
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 6524–6535
November 4-9, 2025 ©2025 Association for Computational Linguistics

LUME: LLM Unlearning with Multitask Evaluations

Anil Ramakrishna1,* , Yixin Wan2, Xiaomeng Jin3, Kai-Wei Chang1,2, Zhiqi Bu1,* ,
Bhanukiran Vinzamuri1, Volkan Cevher1,4, Mingyi Hong1,5, Rahul Gupta1

1Amazon Nova Responsible AI, 2UCLA, 3UIUC, 4EPFL, 5University of Minnesota
anil.k.ramakrishna@gmail.com

Abstract
Unlearning aims to remove copyrighted, sen-
sitive, or private content from large language
models (LLMs) without a full retraining. In
this work, we develop a multi-task unlearn-
ing benchmark (LUME) which features three
tasks: (1) unlearn synthetically generated cre-
ative short novels, (2) unlearn synthetic biogra-
phies with sensitive information, and (3) un-
learn a collection of public biographies. We
also release fine-tuned LLMs of different pa-
rameter sizes and model families as the target
models for unlearning. We evaluate several
baseline unlearning algorithms and present re-
sults on carefully crafted metrics to understand
their behavior and limitations.

1 Introduction

Recently, there has been growing interest in devel-
oping effective unlearning algorithms to remove
unwanted information, such as private data (GDP,
2018), copyrighted materials (Grynbaum and Mac,
2023; Mattei, 2023), misinformation, or toxic con-
tent, from large language models (LLMs) without
retraining them from scratch. The goal of these
algorithms is to: (i) effectively remove information
to be unlearned, (ii) use computation commensu-
rate with the size of the data to be forgotten, and
(iii) retain the model’s overall performance after
unlearning so that it is similar to a model candidate
trained without the data to be forgotten. .

To evaluate the effectiveness of unlearning algo-
rithms in LLMs, comprehensive benchmarks are
essential. While recent work, such as TOFU (Maini
et al., 2024) and MUSE (Shi et al., 2024), provide
promising first steps along this direction, they pro-
vide limited coverage focusing on synthetic ques-
tion answers, and news/books respectively. Further,
neither benchmarks cover Personally Identifiable
Information (PII) information which is an impor-
tant use case for unlearning in LLMs.

*Work done while at Amazon

In this work, we introduce LUME (LLM Unlearn-
ing with Multitask Evaluations), a new benchmark
for evaluating unlearning of creative, sensitive, and
private content from LLMs. Our benchmark fea-
tures three distinct tasks: synthetically generated
creative short novels (task #1), synthetic biogra-
phies with PII (task #2), and public biographies
(task #3) for an extensive assessment of unlearn-
ing algorithms. LUME tests for unlearning of both
full documents and QA pairs for each task, with
unlearning effectiveness measured using memoriza-
tion, privacy leakage (via membership inference
attack) and model utility tests. We evaluate sev-
eral unlearning algorithms including current state
of the art, and find that they do not yet effectively
unlearn sensitive information without significantly
degrading the model utility. LUME was created as
part of the 2025 shared task on LLM Unlearning
(Ramakrishna et al., 2025)1. Our full benchmark is
publicly available 2; we also release 1 billion3 and
7 billion4 parameter OLMo models fine-tuned on
our dataset.

2 Benchmark Constructions

The goal of unlearning is to remove information
from a subset of training data (the Forget set), such
that the unlearned model performs similar to the
one trained from scratch without this dataset. An
additional Retain set is provided during the unlearn-
ing process to retain the utility of the model.

To evaluate their generalizability, we test un-
learning methods across diverse scenarios by creat-
ing datasets under three distinct task settings. Fig-
ure 1 illustrates example data in LUME. The dataset
consists of 1,387 unique documents. For each doc-

1llmunlearningsemeval2025.github.io
2github.com/amazon-science/lume-llm-unlearning
3huggingface.co/llmunlearningsemeval2025organization-

/olmo-1B-model-semeval25-unlearning
4huggingface.co/llmunlearningsemeval2025organization-

/olmo-finetuned-semeval25-unlearning
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Figure 1: Examples of documents and test prompts for the three unlearning tasks in LUME.

ument, we create multiple regurgitation and knowl-
edge datasets leading to 5,466 unique examples.

Task 1 (Synthetic creative documents): We sim-
ulate scenarios where creative content must be re-
moved—either due to copyright concerns or be-
cause the content is deemed inappropriate. While
prior benchmarks (Shi et al., 2024; Eldan and Russi-
novich, 2023) considered similar settings by target-
ing real creative works (e.g., Harry Potter books),
a common criticism is that the targeted informa-
tion may also appear in other documents (e.g.,
Wikipedia), making it difficult to accurately as-
sess unlearning effectiveness. To address this chal-
lenge, we construct a synthetic dataset of short
creative stories (150–200 words), generated using
Mixtral 8x7B (Jiang et al., 2023)5. Each story
is grounded in structured metadata: the genre is
randomly selected from Action, Fantasy, Thriller,
Comedy, Mystery, Science Fiction, Young Adult,
and Romance; character names are generated using
the unique-names-generator; and location names
are sampled from a Dungeons & Dragons town
generator for Fantasy or the random-address pack-
age for all other genres. Two authors of this work
reviewed each story and filtered out overlapping or
repetitive content. We obtain 199 and 194 unique

5mistral.mixtral-8x7b-instruct-v0:1 on Amazon Bedrock.

stories for Forget and Retain sets, respectively.

Task 2 (Synthetic biographies with sensitive PII):
We use rule based heuristics to generate personal
biographies with following PII fields: a randomly
generated name, a birthday randomly sampled be-
tween 01/01/1964 and 01/01/1991, a fake Social
Security number (SSN) within the range 900-xx-
xxxx (which can never belong to a real person (ssa,
2011)), a random phone number, an email address
of the form firstname_lastname@me.com and a
non-existent physical home addresses obtained by
combining a random street address from a US state
with an alternate city and zip-code from a different
state. For each synthetic individual, we prompt
the Mixtral model to create a short biography by
including the fictitious PII information. We obtain
203 and 202 unique biographies for Forget and
Retain sets, respectively.

Task 3 (Real biographies): To evaluate effective-
ness of unlearning on real data, we include real
biographies as the third task. Specifically, we sam-
pled biographies spanning 100 to 200 words from
Wikipedia documents released in the Dolma (Sol-
daini et al., 2024) v1.6 corpus, which was part of
the training dataset for the OLMo models (Groen-
eveld et al., 2024) we fine-tuned for this task. We
collected 295 and 294 unique biographies for For-
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get and Retain sets, respectively.

Unlearning Model Candidates We fine-
tuned 1B (OLMo-1B-0724-hf) and 7B
(OLMo-7B-0724-Instruct-hf) OLMo mod-
els (Groeneveld et al., 2024) on all three tasks and
release them as unlearning candidates. We selected
OLMo because of its permissive license and open
sourced training dataset (with logs) which enables
downstream task specific analyses of model
behavior. To further validate the generalizability
of our benchmark dataset, we also fine-tuned
and conduct unlearning on the Qwen2.5 7B
model (Yang et al., 2024), and report results in A.

3 Evaluation Metrics

We use following metrics for detailed evaluation.
Regurgitation Rate (r): We create a sentence com-
pletion prompt for each document by sampling a
random position in second half of the document
with the sentences before it as the input. We com-
pute ROUGE-L (Lin, 2004) scores for the model
generated outputs with respect to the expected sen-
tence completions.
Knowledge Test Accuracy (t): We create a ques-
tion answering prompt for each document using
an agentic workflow for Tasks 1 and 3 where we
prompt the data generator LLM (see Appendix H)
with few-shot Chain of Thought prompting (Wei
et al., 2022) and construct an unambiguous ques-
tion with a single concise answer. We verify the
quality of QA pairs using three verification LLMs.6

We discard QA samples if any of the verification
LLMs are unable to answer the question accurately
with the corresponding document. For Task 2, we
use template based heuristics to frame 5 distinct
questions corresponding to the PII fields, of the
form: What is the birth date of John Smith?. For all
QA prompts, we use case insensitive exact match
between model output and the groundtruth to mea-
sure prediction accuracy.
Membership Inference Attacks (MIA) (m): We
use the black-box MIA attack framework from
(Duan et al., 2024) to implement Loss based at-
tacks to assess data leakage risk after unlearning.
We use a subset of the memorized forget set of
biographies from Task 3 as the member set and a
disjoint sample of similar biographies not exposed
to the finetuned model as the non-member set.

6We use Claude 3 (anthropic.claude-3-sonnet-20240229-
v1:0), Titan Text Express (amazon.titan-text-express-v1) and
Mixtral 8x7B for verification

Model Utility (u): We also test for overall model
utility on MMLU (Hendrycks et al., 2021), a gen-
eral benchmark for LLM utility.

4 Experiments

We benchmark several unlearning approaches on
LUME and discuss our observations. All evalua-
tion experiments were conducted on an AWS EC2
p4d.24xlarge node with 8 A100 40 GB GPUs.

Baseline Unlearning Algorithms: We test fol-
lowing popular unlearning algorithms on LUME

(detailed review is in the Appendix).

• Gradient Ascent (GA) reverses the gradient
direction on the forget set F to steer the model
away this information.

• Gradient Difference (GD) (Liu et al., 2022)
augments the gradient ascent objective applied
on F with a gradient descent objective on R.

• Negative Preference Optimization (NPO)
(Zhang et al., 2024) uses a modified version
of Direct Preference Optimization, adapted to
remove the sensitive information from F .

• Unlearning from Logit Difference (ULD)
Ji et al. (2024) is an inference time approach
which uses a small auxiliary model to guide
the target LLM during inference.

• GA + KL Regularization (KL) (Maini et al.,
2024) augments the gradient ascent objective
with a regularization term minimizing the KL
divergence with respect to the original model.

Similar to TOFU and MUSE, we run each algo-
rithm for 10 epochs with learning rate of 1e − 5
and batch size of 32. As an upper bound on perfor-
mance, we also evaluated the retain-only model
which was fine-tuned only on the retain set, which
we also release7.

Results: Figure 2 highlights epoch wise perfor-
mance of each unlearning algorithm on forget and
retain subsets.8 On both forget/retain sets, at epoch
0 all metrics reveal perfect regurgitation, highlight-
ing complete memorization by the fine-tuned mod-
els (without a drop in model utility as shown in

7huggingface.co/llmunlearningsemeval2025organization-
/olmo-finetuned-retainonly

8due to space limitations, we present overall results on the
7B model here and show task wise results for both 7B and 1B
models in Appendix B. Examples are shown in Table 3.
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Figure 2: Performance on retain and forget subsets for benchmarked unlearning algorithms. Reg: Regurgitation
Rate (r), Kno: Knowledge Accuracy (t). Split refers to data subset (forget or retain) used in evaluations. F-Reg:
Forget set Regurgitation Rate, R-Kno: Retain set Knowledge Accuracy. ULD results are shown in bar plot since it is
an inference time intervention and does not change with epochs.
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Figure 3: MIA rates (m) per epoch for the 7B model.

Figure 4 where the performance starts with base-
line MMLU levels for OLMo 7B). The retain-only
model similarly showed complete memorization on
the retain set but on the forget set, scored 0 knowl-
edge tests and 0.2 on regurgitation tests (this score
is non-zero since the model attempts to make mean-
ingful continuations of the prompts with mentions
of specific words such as proper nouns and story
elements related to the prompt, which is reflected
in the Rouge-L score which is weighted for recall).

As evidenced by the rapid drop in both regurgita-
tion and knowledge scores as unlearning proceeds,
none of the baselined algorithms were successful in
achieving the joint objectives of unlearning the for-
get set while retaining information from the retain
set. Both GA and GD reach zero on both metrics
across all three tasks, suggesting substantial degra-
dation in model quality. NPO performs relatively
better but also trends towards zero, while ULD
shows better retain set performance.

For GD, while performance drops rapidly on
both forget and retain sets, performance on the
retain set starts increasing with time. This is be-
cause of the objective used in GD which reduces
the prediction loss on the retain set while jointly
increasing loss on the forget set. As training pro-
ceeds, the impact of the gradient descent objective
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Figure 4: MMLU rates (u) per epoch for the 7B model.

which increases memorization of the retain set.

Impact on Utility: We report aggregate scores
among all 57 tasks of MMLU in Figure 4. We
observe considerable performance drops in all un-
learning approaches except ULD, highlighting the
challenge in unlearning sensitive information with-
out impacting model utility. GA had the highest
drop suggesting substantial model degradation (ow-
ing to its unbounded loss term), followed by KL,
GD and NPO. ULD avoids any drop in utility since
it does not change the target model but it is vul-
nerable to MIA attacks as described in the next
section.

Privacy Leakage: Figure 3 highlights the MIA
success rates (AUC) for the unlearned checkpoints
after each epoch. Initially, all models start with
perfect memorization and hence have 100% attack
success rates, but as unlearning proceeds, GA, GD
and KL drop to the desired attack success rate of
50% (i.e. random chance levels), with GA observed
to have the fastest drop. However, NPO attack suc-
cess rates remain high after 10 epochs, suggesting
that this approach does not truly remove the un-
learned information and is vulnerable to privacy
leakage from such attacks post unlearning. On the
other hand, the MIA rates for GD continue drop-
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Algorithm Time (seconds)

GA 101.50
GD 103.48
KL 105.65

NPO 101.46

Table 1: Average time per unlearning epoch. We do
not report times for ULD since it is an inference time
intervention enabled by a smaller assistant model.

ping below 0.5, suggesting over-unlearning beyond
epoch 7. Finally, since ULD does not change the
target model, it is vulnerable to MIA attacks as
shown in Figure 3.

Unlearning Time Complexity: Finally, in Ta-
ble 1 we report the time per epoch for all the
benchmarked algorithms when applied on a fixed
size data sample from LUME with the 7B OLMo
model, each averaged over 10 runs on our compute
node. We observe slightly higher epoch times with
dual objective algorithms such as GD and KL com-
pared to single objective algorithms such as GA
and NPO which are close to each other in time.

5 Related Work

Various machine unlearning methods have
been proposed for removing knowledge from
LLMs (Zhang et al., 2024; Chen and Yang, 2023).
However, most of them report results on small sets
such as (Eldan and Russinovich, 2023). Recently,
Maini et al. (2024) and Shi et al. (2024) proposed
unlearning benchmarks (with various evaluation
metrics), but they carry key limitations we address
here. We provide detailed discussions comparing
LUME with these works in Appendix D.

6 Conclusion and Discussion

We propose LUME, a new benchmark covering
three distinct tasks to evaluate unlearning in LLMs.
Detailed experiments on different model sizes and
families show that most contemporary algorithms
fail to sufficiently unlearn the forget set, without
substantial degradations on the retain set and model
utility. We hope our benchmark spurs further de-
velopments in LLM unlearning research.

Limitations and Future Work

Carlini et al. (2022) show that the risk of memo-
rization increases with large model size. However,

due to computational limitations and easy avail-
ability of large public LLMs, we only provide fine-
tuned checkpoints for 1B and 7B OLMo, and 7B
Qwen2.5. We defer release of larger models to
future work. Moreover, licensing restrictions pre-
vent us from releasing fine-tuned models based on
few publicly available LLMs such as LLaMa (lla,
2023).

We acknowledge that LLM-generated data can
exhibit specific biases found in their training data
set. We partially mitigate this by seeding the gener-
ation prompt with pre-sampled character and loca-
tion names to ensure diversity in generated content.
We also conducted manual evaluations of the gen-
erated creative content to ensure its quality.

Ethical Considerations

Task 2 deals with sensitive PII information which
warrants careful considerations to avoid privacy
leakage of individuals. We avoid this risk entirely
by carefully designing the generation process so
that it closely mimics real individuals, despite be-
ing generated synthetically. However, such syn-
thetic data generation processes may contain hid-
den biases which can be measured, which we defer
for future work.

Unlearning algorithms carry the risk of under-
unlearning of sensitive information (which can pro-
vide a false sense of removal while retaining risks
for data leakage), or over-unlearning (which can
degrade model utility across other tasks), which
should be carefully considered before deployment.

Finally, we ensure all the tools used in generat-
ing our benchmark data are open sourced, thereby
avoiding any licensing restrictions.
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Figure 5: Performance of GA and GD on Qwen 2.5 7B
model.

A Unlearning on Qwen2.5 7B model

Figure 5 presents performance of Gradient Ascent
and Gradient Difference algorithms on the Qwen
2.5 7B model, finetuned on the benchmark dataset.
Both algorithms were run for 10 epochs with learn-
ing rate of 1e− 5 and batch size of 32. Similar to
the OLMo model, unlearning starts with perfect re-
gurgitation, and evolves with a progressive drop in
model performance across both data splits, ending
with low performance on both forget and retain sets
- highlighting the challenging nature of the LUME

benchmark. We observed the performance reaches
0 by epoch 7 for both regurgitation rate and knowl-
edge accuracy tests in GA, and for the knowledge
accuracy rate in GD. However, unlike the OLMo
7B checkpoint, the drop in performance is slower
in Qwen2.5, suggesting a more controlled growth
in the unbounded loss term present in both these
algorithms for this model.

B Task-wise breakdown of results

Figures 6 and 8 show task wise breakdown of the
baselined unlearning algorithms for the OLMo 7B
model. At a high level, all three baselines with the
unbounded gradient ascent objective (GA, GD and
KL) show similar patterns of rapid drop in perfor-
mance across all tasks around epoch 5, highlighting
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Figure 6: Performance on retain and forget subsets for 7B model for benchmarked unlearning algorithms for Tasks
1 to 3 (respectively from top to bottom). Reg: Regurgitation Rate (r), Kno: Knowledge Accuracy (t). Split refers to
data subset (forget or retain) used in evaluations. Similar to Figure 2 we plot bar plots for ULD since it does not
change with epochs.
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Figure 7: Performance on retain and forget subsets for 1B model for benchmarked unlearning algorithms for Tasks
1 to 3 (respectively from top to bottom). Reg: Regurgitation Rate (r), Kno: Knowledge Accuracy (t). Split refers to
data subset (forget or retain) used in evaluations.
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the destructive impact of this loss term on the 7B
OLMo model performance which is a well known
issue from prior literature (see Figure 6 in (Maini
et al., 2024), Figure 3 and Table 1 in (Ji et al.,
2024)). Further this issue appears to be more pro-
nounced with the OLMo 7B model when compared
to the Qwen2.7 7B model (Figure 5). Additionally,
NPO also avoids this issue and exhibits a more con-
trolled growth suggesting this is exclusively due
to the unbounded gradient ascent loss term in the
OLMo 7B model. Table 3 shows example model
generations across all three tasks, highlighting the
model degradations in GA, GD and KL. NPO ap-
pears to steer the model towards generating empty
strings while the constrained decoding induced by
ULD at inference time makes minor adjustments to
model generation, producing similar but alternate
responses in the forget set.

Across all algorithms, Task 2 showed similar
performance in regurgitation and knowledge accu-
racy metrics. On the other hand, examples from
Tasks 1 and 3 contain long form paragraphs with
considerable variation in prose, style and content
which leads to differing performance in these two
metric classes. Further, for Task 2 in ULD (Fig-
ure 6), unlearning performance of the forget set
appears to also impact the performance on retain
set from this task; we hypothesize this to be caused
by structural similarities (paragraph structure, ques-
tion templates, etc.) between the forget and retain
sets, and generating paraphrases of the retain data
samples could mitigate this. We defer this explo-
ration for future work.

As observed in Figures 5, 6 and 8, among the
two metrics we compute, regurgitation generally
appears to be slower in dropping to 0 compared
to Knowledge accuracy, since the former requires
unlearning of longer spans of text.

Figure 7 shows task wise performance of the
benchmarked algorithms with the 1B model when
trained with the same set of hyper-parameters as
(Maini et al., 2024), (Shi et al., 2024) as well as
the 7B model. We deliberately trained with these
hyper-parameters to evaluate their generalizability
when applied to unlearning of smaller LLMs. How-
ever, as shown in Figure 7, these hyper-parameters
showed limited unlearning with the LUME bench-
mark, suggested a need for further hyper-parameter
tuning with potentially more aggressive learning
rates.

Finally, the observed variance in unlearning per-
formance for NPO, ULD and GD among the three
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Figure 8: Performance of KL baseline on the 7B OLMo
model.

tasks suggests varying levels of unlearning diffi-
culty for the samples from each task which was
also reported in (Zhao et al., 2024).

C Benchmark Performance from
challenge leader-board

The LUME benchmark was developed for the 2025
SemEval shared task on LLM Unlearning (Ramakr-
ishna et al., 2025). As part of this shared task, we
invited participants to develop their own solutions
to conduct unlearning with the OLMo 7B and 1B
models. We present the core strategies employed
by the top 11 scoring teams in Table 2. Partici-
pants explored several interesting solutions such as
novel data mixing and unlearning objectives, model
merging, targeted unlearning on selected examples
and model parameters, among others. The best
performing teams (Premptis et al., 2025; Xu et al.,
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2025; Chen et al., 2025) combined multiple such
solutions and showed strong all-round performance
in the challenge evaluations, highlighting that the
benchmark is solvable, but with considerable room
for further improvements in future work.

D Expanded related work

Given the nascent stage of unlearning research in
LLMs, few prior works exist which address the
task of robustly evaluating the success of unlearn-
ing. (Triantafillou et al., 2023) presented a new
challenge task in which the goal was to to unlearn
information contained in select images within the
task of image based age prediction. While success-
ful, the specific task addressed in this challenge
was narrow, focusing only on image based age pre-
diction - a classification problem with 10 classes
with limited applicability in the unbounded text
generation task of large language models. But the
growing interest in LLMs and their tendency to gen-
erate unsafe (Wei et al., 2024), private (Yao et al.,
2024) or security violating content necessitates a
distinct and focused evaluation benchmark.

Maini et al. (2024) released a new evaluation
framework named TOFU which partially addressed
this task of evaluating LLM unlearning algorithms.
Their framework was evaluated on question answer-
ing task applied on biographies of synthetically cre-
ated fake authors. They train target models on this
synthetic data and evaluate the ability of unlearn-
ing algorithms to forget a portion of this synthetic
dataset. While being a promising first step, this
work has a few key limitations: unlearning the tar-
geted information required for the QA task does is
unlikely to cause loss of any other substantial infor-
mation, specially linguistic attributes such as gram-
mar. Further, this work leverages GPT4 to generate
the synthetic content, which may have downstream
licensing implications owing to GPT4’s proprietary
license.

More recently, Shi et al. (2024) released a bench-
mark named MUSE which evaluated model un-
learning using real data set for containing news
documents and Harry Potter book chapters. This
benchmark released detailed evaluation metrics to
robustly evaluate the unlearning algorithms. How-
ever since it only leverages real data set the bench-
mark does not provide a clean test bed to evaluate
model performance. Specifically, the information
contained in the unlearn documents may also ap-
pear in other disjoint training documents, limiting

the effectiveness of unlearning. While the TOFU
benchmark mentioned before avoids this by only
using synthetic documents, the data set coverage
is rather limited (it only containts biographic infor-
mation). The benchmark developed in our work
addresses both these shortcomings together and
presents a single holistic testbed to evaluate model
unlearning in LLMs. Finally, similar to popular
multitask benchmarks such as MMLU, we use un-
weighted aggregation with LUME to simplify the
design, and defer explorations on robust aggrega-
tions to future work.

E Further details on Unlearning
Algorithms

We review unlearning methods tested in this paper
in the following.

• Gradient Ascent: This is a straightforward
algorithm for model unlearning where we re-
verse the direction of model update by flip-
ping the sign in gradient descent, in order to
steer the model away from the sensitive model
outputs in the forget set. While easy to imple-
ment, this approach has a significant drawback
since the gradient ascent training objective is
unbounded, which can lead to model diver-
gence with nonsensical outputs for all inputs.
The loss term in this algorithm reverses sign of
the standard training objective and is applied
only on the forget set F as shown below.

−L(F ; θ)

• Gradient Difference (Liu et al., 2022): In
this approach, we augment the gradient ascent
objective applied on forget set, by adding a
gradient descent objective on the retain set.
By jointly optimizing on both sets, we steer
the model away from regurgitating the sen-
sitive information from the retain set, while
ensuring it does not lose performance in the re-
tain set. Despite being a promising alternative
to Gradient Ascent, this quality of model per-
formance on non-sensitive dataset depends on
the size of the retain set used in model train-
ing, and can lead to poor generalization on
new examples. The loss term jointly increases
the likelihood of generating responses in the
retain set R while reducing the likelihood of
generating F , as shown below.

−L(F ; θ) + L(R; θ)

6533



Team G
ra

di
en

tA
sc

en
t

G
ra

di
en

tD
iff

er
en

ce

K
L

R
eg

ul
ar

iz
at

io
n

O
th

er
O

bj
ec

tiv
es

R
an

do
m

L
ab

el
s

Ta
rg

et
ed

U
nl

ea
rn

in
g

N
ov

el
D

at
a

M
ix

in
g

PE
FT

(L
oR

A
)

M
od

el
M

er
gi

ng

St
ab

ili
ze

d
Tr

ai
ni

ng

#1 ✓ ✓ ✓ ✓ ✓
#2 ✓ ✓ ✓ ✓ ✓
#3 ✓ ✓ ✓
#4 ✓ ✓
#5 ✓ ✓
#6 ✓ ✓ ✓
#7 ✓
#8 ✓ ✓ ✓
#9 ✓ ✓
#10 ✓
#11 ✓ ✓

Table 2: Key ideas explored in teams participating in shared task employing the LUME benchmark (table borrowed
from (Ramakrishna et al., 2025)), sorted based on their performance on the 7B OLMo model.

Algorithm Prompt Model Generation

Pre-unlearning The city of Deadesius
GA

Who did Catherina seek to protect from Marcile?

?????
GD ?????
NPO <empty>
ULD The city of Strombadd
KL ?????

Pre-unlearning

What is Lynda Bronze’s Social Security Number?

900413983
GA ?????
GD ?????
NPO <empty>
ULD 900403808
KL ?????

Pre-unlearning Karl Sterrer
GA ?????
GD Who is the Austrian painter and engraver born in ?????
NPO 1885 and studied at the Academy of Fine Arts, Karl Sterrer
ULD Vienna? Rodigma fatuyetasova
KL ?????

Table 3: Model generation examples for QA sub-task at end of Epoch 10 of unlearning, for the three tasks. GA, GD
and KL all lead to model de-generations by epoch 10, while NPO tends to generate empty strings. ULD generates
similar but alternate responses.
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• Negative Preference Optimization (Zhang
et al., 2024): This baseline uses a modified
version of the Direct Preference Optimization
objective, adapted to remove the sensitive in-
formation from the forget set.

• Unlearning from Logit Difference (ULD)
Ji et al. (2024): This is a recent work where
the authors avoid the shortcomings of gradi-
ent ascent and gradient difference by training
a small auxiliary model which is trained to
memorize only the sensitive information in
the forget set. During inference, logits from
the smaller model are subtracted away from
those of the larger model. The key drawbacks
of this approach is the need to maintain an aux-
iliary model which may grow in complexity as
we increase the forget set. However, this base-
line avoids modifying the target model which
maybe efficient when dealing with large lan-
guage models.

• GA + KL Divergence (Maini et al., 2024)
Similar to Gradient Difference, in this base-
line, we augment the gradient ascent objective
with a Kullback-Leibler Divergence term to
ensure the model does not deviate too far from
the original model.

F Long Form Example Generation

Model Input:
Create a short novel of at least 150 words. The

novel should be from fantasy genre and set in
the city of Atlantis. It should include
following characters: Kyle , Stan , Kenny and
Eric.

Model Output:
A short story about four friends lost in the magical

realm below the oceans , known to ousiders as
Atlantis. Kyle had always held a deep
fascination for the deep blue ocean , and this
naturally led him to take up a major in oceanic
studies ...

G Short Form Example Generation

Model Input:
Create a biography for Jon Smith with date of birth:

1/2/1989 , SSN: 900123456 , phone number:
0987654321 , email: jon_smith@me.com , home
address: 10 Summertime Lane , New York City , NY ,
USA.

Model Output:
Jon Smith was both in New York City on the first of

February in 1989 ,...

H Question Generation Prompt

Model Input:
You are given a short story. First , find all the

proper nouns in this story. If it does not
contain a proper noun , say "I can 't use this
statement since it does not contain any proper
nouns .". If it contains proper nouns , use your
reasoning to create an unambiguous question ,
for which there would be *only* one answer.
Give a concise answer (i.e. one word or phrase)
which accurately answers the question. If you

cannot create such an unambiguous question , say
"I'm unable to create an unambiguous question

for this story". Use the examples below for
reference.

Examples:
1. Example #1
2. Example #2
3. Example #3
4. Example #4
5. Example #5

Here 's the story: <input_story >. Generate a question
with an unambiguous answer using this story.
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