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Abstract

In Embedding Based Retrieval (EBR), Approx-
imate Nearest Neighbor (ANN) algorithms are
widely adopted for efficient large-scale search.
However, recent studies reveal a query out-of-
distribution (OOD) issue, where query and base
embeddings follow mismatched distributions,
significantly degrading ANN performance. In
this work, we empirically verify the general-
ity of this phenomenon and provide a quanti-
tative analysis. To mitigate the distributional
gap, we introduce a distribution regularizer
into the encoder training objective, encourag-
ing alignment between query and base embed-
dings. Extensive experiments across multiple
datasets, encoders, and ANN indices show that
our method consistently improves retrieval per-
formance.

1 Introduction

Embedding-Based Retrieval (EBR) leverages deep
encoders, especially Pre-trained Language Mod-
els (PLMs) (Devlin et al., 2018; Liu et al., 2019),
to convert text into high-dimensional embeddings
(Huang et al., 2020), enabling fast similarity search
via metrics like inner product or Euclidean distance.
EBR has been widely used in web search (Mitra
et al., 2017; Zhang et al., 2024), recommendation
(Zhang et al., 2023), QA (Karpukhin et al., 2020;
Sachan et al., 2023), and dialogue systems (Lewis
et al., 2020). To support large-scale scenarios with
billions of items, modern retrieval systems combine
EBR with Approximate Nearest Neighbor (ANN)
algorithms (Johnson et al., 2019; Shrivastava and
Li, 2014), achieving sub-linear search time with
acceptable accuracy.

Training objectives in EBR typically aim to en-
hance retrieval accuracy by separating positive and
negative examples in the embedding space (Zhao
et al., 2024). Contrastive learning with bi-encoder
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models (Hadsell et al., 2006) is widely adopted:
it pulls positive pairs closer and pushes negatives
apart, leading to more discriminative embeddings.
This paradigm has proven effective across many
PLM-based retrievers (Karpukhin et al., 2020; Qu
et al., 2020; Gao and Callan, 2021). The trained
encoder supports efficient online search by embed-
ding queries for Approximate Nearest Neighbor
(ANN) based retrieval over a precomputed candi-
date index (Huang et al., 2020).

While contrastive training improves discrim-
inative power between positives and negatives,
it also amplifies the distributional gap between
query and base embeddings. This issue, first
identified in multi-modal training (Liang et al.,
2022) and later observed in text-only settings
(Chen et al., 2024b), causes query embeddings
to become out-of-distribution (OOD) relative to
the base data. Such distributional mismatch vio-
lates the assumption—underlying most ANN al-
gorithms—that query and base embeddings follow
the same distribution, leading to degraded retrieval
accuracy (Chen et al., 2024a).

In practice, retrieval encoders are often trained
without considering ANN-specific constraints, un-
der the assumption that embeddings optimized for
KNN will generalize to ANN. However, this over-
looks the impact of OOD queries, resulting in sub-
stantial yet under-recognized performance drops.

Recent methods like OOD-DiskANN (Jaiswal
et al., 2022) and RoarGraph (Chen et al., 2024a)
improve ANN robustness by incorporating query
information during index construction. Though
effective, these methods focus on the index side
and leave the root cause—OOD query embed-
dings—Ilargely unaddressed.

This work empirically shows that query embed-
dings in retrieval tasks are often OOD relative to
base embeddings, degrading ANN performance.
We employ Maximum Mean Discrepancy (MMD)
(Gretton et al., 2006) to quantify the discrepancy,
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and derive a training-time regularizer to reduce the
discrepancy and enhance retrieval robustness.
Unlike prior work (Jaiswal et al., 2022; Chen
et al., 2024a) that improves ANN indices to toler-
ate OOD queries, we aim to mitigate the root cause
by reducing the OOD effect at the embedding level
during encoder training. To our knowledge, this is
among the first works to explicitly target this over-
looked distribution gap in an end-to-end text-to-text
retrieval setting, where query OOD has critical im-
pact on ANN accuracy.
Contributions. We summarize our main contribu-
tions as:

e We reveal and quantify the distribution gap
between query and base embeddings, show-
ing query OOD is common and harms ANN
search.

e We propose a simple training-time distribution
regularizer to reduce this gap without adding
inference overhead.

e Extensive experiments on diverse encoders,
datasets, and ANN methods verify consistent
retrieval improvements.

2 OO0OD in ANN Search

Retrieval Task Setting. In embedding-based re-
trieval, query ¢ and base data y are encoded by
E, and E, into embeddings q = FE,(q) and
y = Ey(y), with distributions P, and P,. Sim-
ilarity sim(-,-), usually inner product, measures
their closeness.

The training of the encoders involves triplets
{q,y*, Y~} with positive 4T and negatives Y,
optimized by InfoNCE loss (Oord et al., 2018):

Tyt
e YT

ed'yt/T 4 Zye/\/ edy/7T’

Leon = — 10g (1)
where 7 is temperature. After training, base embed-
dings Y = {yi1,...,yx} are indexed with ANN
for efficient search given q.

The Out-Of-Distribution (OOD) Issue. Our
definition of OOD follows (Jaiswal et al., 2022;
Chen et al., 2024a), where query embeddings q
are OOD relative to base embeddings y if their
distributions differ substantially. This differs from
treating individual outliers as OOD; here, OOD de-
scribes the entire query embedding distribution P,
lies outside the base embedding distribution P,,.
To quantify this discrepancy, we use the squared
Maximum Mean Discrepancy (MMD) (Gretton

et al., 2006) between the query and base embedding
distributions, denoted as:

2

MMD?(P,, P,) = ||Ep,ld] — Ep,ly]||", (2

Based on the base embedding distribution, we
compute single-point MMD scores for each query
embedding. As shown in Figure 1, in-distribution
(ID) embeddings (sampled from the base set) yield
lower scores, while OOD embeddings exhibit sig-
nificantly higher values, confirming the presence of
OOD in text-to-text retrieval consistent with prior
ANN observations (Jaiswal et al., 2022).
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Figure 1: MM D? between ID/OOD query and base
embeddings.

Challenges of Serving OOD Queries in ANN
Search. OOD queries are challenging to serve in
ANN searches because they break the fundamental
assumption that queries and base data share the
same distribution, leading to significantly larger
search spaces (Chen et al., 2024a). This results
in inefficient search convergence, requiring more
computations, memory access, and extended search
paths.

To demonstrate this issue, we evaluated two
ANN algorithms, IVF and HNSW, on the MS-
MARCO dataset (Nguyen et al., 2017) using em-
beddings from coCondenser (Gao and Callan,
2021) and RetroMAE (Xiao et al., 2022). OOD
queries were taken from MSMARCO dev set,
while the ANN indices were built on the base
embeddings. We compared the search complex-
ity—measured by candidates accessed—for ID and
OOD queries at equal recall. As shown in Figure 2,
OOD queries require significantly higher complex-
ity, resulting in longer search times and making
it difficult to achieve satisfactory recall efficiently.
This suggests ANN indexes constructed on base
distributions poorly generalize to OOD queries.

Contrastive Learning Amplifies Distribution
Gap. We empirically observe that contrastive
learning with InfoNCE increases the distance be-
tween query and base embeddings. During fine-
tuning on MSMARCO with coCondenser and
RetroMAE, we monitor the average ¢» distance
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Figure 2: Search efficiency for ID and OOD queries.
“coCO” denotes coCondenser, “Retro” denotes Retro-
MAE.

between query—positive pairs. Since the squared ¢
distance can serve as a proxy measure for MMD
with a linear kernel (proof in Appendix A), it en-
ables us to track distributional shift more conve-
niently. As shown in Figure 3, the /5 distance
steadily increases during training, indicating that
InfoNCE implicitly enlarges the query—base distri-
bution gap.
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Figure 3: Increasing ¢, distance in contrastive learning.

3 Solution to the OOD Issue

Section 2 highlights the OOD issue in retrieval
and its harm to ANN search, with the squared /2
distance showing a growing trend as a proxy for
distributional drift. In this section, we propose a
method to mitigate OOD by explicitly regularizing
the drift via instance-level decomposition of MMD.

For a single query embedding q ~ P, and
its corresponding document embeddings {y ™ U
Y~} ~ P,, we construct the regularization loss
directly from the MMD decomposition:

Lreg = % Z

ye{yTuy-}

la—yl3 3)

where N denotes the number of document sam-
ples. This formulation preserves the core property
of MMD while avoiding computational overhead
from covariance estimation.

The complete training objective combines con-
trastive learning with MMD-aware regularization:

L= Econ + )\Erega (4)

where A governs the trade-off between instance
discrimination and distributional alignment. This
principled design ensures that the learned embed-
dings simultaneously maximize semantic discrim-
inability and minimize population deviation from
the target distribution.

Unlike contrastive learning loss, which opti-
mizes relative distances for discrimination, our
regularization imposes a global constraint by uni-
formly reducing the distance between all query and
base embeddings. This suppresses distributional
drift—reflected by rising MMD—and preserves
distributional alignment. Incorporating L;c alone
improves ANN search performance with negligible
overhead and no added training or search complex-
ity. Further discussion of the /5 regularization is
provided in the Appendix B.

4 Experiments

In this section, we evaluate our method on two stan-
dard retrieval benchmarks, MSMARCO (Nguyen
et al., 2017) and Natural Questions (Kwiatkowski
et al., 2019), measuring recall versus queries per
second (QPS) following (Aumiiller et al., 2020).
Experiments use two strong PLM-based encoders,
coCondenser (Gao and Callan, 2021) and Retro-
MAE (Xiao et al., 2022). ANN search is conducted
with five algorithms: IVF, IVFPQ, HNSW (via
FAISS), DiskANN, and RoarGraph (Chen et al.,
2024a). The distribution regularization weight A
is set to 0.01 to balance with contrastive loss, and
training follows official fine-tuning setup. More im-
plementation details are provided in Appendix E.

Main Results Figure 4 shows the impact of
applying the distribution regularization when
fine-tuning coCondenser and RetroMAE on MS-
MARCO. Similar trends are observed on Natural
Questions in Figure 5, confirming that our method
consistently improves ANN search performance
across datasets, especially in the high-QPS, low-
recall region where the impact of OOD is more
significant.

Graph-based methods such as HNSW, Disk ANN
and RoarGraph benefit most from the regular-
ization. Even RoarGraph—designed for OOD
queries—sees substantial gains, showing that
aligning embeddings addresses the root cause of
query—base mismatch and complements index-
level robustness. IVF and IVFPQ also show clear
recall improvements despite heavy approximations.
In the low-QPS, high-recall region, improvements
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Figure 4: QPS-Recall curves of the distribution regularizer method on the MSMARCO dataset. Curves closer to the

top right of the chart indicate better performance.
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Figure 5: QPS-Recall curves of the distribution regularization method on the NQ dataset.

are less pronounced due to reduced ANN approxi-
mation, but RoarGraph still shows significant gains
in Recall@10, demonstrating the regularization’s
advantage in tight-target scenarios. At the same
recall level, the regularizer enables up to 2.6x and
4.1x speedups on coCondenser and RetroMAE, re-
spectively, highlighting efficiency improvements
under strict latency constraints.

Overall, the proposed method offers a simple yet
effective enhancement to encoder training, improv-
ing recall and latency across datasets, models, and
ANN methods.

‘o Data Type, Data Type
. * * base “base

0

(a) only contrastive loss  (b) with regularization

Figure 6: Distributions of query and base embeddings
visualized with t-SNE, comparing (a) only contrastive
loss and (b) using distribution regularization.

Impact of Regularization Figure 6 illustrates
the effect of the distribution regularization: without
it, query and base embeddings form two separate

clusters with a clear gap, consistent with (Chen
et al., 2024b); with it, the distributions become
aligned. Figure 7 further shows that the regular-
ization reduces the MMD between query and base
embeddings, as reflected by the similarity in their
distribution centers and overall shapes (cf. Fig-
ure 1). This demonstrates that our method effec-
tively mitigates OOD issues by reducing MMD,
ultimately leading to improved ANN search recall.
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Figure 7: M M D? between ID/OOD query and base
embeddings with regularization.

5 Conclusion

We identify and quantify the query OOD issue
in embedding-based retrieval and show its ad-
verse impact on ANN performance. To address
this, we propose a simple /2-based regularization
that narrows the query—base embedding gap with-
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out adding inference-time overhead. Experiments
across datasets, encoders, and ANN methods show
consistent recall gains, especially in high-QPS
regimes. As future work, we plan to include di-
rect comparisons with recent embedding models
such as GRITLM (Muennighoff et al., 2024) , and
to conduct a more systematic analysis of training
and inference efficiency.

Limitations

Our approach, while effective within the tested
scope, still presents several avenues for future im-
provement:

Scope of distribution shift. We currently moni-
tor drift only via the first-order linear-kernel MMD.
Other forms of mismatch are not explicitly handled
and could, in some situations, influence retrieval
quality.

Single-modality evaluation. Empirical valida-
tion is limited to text-to-text retrieval. Extending
the regularizer to cross-modal, multilingual, or
speech/image settings remains an open question
that warrants additional experimentation.

Tuning the trade-off parameter \. The hyper-
parameter that balances discrimination (L¢on) and
alignment (L) is selected on held-out data. While
stable in our study, the optimal A may vary across
tasks and domains, suggesting the benefit of auto-
mated or adaptive tuning strategies.
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Appendix

A Average /, Distance vs. Linear—Kernel
MMD

We prove in detail that the batch—average squared
Euclidean distance is an affine surrogate of the lin-
ear—kernel maximum mean discrepancy (MMD).!

A.1 Linear-kernel MMD revisited

Write u, = Ep_[q], pu, = Ep,[y]. For the linear
kernel k(u,v) = u' v the squared MMD is?

MMD2(anPy) = Hﬂq - I“l'yH 2' )

For brevity, we will refer to it as MMD12in in the
following.

'"Throughout we assume q ~ Pq and y ~ P, are indepen-
dent draws, which is the standard setting for MMD.
2Egq. (2) is copied from the main paper for completeness.

e iid. iid.
Derivation. Letq,q ' P, andy,y’ "< Py,

all mutually independent. Plugging the linear ker-
el into the population MMD formula yields:

MMD;, = Eq.q [a"d]+ Eyy y'y']
- 2Eq,y[qTY]
= Mg Mg+ By By — 2 g 1y
- H“q_”yH27 ©)

where independence implies E[q'q] =
Ela]"Elq] = p, g, and likewise for the other
expectations, no covariance terms survive.

A.2 /5 Distance Decomposition

Draw a single query—document pair (q,y) ~ Py X
Py. Expanding the squared Euclidean distance
gives

la-yl> =d'a+y'y —2d'y. (7

Let p, = Elq, p, = Ely], %, =
Cov(q), 3, = Cov(y), X4y = Cov(q,y). Tak-
ing expectations term by term yields

Elq"q] = [|pgl* + tr(Z),
Ely "y] = [l | + tr(Zy),
E[qTY] = ll':]r“y + tr(zqy)- 3)

Substituting (8) into (7) gives the decomposition

Ella—yl? = llreg — w1

9
+ (g + By — 284). ®

Independence. When the query and document are
sampled independently—the situation at inference
time—2,, = 0, and (9) reduces to

E(llq—yl|?*] = MMD{, + tr(2, + %), (10)

i.e. an affine function of the linear kernel MMD
(8A, Eq. (5)).

In conclusion, under independence, the expec-
tation of ||q — y||3 equals the linear—kernel MMD
plus a constant that depends solely on the marginal
variances tr(3,) and tr(3,). Since 3, and X, are
covariance matrices and thus positive semi-definite,
their traces are non-negative. It follows that

E[llq - y[*] > MMD,. (11)
This implies that an increase in the squared /5 dis-
tance necessarily indicates an increase in MMD.
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B In-Batch /; Regularization and MMD

A training batch contains one query embed-
ding q = E,(¢q) and N document embeddings
Vi, yn % P,. The additional loss is

1 N
»Creg = NZ||q_YiH2'
=1

Because every y; is independently drawn from
Py,

Ellla—yill*] = g — pyl* +tr(Sq + y),
and taking the expectation of the whole sum gives

E[Lreg] = MMD{, + tr(2, + X)), (12)

The second term on the right-hand side depends
only on the within-distribution covariance of the
two encoders. Since every covariance matrix is pos-
itive semidefinite, its trace—the sum of marginal
variances—is non-negative. Therefore

Lreg > MMDZ .

Minimizing L, thus tightens a valid upper
bound on the linear-kernel MMD: any decrease
in Lz must include an equal or larger decrease in
MMDZ, . Conversely, reducing MMDZ,_ immedi-
ately reduces L, by the same amount, establishing
the two quantities as tightly coupled.

Adding

L= ﬁcon +A ﬁreg

to the training objective therefore preserves
instance-level discrimination through L.o,, while
L;eg continuously narrows the population-level gap
between query and document embeddings, achiev-
ing distributional alignment without explicit covari-
ance estimation or added indexing cost.

C InfoNCE Loss Enlarges Linear Kernel
MMD

This subsection provides a theoretical proof that
training only with the InfoNCE loss drives the
MMD between query and document embeddings
upward when the inner product is used as the met-
ric. Consider one query embedding q = E,(g) and
K + 1 document embeddings y *, 1, ...,y i
P, . With inner-product similarity s(q,y) =q'y,
the InfoNCE loss is

exp(st/7)
exp(st/7) + Zszl exp(s,;/T)’

['con = - log

where sT = s(q,y ™) and S, = s(q, y,;)

Letd; = ||/L((1t) - u?(f) |2 and update the means
(t+1) (t

by /J,q = I_,l,q) —|— AQ’ l"’Z(Jt+1) = I'I’Z(Jt) —|— Ay. The
difference evolves as
it = dy = [0 = ) = ) — )2

= 1)+ 8) = () + 8, = ) = )|
=21y — 1) (Bg = By) + [ Ag = Ay 2 (13)

We omit the superscript ¢ since all variables in-
volved are at time ¢ in Eq 13. Given that ||A, —
Ay||* > 0 always holds, to prove that the MMD
increases, we only need to show that 2(u, —
Ny)T(Aq —Ay) >0

Proof: 2(pty — )T (Ag — A,) >0
We define softmax weights as:
es+/r B es,:/T
ot = 7 O = (14)

where Z = exp(st/7) + S0, exp(s, /7). Be-
cause all documents are drawn from the same dis-
tribution P, the scores ST, 8T, ey sy are identi-
cally distributed and exchangeable. This symmetry
yields

Elo"] =E[oy] = =E[og],

and with o 4+ S, o, = 1 we obtain

1

E[c"] =Elo,] = il

(15)
For the query embedding, omitting the constant
1/, the gradient is

K
8qﬁcon = 0'+<_y+) + ZO']C_Y,I;7
k=1

whose expectation, using (15), becomes
E[0qLcon] = E[Uﬂ(*#y) + KE[UI;] Ky

_ (K-1

= (%51
Therefore, the expected increment A, of y, in gra-
dient descent optimization can be written as:

Ay = E[-ndaLeo) = =1 ($54 )1y (16)

where 17 > 0 is the learning rate and K the number
of negatives.
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For documents, the positive receives gradient
—o " q and each negative o, q. Averaging over the
batch and over all documents gives

Ay = —n|~Elo*] + f:E[a,:J]uq
k=1

_ K—1
=N (K+1)“q'

Substituting (16) and (17) into A, — A, yields

A7)

Ay =By =n(£3) (~my +pp). (18)

Plugging (18) into the first term of (13) gives

2(lJ’q - Ny)T(Aq - Ay)

= 2n(454) (g — 1) (g + 11,)

=2 (454 g — I = 0. (19)
Since this non-negative quantity is the dominant
term in (13), the squared mean gap—and hence
the linear kernel MMD—does not decrease and
increases unless it is already zero. Therefore, the
InfoNCE loss with an inner-product metric drives
the query and document distributions farther apart
as training proceeds. This theoretical prediction
aligns with the empirical curves presented in the
main text.

D Detailed Related Work

Embedding Based Retrieval The basic process
of EBR involves generating a semantic embed-
ding from an encoder model, followed by a re-
trieval process that recalls the corresponding em-
beddings. The remarkable efficacy of Pre-trained
Language Models like BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) has established
them as foundational encoder architectures. The
bi-encoder (Bromley et al., 1993) architecture is
a common choice that typically includes a query
encoder and a base encoder to generate embed-
dings for queries and the bases (search corpus),
respectively, offering a flexible and efficient frame-
work. Recently, advanced models based on the
bi-encoder architecture (Gao and Callan, 2021; Wu
et al., 2023; Qu et al., 2020; Xiong et al., 2020;
Zhang et al., 2022; Ren et al., 2021) have been pro-
posed. These approaches have effectively enhanced
the embedding representation capabilities of mod-
els, significantly boosting search performance.

Approximate Nearest Neighbor Search ANN
search is a key component in the EBR process,
achieving the task of finding the nearest k neigh-
bors to a query embedding within the base embed-
dings. As data scales increasingly reach millions or
even billions, the exact k-Nearest Neighbors (kNN)
method, which requires traversing the entire high-
dimensional embedding dataset, becomes impracti-
cally slow. Thus, Approximate Nearest Neighbor
(ANN) algorithms have emerged. ANN algorithms
build indexes on base embeddings and return the
approximately nearest k neighbors to a query, trad-
ing off search accuracy for reduced latency. Index
building methods for ANN include cluster-based
(e.g., IVF, ScaNN (Guo et al., 2020)) and graph-
based (e.g., HNSW (Malkov and Yashunin, 2018),
DiskANN (Jayaram Subramanya et al., 2019)) ap-
proaches. Although the aforementioned methods
are effective, there remain some problems for ANN
search, as it depends heavily on the transitivity
of near neighbors between bases. Recent work
shows that OOD queries represent a new prob-
lem for ANN search (Aumiiller and Ceccarello,
2023), where the query embeddings significantly
diverge in distribution from the base embeddings,
with more difficulty in finding nearest neighbors.

Out-of-Distribution Issue As most machine
learning methods are based on the assumption of in-
dependent and identically distributed data, which is
rarely met in real-world conditions (Arjovsky et al.,
2019; Liu et al., 2021), OOD issues are prevalent
across the machine learning field, including Natural
Language Processing (NLP) (Yuan et al., 2024) and
Computer Vision (CV) (Hendrycks and Gimpel,
2016; Liu et al., 2020). While extensive research
has focused on OOD detection (Yang et al., 2021)
and OOD generalization (Liu et al., 2021) prob-
lems, studies on how OOD affects ANN search are
scarce. The recently released Yandex Text2Image
(Yandex Research, 2021) dataset is naturally de-
signed for OOD scenarios, with base embeddings
from images inferred by Se-ResNext-101 (Hu et al.,
2018) model and query embeddings from text pro-
duced by a variant of the DSSM (Huang et al.,
2013) model, showing substantial distribution dif-
ferences. In OOD-DiskANN (Jaiswal et al., 2022),
they defined OOD queries in ANN search and
analyzed the challenges posed by OOD queries,
eventually proposing effective algorithmic improve-
ments. Recently, RoarGraph (Chen et al., 2024a)
employs a projected bipartite graph approach tai-
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lored for OOD queries, achieving up to 3.3 im-
proved search efficiency and won the NeurIPS’23
Big-ANN OOD track.

E Detailed Experimental Setup

Implementation Details. The regularization
strength X\ in Equation 4 is chosen such that the
regularization loss remains approximately one or-
der of magnitude smaller than the contrastive loss.
We set A = 0.01 as a general default, and provide
ablation results for varying \ values.

For encoder fine-tuning, we use the official
codebases and pre-trained weights of coCondenser
and RetroMAE. Fine-tuning is performed on MS-
MARCO using their respective training configura-
tions and hyperparameters.

ANN Index Implementations. - FAISS: IVF,
IVFPQ, and HNSW are implemented via FAISS
(Johnson et al., 2019). - DiskANN & RoarGraph:
We use the official repositories to build and query
DiskANN (Simhadri et al., 2023) and RoarGraph
(Chen et al., 2024a) indices, and they were com-
piled and run from their official repositories.

Hardware and Environment. All finetuning
is done on 4xNVIDIA V100 GPUs (32GB) us-
ing PyTorch 1.11.0 and HuggingFace Transformers
4.40.2. Index construction and search are run on a
server with dual Intel Xeon Platinum 8168 CPUs
and 503GB of RAM. All search experiments are
run single-threaded, where QPS is equivalent to
per-query latency.

MSMARCO-IVF MSMARCO-HNSW

Recall@100

77.5

70 75.0

72.5

500 1000 1500 250 500 750 1000 1250 1500
QPS QPS

Figure 8: QPS-recall results obtained with different
constraint strengths of \. The larger the ), the greater
the reduction in the distance between the query and base
distributions.

F Ablation on Impact of Regularization
Strength \

Figure 8 shows the performance of embeddings
obtained with different values of A in 4 on IVF and
HNSW searches. Selecting an appropriate A is crit-
ical for balancing the model’s discriminative power,

driven by L¢on, and the distribution alignment, en-
forced by Lo In our main experiments, we set A
such that the regularization loss is approximately
one order of magnitude smaller than the contrastive
loss. Here, we present the impact of different A
values on ANN search performance, demonstrating
that the choice of A is relatively robust across a
range of settings.

Based on the results from Figure 8, When the
regularization weight is less than 0.05, perfor-
mance improvements are observed across both
ANN search methods, especially in high-QPS sce-
narios. However, if the regularization strength is
too high, such as with a weight of 0.1, the ANN
search curves fall significantly below the baseline
(without regularization), harming search perfor-
mance. This suggests that overemphasizing prox-
imity between query and base vectors can drasti-
cally reduce the distinguishability between them,
severely impacting search accuracy.

Within the effective range of regularization,
higher regularization strength shows more pro-
nounced improvements in the "high-QPS, low-
recall" region, while lower regularization strength
tends to improve performance in the "low-QPS,
high-recall" region.
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