
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 6501–6513
November 4-9, 2025 ©2025 Association for Computational Linguistics

SIFT: Grounding LLM Reasoning in Contexts via Stickers

Zihao Zeng, Xuyao Huang*, Boxiu Li*, Zhijie Deng†

Shanghai Jiao Tong University
{zengzihao, huangxuyao, lbxhaixing154, zhijied}@sjtu.edu.cn

Abstract

This paper identifies that misinterpreting the
context can be a significant issue during the rea-
soning process of large language models, span-
ning from smaller models like Llama3.2-3B-
Instruct to cutting-edge ones like DeepSeek-R1.
We introduce a novel, post-training approach
called Stick to the Facts (SIFT) to tackle this.
SIFT leverages increasing inference-time com-
pute to ground LLM reasoning in contexts. At
the core of SIFT lies the Sticker, which is gener-
ated by the model itself to explicitly emphasize
the key information within the context. Given
the Sticker, SIFT generates two predictions—
one from the Sticker alone and one from the
query augmented with the Sticker. If they dif-
fer, the Sticker is sequentially refined via for-
ward optimization (to better align the extracted
facts with the query) and inverse generation (to
conform with the model’s inherent tendencies)
for more faithful reasoning outcomes. Stud-
ies across diverse models (from 3B to 100B+)
and benchmarks (e.g., MATH, AIME) reveal
consistent performance improvements. No-
tably, SIFT improves the pass@1 accuracy of
DeepSeek-R1 on AIME2024 from 78.33% to
85.67% and that on AIME2025 from 69.8% to
77.33%. Code will be public after acceptance.

1 Introduction

Recent advancements in large language models
(LLMs) (Dubey et al., 2024; Yang et al., 2024;
Liu et al., 2024) have significantly advanced
the field of natural language processing. Tech-
niques including Chain-of-Thought (CoT) Prompt-
ing (Wei et al., 2022b; Kojima et al., 2022)
and Self-Consistency (Wang et al., 2023b), as
well as reasoning-enhanced models, e.g., OpenAI-
o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al.,
2025), and KIMI-k1.5 (Team et al., 2025), have all

*Equal contribution.
†Corresponding author.

Query

Josh decides to try flipping a house.  He buys a house for
$80,000 and then puts in $50,000 in repairs.  This increased
the value of the house by 150%.  How much profit did he
make?

Sticker

Conditions:
1. Josh buys a house for $80,000.
2. He spends $50,000 on repairs.
3. The value of the house increases by 150%.

Question:
What is the total profit Josh made from flipping the house?

Figure 1: An example of a query and its Sticker.

contributed to improvements in multi-step reason-
ing for solving complex problems.

Recent discussions in the community suggest
that advanced reasoning capabilities in LLMs
mainly stem from two factors: (i) foundational
knowledge acquisition through massive pretrain-
ing on diverse data (Dubey et al., 2024; Lin
et al., 2025), and (ii) strategic refinement via post-
training interventions like supervised fine-tuning
(SFT) (Chung et al., 2022) or reinforcement learn-
ing (RL) (Guo et al., 2025), which optimize the
model’s ability to select contextually relevant rea-
soning pathways. However, our studies reveal a
critical lacuna in this framework: LLMs of vary-
ing sizes systematically misinterpret, overlook, or
hallucinate key information in the query context—
an emergent vulnerability we term factual drift.
For example, Llama3.2-3B-Instruct (Dubey et al.,
2024) might incorrectly interpret “per” as “total”
instead of “for each” in the phrase “10 dollars per
kilo,” leading to reasoning errors even with the log-
ical steps being correct. As a result, while current
research prioritizes optimizing reasoning mecha-
nisms in LLMs (Zelikman et al., 2022, 2024; Wu
et al., 2024; Zhang et al., 2024b), we argue equal
attention should also be placed on whether LLMs
are reasoning about the correct problem.

We note that advanced reasoning models, such as

6501



60 70 80 90

o3-mini (high)

o3-mini (medium)

o3-mini (low)

o1-mini

SIFT-R1 (Stage 3)

SIFT-R1 (Stage 2)

SIFT-R1 (Stage 1)

R1

83.80

75.80

56.30

63.60

85.67

85.33

84.67

78.33

AIME2024

40 50 60 70 80

80.85

70.44

42.10

53.75

77.33

76.00

74.00

69.80

AIME2025

90 92 94 96 98 100

97.90

97.30

95.80

90.00

98.33

98.07

97.93

97.30

MATH-500

Figure 2: Applying SIFT to DeepSeek-R1 yields highly competitive pass@1 accuracy on AIME 2024, AIME 2025,
and MATH-500. Results for the o-series on AIME are referenced from Ye et al. (2025).

DeepSeek-R1 (Guo et al., 2025), can partially miti-
gate factual drift during the reasoning process via
self-verification. For example, the model dynami-
cally paraphrases critical constraints (e.g., convert-
ing “at least 3 days” to “minimum duration ≥72
hours”) to implicitly perform error-checking. This
helps correct prior misunderstandings of the con-
text and leads to better-aligned reasoning results.
However, such self-verification operates as a ran-
dom safeguard rather than a systematic protocol—
it is not guaranteed to be triggered in various rea-
soning scenarios. Namely, the risk of factual drift
remains, and it can be significant considering the
results in Figure 2.

Inspired by that humans usually use sticky notes
to externalize critical elements when handling com-
plex tasks, we propose the Stick to the Facts
(SIFT) method to explicitly ground LLM reasoning
in contexts using Stickers generated by the model
itself. SIFT is a post-training approach, leverag-
ing inference-time compute to improve generation
quality yet without reliance on reward models as in
Best-of-N (BoN) (Brown et al., 2024; Snell et al.,
2024) and Monte-Carlo tree search (MCTS) (Qi
et al., 2024; Zhang et al., 2025). Concretely, SIFT
lets the target LLM summarize key facts within
the input query, including essential conditions and
the core question, into a structured Sticker (see
Figure 1), and make two predictions based on the
Sticker alone and the query augmented with the
Sticker, respectively. If they differ, the Sticker is
refined through bidirectional optimization—a for-
ward one to better align the Sticker with the query
and an inverse one to conform to the model’s rea-
soning preference—for more faithful reasoning.

Experiments demonstrate that SIFT can consis-
tently improve the reasoning performance across
various LLMs and benchmarks. Notably, for
DeepSeek-R1 (Guo et al., 2025), SIFT achieves

a 1.03% accuracy improvement over the vanilla
CoT (97.3%) on MATH-500 (Lightman et al.,
2023). Additionally, on AIME2024 (of Amer-
ica, 2024) and AIME2025 challenges, it brings
a significant accuracy improvement of 7.34% and
7.54% respectively (see Figure 2), establishing a
new state-of-the-art in the open-source commu-
nity. We also witness a striking performance im-
provement for small-to-medium-sized models in-
cluding Llama3.2-3B-Instruct (Dubey et al., 2024),
Llama3.1-8B-Instruct (Dubey et al., 2024), and
Qwen2.5-7B-Instruct (Yang et al., 2024).

2 Related Work

Reasoning has long been a significant challenge
for LLMs. Several approaches aim to improve
the reasoning capabilities of LLMs. These meth-
ods can be broadly categorized into training-based
alignment, search and planning enhancement, and
inference-time augmentation.

Some approaches focus on aligning the reason-
ing path of LLMs through Supervised Fine-Tuning
(SFT) or Reinforcement Learning (RL). STaR (Ze-
likman et al., 2022) enables the model to use re-
ject sampling and learn from its mistakes by ra-
tionalizing its outputs, progressively enhancing
its reasoning capabilities. Quiet-STaR (Zelikman
et al., 2024) generates multiple rationales in par-
allel before each output token, thereby improving
the model’s ability to predict subsequent tokens. V-
STaR (Hosseini et al., 2024) employs a dual-system
framework where the generator creates preference
pairs to train the verifier, which then scores the
candidate solutions.

Additionally, a significant body of work aims to
enhance model reasoning abilities through search
and planning. Q* (Wang et al., 2024) formalizes
multi-step reasoning as a Markov Decision Pro-
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LLM

LLM

LLM

Query
Carla is downloading a 200 GB file. Normally she can
download 2 GB/minute, but 40% of the way through the
download, Windows forces a restart to install updates, which
takes 20 minutes. Then Carla has to restart the download
from the beginning. How load does it take to download the
file?

Incorrect Sticker: 
Key constraints neglected (underline above)

Conditions:
1. Carla is downloading a 200 GB file.
2. Normally she can download 2 GB/minute.
3. Windows forces a restart to install updates, which takes 20
minutes.
4. Then Carla has to restart the download from the beginning.

Question:
How long does it take to download the file?

Query

(...) However, she has to choose between the boots and two
pairs of high heels that together cost five dollars less
than the boots (...) how many dollars are the boots?

Correct Sticker

Conditions:
(...) The two pairs of high heels together cost five
dollars less than the boots. (...)

Question:
How many dollars are the boots?

Incorrect Prediction: Misinterpretation (underline above)

(...) The boots cost five dollars less than the two pairs of
heels, (...)

Figure 3: Illustration of factual drift in our investigation on Stickers. Left: During query-to-sticker generation.
Right: During prediction generation from the sticker.

cess (MDP) and uses the A* algorithm to guide the
model in selecting the optimal next step. rStar (Qi
et al., 2024) employs Monte Carlo Tree Search
(MCTS) to enhance the model’s reasoning explo-
ration and uses Mutual Verification to evaluate the
reasoning paths. SR-MCTS (Zhang et al., 2024a)
combines Self-Refinement and MCTS to iteratively
improve and optimize newly discovered reasoning
paths. MCTS-DPO (Xie et al., 2024) leverages
MCTS to collect step-level preference data and
uses Decision-Policy Optimization (DPO) to re-
fine the model’s policy through multiple iterations.
ReST-MCTS* (Zhang et al., 2025) takes a broader
approach in evaluating reasoning paths, consid-
ering not only the correctness of the results but
also the quality of the reasoning process, such as
the shortest path and error-free intermediate steps.
CoRe (Zhu et al., 2022) constructs a dual-system
approach with System 1 for generation and System
2 for verification, training, and reasoning simultane-
ously to simulate human-like reasoning processes.
AlphaMath (Chen et al., 2024) treats the output of
the LLM as an action and integrates a value model
and a policy model, iteratively training the model
to enhance its reasoning capabilities.

There are also methods that focus on enhancing
reasoning abilities during inference. Innovations in
prompt engineering have contributed to advance-
ments in reasoning capabilities. Chain-of-Thought
(CoT) prompting (Wei et al., 2022a; Kojima et al.,
2022) guides models in stepwise reasoning, such
as by manually annotating natural language ratio-
nales or appending “Let’s think step by step” after
questions. Auto-CoT (Zhang et al., 2022) clusters
questions and uses zero-shot Chain-of-Thought to

generate reasoning chains, which are then used as
prompts to guide the model’s answers. ToT (Yao
et al., 2023) removes the constraints of chain struc-
tures by incorporating tree structures and search
algorithms, allowing models to explore widely
during reasoning. The seminal Self-Consistency
method (Wang et al., 2023a) aggregates answers
through majority voting over multiple reasoning
paths, while Madaan et al. (2024) introduces itera-
tive self-correction via feedback loops.

However, these methods focus on refining how
models reason rather than ensuring they address
the correct problem. Our approach differs by pri-
oritizing factual comprehension to ensure proper
problem understanding before answer generation.

3 Method

We first presents the factual drift issue during LLM
reasoning and then elaborates on the proposed Stick
to the Facts (SIFT) approach. Find more discussion
on the definition of Sticker in Appendix A.

3.1 Factual Drift in LLM Reasoning

We define factual drift as the phenomenon where
the LLM reasoning fails due to misaligned com-
prehension of the query context rather than flawed
reasoning logic. This occurs when LLMs neglect
key constraints, misinterpret semantic relationships,
or hallucinate non-existent conditions during rea-
soning procedures.

We show that factual drift can be a system-
atic failure mode of general LLM problem-solving
processes beyond reasoning. Specifically, we an-
alyze the error statistics of both Qwen2.5-7B-
Instruct (Yang et al., 2024) and Llama3.2-3B-
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Qwen2.5-7B-Instruct
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Llama3.2-3B-Instruct

Factual Drift Other Errors

Figure 4: Distribution of error types for Qwen2.5-7B-
Instruct and Llama3.2-3B-Instruct on the GSM8K test
set. The factual drift errors are highlighted in orange and
account for a non-negligible proportion in both models.

Query

Josh decides to try flipping a house.  He buys a house for
$80,000 and then puts in $50,000 in repairs.  This increased
the value of the house by 150%.  How much profit did he
make?

Prediction: Self-verification in reasoning content
<think> (...) Now, the problem says that the repairs 
increased the value of the house by 150%. Wait, I need to 
make sure I understand this correctly. Does that mean the 
increase is 150% of the original value, or 150% of the repair 
cost? Hmm. Let's read the sentence again: "This increased 
the value of the house by 150%." The pronoun "this" refers to 
the repairs. So, putting in $50,000 in repairs increased the 
value by 150% of the original value? Or 150% of the repair 
cost? (...)
(...) The problem states: "(...)" So
(...) The problem says (...)
(...) The problem states "(...)". (...) But it just says (...)
But the problem doesn't specify that the 150% is a return on 
the repair cost. It says "increased the value of the house by 
150%". So (...)
Wait, there's a difference between "increased by" and 
"increased to". (...) "increased the value of the house by 
150%" means (...) </think> (...)

Figure 5: Self-verification occurs during DeepSeek-
R1’s reasoning, where the model revisits the query, fo-
cusing on key information, and paraphrases it.

Instruct (Dubey et al., 2024) on samples from the
GSM8K test set (Cobbe et al., 2021). For each
model, we distinguish between two primary error
types: those resulting from factual drift and those
arising from other causes. To annotate these er-
rors, we utilize GLM-4-Plus (GLM et al., 2024),
with prompts detailed in Appendix B. The result-
ing distributions of error types for both models
are summarized in Figure 4. As shown, a non-
negligible proportion of errors in both models can
be attributed to factual drift, highlighting its signif-
icance as a failure mode in LLM reasoning.

Another example is from our experiment on de-
veloping Stickers. When we use Llama3.2-3B-
Instruct (Dubey et al., 2024) to construct Stick-
ers for GSM8K test data (Cobbe et al., 2021), we
observe extensive factual drift errors, with typical

Algorithm 1: LLM reasoning with SIFT
Input :Query Q
Output :Final result of Q

S1 ← SG(Q) ; // Sticker generation
P1 ← CP(Q,S1);
if P1 ̸=; then

return P1 ; // Exit if consensus
else

// Forward
S2 ← FO(Q,S1), P2 ← CP(Q,S2);
if P2 ̸=; then

return P2

else
// Inverse
S3 ← FO(Q, IG(PQ,S2));
P3 ← CP(Q,S3);
return P3 if P3 ̸=; else LLM(Q)

end
end

Algorithm 2: Consensus Prediction (CP)
Input :Query Q, Sticker S
Output :Prediction from Q & S, or ; (unequal)

PS ← LLM(S) ; // Sticker-only
PQ,S ← LLM(Q,S) ; // Query+Sticker
if EQUIVALENT(PS , PQ,S) then

// Consensus validation
return PQ,S

else
return ;

end

examples displayed in Figure 3. As shown, when
mapping the query to Stickers, LLMs may neglect
the original constraints. Moreover, even when the
Sticker is correct, LLMs may still misunderstand
it, especially when the question is complex or uses
less familiar phrasing. The above observations also
highlight that more optimization mechanisms re-
garding the Sticker are required to make it (i) more
aligned with the query and (ii) able to be easily
understood and leveraged by the target LLM.
Self-verification of Advanced Reasoning Models.
We note that, for advanced models like DeepSeek-
R1 (Guo et al., 2025), the reasoning process
sometimes involves self-verification—revisiting
the original problem, focusing on key information,
and paraphrasing it. As illustrated in Figure 5,
DeepSeek-R1 often states, “Let’s read the sentence
again: . . . ” or “Wait, the problem states: . . . ” as
part of its thought process, helping to deepen its
understanding of the context or self-correct.

The excellent performance of such advanced rea-
soning models underscores the efficacy of mitigat-
ing factual drift to make the model better respect
the context. Nevertheless, this self-verification
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LLM

LLM

LLM

Sticker Generation (SG)

Query Sticker

LLM

Consensus Prediction (CP)

Sticker

Query

Sticker

Prediction
from Sticker

Prediction
from

query+Sticker

Optimized Sticker (Align with the query)

Conditions:
1. The price of one glass is $5.
2. Every second glass costs only 60% of (...)
3. Kylar wants to buy 16 glasses.

Question:
What is the total amount Kylar needs to pay for 16 glasses?

Forward Optimization (FO)

Query

Kylar went to the store to buy glasses for his new apartment.
One glass costs $5, but every second glass costs only 60% of
the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Incorrect Sticker (Red for error, blue for omission)
Conditions:
1. The cost of a regular glass is $5.
2. The 16th glass costs 60% of the price of a regular glass.

Question:
What is the total cost of the glasses Kylar needs to pay?

Final Optimized Sticker
Conditions:
1. The train travels from the first city to the second
city. (Added)
2. The distance from the second city to the third
city is 100 miles. (Revised sentence structure)
3. The distance from the third city to the first city
is 50 miles less than the combined distance of the
first two legs. (Rephrased)
4. The combined distance of the first two legs is 75
+ 100 = 175 miles. (Rephrased) (...) 

Question: (...)

Inverse Generation (IG)

Original Sticker (Correct but suboptimal)

Conditions:
1. A train travels between 3 different cities.
2. It goes 75 miles from the first city to the second
city. (Redundant Information)
3. It goes 100 miles from the second city to the
third city.
4. The distance from the third city to the first city
is 50 miles less than the combined distance of the
other two segments.
5. The combined distance of the two known
segments is 75 + 100 = 175 miles. (...)

Question: (...)

Query

Final
Optimized
Sticker

Sticker
after IG

Sticker after IG (Align with the model)
Conditions:
1. The train travels from the first city to the second
city.
2. The distance from the second city to the third
city is known.
3. The distance from the third city to the first city
is known. (...) 

Question: (...)

Original
Sticker

Prediction
from

query+Sticker

LLM

FO

Consensus?

Figure 6: Four core operations in SIFT: (i) Sticker Generation (SG), (ii) Consensus Prediction (CP), (iii) Forward
Optimization (FO), (iv) Inverse Generation (IG).

functions more as a stochastic safeguard than a sys-
tematic protocol—it may not always be activated
across different reasoning scenarios. Consequently,
the risk of factual drift persists. We consequently
develop the novel SIFT framework to address this.

3.2 Stick to the Facts (SIFT)

Below, we introduce SIFT, with the algorithmic
procedure summarized in Algorithm 1. Refer to
Figure 6 for the visualization of the four involved
operators and Appendix E for the used prompts.
Sticker Generation (SG). To address the factual
drift issue identified in LLM reasoning, we focus
on encoding the core information of the query into
a compact and explicit form, which we call the
Sticker. This process emphasizes the essential con-
straints and facts from the original query, aiming to
make critical information more salient to the model
and reduce the risk of misinterpretation or omission
during downstream reasoning.
Consensus Prediction (CP). Once a Sticker is
generated, the model can produce answers in two
ways: using the Sticker alone, or using both the

Sticker and the original query as input. If the an-
swers differ, this indicates high uncertainty or po-
tential misalignment in the model’s understanding—
suggesting possible factual drift. If the answers
agree, there is a lower risk of factual drift and the
prediction is more likely to be reliable. We formal-
ize this procedure as Consensus Prediction (CP),
with details summarized in Algorithm 2, which
serves as a factual validation mechanism.

Unlike traditional self-consistency methods that
aggregate diverse reasoning paths (Wang et al.,
2023a), CP focuses on verifying semantic invari-
ance across different problem representations.
Forward Optimization (FO). Despite careful ini-
tial construction, Sticker Generation itself may still
be subject to factual drift, where key constraints
are inaccurately captured or misunderstood. To
mitigate this, we introduce Forward Optimization
(FO): starting from the generated Sticker, we re-
fine it further using both the original query and
the initial Sticker as context. This step helps to
better anchor the Sticker to the true semantics of
the source query, correcting misinterpretations and
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clarifying ambiguous information (e.g., fixing “the
16th glass” to “every second glass” as in Figure 6).
Inverse Generation (IG). A noteworthy observa-
tion in LLM reasoning is that contexts with identi-
cal semantics but different surface forms can pro-
duce different outcomes. To further address poten-
tial factual drift and better align the Sticker with
the model’s internal preferences, we propose In-
verse Generation (IG). In this step, a new Sticker
is constructed based on the model’s own predic-
tion, allowing the representation to better reflect
the reasoning patterns favored by the LLM. For
example, as shown in Figure 6, an original Sticker
might express a condition as “It goes 100 miles
from the second city to the third city,” while the
model, in its own prediction, rephrases it as “The
distance from the second city to the third city is
100 miles.” Although both statements share the
same meaning, their surface forms differ, with the
latter more consistent with the model’s reasoning
patterns. This process facilitates the refinement
of the Sticker, making its expression more closely
aligned with the model.

4 Experiments

This section first validates the effectiveness and
generalization of SIFT (Section 4.1). Next, we ex-
plore several variants (Section 4.2 & 4.3). Finally,
we include ablation studies to gain further insights
into our approach (Section 4.4 and appendix D).

4.1 Enhancing LLM Reasoning with SIFT

Models & Datasets. For details on the models and
datasets used in our experiments, see Appendix C.
Test Protocol. To isolate the effect of SIFT from
the influence of sampling, all tests are conducted
using greedy decoding, except for DeepSeek-R1.
Because the default settings of the used Volcengine
API (temperature=1.0, top-p=0.7) cannot be mod-
ified, the SIFT on DeepSeek-R1 is based on sam-
pling. Specifically, for DeepSeek-R1 on MATH-
500, we perform 3 sampling runs and report av-
erage results. For AIME2024, due to its small
size, we perform 10 sampling runs and report the
average. Additionally, we divide the entire SIFT
process into three stages: (i) Stage 1: Only SG and
CP are used. (ii) Stage 2: Building upon Stage 1,
FO is used to optimize the Sticker. (iii) Stage 3:
The complete process outlined in Algorithm 1. The
accuracy after each stage is measured: If the CP re-
sults are not aligned (;), the model’s direct answer

to the query is used instead. All evaluations are
performed on OpenCompass (Contributors, 2023).

Main Results. The results are shown in Figures 2
and 7. As observed, SIFT consistently delivers
robust and significant performance improvements
compared to traditional Zero-shot CoT across all
settings. From a methodological perspective, as
the stages increase—i.e., with the forward and in-
verse optimization of Sticker—the average num-
ber of tokens used per sample rises, and accuracy
shows an upward trend as well. From a model
standpoint, SIFT demonstrates notable effective-
ness across various scales (ranging from several
billion to hundreds of billions of parameters), ar-
chitectures (both dense and MoE), and paradigms
(traditional and reasoning models). Particularly
noteworthy is its significant impact on DeepSeek-
R1. For instance, on MATH-500, it achieves a
1.03% absolute accuracy improvement over an al-
ready exceptionally high baseline of 97.3%. On
AIME2024, it also brings a substantial absolute
accuracy increase of 7.34%. These results indi-
cate that even for advanced reasoning models like
DeepSeek-R1, sticking to the facts remains crucial
for optimal performance.

4.2 Iterative Optimization

In this section, we explore whether the Sticker can
be continually optimized in SIFT.

Setup. We test with Llama3.2-3B-Instruct (Dubey
et al., 2024) on the GSM8K dataset (Cobbe et al.,
2021). Specifically, we conduct multiple optimiza-
tion repeats for Stage 2 and Stage 3. The other
settings are the same as in Section 4.1.

Results. The experimental results are shown in
Figure 8. We observe that SIFT shows a test-time
scaling, with the performance improving as the av-
erage number of tokens per sample increases. For
Stage 2, the saturation is rapid, but adding Stage 3
can result in an additional, noticeable performance
boost. Nevertheless, the most significant gains are
observed at the first repeat. One possible expla-
nation is that extracting the optimal Sticker for
GSM8K is relatively easy. In more complex con-
ditions, however, extracting a good Sticker may be
harder, requiring more repeats to achieve optima.
Additionally, since we use a training-free approach
for SIFT, a model trained to exclusively optimize
Sticker could lead to better iterative results.
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Figure 7: Comparison of SIFT and traditional Zero-shot CoT across multiple models and datasets. We divide SIFT
into three stages: Stage 1 only uses SG & CP, while Stage 2 and Stage 3 optimize the Sticker through forward
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4.3 Sample Augmentation

In this section, we explore the use of Self-
Consistency (SC) (Wang et al., 2023a) to enhance
SIFT, demonstrating how SIFT and SC can be ef-
fectively coupled together.

Specifically, SIFT and SC can be integrated
in three ways: (i) Sticker-Consistency: Multiple
Sticker samples are drawn, and consistency is ap-
plied to the predictions generated by each Sticker
or by the query combined with each Sticker. (ii)
Prediction-Consistency: Consistency is applied
separately to predictions generated using Sticker
alone and those generated with Query + Sticker,
considering their respective samples. (iii) SIFT-

Consistency Stage 1 Stage 2 Stage 3Dimension

Greedy 77.56 78.62 79.23
(i) Sticker 78.85 79.65 80.29
(ii) Prediction 85.37 86.20 86.28
(iii) SIFT — — 88.25

Table 1: Performance comparison of different consis-
tency integration strategies for SIFT across multiple
stages. The results show that integrating SIFT with Self-
Consistency (Wang et al., 2023a) leads to significant per-
formance improvements, with SIFT-Consistency achiev-
ing the highest accuracy boost.

Consistency: End-to-end sampling is conducted
across the entire SIFT to ensure consistency. We
test Llama3.2-3B-Instruct (Dubey et al., 2024) on
GSM8K (Cobbe et al., 2021) with a temperature of
0.6, a top-p of 0.9, and 10 sampling iterations.

The results of these configurations are presented
in Table 1. It is observed that our method can be
combined with SC to achieve better performance.
Specifically, integrating SIFT consistently results
in performance improvements. Notably, SIFT-
Consistency provides the most significant boost,
demonstrating that the simplest sampling method—
end-to-end—can lead to substantial performance
gains for SIFT.
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Only Sticker Query & Sticker Only Sticker Query & Sticker Only Sticker Query & Sticker

Figure 9: Venn diagrams illustrating the accuracy of predictions obtained from the “Only Sticker” and “Query &
Sticker” representations at each stage. The percentages represent the accuracy where both methods correctly predict
the same outcomes (i.e., the overlapping purple region). From Stage 1 to Stage 2, the accuracy increases by 6.14%,
and from Stage 2 to Stage 3, it increases by 4.85%. The results show the significant impact of Forward Optimization
(FO) and Inverse Generation (IG) in improving prediction alignment from the two representations.
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Figure 10: Comparison of SIFT and standard Self-
Consistency (SC) in terms of accuracy versus average
tokens per sample. The solid lines represent the out-
put tokens used by SC (blue) and SIFT (red), while the
dashed lines indicate the total tokens consumed. The “*”
symbol in the legend denotes that the total tokens for
SIFT fluctuate due to the additional formatting and ex-
ample constraints used during inference. SIFT achieves
comparable accuracy to SC while using significantly
fewer output tokens, demonstrating its efficiency.

4.4 Ablation

Evolution of Consensus Across Optimization
Stages. The efficacy of SIFT hinges on improv-
ing agreement between predictions derived from
Sticker-only and Query + Sticker representations
through iterative refinement. To quantify this
alignment, We select Llama3.2-3B-Instruct (Dubey
et al., 2024) on the GSM8K dataset (Cobbe et al.,
2021). We plot the accuracy of predictions ob-
tained using “Only Sticker” and “Query & Sticker”
after each stage, visualized in the Venn diagram in
Figure 9. As shown, both FO and IG significantly
improve the alignment of the predictions from the
two representations.
Comparison of SIFT and Standard Self-
Consistency. Under the same sampling condi-
tions (temperature = 0.6, top-p = 0.9), we com-
pare the performance of standard Self-Consistency
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SIFT-Consistency Self-Consistency

Figure 11: Comparison of SIFT-Consistency and Self-
Consistency across different numbers of sampled re-
sponses per query. SIFT-Consistency consistently out-
performs Self-Consistency.

(SC) with SIFT. The evaluation is conducted using
Llama3.2-3B-Instruct on GSM8K. For SIFT, we
sample 10 times and take the average. The results
are shown in Figure 10. Regarding the total tokens
used by both methods, the performance curve of
SIFT generally remains above that of SC. Regard-
ing output tokens, which are more costly during
inference, SIFT demonstrates a clear advantage
over SC. Specifically, SIFT achieves a comparable
performance level while using only two-thirds of
the output tokens required by SC.

Comparison of SIFT-Consistency and Standard
Self-Consistency. In the same sampling environ-
ment (temperature = 0.6, top-p = 0.9), we compare
the performance of standard Self-Consistency (SC)
decoding with SIFT-Consistency, which integrates
SIFT with SC. We conduct the evaluation using
Llama3.2-3B-Instruct on the GSM8K dataset. The
results are shown in Figure 11. As shown in the
figure, SIFT-Consistency consistently outperforms
standard SC across different sampling iterations.

For more ablations, see Appendix D.
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5 Conclusion

This study presents Stick to the Facts (SIFT), a
training-free framework that grounds LLM rea-
soning in contextual facts through iterative self-
refinement. Our approach enhances reasoning reli-
ability without requiring extra data or training.

Limitations

This work focuses on the training-free setting and
SIFT require additional tokens. In the future, SIFT
could be internalized into small LLMs through ded-
icated training, enabling more efficient on-device
reasoning. Separately, SIFT can be applied to re-
duce the output token length of reasoning models,
improving computational efficiency without com-
promising accuracy. Additionally, Inverse Gener-
ation in SIFT offers new inspiration for data gen-
eration in inverse synthesis tasks. Further studies
are needed to generalize its effectiveness across a
wider range of tasks.
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A Sticker Framework

The design of the Sticker framework stems from a
critical gap in LLM reasoning: unstructured natural
language queries often entangle factual conditions
with problem-solving objectives, creating ambigu-
ity that leads to factual misalignment. To resolve
this, we explicitly separate the input queries into
two components: Conditions and Question. These
components form the structure of the Sticker. An
example of an original query and its corresponding
Sticker is showed in Figure 1.

B Prompts for Error Type Annotation

To annotate the error types in the GSM8K eval-
uation, we used GLM-4-Plus (GLM et al., 2024)
with the following prompt. For each model pre-
diction, the model is provided with the original
question, the standard answer, and the student’s
(model’s) answer. The prompt asks the model to
determine whether the error was due to a misun-
derstanding of the question (factual drift, labeled
as read error) or a reasoning/calculation mistake
(labeled as reason error).

You are an experienced teacher.
Below, I will provide the
standard answer, the student’s
answer, and the original
question. Please identify
whether the student’s error is
due to misunderstanding the
question or an actual mistake
in reasoning or calculation.

If the student misunderstood
the question, output: “read
error”.
If the student made a mistake
in reasoning or calculation,
output: “reason error”.

Question: {question}
Standard Answer: {gold}
Student’s Final Answer:
{prediction}

C Models & Datasets

We test SIFT on a diverse set of state-of-the-art
LLMs, including Llama3.2-3B-Instruct (Dubey
et al., 2024), Llama3.1-8B-Instruct (Dubey et al.,

2024), Qwen2.5-7B-Instruct (Yang et al., 2024),
and DeepSeek-R1 (Guo et al., 2025). These
models cover a range of sizes, architectures
(Mixture-of-Experts (MoE) vs. dense), and rea-
soning capabilities. We select well-established
reasoning benchmarks, including GSM8K (Cobbe
et al., 2021), MATH-500 (Lightman et al.,
2023), GPQA-Diamond (Rein et al., 2023), and
AIME2024/2025 (of America, 2024).

D More Results

Model Stage 1 Stage 2 Stage 3
Stage 3

from Stage 1

Llama 77.56 78.62 79.23 74.07
Qwen 92.57 92.95 92.87 90.90

Table 2: Performance comparison of Llama3.2-3B-
Instruct and Qwen2.5-7B-Instruct on GSM8K, with and
without Stage 2. The results show a performance drop
when skipping directly from Stage 1 to Stage 3.

FO Required Before Adding IG. We investigate
whether it is possible to skip directly from Stage
1 to Stage 3. We select Llama3.2-3B-Instruct and
Qwen2.5-7B-Instruct on GSM8K. All settings re-
main the same as in Section 4.1, except for skipping
directly to Stage 3 after Stage 1. The results are
shown in Table 2. As observed, skipping Stage
2 leads to a significant performance drop. This
indicates that during the initial optimization of
Sticker, FO is essential to align Sticker with the
query, followed by aligning it with model cogni-
tion. This is consistent with our experience, where
the effectiveness of Sticker depends primarily on
its correctness—ensuring no factual drift—before
considering its alignment with the model.

Strategy Accuracy

PQ,S if PQ,S=PS else PQ 77.56
PS if PS=PQ else PQ,S 77.02
PQ if PQ=PQ,S else PS 76.04

Table 3: Performance comparison of various CP strate-
gies. Here, PQ, PS , and PQ,S represent the predictions
generated from query, Sticker, and query augmented
with Sticker, respectively. The first row of the table
represents the strategy used in SIFT, which is shown to
be the optimal approach.

Optimal Consensus Prediction Strategy. CP pro-
cess, our strategy involves comparing predictions
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from Sticker and query + Sticker. If the predictions
are consistent, we adopt the prediction from Query
+ Sticker; otherwise, we use the prediction directly
from query. We validate this as the optimal strat-
egy. Several alternative strategies were evaluated
using Stage 1 results of Llama3.2-3B-Instruct on
the GSM8K dataset, as shown in Table 3. The re-
sults demonstrate that our CP strategy is effective,
aligning with the prior analysis in Section 3.2.

Strategy Factual Drift Error Rate (↓)

Vanilla CoT 25.93
SIFT (Stage 1) 15.30
SIFT (Stage 2) 15.09
SIFT (Stage 3) 14.73

Table 4: Factual drift error rates on GSM8K using
Qwen2.5-7B-Instruct. The results show a progressive
reduction in factual drift through the three stages of the
SIFT method, compared to the baseline Vanilla CoT.

Factual Drift Mitigation. SIFT employs a two-
stage optimization process (forward and backward
passes) to refine Stickers, specifically designed
to mitigate Factual Drift—a prevalent error type
where model responses diverge from original facts.
To quantify this effect, we evaluate Qwen2.5-7B-
Instruct on GSM8K, measuring the percentage of
incorrect answers where the first error is caused by
Factual drift, as shown in Table 4.

E Prompting for SIFT

In this section, we present the complete prompt
formats used in the SIFT process (see Figures 12
to 15 for details).

Prediction  Sticker
Given the prediction provided below, reverse-engineer
the abstract that led to it. The abstract should
include both the conditions and the question.

Abstract Format:

`
**Conditions:**
1. [Condition 1]
2. [Condition 2]
...(add more conditions as needed)  

**Question:**
[Clearly state what is being asked.]
`

Requirements:
1. Conditions: 
    - Clearly list all the given information. 
    - Write each condition on a separate line,
numbered sequentially. 
    - EACH CONDITION MUST BE ATOMIC AND INDIVISIBLE
(i.e., it cannot be divided into two sub-conditions). 
    - DO NOT INCLUDE ANY PART OF THE REASONING
PROCESS!!!
2. Question: 
    - Summarize what is being asked in one clear
sentence. 
    - Remove all known conditions.

Example:

Prediction:(...)

Expected Output:(...)

Prediction to Process:

`
{prediction}
`

Please provide your output strictly following the
ABSTRACT FORMAT without other unnecessary words.

Figure 12: Prompt format for generating a Sticker in-
versely from the prediction.

Sticker  Prediction
{Sticker}

Please reason step by step, and put your final answer
within \boxed{}.

Query + Sticker  Prediction

{Query}
{Sticker}

Please reason step by step, and put your final answer
within \boxed{}.

Query  Prediction
{Query}
Please reason step by step, and put your final answer
within \boxed{}.

Figure 13: Prompt format for generating predictions.
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Query  Sticker
Extract fundamental elements from the following query
using atomic decomposition methodology.

Requirements:
1. Conditions: Clearly list all the given information.
Write each condition on a separate line, numbered
sequentially.
2. Question: Summarize what is being asked in one clear
sentence. Remove all known conditions.

Output Format:

`
**Conditions:**
1. [Condition 1]
2. [Condition 2]
...(add more conditions as needed)  

**Question:**
[Clearly state what is being asked.]
`

Example:

Query:(...)

Expected Output:(...)

Query to Process:

`
{question}
`

Please provide your output strictly following the output
format without other unnecessary words.

Figure 14: Prompt format for generating a Sticker from
the query.

Query + Sticker  Sticker
Given a query and a candidate abstract (which includes
conditions and a question), output an optimized
abstract.

Requirements:
1. Definitions of Conditions and Question:
    * Conditions: Clearly list all the given
information. Write each condition on a separate line,
numbered sequentially.
    * Question: Summarize what is being asked in one
clear sentence. Remove all known conditions.
2. Focus of Optimization: Compare the Original Query
with the candidate Abstract. Identify and fix:
    * Missing/incorrect/redundant conditions
    * Imprecise question phrasing
    * Mathematical/logical inconsistencies
    * Output format error

Output Format:

`
**Conditions:**
1. [optimized Condition 1]
2. [optimized Condition 2]
...(add more conditions as needed)

**Question:**
[Optimized question phrasing. Clearly state what is
being asked.]
`

Some Examples:(...)

Input to Process:

`
Original Query:
{question}

Candidate Abstract:
{abstract}
`

Please provide your output strictly following the output
format without other unnecessary words.

Figure 15: Prompt format for forward optimization of
the Sticker.
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