49 72.56 73.45 86.18 88.94 84.05
32 96.65 83.12 85.16 86.55 72.84 73.97 85.84 88.67 84.10
64 96.31 83.27 85.21 86.55 72.84 73.86 86.21 89.16 84.18
128 96.42 83.27 85.34 86.49 72.84 73.86 86.24 88.94 84.18
256 96.31 83.04 85.45 86.15 72.57 73.57 86.45 88.94 84.06

w/o stable 96.02 83.04 85.16 85.97 72.35 73.97 86.24 88.72 83.93

Table 6: Performance under different scaling factors

5.6 Hyperparameter Analysis

We have conducted two additional ablation stud-
ies to analyze the impact of dropout rates (p) and
scaling factors (γ) on performance. The results are
presented in the table below.

The results in Table 5 and Table 6 indicate that
the performance fluctuations across different set-
tings are minor. This demonstrates that R-LoRA
is robust and not sensitive to the choice of these
hyperparameters. Even without the scaling factor,
the performance remains relatively stable and su-
perior to HydraLoRA, which further demonstrates
that the superiority of R-LoRA stems from the di-
versification of its head matrices.

5.7 Ablation Study

Ablation studies were conducted on Llama3.2-3B
and Qwen2.5-3B models across eight-task config-
urations, using 11 datasets spanning 8 categories.
All models were evaluated on their respective test
sets, with results summarized in Table 7. Dataset
details are provided in the Appendix C.4. More
results on the smaller model Qwen2.5-0.5B are
shown in the Appendix B

Experimental results demonstrate that multi-
head randomization and multi-head Dropout, the
two key components, are pivotal for enhancing
the model’s adaptability across tasks. Multi-head
randomization remains effective even when initial-

ization is isolated to LoRA B. As shown in Ta-
ble 7, R-LoRA with zero-initialized LoRA A (Zero
A) consistently outperforms HydraLoRA, demon-
strating that the performance gains are primarily
attributed to the diversified parameter spaces in
the head matrices B. Random initialization assigns
unique weights to each head matrix, enabling task-
specific pattern capture. Dropout diversifies inputs
to the head matrices, promoting distinct learning
pathways. Together, these components improve
task-specific feature capture while maintaining ro-
bustness in multi-task learning.

6 Discussion

In this section, we discuss the mechanisms be-
hind R-LoRA’s multi-head randomization for en-
hanced multi-task learning. As in the Motivation
section, traditional multi-head LoRA suffers from
high similarity among head matrices due to zero-
initialization, confining heads to symmetric states
and limiting exploration of sparse, critical sub-
spaces (e.g., for rare syntactic relationships), lead-
ing to overlapping subspaces and poor task-specific
adaptation.

Tokens’ semantic logics (semantic, syntactic,
contextual) exist in multiple subspaces of high-
dimensional embeddings. The Multi-Head mech-
anism decomposes these logics into distinct sub-
spaces for independent processing, and R-LoRA
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Schemes Task1 2 3 4 5 6 7 8 Avg

Llama3.2-3B

R-LoRA 95.82 83.68 84.25 85.48 71.45 74.12 84.34 85.39 83.07
w/o MD 95.24 83.25 82.46 84.75 70.27 73.96 84.57 83.29 82.22
w/o MI 94.66 82.77 83.58 83.25 69.79 74.23 83.28 84.16 81.97
Zero A 95.67 83.46 83.47 85.64 70.27 73.84 84.13 84.89 82.67
HydraLoRA 95.12 82.14 83.88 82.68 69.86 72.33 79.25 84.25 81.19
Base 88.54 56.31 59.78 61.02 39.23 39.61 42.15 57.21 55.48

Qwen2.5-3B

R-LoRA 96.42 83.27 85.34 86.49 72.84 73.86 86.24 88.94 84.18
w/o MD 96.22 83.66 83.25 84.72 71.15 73.24 85.02 88.12 83.17
w/o MI 96.10 83.21 83.65 84.50 71.69 72.05 83.24 88.36 82.85
Zero A 96.24 84.02 84.36 85.89 72.13 73.51 85.26 89.13 83.82
HydraLoRA 95.89 83.53 82.97 84.24 70.95 71.93 83.06 87.33 82.49
Base 90.87 58.73 61.92 63.24 41.56 41.93 44.38 59.42 57.73

Table 7: Results of Ablation Studies on Qwen2.5 and Llama3.2 with Different Schemes Across Various Tasks.
The table compares R-LoRA with its ablated versions (without Multi-Head Dropout/MD, without Multi-Head
Initialization/MI, and zero initialization to LoRA A in R-LoRA) against HydraLoRA across eight tasks.

follows this via two innovations:

Multi-Head Dropout: Enables heterogeneous
feature learning to capture complementary embed-
ding space aspects.

Multi-Head Random Initialization: Avoids
head convergence to overlapping subspaces by de-
coupling trajectories.

knowledge diversification, is more important in
knowledge-intensive tasks, specifically Common-
sense Reasoning (Task 5) and Closed-Book QA
(Task 8). On Task 5 (Commonsense Reasoning),
removing MI caused a larger performance drop
(1.66 vs 1.18), as it breaks symmetry to support
wider knowledge learning. MD, key for capturing
semantic relationships, is more vital in tasks re-
quiring nuanced semantic understanding, such as
Natural Language Inference (Task 3). On Task 3
(Natural Language Inference), removing MD led
to a greater performance loss (1.79 vs 0.67), as it
provides varied inputs to capture diverse semantic
patterns.

As shown in Figure 4, R-LoRA effectively re-
duces the similarity among head matrices, promot-
ing diverse feature learning across tasks. Empirical
results in Table 7 further confirm that the perfor-
mance gains are primarily attributed to the diversi-
fied parameter spaces in LoRA B, rather than LoRA
A, highlighting the importance of the up-projection
module in enabling task-specific adaptation.

7 Conclusion

In this work, we first analyze the multi-head struc-
ture of LoRA, revealing excessive similarity among
head matrices that limits task-specific learning. To
address this, R-LoRA introduces multi-head ran-
domization, a simple yet effective approach that
differentiates head matrices, enabling the model to
learn diverse knowledge across tasks. This inno-
vation enhances both performance and efficiency,
reducing GPU memory usage and training time.

Extensive experiments validate R-LoRA’s supe-
riority. The performance gains stem primarily from
increased diversity in the parameter spaces of the
head matrices, confirming the effectiveness of R-
LoRA for efficient multi-task learning.

8 Limitation

While we have conducted extensive experiments to
validate its effectiveness, the inherent complexity
of multi-task learning highlights the importance of
further exploration and broader evaluation. Cur-
rently, our validation focuses on NLP tasks, and
extending the method to other modalities, such as
computer vision and multimodal settings, repre-
sents an exciting avenue for future research. These
directions could help unlock the full potential of
R-LoRA and deepen our understanding of its appli-
cability across diverse domains.
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A Toy Example for R-LoRA Intuition

To intuitively demonstrate the benefits of our ap-
proach, we consider a simplified multi-head LoRA
structure. For simplicity, we ignore the router and
activation functions.

Assume we have two head matrices B1, B2 ∈
R2×1, a shared down-projection matrix A ∈ R1×2,
and an input x ∈ R2×1.

• Let A = [1, 1] and x = [0.5, 0.5]T .

• The shared intermediate representation is h =
Ax = [1, 1] · [0.5, 0.5]T = 1.

• Assume the gradient propagated back from
the loss function is ∇L = 2.

• According to the chain rule, the update for Bi

(∆Bi) is proportional to ∇L · h · x. With
our values, this is proportional to 2 · 1 ·
[0.5, 0.5]T = [1, 1]T .

Scenario 1: Conventional Zero-Initialization
1. Initialization: Both head matrices start at the

origin: B(0)
1 = [0, 0]T , B(0)

2 = [0, 0]T .

2. First Update Step: Since both heads receive
the same input h = 1, their gradients are iden-
tical.

• ∆B1 = η · [1, 1]T
• ∆B2 = η · [1, 1]T (where η is the learn-

ing rate).

3. Result: After the update, the matrices are
B

(1)
1 = [−η,−η]T and B

(1)
2 = [−η,−η]T .

Conclusion: B1 and B2 start identically and re-
ceive identical update signals, causing them to re-
main identical throughout training. This leads to
parameter redundancy as they fail to learn diverse
features.
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Scenario 2: R-LoRA (Random Initialization +
Dropout)

1. Random Initialization: The head matrices
start at unique points in the parameter space:
B

(0)
1 = [0.1,−0.1]T , B(0)

2 = [−0.2, 0.2]T .

2. Multi-Head Dropout: Different dropout
masks are applied to the shared representa-
tion h for each head.

• Assume mask for head 1 is m1 = 1
(retained) and for head 2 is m2 = 0
(dropped).

• Input to head 1: h1 = h ·m1 = 1 ·1 = 1.
• Input to head 2: h2 = h ·m2 = 1 ·0 = 0.

3. First Update Step: The gradients are now
different because the inputs are different.

• ∆B1 ∝ ∇L·h1 ·x = 2 ·1 · [0.5, 0.5]T =
[1, 1]T . The update is η · [1, 1]T .

• ∆B2 ∝ ∇L·h2 ·x = 2 ·0 · [0.5, 0.5]T =
[0, 0]T . The update is 0.

• B
(1)
1 = [0.1− η,−0.1− η]T .

• B
(1)
2 = [−0.2, 0.2]T .

Conclusion: Due to the combination of random
starting points and diversified inputs from dropout,
the head matrices B1 and B2 follow different opti-
mization trajectories (B(1)

1 ̸= B
(1)
2 ), enabling them

to capture distinct and complementary features.

B More Results

B.1 T-SNE analysis
The T-SNE analysis(Maaten and Hinton, 2008) of
head matrices in HydraLoRA is shown in Figure 6.

B.2 Performance of R-LoRA on Single Task
We compare R-LoRA against various PEFT meth-
ods on single datasets: 1) Full fine-tuning;
2) Prompt Tuning (Lester et al., 2021); 3)
P-Tuning (Liu et al., 2024c); 4) Prefix Tun-
ing (Li and Liang, 2021); 5) IA3 (Liu et al.,
2022); 6) AdaLoRA (Zhang et al., 2023); 7) Hy-
draLoRA (Tian et al., 2024).

As shown in Table 8, in the single-task setting,
where the knowledge and text format of the data
are relatively homogeneous, R-LoRA demonstrates
slightly improved performance compared to Hy-
draLoRA. While multi-head randomization is pri-
marily designed for multi-task learning, its ability

to learn diverse knowledge remains beneficial even
in single-task scenarios. This slight edge over Hy-
draLoRA underscores R-LoRA’s capacity to cap-
ture varied patterns effectively, even when its full
potential is not fully utilized in single-dataset set-
tings. These results further highlight R-LoRA’s
robustness and adaptability across different task
complexities.

B.3 Ablation study of R-LoRA on smaller
model

Table 9 show the ablation study on Qwen2.5-0.5B

B.4 Datasets in Single-task

1. General: We fine-tune with the
general instruction tuning dataset
databricks-dolly-15k for generic
language capability and evaluate with
MMLU.

2. Medical: We fine-tune with GenMedGPT and
clinic-10k from ChatDoctor for medicine
applications and evaluate medical tasks in
MMLU including three related tasks: "clini-
cal knowledge", "professional medicine", and
"college medicine".

3. Law: We fine-tune with two legal instruc-
tion tuning datasets Lawyer-Instruct and
US-Terms, then evaluate with law tasks in
MMLU, including two related tasks: "pro-
fessional law" and "international law".

4. Math: We fine-tune with the training split of
GSM8K for mathematical reasoning and evalu-
ate with the test set of GSM8K.

5. Code: We fine-tune with CodeAlpaca
for code generation and evaluate with
HumanEval.

C Datasets

C.1 Motivation

In the section of Motivation, we fine-tune
Qwen2.5-3B on five tasks: Paraphrase Detection
(QQP), Natural Language Inference (QNLI) (Wang,
2018), Commonsense Reasoning (SIQA) (Sap
et al., 2019), Physical Commonsense Reason-
ing (PIQA) (Bisk et al., 2020), and Math
(GSM8K) (Cobbe et al., 2021)

671



Figure 6: T-SNE analysis of head matrices in HydraLoRA

Schemes General Medical Law Code Math Avg %Param #A #B
Base* 38.88 35.98 33.51 20.34 10.38 27.82 - - -
Full* 49.91 46.78 46.08 32.93 25.70 40.28 100 - -
Prompt Tuning* 39.91 37.59 35.02 21.55 13.18 29.45 0.001 - -
P-Tuning* 41.11 39.81 36.72 21.13 15.56 30.87 0.193 - -
Prefix Tuning* 41.78 40.28 36.54 22.56 16.89 31.61 0.077 - -
IA3* 40.45 37.12 35.25 23.17 13.98 29.99 0.009 - -
LoRA(r = 8) 43.44 41.18 37.95 22.82 18.72 32.82 0.062 1 1
AdaLoRA*(r = 8) 44.32 42.83 39.36 23.78 19.51 33.96 0.093 1 1
LoRA(r = 16) 45.12 43.22 40.24 25.22 20.14 34.79 0.124 1 1
HydraLoRA(r = 8) 46.89 45.21 42.88 27.43 22.27 36.94 0.124 1 3
R-LoRA(r = 8) 47.02 45.54 43.23 27.27 22.12 37.04 0.124 1 3

Table 8: Comparison of different training schemes on single task. * indicates results from (Tian et al., 2024)

C.2 Setting 1

1. Reading Comprehension: BoolQ

2. Science Question Answering: SiQA

3. Physical Question Answering: PiQA

4. Word Relation Reasoning: Winogrande

5. Commonsense Reasoning: Hellaswag

6. Open-Book Question Answering: OBQA

7. Closed-Book Question Answering: ARC

8. Mathematical Reasoning: GSM8K

C.3 Setting 2

Following (Tian et al., 2024), for complex mixed
multi-task/domain, we select a portion of the
Flanv2 datasets covering Natural Language Under-
standing (NLU) and Natural Language Generation
(NLG), which can be grouped into 10 distinct task
clusters. Then we evaluate it with the Big-Bench
Hard (BBH) benchmark.

We summarize the details of the used datasets as
follows:

1. Struct-to-Text Conversion: This task eval-
uates the capability to generate natural lan-
guage descriptions from structured data inputs.
We use the following datasets: (1) Common-
Gen; (2) DART; (3) E2ENLG; (4) WebNLG

2. Translation: Translation involves convert-
ing text from one language to another, main-
taining the original meaning and nuances.
We use the following datasets: (1) En-Fr
from WMT’14; (2) En-De, En-Tr, En-Ru, En-
Fi, En-Ro from WMT’16; (3) En-Es from
Paracrawl.

3. Commonsense Reasoning: This involves as-
sessing the ability to apply physical or scien-
tific principles alongside common sense in rea-
soning tasks. We use the following datasets:
(1) COPA; (2) HellaSwag; (3) PiQA; (4) Sto-
ryCloze.

4. Sentiment Analysis: A fundamental task in
natural language processing (NLP) that de-
termines the sentiment polarity (positive or
negative) of a given text. We use the follow-
ing datasets: (1) IMDB; (2) Sentiment140; (3)
SST-2; (4) Yelp.
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Schemes Task1 2 3 4 5 Avg
R-LoRA 91.74 81.50 77.60 67.80 49.30 73.59
w/o MD 91.40 81.20 77.10 66.10 49.10 72.98
w/o MI 91.20 80.80 77.50 66.20 49.40 73.02
HydraLoRA 90.97 80.30 77.20 65.80 49.20 72.69

Table 9: Results of Ablation Studies on Qwen2.5-0.5B with Different Schemes Across Various Tasks. The table
compares R-LoRA with its ablated versions (without Multi-Head Dropout/MD and without Multi-Head Random
Initialization/MI) against HydraLoRA across five tasks.

5. Paraphrase Detection: This task requires
models to ascertain whether two sentences
convey the same meaning, indicating seman-
tic equivalence. We use the following datasets:
(1) MRPC; (2) QQP; (3) Paws Wiki.

6. Coreference Resolution: Involves identify-
ing instances within a text that refer to the
same entity, demonstrating an understanding
of textual context. We use the following
datasets: (1) DPR; (2) WSC273.

7. Reading Comprehension: Assesses the ca-
pability to derive answers to questions from
a provided text containing relevant informa-
tion. We use the following datasets: (1)
BoolQ; (2) DROP; (3) MultiRC; (4) OBQA;
(5) SQuADv1; (6) SQuADv2.

8. Reading Comprehension with Common-
sense: Merges traditional reading compre-
hension skills with commonsense reasoning,
requiring understanding beyond the explicit
text. We use the following datasets: (1) Cos-
mosQA; (2) ReCoRD.

9. Natural Language Inference: Focuses on
deducing the relationship between two sen-
tences, determining if the second sentence
logically follows from, contradicts, or is unre-
lated to the first sentence. We use the follow-
ing datasets: (1) ANLI; (2) CB; (3) MNLI; (4)
QNLI; (5) SNLI; (6) WNLI; (7) RTE.

10. Closed-Book Question Answering: This
task challenges models to answer questions
about general knowledge without direct ac-
cess to external information sources. We use
the following datasets: (1) ARC; (2) NQ; (3)
TriviaQA.

C.4 Ablation Study
Due to limited computational resources, we se-
lected a subset of the dataset for training and testing.

Five tasks for Smaller model Qwen2.5-0.5B in
Appendix B.3:

• Task 1: Sentiment Analysis (SST2)

• Task 2: Paraphrase Detection (QQP)

• Task 3: Natural Language Inference (QNLI)

• Task 4: Physical Commonsense Reasoning
(PiQA)

• Task 5: Commonsense Reasoning (SiQA)

Eight tasks:

• Task 1: Sentiment Analysis (SST2)

• Task 2: Paraphrase Detection (QQP)

• Task 3: Natural Language Inference (MNLI +
QNLI)

• Task 4: Reading Comprehension (BoolQ +
OBQA)

• Task 5: Commonsense Reasoning (PiQA +
SiQA)

• Task 6: Reading Comprehension with Com-
monsense (CosmosQA)

• Task 7: Coreference Resolution (Winogrande)

• Task 8: Closed-Book Question Answering
(ARC)

D Implementation Details

The hyperparameters used for training are as fol-
lows: a learning rate of 0.0002, "lora_alpha"=32,
and trainable LoRA components including
"gate_proj", "down_proj", and "up_proj". A
dropout rate of 0.2 was applied to the LoRA, with
a warmup ratio of 0.03. Mixed-precision training
was enabled using bfloat16, and the learning rate
scheduler was set to cosine annealing. The model
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was trained for 1 epoch on NVIDIA 4090 GPUs.
In Setting 1, the rank of LoRA was set to 10 for
LoRA*2 to match the total number of trainable
parameters in R-LoRA, while the rank for others
was set to 4.

E Baselines

1. Prompt Tuning: This method adds task-
specific prompts to the input. These prompt
parameters are updated independently while
the pretrained model parameters remain
frozen.

2. P-Tuning: This method incorporates trainable
prompt embeddings into the input, optimized
by a prompt encoder to automatically discover
effective prompts, removing the need for man-
ual design. Prompt tokens can be placed any-
where in the input sequence, and anchor to-
kens are introduced to enhance performance.

3. Prefix Tuning: This method prefixes a series
of task-specific vectors to the input sequence.
These prefix parameters can be learned while
keeping the pretrained model frozen. The pre-
fix parameters are inserted into all layers of
the model.

4. IA3: This method enhances efficiency by in-
fusing learned vectors into transformer archi-
tectures, drastically reducing the number of
trainable parameters.

5. AdaLoRA: Unlike LoRA, which distributes
parameters evenly across all modules,
AdaLoRA optimizes the number of trainable
parameters assigned to weight matrices and
layers. More parameters are allocated to
important weight matrices and layers, while
less important ones receive fewer parameters.

6. LoraHub randomly aggregates 20 LoRAs for
new downstream tasks. It employs a black-
box optimization technique to determine the
weight of each LoRA, eliminating the need for
gradient calculations of the large model. This
involves parameter-level weighted averaging.

7. LoRA MoE. A collection of n parameter-
ized experts, denoted as E1, . . . , En, is or-
chestrated by a router network R. Ei = BiAi.
Router network features a dense layer with
adjustable weights WR from Rdm×n. A soft-
max function then processes an intermediate

token representation x, yielding gating scores
s1, . . . , sn that determine the weighted contri-
bution of each expert’s output:

si = R(x)i = softmax(Top(W T
Rx,K))

(5)
Subsequently, the overall output y is synthe-
sized by aggregating the Top-K experts’ out-
puts, each modulated by its respective gating
score:

y =

n∑

i=1

si · Ei(x) (MoE) (6)

This results in a dynamic allocation of the
model’s capacity, enabling specialized pro-
cessing by experts as directed by the router’s
gating mechanism.

8. HydraLoRA uses a shared matrix A and mul-
tiple matrices B1, . . . , Bn. The shared matrix
A is used to project the input vector x into a
lower-dimensional space, while each matrix
Bi is used to modulate the output of the cor-
responding expert Ei. The overall output y is
synthesized by aggregating the experts’ out-
puts, each modulated by its respective gating
score:

y =
n∑

i=1

si · (Bi ·A · x) (7)

This approach allows for efficient parameteri-
zation and specialization of the model’s capac-
ity, leveraging the shared matrix A for com-
mon transformations and the individual matri-
ces Bi for task-specific adjustments.
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