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Abstract

While chains-of-thought (CoT) have advanced
complex reasoning in multimodal large lan-
guage models (MLLMs), existing methods re-
main confined to text or static visual domains,
often faltering in dynamic spatial reasoning
tasks. To bridge this gap, we present GRASS-
LAND, a novel maze navigation benchmark
designed to evaluate dynamic spatial reasoning.
Our experiments show that augmenting textual
reasoning chains with dynamic visual drafts,
overlaid on input images, significantly outper-
forms conventional approaches, offering new
insights into spatial reasoning in evolving envi-
ronments. To generalize this capability, we pro-
pose D2R (Dynamic Draft-Augmented Reason-
ing), a training-free framework that seamlessly
integrates textual CoT with corresponding vi-
sual drafts into MLLMs. Extensive evaluations
demonstrate that D2R consistently enhances
performance across diverse tasks, establishing
a robust baseline for dynamic spatial reasoning
without requiring model fine-tuning. Project
is open at https://github.com/Cratileo/
D2R.

1 Introduction

Humans often exhibit effective behavioral strate-
gies that inspire multimodal large language mod-
els (MLLMs) (Yang et al., 2023a; Li et al., 2024;
Wu et al., 2024; Yao et al., 2024) to tackle com-
plex tasks, particularly in the realm of multimodal
reasoning. In such tasks, humans commonly cre-
ate drafts to support step-by-step thinking when
processing visual information that integrates text
and imagery. This drafting approach is especially
beneficial for extracting insights from dynamic im-
ages, where chronological, incremental reasoning
is highly effective.

Current MLLMs primarily emphasize step-by-
step reasoning patterns or simple visualization tech-

*Equal contribution
†Corresponding author

Final state: 

failed in water

[Maze Judgement Misson Requirement]

The action Sequence is: Go left, Go down. Determine the 

state of agent

Language centric CoT

Initial Position: (6,3)

Go left, agent at (5,3), no obstacle, no trap, agent safe

Go down, agent at (5,4), no obstacle,  no trap, agent safe

Final State: Safe

Dynamic visual textual CoT,  DVARF

I will draw this route before MLLM output.

Static visual CoT，VAP

GRASSLAND Dataset

The initial 

position is 

(6,3)

Go left, the 

left grid is 

land, agent 

safe

Go down, the 

grid lower is 

trap, agent 

failed

Final state: 

Failed in trap

Agent MLLM

Figure 1: The demonstration of the Draft CoT with D2R.
Compared to the spatial information gaps in language-
centric CoT, and the incomplete dynamic information in
static visual CoT, which only visualizes the input rather
than the MLLM’s thought process, Draft CoT excels at
dynamic spatial reasoning.

niques, exemplified by methods such as ToT (Yao
et al., 2023) and ICoT (Gao et al., 2025), but they
lack mechanisms for draft creation based on input
images. While these frameworks achieve strong re-
sults on textual and static visual tasks (Chen et al.,
2024a; Lu et al., 2024; Jiang et al., 2025; Hessel
et al., 2022), they often suffer from loss of rich
visual information and diminished spatial aware-
ness—factors critical for dynamic multimodal spa-
tial reasoning. Since dynamic spatial reasoning
plays a pivotal role in many real-world applications,
it is important to investigate how well existing mod-
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els perform in this domain.
To address this, we develop GRASSLAND, a

dynamic maze environment modeled as a classi-
cal pixel grid world with evolving environment
grids. We define two dynamic spatial reasoning
tasks—Maze Judgment and Maze Navigation—to
evaluate models’ ability to perform complex vi-
sual analysis in changing contexts. As illustrated
in Figure 1, our experiments reveal that existing
MLLMs and reasoning frameworks struggle with
these tasks, often overlooking or misinterpreting
spatial context, such as inaccurately judging loca-
tions or ignoring special grid features. To overcome
these challenges, we propose the Draft Chain-of-
Thought (Draft CoT) approach, which integrates
textual reasoning with corresponding drafts over
dynamic input images. This method significantly
outperforms previous approaches, providing fresh
insights into dynamic spatial reasoning.

Despite its effectiveness, Draft CoT relies on im-
age generation capabilities not universally available
across all MLLMs. To broaden its applicability, we
introduce a training-free framework named the Dy-
namic Draft Augmented Reasoning Framework
(D2R). As shown in Figure 2, D2R seamlessly in-
tegrates both visual and textual inputs, enhancing
reasoning by enabling cross-modal information ex-
change. It first generates a global plan based on
the task prompt and tool set, then iteratively per-
forms chronological reasoning by updating textual
thoughts as drafts on dynamic images. Finally,
D2R signals the MLLM to produce the final output,
concluding the iterative process.

Extensive experiments on the two dynamic spa-
tial reasoning tasks demonstrate that D2R surpasses
existing text-only and static vision-based reasoning
methods. Moreover, tests on multiple MLLMs con-
firm D2R’s ease of transfer, robustness, and broad
applicability as a training-free enhancement.

In summary, this paper makes three main contri-
butions:

• A novel benchmark for dynamic spatial
reasoning: We introduce GRASSLAND, a
classical pixel grid world with dynamic en-
vironment changes, along with two challeng-
ing tasks—Maze Judgment and Maze Naviga-
tion—to rigorously evaluate dynamic spatial
reasoning capabilities.

• A new Draft Chain-of-Thought method:
We propose Draft CoT, which combines
textual reasoning with corresponding drafts

over dynamic input images, significantly im-
proving performance over existing reasoning
frameworks on dynamic spatial tasks.

• A training-free framework for broad ap-
plicability: We develop the Dynamic Draft
Augmented Reasoning Framework (D2R) that
seamlessly integrates Draft CoT into exist-
ing MLLMs without additional training, en-
abling enhanced dynamic multimodal reason-
ing across various models.

2 Related Works

2.1 MultiModal Large Language Models
Multimodal Large Language Models (Liu et al.,
2025; Xu et al., 2025b; Zhu et al., 2025) have
made remarkable progress by integrating various
modalities—such as text, images, and video—into
a unified framework for understanding and reason-
ing. In this framework, different modality encoders
project inputs into a shared semantic space, which
is then processed by a language model to generate
responses (Yin et al., 2024). However, most ex-
isting MLLMs adopt a unimodal generation strat-
egy: they rely solely on text for auto-regressive
response generation, treating non-text modalities
merely as auxiliary context during encoding (Liu
et al., 2024b). As a result, the rich and dynamic
information contained in modalities like images
and videos is not fully utilized during the genera-
tion process, which significantly limits the model’s
performance on multimodal reasoning tasks (Liu
et al., 2024a). In contrast, OpenAI o3 (OpenAI,
2025) demonstrates the potential of step-by-step
generation that jointly conditions on both visual
and textual inputs. Unfortunately, current MLLMs
are not capable of this generation pattern due to
inherent limitations in image processing. In this pa-
per, we propose a Dynamic Draft Augmented Rea-
soning Framework, which achieves adaptiveness-
enhanced reasoning with multiple domain inputs
by utilizing external tools to generate a bimodal
chain-of-thought.

2.2 MLLMs Reasoning
Multimodal reasoning tasks are designed to eval-
uate the ability to integrate information from dif-
ferent modalities and perform comprehensive rea-
soning (Gao et al., 2025; Zheng et al., 2023). The
most common method is the language-centric mul-
timodal reasoning pattern, which focuses on ex-
tracting information from the visual modality and
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Figure 2: Illustration of the difference between our method and others. Direct prompting and language-centric CoT
face significant limitations in dynamic spatial reasoning tasks without images. VAP can only generate static images
based on agent prompts, without MLLM involvement for dynamic perception. MVOT requires MLLMs powerful in
image generation by training on specialized datasets. In contrast, D2R marks the textual thought in the image as
draft and integrates it into the Draft CoT, enhancing the MLLM’s dynamic spatial reasoning ability without specific
training.

downscaling it to the linguistic domain for infer-
ence (Yang et al., 2023b; Xu et al., 2025a; Mitra
et al., 2024). Rather from the language-centric pat-
tern, the collaborative multimodal reasoning intro-
duces the visual domain into the reasoning process,
such as VAP (Xiao et al., 2024) and MVoT (Li et al.,
2025). However, VAP merely visualizes the input
of the model instead of the model’s thought pro-
cess, while MVoT requires the model to generate
multimodal output. Both methods overlooks the
need to enhance the generalization ability of exist-
ing models across multimodal reasoning tasks. In
this paper, we propose Dynamic Draft Augmented
Reasoning Framework, which enhances the reason-
ing capabilities of existing MLLMs by realizing
bimodal chains of thought through the combination
of textual thought and their corresponding drafts in
the input images.

3 Dynamic Multimodal Spatial Reasoning

To further evaluate the performance of the existing
MLLMs on the dynamic spatial reasoning task, we
propose GRASSLAND, a dynamic maze naviga-
tion scenario for the dynamic spatial reasoning task.
As shown in Figure 3, it simulates a classical pixel
grid world W with a start point ps and destination
point pe. Also, parts of the environment grids con-
tain obstacles(‘the walls’)Po, dynamic traps (‘the
lava’)Pl, and stationary traps (‘the water’) Pw. The
model is required to determine the next action or

Task
Maze Judgment Maze planning

easy normal hard easy normal hard

Grid Size 7× 7 5× 5
Obstacles 0 1 2 1 2 3
Dynamic Trap 2 3 4 1 2 2
Static Trap 0 1 2 0-4 0-4 0-6
Route Length 5.32 6.00 5.67 3.47 3.75 4.34

Table 1: Statistics of the dataset information, covering
three levels of complexity in two tasks.

state based on the given prompt and scenario.

3.1 Task Formulation
Based on this dataset, we define two scenarios for
the dynamic spatial reasoning tasks: Maze Judg-
ment and Maze Navigation. These scenarios re-
quire models to analyze time and spatial sequences,
locate special objects, make action decisions, and
predict states when actions are executed. The de-
tails are presented in Table 1.

The Maze Judgment Scenario To assess the
ability of MLLMs to perceive dynamic spatial lo-
cations, we introduce the maze judgment scenario.
In this task, the MLLM must determine the final
state based on actions and the map, which are di-
vided into success, failure, and loss. This process
is modeled within a discrete state space, S, where
each state st ∈ S represents the agent’s status at
time t. In practice, the model must predict the state
in time t defined as st, and determine the final state
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[Mission Requirement]

Given an action sequence: 

“Go left, Go left, Go down, Go down, Go left” 

Try to find the final state after execute actions and select an 

answer in the follow list:

A. Action Success.

B. Action Failed: Fall into the water.

C. Action Failed: Fall into the lava.

D. Action Failed: Agent Safe but Fail to Reach Destination.

[Mission Requirement]

Try to find a safe route from start point to destination within 6 steps.

Time 𝑡 − 1 Time 𝑡 Time 𝑡+. .
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Trap

(Unsafe)
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(Can’t Pass)

Icon Description

1. The red tile(lava) and the blue tile(water) is dangerous, when player move into them, 

game fail. 

2. The yellow and brown tile is wall which can not be passed.

3. The white flag is starting point, the red flag is destination point 

GRASSLAND Dataset Dynamic Spatial Reasoning Tasks

Maze Judgement

Maze Navigation

……

Figure 3: Example of dynamic scenario sequence in GRASSLAND. The left part is the illustration of the dynamic
images and grids in GRASSLAND, and the right part is the description of the two tasks.

send, given a world map W and a sequence of ac-
tions Raction = {r1, r2, . . . , rT }. This process is
performed as follows:

st = f(W,Raction<t, S<t) t ∈ {1, . . . , T}, (1)

send = sT . (2)

The Maze Navigation Scenario To examine the
ability of MLLM to reason dynamic spatial loca-
tion, we propose the maze navigation scenario. In
this task, the MLLM should reach the destination
from the starting point, while avoiding all dangers
and doing so as quickly as possible. This route is
defined with the current position pt and next action
rt. In practice, MLLM should lay out a safe route
Raction that can stay out of danger positions set
PD = Pl ∪ Pw (i.e., ∀t < T, pt /∈ PD), and reach
the destination pe within a limited steps L (i.e.,
T ≤ L). This process is performed as follows:

rt, pt = f(W, rt−1, pt−1),∀t ∈ {1, . . . , T} (3)

Raction = {rt}Tt=1 (4)

If the agent cannot reach the final destination within
a limited steps or fall into the danger set, the agent
will be judged as a failure in this case.

3.2 Interesting Findings

Poor abilities of MLLMs To explore the abilities
of MLLMs on dynamic spatial reasoning, we mea-
sured two tasks on different MLLMs. As shown

in Table 2, MLLM exhibits a poor ability to fol-
low the long action sequence and collaborative pro-
cessing of information across multiple modalities.
Among the failed cases, we note that MLLMs of-
ten ignore or misjudge the scenario context in their
thinking process, such as misjudging the location
or ignoring special grids. These findings suggest
that current MLLMs lack a robust mechanism for
integrating spatial and contextual cues over time.

Limit gains of existing methods To investigate
what factors can enhance the dynamic spatial rea-
soning capabilities of MLLMs, we conduct experi-
ments on the hard judgment task using a variety of
methods. As shown in Figure 4, various language-
centric Chain-of-Thought approaches yield only
marginal performance improvements and in some
cases, even underperform compared to the orig-
inal baseline. On the other hand, incorporating
the VAP method with ground-truth positional im-
ages fails to improve model effectiveness and in-
stead introduces noise that degrades performance.
These results highlight the limitations of existing
approaches and underscore the need for more ef-
fective integration of dynamic spatial information
during the reasoning process.

Drafts over dynamic images: Bring Surprise
Inspired by the previous findings, we introduced vi-
sual navigation cues into the dynamic input images
and combined them with textual CoT. This method
allows the reasoning process to unfold through tex-
tual thought with its drafts over dynamic input im-
ages, termed as Draft CoT. Specifically, we directly
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Model
Maze Judgment Maze Navigation

easy normal hard easy normal hard

VideoLLaMA3-7B (Zhang et al., 2025) 18.0 12.5 11.0 1.0 1.5 0.0
Qwen2.5VL-7B (Bai et al., 2025) 22.5 34.0 28.5 1.0 2.0 1.0
InternVL2.5-8B (Chen et al., 2024b) 21.0 18.5 19.5 3.5 1.0 0.5
Qwen2.5VL-32B (Bai et al., 2025) 14.0 9.0 9.0 0.0 0.0 0.0
InternVL2.5-38B (Chen et al., 2024b) 22.5 26.0 25.0 13.5 11.5 3.5
Qwen2.5VL-72B (Bai et al., 2025) 61.0 38.5 19.0 31.0 21.5 6.5
InternVL2.5-78B (Chen et al., 2024b) 28.5 26.0 29.5 15.0 9.0 1.5
QwenVL-Max (Bai et al., 2023) 40.0 21.5 14.0 19.5 10.5 1.5
GPT-4o-mini (OpenAI, 2024a) 49.5 37.0 30.0 16.5 14.0 4.0
GPT-4o (OpenAI, 2024b) 33.5 26.0 45.0 32.5 29.0 12.5

Table 2: Performance of various models in Maze Judgment task and Maze Navigation task with direct prompt. The
best results of each dimension are bold and the secondary results are underlined.

edited the dynamic images by overlaying visual
guidelines to depict the path. As shown in Fig-
ure 4, this approach significantly improves accu-
racy across all models, regardless of their under-
lying reasoning abilities, even outperforming the
one-shot CoT setting in average accuracy. More-
over, as shown in Figure 5, the accuracy of all four
options improves, rather than just increasing the
success rate of a single option, further highlighting
the robustness of Draft CoT across all scenarios.
These results demonstrate the effectiveness of in-
corporating corresponding drafts over dynamic in-
put images into the textual CoT process, providing
new insights for dynamic spatial reasoning tasks.

4 Methodology

Although the Draft CoT can obtain great perfor-
mance gains, it rely on image generation capabili-
ties not universally available across all the MLLMs.
To broaden its applications, we propose the Dy-
namic Draft Augmented Reasoning Framework
(D2R), a training-free framework to generate in-
termediate thoughts on both textual thoughts and
visual drafts. D2R extends the reasoning space
from a signal language domain L to multiple do-
mains L ∪ V ∪ T , where V represents the visual
domain and T represents the chronology domain.
It enables models to reason in dynamic visual infor-
mation by splitting it into steps and marking drafts
over the input images in each step. By combin-
ing textual thoughts with corresponding drafts, this
novel reasoning paradigm offers a more intuitive
and accurate method with enhanced ability to col-
laborate on details between these two modalities.

4.1 Toolkits for Synthesis and Drafting
Drafting in the visual domain can enhance the abil-
ity to reason. However, MLLMs lack the ability
to edit dynamic visual information and are weak
in long text processing scheduling. Therefore, it is
necessary to leverage external toolkits to enhance
MLLM’s performance. Therefore, we introduce the
Dynamic-Information-Extract and Position-Draw
tools for visual editing. Additionally, we also in-
troduced an external LLM as a scheduling hub to
organize the utilization of those tools.

4.2 Procedures of D2R
We analogize D2R’s process to an iterative pro-
cess. Scheduled by the scheduling hub, D2R will
autonomously determine the task type and gener-
ate a tool invocation plan, and it will maintain a
real-time updated draft chain that is continuously
supplemented with the most up-to-date informa-
tion during the iteration process until the answer is
generated. The whole process are as follows:

Step 1: Planning Our method takes a textual
instruction G and dynamic images I as input. First,
we prompt the scheduling hub to schedule a plan φ
and select the correct tools en from the tool set E.
This step can be formalized as shown in Equation 5:

φ← Dp(G,E), (5)

where Dp denotes the scheduling hub in this step.

Step 2: Iterative As shown in Figure 6, after
completing planning, D2R invokes the tool en to
generate the corresponding thought markers in im-
ages as drafts and fuse textual thought cn as aug-
mented perceptual thought Cn. In each iteration, Cn
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Model Method Total Acc Average AccEasy Normal Hard
Maze Judgment task

Qwen2.5VL-7B

Direct 22.5 34.0 28.5 28.3
CoT 18.0(-4.5) 29.0(-5.0) 26.5(-2.0) 24.5(-3.8)
1-shot CoT 18.0(-4.5) 20.5(-13.5) 17.0(-11.5) 18.5(-9.8)
VAP 13.5(-9.0) 15.0(-19.0) 20.0(-8.5) 16.2(-12.1)
D2R (ours) 34.0(+11.5) 46.0(+12.0) 28.0(-0.5) 36.0(+7.7)

Qwen2.5VL-72B

Direct 61.0 38.5 19.0 39.5
CoT 67.0(+6.0) 40.0(+1.5) 23.0(+4.0) 43.3(+3.8)
1-shot CoT 71.0(+10.0) 46.5(+8.0) 25.5(+6.5) 47.7(+8.2)
VAP 15.5(-45.5) 20.0(-18.5) 15.0(-4.0) 16.8(-22.7)
D2R (ours) 67.0(+6.0) 49.0(+10.5) 41.0(+22.0) 52.3(+12.8)

QwenVL-max

Direct 40.0 21.5 14.0 25.2
CoT 36.0(-4.0) 24.0(+2.5) 11.5(-2.5) 23.8(-1.4)
1-shot CoT 18.0(-22.0) 17.0(-4.5) 9.5(-4.5) 14.8(-10.4)
VAP 15.0(-25.0) 9.0(-12.5) 13.0(-1.0) 12.3(-12.9)
D2R (ours) 46.5(+6.5) 35.5(+14.0) 28.0(+14.0) 36.7(+11.5)

Maze Navigation task

Qwen2.5VL-7B

Direct 1.0 2.0 1.0 1.3
CoT 1.5(+0.5) 1.5(-0.5) 0.0(-1.0) 1.0(-0.3)
1-shot CoT 2.5(+1.5) 4.5(+2.5) 2.5(+1.5) 3.2(+1.9)
VAP(GT) - - - -
D2R (ours) 4.0(+3.0) 4.5(+2.5) 2.0(+1.0) 3.5(+2.2)

Qwen2.5VL-72B

Direct 31.0 21.5 6.5 19.7
CoT 16.5(-14.5) 17.5(-4.0) 0.5(-6.0) 11.5(-5.2)
1Shot-CoT 17.5(-13.5) 5.0(-16.5) 1.5(-5.0) 8.0(-11.7)
VAP(GT) - - - -
D2R (ours) 38.0(+7.0) 26.0(+4.5) 12.5(+6.0) 25.5(+5.8)

QwenVL-max

Direct 19.5 10.5 1.5 10.5
CoT 22.5(+3.0) 10.5 (-) 6.0(+4.5) 13.0(+2.5)
1Shot-CoT 1.0(-18.5) 0.5(-10.0) 0.0(-1.5) 0.5(-10.0)
VAP(GT) - - - -
D2R (ours) 27.5(+8.0) 21.5(+11.0) 7.0(+5.5) 18.7(+8.2)

Table 3: Performance of Maze Judgment task and Maze Navigation task. The results in ‘(·)’ represent the delta
performance compared to the performance with direct prompt in each task. The best results of each dimension are
bold and the secondary results are underlined.

will be updated as the instruction progresses. The
process is formally depicted as follows:




cn ← MLLM(G, I, C<n)

en ← Dp(cn, φ)
Cn ← en(φ, I, cn)

(6)

where C<n denotes the set of all the augmented
perceptual thoughts before n turns.

Step 3: Final Answer Iteration When the itera-
tion ends, scheduling hub will check the last output
clast and determine if the answer A was generated.
If A was not generated, scheduling hub will repeat
the process and change the prompt strategy to in-
struct MLLM to output the answer As shown in

Equation 7, we take the set of all CoT Call as input
and use the prompt in the appendix to arrive at the
final answer A.

A ← MLLM(G, I, Call) (7)

5 Experiment

5.1 Experiment Setup
We construct datasets for two dynamic spatial rea-
soning tasks described in Section 3, encompassing
three levels of complexity in environment and ac-
tion spaces. We use Qwen-Max as the scheduling
hub in our work, and the temperature is set to 0.1.
We compare the D2R with the following reasoning
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Algorithm 1: Procedures of Dynamic Draft
Augmented Reasoning Framework

Input: Text instruction G
Dynamic images I

Output: Final answer A
1 Initialization:
2 Dp ← Scheduling hub
3 E← Tool set
4 C0 ← ∅, n← 0
5 Step 1: Planning
6 φ← Dp(G,E)
7 Step 2: Iteration
8 while not Dp decides to stop
9 do

10 cn ← MLLM(G, I, C<n)
11 en ← Dp(cn, φ)
12 Cn ← en(φ, I, cn)
13 n← n+ 1

14 Step 3: Final Answer
15 A ← MLLM(G, I, Call)

methods: 1) Direct Prompt. 2)Chain-of-thought
(CoT). 3) CoT with 1-shot. 4)VAP. In our experi-
ments, we use Qwen2.5-VL-7B, Qwen2.5-VL-72B,
and Qwen-VL-Max as the MLLM part of D2R.

5.2 D2R has better dynamic reasoning ability
As shown in Table 3, both two tasks show that D2R
demonstrates greater stability and accuracy. In the
maze judgment task, direct and language-centric
CoT methods perform comparably to D2R under
low-difficulty conditions, their accuracy declines
significantly as task complexity increases. This
suggests that textual Chain-of-Thought reasoning
is insufficient for handling more complex scenar-
ios. In contrast, the performance gap widens in
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Figure 5: Average accuracy of models for each choice
using various methods in the Maze Judgment task.

favor of D2R as difficulty increases, highlighting
its robustness and effectiveness under challenging
conditions. Furthermore, D2R also shows higher
accuracy in the maze navigation task. It is impor-
tant to note that our method achieves performance
improvements across all models and difficulties.
This underscores the crucial role of integrating
both textual thought and their drafts in dynamic
planning tasks, as such collaboration enhances the
model’s ability to effectively handle complex rea-
soning scenarios.

5.3 How D2R is effective?

Can D2R be effective with different MLLMs’
abilities? To further explore the effectiveness of
our method with different models’ ability, we con-
duct experiments on three MLLMs and the results
are shown in Table 3. Although the effect varies
with basic model ability and task difficulty, we can
still enhance the capabilities of different models:
all three MLLMs can perform better than the basics
in most cases. However, Qwen2.5-VL-72B and
QwenVL-max gain substantially more from D2R
than Qwen2.5-VL-7B, highlighting the challenges
faced by less capable models in fully utilizing our
method. In other words, while D2R can help exter-
nalize the reasoning process of MLLM, it cannot
fundamentally improve the inherent reasoning ca-
pacity of the model.

Are drafts and texts equally important? To fur-
ther validate the contribution of the textual thought
and drafts over dynamic images to D2R, we experi-
ment by removing textual thoughts and correspond-
ing drafts in the maze judgment task, respectively.
As shown in Table 4, the removal of any compo-
nent from either part leads to a performance decline
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Step 3: Answer Earned
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b) Get response

… I need to draw position in dynamic images for 

MLLMs, so I should input image with the current 

position to MLLM to get the next actions …
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{task name} need to 

process the dynamic 

images, draw position … 

we’ll choose various tools 

to complete these.
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position according to the
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and input image with the
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c) Final answer
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these into MLLM.

… go down …Iteration
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… the final

answer is D…
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(x,y)

Schedule hub Multimodal large language models Tools for dynamic process

Figure 6: Illustration of D2R reasoning process. After the schedule hub initialization, the process consists of
planning, iteration, and answering three parts.

Method
Total Acc

Average Acc
Easy Normal Hard

Qwen2.5VL-72B(D2R) 67.0 49.0 41.0 52.3
w/o Textual Thought 52.0(-15.0) 44.3(-4.7) 32.0(-9.0) 42.7(-9.6)
w/o Drafts over dynamic images 45.1(-21.9) 33.3(-15.7) 17.1(-23.9) 31.8(-20.5)

Table 4: The accuracy of the removal of drafts over dynamic images or textual thought in D2R of the maze judgment
task. The results in ‘(·)’ represent the delta performance compared to D2R with both two modalities.

Model Method Acc

Qwen2.5VL-7B
Draft CoT(GT) 32.5
D2R 28.0

Qwen2.5VL-72B
Draft CoT(GT) 41.0
D2R 41.0

QwenVL-max
Draft CoT(GT) 22.0
D2R 28.0

Table 5: Performance of hard maze judgment between
D2-CoT(GT) and D2R among three models.

across all difficulty levels, reflecting the importance
of integrating both textual thought and its drafts in
reasoning. Notably, performance drops more sig-
nificantly when the drafts are removed than when
the textual thoughts are removed, further proving
the crucial role of draft processing in dynamic spa-
tial reasoning.

Can D2R be as effective as Draft CoT(GT)? To
explore whether our methods can reach the same
performance with draft DoT(GT), we compare the

experimental results between the D2R and Draft
CoT(GT). As shown in Table 5, compared to the
results with Draft CoT(GT), all three models can
obtain comparable performance using our methods.
The results show that our method can successfully
make the MLLMs detect the current position and
output the next action to accomplish different tasks
in most cases, resulting in only a small gap from
the ground truth.

How important is manager LLM for D2R? For
instruction following failure in practical applica-
tions, it is related to the capabilities of the model
itself. We used GPT-4o, Qwen-Max, and Qwen2.5-
72B as backbones during testing. When Qwen2.5-
72B was acting as the manager, it encountered
many problems caused by incorrect tool calls. And
larger models like GPT-4o and Qwen-Max rarely
fail. With the visual models all being Qwen2.5VL-
72B, the following Table 6 shows the performances
of different managers under Maze Judgment’s easy
level:
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Model Acc

GPT-4o-2024-11-20 70.5
Qwen-Max-2025-01-25 67.0
Qwen2.5-72B 39.5

Table 6: Performance of easy maze judgment between
different manager models

6 Conclusion

In this paper, we introduce GRASSLAND and
present two tasks to evaluate the performance on
dynamic multimodal spatial reasoning: Maze Judg-
ment and Maze Navigation. Through experiments,
we observe that the combination of the textual
thoughts and their drafts over dynamic input im-
ages, termed Draft CoT, significantly outperforms
other approaches in these tasks, providing new in-
sights into the dynamic spatial reasoning process.
To make Draft CoT more widely applicable in ex-
isting MLLMs, we propose the Dynamic Draft
Augmented Reasoning Framework, a training-free
framework that generates intermediate thoughts by
combining both textual thoughts and their drafts
over dynamic input images. Experimental results
show that D2R delivers exceptional performance
across various dynamic spatial reasoning tasks.

Limitation

While D2R significantly outperforms other meth-
ods that do not require training under multiple tasks,
the performance gains are different among various
models, especially the weaker models gain less
than the stronger models. This discrepancy sug-
gests that D2R’s benefits are more pronounced in
models with a higher baseline capacity, highlight-
ing its potential to enhance the performance of
more powerful architectures more effectively. Mov-
ing forward, we plan to explore strategies for im-
proving D2R’s applicability to weaker models, aim-
ing to achieve more excellent performance across
a broader range of architectures.
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open-source, and their sources are clearly credited.
The entire process follows transparent and ethical
guidelines, ensuring there are no ethical concerns
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transparency in our work.

Acknowlegement

This work was supported by the National Key R&D
Program of China (No. 2022ZD0162101) and
STCSM (No. 22DZ2229005)

References
Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,

Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others.
2025. Qwen2.5-vl technical report. arXiv preprint
arXiv:2502.13923.

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao
Xu, and Wanxiang Che. 2024a. M3cot: A novel
benchmark for multi-domain multi-step multi-modal
chain-of-thought. Preprint, arXiv:2405.16473.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu,
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, and 1 others. 2024b.
Expanding performance boundaries of open-source
multimodal models with model, data, and test-time
scaling. arXiv preprint arXiv:2412.05271.

Jun Gao, Yongqi Li, Ziqiang Cao, and Wenjie Li.
2025. Interleaved-modal chain-of-thought. Preprint,
arXiv:2411.19488.

Jack Hessel, Jena D. Hwang, Jae Sung Park, Rowan
Zellers, Chandra Bhagavatula, Anna Rohrbach, Kate
Saenko, and Yejin Choi. 2022. The abduction of
sherlock holmes: A dataset for visual abductive rea-
soning. Preprint, arXiv:2202.04800.

Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li,
Yu Qi, Xinyan Chen, Liuhui Wang, Jianhan Jin,
Claire Guo, Shen Yan, Bo Zhang, Chaoyou Fu, Peng
Gao, and Hongsheng Li. 2025. Mme-cot: Bench-
marking chain-of-thought in large multimodal mod-
els for reasoning quality, robustness, and efficiency.
Preprint, arXiv:2502.09621.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang,
Yanwei Li, Ziwei Liu, and Chunyuan Li. 2024.
Llava-onevision: Easy visual task transfer. Preprint,
arXiv:2408.03326.

Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia,
Shaoguang Mao, Li Dong, Ivan Vulić, and Furu
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A Details on MLLMs

Table 7 shows the hyperparameters for generating
with MLLM and size information for each model.
For QwenVL-Max and Qwen-Max, we use the
2025-01-25 version through Aliyun platform.

Model Max tokens Size

QwenVL2.5 700 72B, 32B, 7B
InternVL2.5 700 78B, 38B, 8B
QwenVL-Max* 700 -
VideoLLaMA3 700 7B
Qwen-Max* 400 -

Table 7: Hyperparameters for model generation. Model
called via API has been marked by *

B Metric

We use the accuracy as the evaluation metric for
both two tasks. For the maze judgment task, the
accuracy aims to detect whether the model can
obtain the final state. For the maze navigation task,
the accuracy aims to detect whether the model can
reach the final position according to the model’s
response.

C Other results

The other results about our methods are presented
in Table 8, 9, and Table 10. Specifically, Table 8,
9, and Table 10 presents the detailed performance
across various methods for each task. For maze
judgment task, we observe a clear uneven distribu-
tion of answer accuracies on other methods, with
answer "D. Action Failed: Agent Safe but Fail to
Reach Destination" being significantly more accu-
rate than the other three options. It reflects the
shortcomings of inadequate ability to judge com-
plex states on these methods. In contrast, D2R
outperforms other methods, optimizing accuracy
on the complex options A and B.

For the maze navigation task, we notice an in-
teresting feature in all methods that in the correct
path answer, the effective length is shorter than the
full path length. It means the goal point is reached
at the halfway. Even D2R can only make the gap
smaller, not eliminate it completely. This reflects a
possible deficiency in the model to perform spatial
planning tasks.

D Prompt

D.1 Basic Prompt
Table 11 shows the prompting template of direct
reasoning and D2R task prompt for each task. Ta-
ble 12 and Table 13 shows the prompt for each task
with different reasoning methods.

D.2 Method Prompt
Table 14 shows the example of prompt for schedul-
ing hub. Table 15 shows the prompt in iteration
process for each task in D2R.

E Case Study

E.1 Maze Judgment
Figure 7 presents the thought process of D2R in
maze judgment task. In each step, after receiving
the action instruction, D2R mark the original frame
with the position staying now, then searches the
grids in the action direction to judge the state after
the action is executed.

E.2 Maze Navigation
Figure 8 provides an example of the thought pro-
cess of D2R in maze navigation task. In each
step, D2R receives the original frame, then mark it
with the current position. According to the marked
frame and full video, D2R judges the dangerous
position and generates a safe move direction for
now, until it reaches the destination.
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Model Method Choice Acc. Total Acc.A B C D
Easy Level

Qwen2.5VL-7B

Direct 45.0 - 13.2 21.8 22.5
CoT 35.0 - 23.3 13.3 18.0
1-shot CoT 75.0 - 15.7 10.5 18.0
VAP 75.0 - 18.4 3.5 13.5
D2R (ours) 65.0 - 23.7 32.4 34.0

Qwen2.5VL-72B

Direct 25.0 - 15.8 78.2 61.0
CoT 40.0 - 10.5 85.9 67.0
1-shot CoT 10.0 - 5.3 97.2 71.0
VAP 10.0 - 5.3 19.0 15.5
D2R (ours) 30.0 - 21.1 84.5 67.0

QwenVL-Max

Direct 35.0 - 10.5 48.6 40.0
CoT 35.0 - 10.5 43.0 36.0
1-shot CoT 30.0 - 7.9 19.0 18.0
VAP 35.0 - 5.3 14.8 15.0
D2R (ours) 40.0 - 2.6 59.2 46.5

Normal Level

Qwen2.5VL-7B

Direct 46.7 35.3 22.2 40.6 34.0
CoT 46.7 23.5 25.0 30.2 29.0
1-shot CoT 13.3 5.9 5.6 26.0 20.5
VAP 80.0 0.0 8.3 12.5 15.0
D2R (ours) 33.3 0.0 9.7 83.3 46.0

Qwen2.5VL-72B

Direct 6.7 17.6 11.1 67.7 38.5
CoT 6.7 11.8 8.3 74.0 40.0
1-shot CoT 13.3 5.9 6.9 88.5 46.5
VAP 20.0 0.0 4.2 35.4 20.0
D2R (ours) 33.3 47.1 12.5 79.2 49.0

QwenVL-Max

Direct 26.7 0.0 8.3 34.4 21.5
CoT 40.0 5.9 4.2 39.6 24.0
1-shot CoT 52.6 20.8 4.9 19.1 17.0
VAP 13.3 0.0 11.1 8.3 9.0
D2R (ours) 26.7 11.8 2.8 65.6 35.5

Hard Level

Qwen2.5VL-7B

Direct 21.1 54.7 8.6 36.2 28.5
CoT 15.8 43.4 18.5 25.5 26.5
1-shot CoT 52.6 20.8 4.9 19.1 17.0
VAP 89.5 7.5 13.6 17.0 20.0
D2R (ours) 15.8 1.9 11.0 91.0 28.0

Qwen2.5VL-72B

Direct 10.5 9.4 4.9 57.4 19.0
CoT 10.5 5.7 9.9 70.2 23.0
1-shot CoT 5.3 0.0 8.6 91.5 25.5
VAP 10.5 0.0 1.2 57.4 15.0
D2R (ours) 15.8 39.6 19.8 89.4 41.0

QwenVL-Max

Direct 31.6 1.9 9.9 27.7 14.0
CoT 42.1 0.0 6.2 21.3 11.5
1-shot CoT 21.1 7.5 8.6 8.5 9.5
VAP 42.1 0.0 14.8 12.8 13.0
D2R (ours) 21.1 20.8 6.2 76.6 28.0

Table 8: Detailed performance on maze judgment task.
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Model Method Choice Acc. Total Acc.A B C D
Easy Level

InternVL2.5-8B

Direct 40.0 - 26.3 16.9 21.0
CoT 20.0 - 31.6 16.2 19.5
1-shot CoT 35.0 - 31.6 11.3 17.5
VAP 20.0 - 21.1 1.4 7.0
D2R (ours) 55.0 - 2.6 26.8 25.0

InternVL2.5-38B

Direct 10.0 - 36.8 20.4 22.5
CoT 20.0 - 44.7 32.4 33.5
1-shot CoT 30.0 - 23.7 16.2 19.0
VAP 25.0 - 44.7 21.1 26.0
D2R (ours) 10.0 - 26.3 29.6 27.0

Normal Level

InternVL2.5-8B

Direct 60.0 0.0 22.2 12.5 18.5
CoT 20.0 5.9 38.9 17.7 24.5
1-shot CoT 53.3 23.5 33.3 3.1 19.5
VAP 26.7 17.6 18.1 2.1 11.0
D2R (ours) 33.3 17.6 4.2 32.3 21.0

InternVL2.5-38B

Direct 20.0 0.0 38.9 21.9 26.0
CoT 20.0 0.0 41.7 27.1 29.5
1-shot CoT 13.3 5.9 36.1 25.0 26.5
VAP 13.3 0 33.3 13.5 19.5
D2R (ours) 26.7 5.9 23.6 35.4 28.0

Hard Level

InternVL2.5-8B

Direct 36.8 5.7 26.9 17.0 19.5
CoT 21.1 1.9 40.7 12.8 22.0
1-shot CoT 31.6 5.7 34.6 8.5 20.5
VAP 31.6 5.7 24.7 0.0 14.5
D2R (ours) 36.8 28.3 3.7 34.0 20.5

InternVL2.5-38B

Direct 10.5 9.4 40.7 21.3 25.0
CoT 15.8 7.5 35.8 17.0 22.0
1-shot CoT 36.8 13.2 35.8 17.0 25.5
VAP 21.1 9.4 29.6 8.5 18.5
D2R (ours) 15.8 26.4 12.3 31.9 21.0

Table 9: Detailed performance on maze judgment task with InetrnVL2.5 model.
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Model Method Arrived Failed Unfinished Ave. Step
(Effective)

Ave. Step
(Answer)

Easy Level

Qwem2.5VL-7B
Direct 1.0 4.0 95.0 4.50 6.00
CoT 1.5 9.5 89.0 4.00 5.67
1-shot CoT 2.5 62.0 35.5 4.40 5.80
D2R (ours) 4.0 38.0 58.0 3.88 6.00

Qwen2.5VL-72B
Direct 31.0 40.0 29.0 3.55 5.84
CoT 16.5 43.5 40.0 3.48 5.97
1-shot CoT 17.5 35.5 47.0 3.54 5.91
D2R (ours) 38.0 38.0 24.0 3.72 5.74

QwenVL-Max
Direct 19.5 30.5 50.0 3.31 5.97
CoT 22.5 39.5 38.0 3.56 5.93
1-shot CoT 1.0 41.0 58.0 6.00 6.00
D2R (ours) 27.5 41.0 31.5 4.04 5.47

Normal Level

Qwem2.5VL-7B
Direct 2.0 8.5 89.5 4.00 5.75
CoT 1.5 13.5 85.0 3.67 6.00
1-shot CoT 4.5 52.5 43.0 3.78 5.56
D2R (ours) 4.5 52.5 43.0 4.67 6.00

Qwen2.5VL-72B
Direct 21.5 58.5 20.0 3.72 5.77
CoT 17.5 48.5 34.0 3.89 6.06
1shot-CoT 5.0 56.5 38.5 3.50 6.00
D2R (ours) 26.0 51.0 23.0 3.94 5.98

QwenVL-Max
Direct 10.5 40.0 49.5 3.52 6.00
CoT 10.5 38.0 51.5 3.71 6.05
1-shot CoT 0.5 50.5 49.0 6.00 6.00
D2R (ours) 21.5 54.0 24.5 3.93 5.93

Hard Level

Qwem2.5VL-7B
Direct 1.0 9.5 89.5 4.00 5.50
CoT 0.0 12.0 88.0 0.00 0.00
1-shot CoT 2.5 62.0 35.5 4.40 5.80
D2R (ours) 2.0 63.0 35.0 5.25 6.00

Qwen2.5VL-72B
Direct 6.5 74.5 19.0 4.69 5.69
CoT 0.5 72.0 27.5 4.00 6.00
1-shot CoT 1.5 67.5 31.0 4.67 6.00
D2R (ours) 12.5 75.5 12.0 4.48 6.00

QwenVL-Max
Direct 1.5 61.0 37.5 4.67 6.00
CoT 6.0 59.5 34.5 4.17 6.00
1-shot CoT 0.0 62.5 37.5 0.00 0.00
D2R (ours) 7.0 77.5 15.5 4.86 5.85

Table 10: Detailed performance on maze navigation task.
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Direct

Task:Maze Judgment
Tile info: character can move pass the green tile(grass). The red tile(lava) and the blue tile(water)
is dangerous, when player move into them, game fail. The yellow and brown tile is wall which can
not be passed.
The white flag is start point, the red flag is destination point
Player can’t move off the map, considering it as air walls
Actions: the lava tile change position every second, and player also move every second. Consider
player move first in same time, which mean if player and lava tile move to same position, the game
fail.
Determine whether the agent (elf character) can safely reach the destination following the action
sequence without falling into the lava or water. If not, identify the failure reason shortly. The
definitions of the actions are as below.
* In the video, the red line shows the movement path of the agent.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
After analyse the actions, return A, B, C or D.
Full Action Sequence: action_sequence
A. Action Success.
B. Action Failed: Fall into the water.
C. Action Failed: Fall into the lava.
D. Action Failed: Agent Safe but Fail to Reach Destination.

Task: Route Plan
Tile Info: The character can move across the green tile (grass). The red tile (lava) and the blue tile
(water) are dangerous. If the player moves onto them, the game fails. The yellow and brown tiles
are walls, which cannot be passed. The white flag represents the starting point, and the red flag
represents the destination.
The player cannot move off the map; treat the edges as air walls. Actions: The lava tiles change
position every second, and the player also moves every second.
Consider the player moving first in the same time step, which means if the player and a lava tile
move to the same position, the game fails.
You will receive a 6-second video showing the dynamic map. Your task is to analyze this video,
apply the rules mentioned above, then determine a route that allows the player to reach the
destination safely within 6 steps.
The answer should follow this format: "Action: [START] Go right, Go up, Go down, ... [END]"
Each command corresponds to one move. And put it at the end of your answer.
Move Commands: Go up/left/down/right: Move one grid space in the absolute up/left/down/right
direction.

Table 11: Example of input for Direct reasoning
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CoT reasoning

Task:Maze Judgment
Tile info: character can move pass the green tile(grass). The red tile(lava) and the blue tile(water)
is dangerous, when player move into them, game fail. The yellow and brown tile is wall which can
not be passed.
The white flag is start point, the red flag is destination point
Player can’t move off the map, considering it as air walls
Actions: the lava tile change position every second, and player also move every second. Consider
player move first in same time, which mean if player and lava tile move to same position, the game
fail.
Determine whether the agent (elf character) can safely reach the destination following the action
sequence without falling into the lava or water. If not, identify the failure reason shortly. The
definitions of the actions are as below.
* In the video, the red line shows the movement path of the agent.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
After analyse the actions, return A, B, C or D.
Full Action Sequence: action_sequence
A. Action Success.
B. Action Failed: Fall into the water.
C. Action Failed: Fall into the lava.
D. Action Failed: Agent Safe but Fail to Reach Destination.
Let’s think it step-by-step and make right choice.

Task: Route Plan
Tile Info: The character can move across the green tile (grass). The red tile (lava) and the blue tile
(water) are dangerous. If the player moves onto them, the game fails. The yellow and brown tiles
are walls, which cannot be passed. The white flag represents the starting point, and the red flag
represents the destination.
The player cannot move off the map; treat the edges as air walls. Actions: The lava tiles change
position every second, and the player also moves every second.
Consider the player moving first in the same time step, which means if the player and a lava tile
move to the same position, the game fails.
You will receive a 6-second video showing the dynamic map. Your task is to analyze this video,
apply the rules mentioned above, then determine a route that allows the player to reach the
destination safely within 6 steps.
The answer should follow this format: "Action: [START] Go right, Go up, Go down, ... [END]"
Each command corresponds to one move. And put it at the end of your answer.
Move Commands: Go up/left/down/right: Move one grid space in the absolute up/left/down/right
direction.
Let’s think it step-by-step and make right choice.

Table 12: Example of input for CoT reasoning
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CoT with 1-shot prompting

Task:Maze Judgment
Tile info: character can move pass the green tile(grass). The red tile(lava) and the blue tile(water)
is dangerous, when player move into them, game fail. The yellow and brown tile is wall which
can not be passed.
The white flag is start point, the red flag is destination point
Player can’t move off the map, considering it as air walls
Actions: the lava tile change position every second, and player also move every second. Consider
player move first in same time, which mean if player and lava tile move to same position, the
game fail.
Determine whether the agent (elf character) can safely reach the destination following the action
sequence without falling into the lava or water. If not, identify the failure reason shortly. The
definitions of the actions are as below.
* In the video, the red line shows the movement path of the agent.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
After analyse the actions, return A, B, C or D.
Full Action Sequence: action_sequence
A. Action Success.
B. Action Failed: Fall into the water.
C. Action Failed: Fall into the lava.
D. Action Failed: Agent Safe but Fail to Reach Destination.
Here is an example, consider video follow behind the text. The action sequence is: Go down, Go
up, Go up, Go left. First, the agent move down. Check the tile agent move to, it is grass with no
trap, so agent can move to. Then agent move up, it is start point, agent can move to here. Then
agent move up again, it is grass, agent can move to here. Then agent move left, it is the end point,
so agent arrive at the destination. So the answer is: A. Action Success.
Video: <example_video>

Task: Route Plan
Tile Info: The character can move across the green tile (grass). The red tile (lava) and the blue tile
(water) are dangerous. If the player moves onto them, the game fails. The yellow and brown tiles
are walls, which cannot be passed. The white flag represents the starting point, and the red flag
represents the destination.
The player cannot move off the map; treat the edges as air walls. Actions: The lava tiles change
position every second, and the player also moves every second.
Consider the player moving first in the same time step, which means if the player and a lava tile
move to the same position, the game fails.
You will receive a 6-second video showing the dynamic map. Your task is to analyze this video,
apply the rules mentioned above, then determine a route that allows the player to reach the
destination safely within 6 steps.
The answer should follow this format: "Action: [START] Go right, Go up, Go down, ... [END]"
Each command corresponds to one move. And put it at the end of your answer.
Move Commands: Go up/left/down/right: Move one grid space in the absolute up/left/down/right
direction.
Here is an example, consider video follow behind the text. To move safely, we check the position
of destination, make choice, and review the traps position in video to conform the action safe. In
this example, the best action is: [START] Go right, Go right, Go right, Go right, Go right, Go
down [END]
Video: <example_video>

Table 13: Example of input for CoT reasoning with 1-shot prompting
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Planning prompt for manager

You are controlling the VideoProcessing agent, PositionGet agent, DrawPosition agent and MLLM-
Reply agent.
1.Each time you need to extract and save the video by VideoProcessing agent, get the postion by
PositionGet agent, and draw the position by DrawPosition agent.
2.you need to complete the task by MLLMReply agent until the MLLMReply agent output final
answer.
3.If the MLLMReply agent do not output the final answer, you need to continue completing the
task by MLLMReply agent.
4.You should follow the order in examples, and don’t make any superfluous execution.
5.When MLLMReply agent output <finish>, you need to finish the task.

Table 14: Example of input for manager LLM

Iteration prompt for MLLM

Additionly, there are the <visualization of the thought>, you should output next action until the
final answer is obtained. Here are some tips you should follow:
1.<visualization of the thought> consist of the image of now position and the text of next action.
2.The black square represents your current position.
3.Based on the <Task Description> and <visualization of the thought>, follow the next action in
<Full Action Sequence>. Each action in <visualization of the thought> has already been executed,
don’t execute them again.
4.If the next action is wall or move off the map, append <can_not_pass> after the next action.
5.As soon as you can get the final answer, you will immediately output the final answer and append
<finish> after it.
6.Each time you can only output one action or one final answer.

Table 15: Example of input system prompt for MLLM in iteration process
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Original Frame

Action

Marked Frame

Go up Go up Go down Go rightGo rightGo down Go up

Final Think
Answer: 
Action Fail: fail into water

Step 6: Now agent at land grid. 
Next action is ‘Go up’, Above the 
position agent staying is water 
grid. It is dangerous, and makes 
action failed.

MLLM Thinking  I need to analyze the action sequence step-by-step.

Let analyze the sequence of action and 
their outcome step-by-step:
Step 1: Now agent at start point. Next 
action is ‘Go up’, move to green block, 
state is safe. 

…

Figure 7: An example of the thought process for D2R in maze judgment task.

Original 
Frame

Marked 
Frame

Think

To reach the destination, 
I need to move left or 
move down. Now the 
grid below is trap! The 
grid on the right is land. 
So the action is “Go 
right”.

To reach the destination, 
I need to move left or 
move down. Now two 
direction are land grid. 
But after I move, the gird 
below will change to 
trap! So the action is “Go 
right”.

To reach the destination, 
I need to move down. 
Now the grid below is 
destination! So the 
action is “Go down”.

Action complete

Figure 8: An example of the thought process for D2R in maze navigation task.
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