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Abstract

Existing work has shown that ol-level per-
formance can be achieved with limited data
distillation, but most existing methods focus
on unidirectional supervised fine-tuning (SFT),
overlooking the intricate interplay between di-
verse reasoning patterns. In this paper, we
construct rlk, a high-quality reverse reason-
ing dataset derived by inverting 1,000 forward
examples from s1k (Muennighoff et al., 2025),
and examine how SFT and Direct Preference
Optimization (DPO) affect alignment under
bidirectional reasoning objectives. SFT on
rlk yields a 1.6%—6.8% accuracy improve-
ment over slk across evaluated benchmarks.
However, naively mixing forward and reverse
data during SFT weakens the directional dis-
tinction. Although DPO can partially recover
this distinction, it also suppresses less pre-
ferred reasoning paths by shifting the proba-
bility mass toward irrelevant outputs. These
findings suggest that mixed reasoning data in-
troduce conflicting supervision signals, under-
scoring the need for robust and direction-aware
alignment strategies. Our code and data are
available at: https://github.com/16demi/
ReasonAlign-analysis.

1 Introduction

Recent studies show that Large Language Mod-
els (LLMs) can achieve strong reasoning perfor-
mance by distilling knowledge from a small set of
high-quality examples (Li et al., 2025). Methods
like s1 (Muennighoff et al., 2025) and LIMO (Ye
et al., 2025) demonstrate that with just 817 to 1,000
curated samples, a 32B model can match or sur-
pass larger systems. However, these approaches fo-
cus mainly on single-direction reasoning—solving
problems step by step from question to answer. As
shown in Figure 1, a model may learn to compute

“Equal contribution.
fCo-corresponding authors.

the kinetic energy of a gas molecule from its tem-
perature, but not the reverse: inferring temperature
from energy.

This narrow focus overlooks a core aspect of
human cognition: the inherently bidirectional na-
ture of reasoning. Humans commonly engage in
backward reasoning, particularly in goal-directed
problem solving (Newell et al., 1972; Hawes et al.,
2012). Rather than reasoning solely from premises
to conclusions, people often begin with a desired
outcome and work backward through intermedi-
ate steps to reach known facts (Senn and Sacra-
mento, 2015). Motivated by this cognitive insight,
recent studies have begun to explore reverse or
backward reasoning in LLM. MathGenie (Lu et al.,
2024) utilizes reverse derivation paths to improve
robustness on math word problems. Iterative Ques-
tion Composing (Liu et al., 2024) constructs inter-
mediate subquestions that align with goal-driven,
backward-style planning. In optimization model-
ing, OptiBench (Yang et al., 2025) promotes re-
flective and Socratic-style reformulations that par-
tially embody reverse reasoning principles. While
promising, these approaches remain constrained to
short-context reasoning or domain-specific tasks.
This leaves open the broader question of whether
backward supervision can enhance long chain-of-
thought (Wei et al., 2022) reasoning and generalize
across diverse scenarios.

To investigate this, we construct a high-quality
dataset, r1k, by systematically inverting 1,000 for-
ward reasoning examples from s1k (Muennighoff
et al., 2025). Reverse questions and reasoning
paths are generated with cost-efficient DeepSeek-
R1 model (Guo et al., 2025), without the need for
expensive data collection, cleaning, or selection
procedures. Fine-tuning on r1k yields an approxi-
mate 1.6%—6.8% improvement over s1k.

To further study the interaction between mixed
data, we conducted extensive experiments on their
combined effects. We observe that SFT on re-
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Figure 1: We begin with the s1k dataset (zs,y,) and generate reverse questions x,., along with their corresponding
reverse CoTs and answers y,.. We then fine-tune student models using cross-entropy loss under three settings as
comparison: forward-only data, reverse-only data, and a mixture of both. To enhance directional consistency, we
apply DPO to encourage directionally aligned responses while suppressing misaligned ones. Concurrently, we track
the log probability of ¢ and y,- across multiple fine-tuning stages to investigate the models’ learning dynamics.

verse data improves performance, whereas mix-
ing forward and reverse examples leads to degra-
dation. Mechanistic analysis shows that this re-
duces the model’s ability to distinguish reason-
ing paths. While Direct Preference Optimization
(DPO; Rafailov et al. 2023) partly alleviates this,
it still suffers from suboptimal initialization and
tends to shift reverse reasoning probability toward
irrelevant outputs. These findings underscore the
need for improved alignment strategies to support
robust reasoning.

2 Related work

Data-Efficient Reasoning in LLMs: s1 (Muen-
nighoff et al., 2025), LIMO (Ye et al., 2025) and
LIMA (Zhou et al., 2023) demonstrate that train-
ing on a small set of high-quality examples en-
ables more effective performance, suggesting that
massive datasets may not always be necessary to
achieve competitive results. This perspective is
further supported by methods such as iterative re-
finement (Madaan et al., 2023) and self-rewarding
feedback (Asai et al., 2023), which demonstrate
that reusing or distilling informative examples can
improve model performance without relying on
large-scale data. Complementary findings from
data pruning and selection studies (Agarwal et al.,
2024; Huang et al., 2024; Xu et al., 2025) reveal
that indiscriminate scaling often yields diminish-
ing returns, highlighting the value of targeted data
curation in reasoning-intensive tasks.

Learning Dynamics of LLM Fine-Tuning:Neural
Tangent Kernel (NTK) theory (Jacot et al., 2020;
Arora et al., 2019) provides a framework for ana-
lyzing the influence of individual training examples
during LLM fine-tuning. A gradient-based decom-
position was later proposed (Ren and Sutherland,
2024), approximating the change in model confi-

dence for an output y on input z,, after training on
a single example (z,,, yy,) as:

Alog 71't(y | xo) ~ -0 At(zo) Kt(xm Iu) Gt(‘rua yu)

where K is the empirical NTK, G; the gradient,
and A, a scaling factor tied to model certainty. This
perspective helps explain interference, hallucina-
tion, and memorization (Pruthi et al., 2020). It also
explains the diversity collapse (Dang et al., 2025),
where correctness optimization concentrates the
probability mass on a single reasoning path, lim-
iting diversity. These insights inspire a learning-
dynamics perspective on how mixed reasoning data
shapes model behavior in multi-stage fine-tuning.

3 Methodology

3.1 Reverse Data Construction and Alignment

We begin with a forward reasoning dataset Dy, =
{(:rgf), y}(f)) 1000 consisting of 1,000 high-quality
examples from the s1k dataset. Each example in-
cludes a question 'y and its corresponding CoT
and answer y; generated by Deepseek-R1 (R1).
Based on each slk’s question and final answer,
we leverage R1 to construct the reverse dataset
Doy = {(2V,y{7)119%  For each forward ex-
ample (zf,yr), we prompt the model to gener-
ate a reverse question z, that naturally elicits the
original reasoning in reverse. Conditioned on
x,, we prompt R1 to generate the corresponding
reverse reasoning chain and answer .. A con-
crete forward—reverse example is provided in Ap-
pendix A.5. We merge the above two datasets to ob-
tain D = Dy, U D,.1, which serves to investigate
how bidirectional supervision influences model be-
havior and alignment.

We fine-tune the Qwen2.5-Instruct (Qwen et al.,
2025) 7B and 14B models using the standard cross-
entropy objective, where the input is the question x
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and the target output y is the concatenation of the
CoT and the final answer with special separation
tokens.

Although SFT introduces forward and reverse
reasoning, it does not equip LLMs with the ability
to switch between two directions. To better align
model responses with question directionality, we
apply DPO following SFT. For this, we construct
preference pairs of the form (z,y™,y ™), where =
is the question, y™ is the preferred response, and
y~ is the response of reverse question. Specifically,
for each example (z¢,y¢) € Dsii, We treat the
forward output as the preferred response, i.e., y ™ =
Yy, and the corresponding reverse output as the
rejected response, y~ = y,. In contrast, for each
example (z,,y,) € D1k, We assign yT =y, as
the preferred response and y~ = yy as the rejected
one. Each pair of preferences (z,y™",y ™) is used
to optimize the DPO objective, which encourages
the model to prefer y™ over 3.

3.2 Analysis of the Pitfalls of Mixed Data

To investigate the fine-tuning behavior during both
the SFT and DPO stages, we construct a small
probe training set consisting of 100 examples: 50
forward instances D and their corresponding 50
reverse counterparts D,.. The union of the two
forms a mixed test dataset D,;, = Dy U D,..
Throughout both the SFT and DPO stages, we
monitor model behavior by recording intermedi-
ate checkpoints and evaluating the average log-
probability (ALP) per token for both 4™ and y

LA [y |
ALP(y*) = NZ| +|Zlogp v L @iyt o),

ly; |

Zl 52 Zlogp Yir | @i v <0)-

here, N denotes the number of examples in the
probe festing set, and \yzi\ the length of each evalu-
ated output, capped at 1000 tokens. This evaluation
window is typically sufficient to capture the diver-
gence between y ' and 3. Since the responses are
long-form sequences, we normalize log-probability
by sequence length to ensure fair comparison. Mo-
tivated by recent theoretical analyses of learning
dynamics in LLMs (Ren and Sutherland, 2024), we
track the margin:

A = ALP(y™)

ALP(y

— ALP(y™),

which serves as an empirical proxy for A log 7 (y |
x,) in the NTK formulation, with ALP reflecting

model certainty A;(x, ), forward—reverse pairs indi-
cating input similarity K;(z,,x,), and training su-
pervision contributing gradient signals G (., yu)-

4 Experiments

We conducted experiments on the DeepSeek-R1’s
s1k dataset, which consistently outperformed the
Gemini-based variant. As the slk has already been
curated with quantity, diversity, and difficulty, we
did not apply an additional filtering process. We
fine-tune Qwen2.5-Instruct models (7B and 14B)
in two stages on 8 A800-80GB GPUs. First, we ap-
plied SFT with LoRA (rank = 256, a = 512). Then,
we performed DPO using the trl library (von
Werra et al., 2020), with DeepSpeed ZeRO-3 (Ja-
cobs et al., 2023) and Flash Attention (Shah et al.,
2024) to reduce memory usage. We employ open-
source Im-eval-harness (Gao et al., 2024), with
gpt-4o-mini to evaluate the accuracy.

4.1 Impact of Reverse and Mixed Data

To evaluate the effect of reverse data construction
and bidirectional supervision, we conducted fine-
tuning experiments on different training datasets.
As shown in Table 1, we compare the distilla-
tion performance of models trained on the Dy,
D, 1k, and D across three challenging benchmarks:
AIME24-NoFigures (Mathematical Association of
America, 2024), Math 500 (Lightman et al., 2023),
and GPQA (Rein et al., 2024) benchmarks.

Table 1: Effect of Reverse Data (D,.1;) and Mixed Train-
ing Sets (D and Dy 5;) on downstream performance.
Here, Dy 55 consists of 500 forward examples paired
with their corresponding reverse data. In the same set-
ting experiment, the best results are shown in bold.

Data Model AIME Math GPQA Average
Dsik 3B 33% 452% 293% 25.9%
Dr1x(Ours) 3B 6.7% 43.4% 322% 27.5%
Do.sk 3B 0.0% 43.6% 29.8% 24.47%
D 3B 0.0% 43.0% 262% 23.1%
Dsik 7B 16.7% 77.0% 34.0% 42.6%
Dr1x(Ours) 7B 20.0% 77.4% 42.4% 46.6%
Do.sk 7B 133% 71.8% 358% 40.3%

D 7B 6.7% 56.0% 31.8% 31.5%
Dsik 14B  20.0% 83.2% 48.4% 50.6%
Dr1x(Ours) 14B  33.3% 86.0% 53.0% 57.4%
D 14B  30.0% 81.6% 49.1% 53.6%

Under the same distillation pipeline, models
trained on our reverse dataset D,.;, achieve an aver-
age improvement of 1.6%—6.8% compared to those
trained on the original Dgy;. However, combining
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Figure 2: D denotes the training dataset, and 7 denotes the testing dataset. We report the Average Log Probability
(ALP) for both the preferred responses (y) and the less preferred responses (y~) in Figures (a) and (b), respectively.

Figure (c) shows the difference ALP(y™) — ALP(y™).
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Figure 3: SFT Probe dataset Training Dynamics

forward and reverse examples leads to a signifi-
cant drop in performance. As the size of the mixed
dataset increases from Dy i to D, the degrada-
tion becomes more pronounced, suggesting that
mixed-direction reasoning data introduce interfer-
ence between reasoning modes and hinder effective
learning.

4.2 Teacher Model Reliability Analysis

We further compare SFT results when using Gem-
ini 2.0 Flash Thinking (20-30B) versus DeepSeek-
R1 (671B MoE) as the teacher model for generat-
ing chain-of-thought and answers. Table 2 shows
that Gemini-based supervision leads to consistently
1-3% lower downstream accuracy compared to
DeepSeek-R1 supervision. All experimental data
are sourced from the Dy, dataset.

Table 2: SFT based on two teacher models (Gemini and
DeepSeek-R1). Parentheses indicate the teacher model
used to generate the SFT reasoning and solution data.

Model / Teacher AIME GPQA Math Average
7B (Gemini) 133% 335% 77.4% 41.43%
7B (DeepSeek-R1) 16.7% 34.0% 77.0% 42.60%
14B (Gemini) 16.7% 472% 83.0% 48.93%
14B (DeepSeek-R1) 20.0% 48.4% 83.2% 50.60%

4.3 Impact of Directional Preference

Our DPO experiments use a temperature-weighting
hyperparameter of 5 = 0.6, with the SFT-trained
model fixed as the reference model. We apply DPO
fine-tuning to four SFT-based models: three 7B
models individually trained on Dy, D1k, and D,
and a 14B model trained on D. All DPO models
are further fine-tuned using preference pairs from
D, where each pair consists of two responses y
and y~, generated from the opposite question.

Table 3: Effect of DPO on different SFT Data and based
models settings. | and 1 indicate performance decrease
and increase respectively; parentheses show relative
change from the SFT baseline.

SFT Data

D1k (7B)
D;r1x(7B)
D (7B)
D (14B)

AIME Math GPQA

13.3%] 71.8%) 35.9%) 40.3% (12.3%)
16.7%] 754%) 39.4%] 43.8% (12.8%)
16.7%1 64.2%" 34.8%71 38.6% (17.1%)
40.0%1 81.2%) 46.4%| 55.9% (12.3%)

Average

Table 3 shows that applying DPO with mixed
preference data on the Dy, (7B) and D,.1x (7B)
reference models leads to a performance decline.
For the model initially fine-tuned on the mixed
dataset D, DPO achieves some performance im-
provements, but its overall performance remains
inferior to SFT trained on D,.1.

6517



4.4 Analysis of the Pitfalls of Mixed Data

We analyze the in-distribution pairs (Dy, 7Ty),
(D, T:), and (Dyy,, Tr), where D and T denote
the training and testing datasets respectively. SFT
is run for 12 epochs with evaluation every 2 epochs,
and DPO for 7 epochs with evaluation after each.
Changes in the ALP of y reflect the learned strat-
egy, while y~ indicates hallucination. We also
consider the out-of-distribution pairs (D¢, 7,.) and
(D,, Ty), where variations in the ALP of y* mea-
sure the generalization capability to handle reverse
question, whereas y~ indicate the likelihood of
generating irrelevant or off-target responses.

Figure 2(a) shows that under out-of-distribution
scenarios, models trained on the D,. exhibit lower
hallucination rates y~ and better generalization.
For in distribution settings, (a) demonstrates that
the likelihood of y* increase significantly, but this
improvement is accompanied by a corresponding
rise in hallucinations y~. Figure 2(b) reveals that
mixed-data training D,, induces a stronger increase
in hallucinations, while the likelihood of preferred
responses fails to reach the levels achieved by train-
ing solely on D, and Dy. Even though the sub-
sequent DPO improves preference alignment by
suppressing the probability of ™~ to irrelevant re-
sponses, this suppression is limited.

Figure 2(c) shows that models trained on D and
D, maintain a gap between y* and y~, whereas
the model trained on mixed data D,,, produces only
a narrow margin (0.05-0.1). This suggests that
SFT on mixed data weakens LLM’s ability to dis-
criminate the learned strategies and hallucination.
Although DPO slightly separates y and 3, the
effect remains limited. We hypothesize that the
conflicting signals from D,,, lead the model to op-
timize in competing directions, hindering the for-
mation of coherent preferences. This phenomenon
also helps explain why models trained on smaller
but higher-quality datasets, such as LIMO or slk,
can outperform larger ones: consistent supervision
leads to more effective optimization.

5 Conclusion

We constructed a high-quality reverse reasoning
dataset r1k and demonstrated its effectiveness in
improving reasoning ability. We further investi-
gate the effects of mixed data during multi-stage
fine-tuning, underscoring the need for improved
alignment strategies to support robust reasoning.

6 Limitations

This work explores the integration of reverse rea-
soning data in multi-stage fine-tuning, but several
limitations remain. Our reverse dataset D,.qj is
constructed by automated prompting without hu-
man validation, which may introduce subtle errors
or inconsistencies in reasoning quality. Addition-
ally, the DPO formulation assumes a strict direc-
tional preference between forward and reverse out-
puts, potentially oversimplifying cases where both
reasoning directions offer complementary insights.
Furthermore, while this study adopts a standard
SFT + DPO pipeline, alternative alignment strate-
gies may offer more robust solutions to conflicting
supervision in mixed data settings.

7 Ethics Statement

This work trains and evaluates models on pub-
licly available datasets (slk, GPQA, AIME, and
Math 500), each used in accordance with its re-
spective license. We release our D,.1;, dataset and
code strictly for research purposes. In this study,
no personal or sensitive information is collected or
used.
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A Appendix

A.1 Reverse Data Construction

We design two prompt templates to support our
bidirectional reasoning framework. These tem-
plates serve complementary purposes in data con-
struction, enabling the model to learn both forward
and reverse reasoning patterns. The first template is
designed to generate reverse question-answer (QA)
pairs. Given a question and its corresponding an-
swer, the model is instructed to invert their roles:
reformulating the answer into a thought-provoking
question and the original question into a reflective
statement that serves as the new answer.

"role_definition”:

"You are an AI model tasked with generating a
reflective thinking exercise.

Given the following question and answer:"”

- Question: {question}
- Answer: {answer}

"instructions”:

"Your task is to reverse the roles of the
question and answer.

Transform the answer into a question that
is thought-provoking and encourages deeper
reflection.

Similarly, convert the original question into

a statement that serves as an insightful
answer.
Ensure that the new question remains

reasonable and stimulates further inquiry,
while the new answer is right to the question.”

"expected_output”:
- New Question:
- New Answer:

The second template focuses on generating step-
by-step solutions with CoT prompting, followed by
a clearly demarcated final answer. This template
is specifically designed to extract DeepSeek R1’s
detailed reasoning chains and final answers, serv-
ing as the foundation for producing high-quality
reasoning examples.

"role_definition”:

"You are an AI model that is designed to
generate solutions to a given question.

All numerical answers must be explicitly
marked with \boxed{}."

- Question: {question}

"instructions”:
"Ensure your answer is absolutely correct and
standard.”

"expected_output”:

Presents the complete and concise answer.

If the answer contains only one numerical
value, it must be marked in the form of
\boxed{}.

The r1k dataset shares the same domains as the
s1k dataset (Muennighoff et al., 2025), and its to-
ken length distribution is shown in Figure 4. We
select the 50 pieces of data with the least text tokens
in s1k and the corresponding rlk data as our probe
dataset. All external datasets used in our work
are publicly available and licensed for research
use. Specifically, AIME and OpenAl’s Math 500
datasets are distributed under the Apache License
2.0, while GPQA is released under the Creative
Commons Attribution 4.0 International (CC BY
4.0) license.
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A.2 Training Details

The training curves in Figures 5-6 illustrate learn-
ing dynamics under different supervision settings
by tracking key optimization parameters of loss,
learning rate, and gradient norm. Figure 5 depicts
the progression of SFT on mixed data, while Fig-
ure 3 provides a probe-based analysis across for-
ward, reverse, and mixed reasoning styles. Figure 6
captures the early-stage DPO optimization, empha-
sizing how preference alignment evolves within the
first 100 training steps.

A.3 Additional Experimental Results
A.3.1 DPO with Separate SFT Stage

In addition to the SFT and DPO pipeline, we
also evaluate applying DPO directly on the mixed
dataset D (2k examples from s1k and r1k), without
a prior SFT stage. Results in Table 4 show that
direct DPO yields lower performance than SFT fol-
lowed by DPO, confirming that SFT provides a
stable initialization.

A.4 Experiment Settings

We adopt a two-stage training pipeline consisting of
supervised SFT followed by DPO. This section de-
tails our model configurations, optimization strate-
gies, and resource settings.
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Table 4: Direct DPO (without SFT) on mixed datasets
D (2k data from slk and r1k).

Model AIME GPQA Math Average

7B 10.0% 34.6% 59.0% 34.53%
14B  200% 402% 72.0% 44.07%

A.4.1 Supervised Fine-Tuning (SFT)
We use the Qwen2.5-7B-Instruct model and
train on 4 A800 GPUs, with a maximum sequence
length of 20,000 tokens. Some of the excess data
are replaced with Gemini data for compatibility.
For the Qwen2.5-14B-Instruct model, we per-
formed training on 8 A800 GPUs under the same
sequence-length setting. Training 7B-based models
with 1k data takes around 3 hours, while 14B-based
models requires 6-7 hours.

We adopt a cosine learning rate schedule with
restarts and set the initial learning rate to 3 x 1074
Other hyperparameters include:

» Weight decay: 1 x 10~°
e Adam optimizer: 51 = 0.9, B2 = 0.95
* Gradient clipping: 1.0
* Warmup ratio: 0.05
Training Configuration.
* Number of epochs: 10
* Per-device batch size: 1
* Gradient accumulation steps: 1
* Mixed precision: BF16

Parameter-Efficient Fine-Tuning. We apply
LoRA with the following configuration:

* Rank r = 256, scaling factor o = 512

e Target modules: "g_proj, k_proj,
v_proj, o_proj, gate_proj, down_proj,
up_proj, lm_head”

* Optimizer: 8-bit AdamW

A.4.2 Direct Preference Optimization (DPO)

We initialize from the SFT checkpoint and train on
4 GPUs. The training runs for a maximum of 200
steps in around 3 hours. We experiment with DPO
using the value of 5 ranging from 0.1 to 0.8, and
observe that 3=0.6 leads to the most significant
performance improvement on mixed-direction data.

However, under this setting, the change in average
log-probability (ALP) is relatively subtle. To better
highlight learning dynamics in our probe-based
analysis, we use a smaller §=0.2, which yields
more distinguishable ALP shifts between y ™ and

Yy .

Optimization Settings.
« Learning rate: 5 x 10~7 with cosine decay

» KL penalty coefficient 8 = 0.6 for DPO train-
ing, 5 = 0.2 for probe dataset training and
testing.

Training Configuration.
* Per-device batch size: 1
* Gradient accumulation: 4 steps
* Mixed precision: BF16
* Maximum prompt length: 600 tokens
* Maximum sequence length: 20,000 tokens

Efficiency Enhancements. We enable the fol-
lowing optimizations to reduce memory and com-
putation overhead:

* Flash Attention
* Gradient checkpointing
* DeepSpeed ZeRO-3 with parameter sharding

Distributed Optimization. We apply Deep-
Speed ZeRO-3 for memory efficiency and optimize
multi-GPU communication through NCCL tuning.

A.5 Example of Forward-Reverse Data
Construction

As an illustrative case, we present a representative
forward-reverse pair from Dy and D,.1. The for-
ward instance is taken directly from Dg;, whereas
the reverse instance is obtained by inverting the
question—answer direction and generating the cor-
responding chain-of-thought with DeepSeek-R1.

A.5.1 Forward Example (from D).

Question: Find any quadruple of positive integers
(a,b, c,d) satisfying a3 4+ b* + ¢® = d'! and abc <
10°.

Answer: It’s easy to guess that there are solutions
such that a, b, ¢, d are in the form of n®, where n
is a rather small number. After a few attempts,
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we can see that we obtain simple equations when
n = 2orn = 3 : for n = 2, the equation becomes
in the form of 2! + 2! 4+ 2!+1 = 2!*2 for some
non-negative integer t; for n = 3, the equation
becomes in the form of 3¢ 4 3¢ + 3! = 3!*+! for
some non-negative integer ¢. In the first case, we
hope that ¢ is a multiple of two of 3,4, 5, that? + 1
is a multiple of the last one, and that ¢ 4+ 2 is a mul-
tiple of 11 . Therefore, t = 15,20, 24(mod60)
and t = 9(modl1). It’s easy to check that the
only solution that satisfies the given inequality
is the solution with ¢ = 20, and (a,b,c,d) =
(128,32,16,4). In the case where n = 3, we
must have that ¢ is a multiple of 60 , which ob-
viously doesn’t satisfy the inequality restriction.
Remark: By programming, we find that the only
two solutions are (a, b, ¢,d) = (128,32,16,4) and
(a,b,c,d) = (160, 16,8,4), with the the former
being the intended solution.

A.5.2 Reverse Example (from D, ;).

Question: The quadruples (128, 32, 16, 4) and
(160, 16, 8, 4) satisfy a specific equation involving
exponents of the form a* + v™ + ¢" = dP, along
with the condition abc < 10°. What is the exact
equation (including the exponents k, m, n, p) and
the constraint?

Answer: The equation satisfied by both quadru-
ples is a® + b* + ¢® = 4'! with the constraint
abc < 10°. For the first quadruple (128, 32,16, 4):
_ 1283 4 324 + 165 — 221 + 220 4 220 — 222 —
41 - abe = 128 x 32 x 16 = 65,536 <
10°. For the second quadruple (160,16,8,4): -
160% + 16* + 8% = (16 x 10)3 + 216 4 215 =
4,096,000 + 65,536 + 32,768 = 4,194,304 = 41,
- abc = 160 x 16 x 8 = 20,480 < 10°. Thus,
the exact equation is‘ a® + bt + ¢ =41 ‘with the
constraint abc < 10°.

Chain-of-thought (concise overview):

Observe 128 = 27,32 = 2%, 16 = 24, 4 = 22,
Enforce 5m = 4n so the latter two terms match in
exponent; taking m = 4, n = 5 gives both as 2%,
Choose k = 3 50 27% = 221 and the sum becomes
221 1 2.9220 — 922 — 41l hence p = 11. The
same exponents verify the second quadruple.
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