
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 648–659
November 4-9, 2025 ©2025 Association for Computational Linguistics

LoRA-MGPO: Mitigating Double Descent in Low-Rank Adaptation via
Momentum-Guided Perturbation Optimization

Yupeng Chang1 Chenlu Guo1 Yi Chang1,2,3 Yuan Wu1*

1School of Artificial Intelligence, Jilin University
2Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China

3International Center of Future Science, Jilin University
{changyp23, guocl23}@mails.jlu.edu.cn, {yichang, yuanwu}@jlu.edu.cn

Abstract

Parameter-efficient fine-tuning (PEFT), partic-
ularly Low-Rank Adaptation (LoRA), adapts
large language models (LLMs) by training only
a small fraction of parameters. However, as the
rank of the low-rank matrices used for adap-
tation increases, LoRA often exhibits an un-
stable "double descent" phenomenon, charac-
terized by transient divergence in the training
loss, which delays convergence and impairs
generalization by causing instability due to the
attraction to sharp local minima. To address
this, we introduce LoRA-MGPO, a framework
that incorporates Momentum-Guided Pertur-
bation Optimization (MGPO). MGPO stabi-
lizes training dynamics by mitigating the dou-
ble descent phenomenon and guiding weight
perturbations using momentum vectors from
the optimizer’s state, thus avoiding dual gra-
dient computations. Additionally, an adaptive
normalization scheme scales the magnitude of
perturbations based on an exponential mov-
ing average (EMA) of gradient norms, further
enhancing stability. While EMA controls the
magnitude of the perturbations, MGPO guides
their direction, ensuring a more stable opti-
mization trajectory. Experiments on a suite
of natural language understanding and genera-
tion benchmarks show that LoRA-MGPO con-
sistently achieves superior performance over
LoRA and other PEFT methods. The analysis
indicates that LoRA-MGPO leads to smoother
loss curves, faster convergence, and improved
generalization by stabilizing the training pro-
cess and mitigating the attraction to sharp min-
ima. The code is publicly available at https:
//github.com/llm172/LoRA-MGPO.

1 Introduction

Large language models (LLMs) have driven signif-
icant advancements in natural language process-
ing, establishing new performance benchmarks

*Corresponding authors

on tasks ranging from text generation to seman-
tic understanding (Chang et al., 2024b; Wei et al.,
2022). However, the conventional method of full-
parameter fine-tuning (Full FT) requires updating
billions of parameters, incurring prohibitive mem-
ory and computational costs. To overcome this
limitation, parameter-efficient fine-tuning (PEFT)
methods have emerged as an effective alternative,
enabling efficient adaptation by optimizing only
a small subset of model parameters (Lester et al.,
2021; Fu et al., 2023).

Among these methods, Low-Rank Adaptation
(LoRA) (Hu et al., 2021) is distinguished by its
computational efficiency and architectural simplic-
ity. LoRA approximates the weight update ma-
trix ∆W as a low-rank decomposition, where the
original pre-trained weights W0 remain frozen.
The trainable matrices B and A, with rank r ≪
min(m,n), drastically reduce the number of train-
able parameters, improving efficiency without al-
tering the model architecture.

Despite its efficiency, LoRA’s training dynam-
ics can be unstable. As shown in Figure 1, fine-
tuning LLaMA-2-7B (Touvron et al., 2023) on
MetaMathQA (Yu et al., 2024) often exhibits a
"double descent" trajectory with initial conver-
gence, transient divergence, and eventual stabi-
lization. This phenomenon worsens with higher
ranks and is not unique to LoRA; Full FT can ex-
hibit even more severe double descent, highlighting
the general challenge of stabilizing fine-tuning in
high-capacity models (Nakkiran et al., 2019). Such
non-monotonic behavior delays convergence and
impairs generalization due to unstable gradients
and the attraction to sharp local minima (Li et al.,
2024a).

Addressing these stability issues is crucial.
Sharpness-Aware Minimization (SAM) (Foret
et al., 2020) improves generalization by seeking
flatter minima. However, its application is hin-
dered by the dual gradient computation require-

648

https://github.com/llm172/LoRA-MGPO
https://github.com/llm172/LoRA-MGPO

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s
LoRA-rank32

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

LoRA-rank64

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

LoRA-rank128

0 1000 2000 3000 4000 5000 6000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Full FT

Figure 1: Training loss curves of Full FT and LoRA (Hu et al., 2021) methods with LLaMA-2-7B (Touvron et al.,
2023) on the MetaMathQA dataset (Yu et al., 2024). For LoRA, rank (r) and alpha (α) are set to the same values
(r = α ∈ {32, 64, 128}), with a fixed learning rate of 5e− 4.

ment, which doubles the training cost (Becker et al.,
2024; Li et al., 2024b). More efficient variants like
momentum-guided SAM reuse optimizer states to
avoid this overhead but may not guarantee stable
convergence. To further enhance stability, comple-
mentary techniques such as applying an exponen-
tial moving average (EMA) to smooth optimization
dynamics have been shown to suppress parameter
oscillations and improve convergence in certain
scenarios (Wang et al., 2021).

Building on these insights, we propose LoRA-
MGPO, a novel framework that integrates
Momentum-Guided Perturbation Optimization
(MGPO) into LoRA to mitigate the detrimental
effects of double descent. Our contributions are
twofold:

1. Mitigating Double Descent: MGPO stabi-
lizes training by addressing double descent,
typically observed at higher ranks in LoRA.
By reusing momentum vectors, it guides
weight perturbations towards flatter minima,
preventing transient divergences in loss.

2. Adaptive Perturbation Normalization:
MGPO introduces an adaptive scheme that
scales perturbation magnitude based on
an exponential moving average (EMA) of
gradient norms, decoupling perturbation
intensity from optimization dynamics and
further enhancing stability.

We evaluate LoRA-MGPO on a suite of natural lan-
guage understanding (NLU) and generation (NLG)
benchmarks. Our results show that it consistently
achieves superior performance over standard LoRA
and other state-of-the-art PEFT methods. Crucially,
we demonstrate that LoRA-MGPO effectively mit-
igates the double descent phenomenon, leading
to more stable training dynamics, smoother loss

curves, and faster convergence, all of which con-
tribute to better generalization and the avoidance
of sharp minima.

2 Method

In this section, we first provide a concise overview
of the Low-Rank Adaptation (LoRA) framework.
We then introduce LoRA-MGPO, an extension of
LoRA that integrates Momentum-Guided Perturba-
tion Optimization (MGPO) to enhance its stability
and efficiency. We describe how MGPO reuses op-
timizer momentum for guided perturbations of the
trainable parameters and incorporates an adaptive
normalization scheme to stabilize training.

2.1 Review of LoRA

While full fine-tuning directly updates the entire
pre-trained weight matrix W0 ∈ Rm×n, its pro-
hibitive computational cost makes it impractical for
large-scale models. Low-Rank Adaptation (LoRA)
(Hu et al., 2021) offers a parameter-efficient al-
ternative. LoRA freezes W0 and injects a train-
able low-rank decomposition, ∆W = BA, where
B ∈ Rm×r and A ∈ Rr×n are trainable matrices
with rank r ≪ min(m,n). The weight update is
incorporated into the forward pass as:

Y = X(W0 +
α

r
BA), (1)

where X is the input, α is a scaling hyperparameter,
and r is the rank of the decomposition. Typically,
A is initialized with a Kaiming normal distribution,
and B with zeros. While effective, LoRA can suf-
fer from training instability, particularly the double
descent phenomenon, when r increases without
appropriate optimization strategies to maintain sta-
bility (Li et al., 2024a).

649

2.2 LoRA with Momentum-Guided
Perturbation Optimization

To address the training instabilities in LoRA,
we propose LoRA-MGPO, which integrates
Momentum-Guided Perturbation Optimization
(MGPO). Inspired by Sharpness-Aware Minimiza-
tion (SAM), MGPO is redesigned for computa-
tional efficiency and parameter efficiency. It di-
rectly perturbs the trainable LoRA parameters by
reusing the optimizer’s first-moment estimate, guid-
ing the perturbations toward stable directions. Ad-
ditionally, MGPO incorporates adaptive normaliza-
tion to dynamically scale the perturbation, enhanc-
ing training stability.

2.2.1 Motivation: SAM for LoRA and Its
Limitations

The goal of SAM (Foret et al., 2020) is to find
parameters in flat loss regions to improve gener-
alization. A direct application to LoRA would
involve perturbing the full weight matrix, solv-
ing minA,B max∥ϵ∥F≤ρ L (W0 +BA+ ϵ). This
approach is ill-suited for PEFT due to two critical
flaws: (1) its dual gradient computation require-
ment doubles the training cost, and (2) creating and
storing the full-space perturbation ϵ counteracts
the memory savings of LoRA. MGPO is explicitly
designed to resolve these inefficiencies.

2.2.2 Momentum-Guided Perturbation of
LoRA Parameters

MGPO achieves the stability benefits of SAM by
perturbing the trainable parameters θ = (A,B)
directly, using information readily available in the
optimizer’s state. At each training step t, instead
of computing a new gradient for the perturbation
direction, it reuses the optimizer’s first-moment
vector (momentum) from the previous step, mt−1.
The optimization objective is:

min
θ

L(θt + ϵθt), (2)

where the perturbation ϵθt applied to the LoRA
parameters θt = (At, Bt) is constructed using the
state from step t− 1:

ϵθt = ρ · mt−1

∥mt−1∥2
· 1

ḡ(t−1)
. (3)

Here, ρ is the perturbation radius. Using the histori-
cal momentum vector is a deliberate design choice,
as it represents a smoothed average of past gradi-
ents, filtering out the noise from any single mini-
batch and providing a more stable direction for

assessing landscape sharpness. This vector is main-
tained by the optimizer itself. After computing the
gradient on the perturbed parameters, the momen-
tum for the current step is updated as:

mt = µmt−1 +∇θ̃t
L. (4)

The decay factor µ (e.g., ‘beta1‘ in AdamW) is
reused from the optimizer’s standard settings. The
scalar ḡ(t−1) is a global normalization factor, de-
tailed next. This formulation entirely avoids the
second gradient computation and any operations in
the full weight space.

Two-Stage Update Mechanism MGPO is imple-
mented efficiently within each training step t. First,
using the state from step t− 1, we compute the per-
turbation ϵθt and apply it to the current parameters
θt to get a perturbed version, θ̃t:

θ̃t = θt + ϵθt . (5)

Second, the loss and its gradient are computed with
respect to these perturbed parameters: ∇θ̃t

L. This
single gradient is then used by the optimizer to up-
date both the original parameters from θt to θt+1

and the momentum from mt−1 to mt. For infer-
ence, the final, unperturbed parameters θT are used.

2.2.3 Adaptive Perturbation Normalization
To ensure robustness across training stages, we in-
troduce an Adaptive Perturbation Normalization
(APN) scheme. The normalization factor ḡ(t) used
in Equation 3 is a scalar computed via an exponen-
tial moving average (EMA) of the global L2-norm
of the LoRA parameter gradients. Following the
principle of using the actually computed gradient,
the update rule is:

ḡ(t) = βḡ(t−1) + (1− β)∥∇θ̃t
L∥2, (6)

where β is the EMA decay rate. This mechanism
makes the perturbation scale-invariant relative to
the gradient dynamics. For instance, during early
training with large gradients, the normalization fac-
tor increases, reducing the effective perturbation
size to prevent destabilization. Conversely, in later
stages, it ensures the perturbation remains suffi-
ciently large to be effective. This adaptive scaling
enhances training stability.

3 Experiments

3.1 Experimental Setup
Baselines To provide a comprehensive evalua-
tion, we compare LoRA-MGPO against a carefully

650

Table 1: Performance of T5-Base on five GLUE tasks, comparing LoRA-MGPO with full fine-tuning and other
LoRA variants (rank r = 8). Scores are reported for the primary metric of each task, averaged over 3 runs, with
standard deviations shown in subscripts. Bold indicates the best score, while underlining denotes the second best.

Method MNLI SST2 CoLA QNLI MRPC Avg

Train Size 393k 67k 8.5k 105k 3.7k

Full FT 86.33±0.00 94.75±0.21 80.70±0.24 93.19±0.22 84.56±0.73 87.91
LoRA 85.30±0.04 94.04±0.11 69.35±0.05 92.96±0.09 68.38±0.01 82.08

LoRA Variants with Modified Structure
DoRA 85.67±0.09 94.04±0.53 72.04±0.94 93.04±0.06 68.08±0.51 82.57
AdaLoRA 85.45±0.11 93.69±0.20 69.16±0.24 91.66±0.05 68.14±0.28 81.62

LoRA Variants with Original Structure
PiSSA 85.75±0.07 94.07±0.06 74.27±0.39 93.15±0.14 76.31±0.51 84.71
rsLoRA 85.73±0.10 94.19±0.23 72.32±1.12 93.12±0.09 52.86±2.27 79.64
LoRA+ 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39 84.95
LoRA-GA 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24 87.77

LoRA-MGPO 86.58±0.11 94.72±0.46 82.32±0.18 93.79±0.46 86.62±0.68 88.81

selected set of baselines. These include Full Fine-
Tuning (Full FT), serving as a strong performance
benchmark, and vanilla LoRA (Hu et al., 2021),
our primary point of comparison. We further in-
clude two categories of state-of-the-art LoRA vari-
ants. The first category, variants with architec-
tural modifications, comprises methods that alter
the LoRA structure itself, such as DoRA (Liu et al.,
2024), which introduces learnable magnitude vec-
tors, and AdaLoRA (Zhang et al., 2023), which
dynamically allocates rank budgets. The second
category, variants improving the training process
or initialization, includes rsLoRA (Kalajdzievski,
2023), which stabilizes update magnitudes; LoRA+
(Hayou et al., 2024), which employs different learn-
ing rates for the LoRA matrices; and PiSSA (Meng
et al., 2024), which refines initialization using SVD.
Finally, we compare against methods focused on
gradient alignment, such as LoRA-GA (Wang et al.,
2024a) and LoRA-Pro (Wang et al., 2024b), which
aim to align LoRA’s gradient updates more closely
with those of full fine-tuning.

Datasets Our experiments span a range of tasks
in natural language understanding and generation.
For NLU, we evaluate on five tasks from the widely-
used General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018): MNLI,
SST-2, CoLA, QNLI, and MRPC. These tasks
cover natural language inference, sentiment analy-
sis, grammatical acceptability, and paraphrase iden-
tification.

For NLG, we fine-tune the LLaMA-2-7B (Tou-
vron et al., 2023) model on a 52k randomly sam-
pled subset of the WizardLM dataset (Xu et al.,
2024). We evaluate the model on the MT-Bench
dataset (Zheng et al., 2024a), which consists of 80
multi-turn questions designed to assess conversa-
tional abilities across various aspects. The quality
of the responses is evaluated by GPT-4, and we
report the first-turn score as the primary evaluation
metric.

For mathematical reasoning, we use a 100k ran-
dom sample from MetaMathQA (Yu et al., 2024),
with evaluation on the GSM8K test set (Cobbe
et al., 2021). For code generation, fine-tuning is
performed on a 100k randomly sampled subset of
the CodeFeedback dataset (Zheng et al., 2024b),
with evaluation on HumanEval (Chen et al., 2021).

Implementation Details For fair comparison,
our experimental setup closely follows that of
LoRA-GA (Wang et al., 2024a). Across all experi-
ments, we use the AdamW optimizer (Loshchilov
and Hutter, 2019) with weight decay set to 0 and a
cosine learning rate schedule with a warm-up ratio
of 0.03. LoRA adapters are applied to all linear
layers within the transformer blocks, with the rank
r set to 8 and scaling factor α to 16 by default. For
our two task families, the settings are as follows.
For Natural Language Understanding (NLU) on
GLUE, we fine-tune T5-base (Raffel et al., 2020)
with a learning rate of 1× 10−4, a sequence length
of 128, and a batch size of 32. The MGPO hy-

651

Table 2: Fine-tuning results of LLaMA-2-7B on MT-Bench, GSM8K, and HumanEval. Performance is evaluated
using primary task metrics: MT-Bench score, GSM8K accuracy, and HumanEval Pass@1. PEFT methods are tested
with rank r = 8, and additional tests at ranks 32 and 128 are included to evaluate performance scaling. Results are
averaged over three random seeds, with standard deviations provided. Bold and underlining denote the best and
second-best scores, respectively.

Method MT-Bench GSM8K HumanEval Avg

Full FT 5.30±0.11 59.36±0.85 35.31±2.13 33.32
LoRA 5.61±0.10 42.08±0.04 14.76±0.17 20.82

DoRA 5.97±0.02 53.07±0.75 19.75±0.41 26.26
AdaLoRA 5.57±0.05 50.72±1.39 17.80±0.44 24.70

PiSSA 5.30±0.02 44.54±0.27 16.02±0.78 21.95
rsLoRA 5.25±0.03 45.62±0.10 16.01±0.79 22.29
LoRA+ 5.71±0.08 52.11±0.62 18.17±0.52 25.33

LoRA-GA 5.95±0.16 53.60±0.30 19.81±1.46 26.45
LoRA-GA (rank=32) 5.79±0.09 55.12±0.30 20.18±0.19 27.03
LoRA-GA (rank=128) 6.13±0.07 55.07±0.18 23.05±0.37 28.08

LoRA-MGPO 6.27±0.12 54.56±0.44 21.02±0.39 27.28
LoRA-MGPO (rank=32) 6.21±0.15 55.74±0.21 21.34±0.47 27.76
LoRA-MGPO (rank=128) 6.48±0.23 56.96±0.35 24.87±0.54 29.44

perparameters are ρ = 0.05, µ = 0.9 (AdamW’s
‘beta1‘), and β = 0.9. For Natural Language Gener-
ation (NLG), we fine-tune LLaMA-2-7B (Touvron
et al., 2023) with a learning rate of 2× 10−5 and a
sequence length of 1024. We use a per-device batch
size of 4 with 8 gradient accumulation steps for an
effective batch size of 32. The MGPO hyperparam-
eters are ρ = 0.01, µ = 0.8 (AdamW’s ‘beta1‘),
and β = 0.8. All experiments were conducted on
NVIDIA H20 96GB GPUs, repeated three times
with different random seeds, and we report the av-
erage and standard deviation of the results. Further
details on optimizer settings, specific LoRA target
modules, and the software environment are pro-
vided in the Appendix.

3.2 Main Results

Performance on Natural Language Understand-
ing (NLU) We first evaluated LoRA-MGPO on a
standard suite of NLU tasks from the GLUE bench-
mark (Wang et al., 2018), using the T5-base model.
As detailed in Table 1, our method demonstrates
strong and consistent performance. The improve-
ments are particularly notable on challenging, low-
resource benchmarks such as CoLA and MRPC,
where LoRA-MGPO surpasses not only all other
PEFT methods but also full fine-tuning. Success
on these tasks often hinges on capturing subtle lin-

guistic nuances. The stability afforded by LoRA-
MGPO likely prevents the fine-tuning process from
corrupting the rich knowledge encoded in the base
model; by preventing erratic weight updates, our
method may better preserve the pre-trained model’s
nuanced understanding of syntax and semantics.
Quantitatively, LoRA-MGPO achieves the highest
scores among all PEFT methods on five out of five
tasks, obtains the best average score, and outper-
forms the next-best PEFT method, LoRA-GA, by
a margin of 1.04 points.

Performance on Natural Language Genera-
tion (NLG) We further assessed our method on
three challenging NLG tasks using the LLaMA-
2-7B model, with results summarized in Ta-
ble 2. LoRA-MGPO consistently secures top
performance among all PEFT baselines. On the
conversational MT-Bench, its top score suggests
that stable training helps maintain the model’s
coherence and instruction-following capabilities.
For structured reasoning tasks like mathemati-
cal problem-solving (GSM8K) and code genera-
tion (HumanEval), where logical consistency is
paramount, LoRA-MGPO again emerges as the
strongest PEFT method. A stable optimization tra-
jectory may reduce the risk of the model deviating
from a correct reasoning path during fine-tuning,
as each update step is more measured, preventing

652

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Tr

ai
ni

ng
 L

os
s

rank 16
Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
rank 32

Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
rank 64

Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
rank 128

Full FT
LoRA-MGPO
LoRA

Figure 2: Training loss dynamics across different rank configurations: A comparative analysis of LoRA, LoRA-
MGPO, and full fine-tuning on LLaMA-2-7B with MetaMathQA. Rank (r) and alpha (α) follow r = α ∈
{16, 32, 64, 128} with a fixed learning rate of 5e− 4.

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

lr = 2e-4
Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2
lr = 3e-4

Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lr = 4e-4
Full FT
LoRA-MGPO
LoRA

0 500 1000 1500 2000 2500 3000
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
lr = 6e-4

Full FT
LoRA-MGPO
LoRA

Figure 3: Learning rate sensitivity analysis: A comparison of training loss for LoRA, LoRA-MGPO, and full
fine-tuning on LLaMA-2-7B with MetaMathQA. The analysis spans learning rates {2e− 4, 3e− 4, 4e− 4, 6e− 4},
with rank (r) and alpha (α) fixed at 128.

Ful
l FT

LoR
A (B

ase
line

)

LoR
A + MGPO

LoR
A-M

GPO
 (F

ull)
0

10

20

30

40

50

60
(a) Performance on NLG Tasks

MT-Bench
GSM8K
HumanEval

5.30 5.61 5.69 6.27

59.36

42.08

54.12 54.56

35.31

14.76
20.43 21.02

Ful
l FT

LoR
A (B

ase
line

)

LoR
A + MGPO

LoR
A-M

GPO
 (F

ull)

82

84

86

88

90

(b) Average Performance on GLUE

87.91

82.08

86.76

88.81

GLUE Average

Figure 4: Ablation study of LoRA-MGPO on NLG and NLU tasks. (a) LLaMA-2-7B performance across three
NLG tasks. (b) T5-Base performance on the GLUE benchmark. "LoRA (Baseline)" refers to standard LoRA,
"LoRA + MGPO" refers to an ablation with only momentum-guided perturbation, and "LoRA-MGPO (Full)"
includes both momentum-guided perturbation and adaptive normalization.

catastrophic error accumulation common in multi-
step generation. While full fine-tuning still holds
an edge on the reasoning tasks, our method narrows
the gap and outperforms it on MT-Bench. Notably,
as the LoRA rank increases from 8 to 128, the
performance of LoRA-MGPO scales gracefully,
validating its ability to effectively leverage a higher
parameter budget while maintaining the training
stability that standard LoRA often lacks at higher
ranks.

3.3 Analysis and Ablation Studies

Effectiveness in Mitigating Double Descent To
empirically validate LoRA-MGPO’s core claim of
mitigating double descent, we conducted a con-
trolled analysis of its training dynamics, focusing
on the impacts of rank and learning rate. The re-
sults, presented in Figure 2 and Figure 3, offer
compelling visual evidence of our method’s sta-
bility. Figure 2 illustrates that as the LoRA rank
r increases, the double descent phenomenon in
standard LoRA becomes progressively more se-

653

Table 3: Comparison of computational efficiency and performance across LoRA, LoRA-MGPO, and Full FT
methods, trained for one epoch on the WizardLM dataset using LLaMA-2-7B.

Method #Params Memory Cost Training Time MT-Bench GSM8K HumanEval

Full FT 6738M >96 GB - 5.30±0.11 59.36±0.85 35.31±2.13

LoRA 320M 81.73 GB 5h 48min 5.61±0.10 42.08±0.04 14.76±0.17

LoRA-MGPO 320M 90.56 GB 6h 52min 6.27±0.12 54.56±0.44 21.02±0.39

Table 4: Ablation study of LoRA-MGPO vs. random
noise perturbation on three NLG benchmarks. Exper-
iments use LLaMA-3.1-8B-Base (Dubey et al., 2024)
with rank r = 8. Scores are averaged over three random
seeds, with standard deviations in subscripts. Bold indi-
cates the best method.

Method MTBench GSM8k HumanEval

Full FT 5.88±0.23 73.69±0.28 51.63±1.27

LoRA 6.15±0.02 67.78±1.25 43.09±0.35

LoRA + Random Noise 6.43±0.26 68.05±1.12 42.92±0.41

LoRA-MGPO 7.51±0.07 70.23±1.08 45.13±0.63

vere, exhibiting a sharp rebound at r = 128. In
stark contrast, LoRA-MGPO’s loss curve remains
smooth and monotonically decreasing across all
ranks. Similarly, Figure 3 shows that while higher
learning rates induce significant oscillations in stan-
dard LoRA, LoRA-MGPO maintains a stable con-
vergence path. These findings provide strong empir-
ical evidence that our method effectively stabilizes
fine-tuning and potentially broadens the effective
learning rate window.

Ablation Study To rigorously dissect the indi-
vidual and combined contributions of our method’s
two key components—Momentum-Guided Pertur-
bation (MGPO) and Adaptive Perturbation Normal-
ization (APN)—we conducted a detailed ablation
study, with results shown in Figure 4. The findings
clearly validate our design choices. The first abla-
tion step, labeled ‘LoRA + MGPO‘, applies only
the MGPO component and yields a substantial per-
formance lift over the vanilla ‘LoRA (Baseline)‘.
On the NLU task suite, for instance, this single
component boosts the average score from 82.08 to
86.76, demonstrating that the core strategy of using
momentum to guide perturbations towards flatter
loss regions is fundamentally effective.

However, the full potential is unlocked when
introducing APN. Our complete model, labeled
‘LoRA-MGPO (Full)‘, combines both compo-
nents and achieves the final NLU score of 88.81.
The significant improvement from 86.76 to 88.81

underscores the critical role of adaptive normal-
ization. It suggests that while MGPO provides a
stable perturbation direction, its effectiveness is
maximized only when the perturbation magnitude
is dynamically scaled in response to the gradient
landscape. The consistent superiority of the full
model across all NLU and NLG tasks confirms that
these two components are not merely additive but
work in synergy, fulfilling the design goals of our
framework.

Comparison with Random Noise Perturbation
To further validate that our performance gains stem
from a principled optimization strategy rather than
simple regularization, we compared LoRA-MGPO
to LoRA augmented with undirected, isotropic ran-
dom noise. The results in Table 4 are revealing:
adding random noise provides only inconsistent
and marginal benefits, and can even be detrimen-
tal in some cases (e.g., HumanEval). In contrast,
LoRA-MGPO yields consistent and significant im-
provements across all tasks.

This disparity highlights a fundamental differ-
ence in mechanism. Random noise acts as a general
regularizer by pushing parameters out of their im-
mediate trajectory, which can occasionally help
escape sharp minima by chance. However, the di-
rection is arbitrary and uncorrelated with the loss
landscape’s structure. Our momentum-guided per-
turbation, conversely, is informed. It leverages the
recent history of the optimization path—a strong
indicator of relevant high-curvature directions—to
perform a targeted exploration. This principled
approach makes the search for flat minima non-
stochastic and significantly more effective and reli-
able than undirected noise injection.

Computational Cost Analysis Finally, we an-
alyzed the practical overhead of our method (Ta-
ble 3). As expected, LoRA-MGPO operates with
the same minimal number of trainable parameters
as standard LoRA, making it vastly more memory-
efficient than Full FT. In terms of training time,
LoRA-MGPO introduces a modest and acceptable

654

overhead compared to vanilla LoRA (6h 52m vs.
5h 48m in our NLG setup). Given the significant
performance improvements it delivers, this analy-
sis confirms that LoRA-MGPO presents a highly
favorable trade-off between computational cost and
model performance, underscoring its practical via-
bility.

4 Related Work

Parameter-Efficient Fine-Tuning (PEFT) The
prohibitive computational and storage costs of full-
parameter fine-tuning (Howard and Ruder, 2018;
Devlin, 2018) have spurred the development of
PEFT techniques for adapting large language mod-
els (Houlsby et al., 2019; Ding et al., 2023). By
selectively updating a small subset of parameters,
PEFT methods can achieve performance competi-
tive with full fine-tuning while being significantly
more efficient (Han et al., 2024). Among the
diverse PEFT strategies, Low-Rank Adaptation
(LoRA) (Hu et al., 2021) has gained prominence for
its simplicity and effectiveness. Recent works have
enhanced LoRA along several directions. One line
of work introduces architectural modifications; for
instance, DoRA (Liu et al., 2024) integrates learn-
able magnitude vectors, while AdaLoRA (Zhang
et al., 2023) dynamically allocates rank budgets.
Another direction focuses on improving the train-
ing process and initialization, such as adjusting
scaling factors in rsLoRA (Kalajdzievski, 2023), us-
ing separate learning rates in LoRA+ (Hayou et al.,
2024), or refining initialization with PiSSA (Meng
et al., 2024) and NLoRA (Guo et al., 2025). A third
direction aims to improve the quality of the param-
eter updates, for instance by alleviating training
biases with BA-LoRA (Chang et al., 2024a) or by
more closely aligning LoRA’s gradients with those
of full fine-tuning, as seen in LoRA-GA (Wang
et al., 2024a) and LoRA-Pro (Wang et al., 2024b).
Additional work has further explored LoRA’s ap-
plication in multi-task learning, such as (Liu et al.,
2025b,a). Distinct from these approaches, our work
focuses directly on the underlying optimization dy-
namics. Rather than altering LoRA’s architecture
or mimicking full fine-tuning gradients, we intro-
duce a novel training framework to stabilize the
optimization process itself.

Optimization Stability in PEFT The training
stability of PEFT methods, particularly LoRA, is
a critical concern. Empirical studies have revealed
that as LoRA’s rank increases, performance can de-

grade after an initial improvement, a behavior anal-
ogous to the double descent phenomenon (Belkin
et al., 2019; Nakkiran et al., 2019). This insta-
bility highlights the challenge of navigating high-
dimensional and non-convex loss landscapes dur-
ing fine-tuning. To promote smoother optimization
and find flatter minima, Sharpness-Aware Mini-
mization (SAM) (Foret et al., 2020) has been influ-
ential. However, its requirement for dual gradient
computations imposes a significant computational
burden (Becker et al., 2024; Li et al., 2024b). More
recent work has explored more efficient directional
perturbation strategies. Momentum-guided meth-
ods, for example, reuse optimizer momentum to
avoid the extra gradient step, reducing computa-
tional cost without sacrificing the directional guid-
ance (Becker et al., 2024). Other techniques, such
as applying an exponential moving average (EMA)
to model weights, also contribute to stability by
smoothing the trajectory of parameter updates
(Wang et al., 2021). While these components—
efficient perturbation and smoothing—are individu-
ally effective, they are typically studied in isolation.
This leaves a clear gap for a unified framework
that synergistically combines these strategies to
enhance both the efficiency and stability of PEFT.
Our work, LoRA-MGPO, is designed to fill this
gap.

5 Conclusion

In this work, we addressed the double descent phe-
nomenon in Low-Rank Adaptation (LoRA), an in-
stability that can affect the fine-tuning of large lan-
guage models. We proposed LoRA-MGPO, an
optimization framework that integrates Momentum-
Guided Perturbation Optimization (MGPO). This
method aims to find flatter minima by reusing
optimizer momentum to guide weight perturba-
tions, combined with an adaptive normalization
scheme to improve robustness. Our experimental
results across a range of natural language under-
standing (NLU) and natural language generation
(NLG) tasks show that LoRA-MGPO provides im-
proved performance over standard LoRA and other
common PEFT baselines. This improvement is re-
flected in more stable convergence trajectories and
reduced training instability. LoRA-MGPO offers a
practical approach to overcoming some of the op-
timization challenges in LoRA while maintaining
its parameter efficiency. Future research may ex-
plore extending this framework to other parameter-

655

efficient methods or adapting it for different do-
mains, such as vision and speech.

Limitations

First, LoRA-MGPO’s use of momentum vectors
for perturbation directions assumes relatively stable
optimizer dynamics, which might limit its effective-
ness during early training stages or in the presence
of highly non-stationary gradient conditions. Sec-
ond, while the adaptive perturbation normalization
via EMA-smoothed gradients improves robustness,
its performance may be sensitive to sudden changes
in gradient magnitude distributions, potentially re-
quiring adjustments to the smoothing hyperparam-
eters depending on the specific task.

Ethics Statement

Our research focuses on LoRA-MGPO, a general-
purpose optimization algorithm designed to im-
prove the stability of parameter-efficient fine-
tuning (PEFT). The experiments use publicly avail-
able, pre-trained models (LLaMA-2-7B, T5-base)
and standard academic benchmarks. We acknowl-
edge that these foundational models may inherit
and potentially amplify societal biases present in
their training data. The primary goal of this work
is to provide a more reliable and resource-efficient
tool for adapting and studying such models within
the research community. By enhancing PEFT tech-
niques, our work contributes to broader efforts
aimed at reducing the computational costs involved
in large-scale model adaptation.

Acknowledgments

This work is supported by the National Key
Research and Development Program of China
(No.2023YFF0905400), the National Natural Sci-
ence Foundation of China (No.U2341229) and the
Reform Commission Foundation of Jilin Province
(No.2024C003).

References
Marlon Becker, Frederick Altrock, and Benjamin Risse.

2024. Momentum-sam: Sharpness aware minimiza-
tion without computational overhead. arXiv preprint
arXiv:2401.12033.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik
Mandal. 2019. Reconciling modern machine-
learning practice and the classical bias–variance
trade-off. Proceedings of the National Academy of
Sciences, 116(32):15849–15854.

Yupeng Chang, Yi Chang, and Yuan Wu. 2024a. Ba-
lora: Bias-alleviating low-rank adaptation to mitigate
catastrophic inheritance in large language models.
arXiv preprint arXiv:2408.04556.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024b. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1–45.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220–235.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2020. Sharpness-aware min-
imization for efficiently improving generalization.
arXiv preprint arXiv:2010.01412.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2023. On
the effectiveness of parameter-efficient fine-tuning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 12799–12807.

Chenlu Guo, Yuan Wu, and Yi Chang. 2025. Nlora:
Nystr\" om-initiated low-rank adaptation for large
language models. arXiv preprint arXiv:2502.14482.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
arXiv preprint arXiv:2403.14608.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
Preprint, arXiv:2402.12354.

656

https://arxiv.org/abs/2402.12354

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Damjan Kalajdzievski. 2023. A rank stabilization
scaling factor for fine-tuning with lora. Preprint,
arXiv:2312.03732.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Tao Li, Zhengbao He, Yujun Li, Yasheng Wang, Lifeng
Shang, and Xiaolin Huang. 2024a. Flat-lora: Low-
rank adaption over a flat loss landscape. arXiv
preprint arXiv:2409.14396.

Tao Li, Qinghua Tao, Weihao Yan, Zehao Lei, Yingwen
Wu, Kun Fang, Mingzhen He, and Xiaolin Huang.
2024b. Revisiting random weight perturbation for
efficiently improving generalization. arXiv preprint
arXiv:2404.00357.

Jinda Liu, Yi Chang, and Yuan Wu. 2025a. R-lora:
Random initialization of multi-head lora for multi-
task learning. arXiv preprint arXiv:2502.15455.

Jinda Liu, Bo Cheng, Yi Chang, and Yuan Wu.
2025b. Align, don’t divide: Revisiting the lora
architecture in multi-task learning. arXiv preprint
arXiv:2508.05078.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora:
Weight-decomposed low-rank adaptation. Preprint,
arXiv:2402.09353.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vec-
tors adaptation of large language models. Preprint,
arXiv:2404.02948.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. 2019. Deep
double descent: Where bigger models and more data
hurt. Preprint, arXiv:1912.02292.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

Shaowen Wang, Linxi Yu, and Jian Li. 2024a. Lora-ga:
Low-rank adaptation with gradient approximation.
Preprint, arXiv:2407.05000.

Yizhou Wang, Yue Kang, Can Qin, Huan Wang, Yi Xu,
Yulun Zhang, and Yun Fu. 2021. Rethinking adam: A
twofold exponential moving average approach. arXiv
preprint arXiv:2106.11514.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and
Tieniu Tan. 2024b. Lora-pro: Are low-rank adapters
properly optimized? Preprint, arXiv:2407.18242.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In ICLR.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In ICLR.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. Preprint, arXiv:2303.10512.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024a.
Judging llm-as-a-judge with mt-bench and chatbot
arena. In NeurIPS.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.

657

https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2407.18242
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512

2024b. OpenCodeInterpreter: Integrating code gen-
eration with execution and refinement. In Findings
of ACL.

Appendix

Contents

A Models and Datasets 11
A.1 Details of Models 11
A.2 Details of Datasets 11

B Baselines and Implementation 11
B.1 Baseline Methods 11
B.2 Implementation Details 12
B.3 Hyperparameter Settings for Base-

lines 12

A Models and Datasets

A.1 Details of Models
In this work, we primarily utilize two pre-trained
language models: LLaMA-2-7B and T5-base.

• LLaMA-2-7B: A 7-billion parameter,
decoder-only transformer model from the
LLaMA-2 series, primarily used for genera-
tion tasks. More details are available at its
Hugging Face repository*.

• T5-base: A 220-million parameter encoder-
decoder transformer model, widely used for
a variety of natural language understanding
tasks. More details are available at its Hug-
ging Face repository†.

Our experiments were conducted using the im-
plementations of these models provided by the Hug-
ging Face Transformers library.

A.2 Details of Datasets
Table 5 summarizes the GLUE benchmark datasets
(Wang et al., 2018). For our Natural Language Gen-
eration (NLG) experiments, we used the following
evaluation metrics: Accuracy for GSM8K; Pass@1
for HumanEval; and a score based on GPT-4 evalu-
ation for MT-Bench.

B Baselines and Implementation

B.1 Baseline Methods
Our study includes several baseline methods for
a comprehensive comparison. Full Fine-Tuning
serves as a strong performance benchmark. Vanilla

*https://huggingface.co/meta-llama/LLaMA-2-7B
†https://huggingface.co/t5-base

658

https://huggingface.co/meta-llama/LLaMA-2-7B
https://huggingface.co/t5-base

Table 5: GLUE Benchmark Datasets and Evaluation Metrics

Dataset Task Type Classes Train Examples Metric Description

CoLA Acceptability 2 8.5k Matthews Corr. Grammatical acceptability
SST-2 Sentiment 2 67k Accuracy Sentiment analysis
MRPC Paraphrase 2 3.7k Accuracy/F1 Paraphrase detection
MNLI NLI 3 393k Accuracy Multi-genre NLI
QNLI NLI/QA 2 108k Accuracy QA/NLI converted from SQuAD

LoRA (Hu et al., 2021) is our primary point of com-
parison from the PEFT literature. We also compare
against LoRA variants that introduce structural
modifications (DoRA (Liu et al., 2024), AdaLoRA
(Zhang et al., 2023)) and those that refine the
training process or initialization (rsLoRA (Kala-
jdzievski, 2023), LoRA+ (Hayou et al., 2024),
PiSSA (Meng et al., 2024)). Finally, we include
methods focused on gradient alignment (LoRA-
GA (Wang et al., 2024a), LoRA-Pro (Wang et al.,
2024b)).

B.2 Implementation Details

LoRA Configuration. As stated in the main text,
LoRA adapters were applied to all linear layers
within the transformer blocks for both LLaMA-2-
7B and T5-base models.

Initialization of MGPO. The implementation of
our method requires an initial state for the momen-
tum vector and the adaptive normalization factor.
Following standard optimizer practice, the momen-
tum ‘m‘ is initialized to zeros. The adaptive nor-
malization factor ‘ḡ‘ is initialized using the L2-
norm of the gradient computed in the first training
step.

Hyperparameters. Our method introduces two
primary hyperparameters: the perturbation radius
‘ρ‘ and the EMA decay rate ‘β‘. ‘ρ‘ controls the
magnitude of the weight perturbation, influencing
the search for flatter minima. ‘β‘ controls the tem-
poral smoothing window for the adaptive normal-
ization. The values used in our main experiments
were effective across the evaluated tasks, as evi-
denced by the strong performance reported in Sec-
tion 3.

B.3 Hyperparameter Settings for Baselines

To ensure a fair and robust comparison, we adhered
to the hyperparameter settings recommended in the
original papers or official codebases of our baseline
methods wherever possible. General settings, such

as the learning rate schedule and batch size, were
kept consistent across all methods as described in
Section 3. Key method-specific hyperparameters
are detailed below.

• DoRA (Liu et al., 2024): We utilized the offi-
cial implementation provided by the authors,
maintaining its default configuration for the
magnitude and directional components.

• AdaLoRA (Zhang et al., 2023): We followed
the setup from the original paper, with the rank
budget dynamically allocated starting from a
higher initial rank and pruned during training.

• LoRA+ (Hayou et al., 2024): Following the
authors’ recommendation, the learning rate
for the LoRA matrix A was set to our default
value (1×10−4 for NLU, 2×10−5 for NLG),
while the learning rate for matrix B was set
16 times higher.

• LoRA-GA and LoRA-Pro (Wang et al.,
2024a,b): For these methods focused on gra-
dient alignment, we used the hyperparameter
settings as specified in their respective papers
and official implementations to ensure a faith-
ful comparison.

For all other baselines, we used their standard,
publicly available implementations without modifi-
cation to their core components.

659

