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Abstract

Recently, textual graph-based retrieval-
augmented generation (GraphRAG) has
gained popularity for addressing hallucinations
in large language models when answering
domain-specific questions. Most existing
studies assume that generated answers
should comprehensively integrate all relevant
information from the textual graph. However,
this assumption may not always hold when
certain information needs to be vetted or
even blocked (e.g., due to safety concerns).
In this paper, we target two sides of textual
graph understanding and question answering:
(1) normal question Answering (A-side):
following standard practices, this task gen-
erates accurate responses using all relevant
information within the textual graph; and (2)
Blocked question answering (B-side): A new
paradigm where the GraphRAG model must
effectively infer and exclude specific relevant
information in the generated response. To
address these dual tasks, we propose TAONA, a
novel GraphRAG model with two variants: (1)
TAONA-A for A-side task, which incorporates
a specialized GraphEncoder to learn graph
prompting vectors; and (2) TAONA-B for
B-side task, employing semi-supervised
node classification to infer potential blocked
graph nodes. Extensive experiments validate
TAONA’s superior performance for both A-side
and B-side tasks.

1 Introduction

Large language models (LLMs) have achieved re-
markable success in recent years. Yet, most LLMs
are trained on the open domain data before some
fixed dates (Zhao et al., 2023), which leads to an in-
evitable limitation of hallucination especially when
faced with queries in specific domains. To resolve
this limitation, Retrieval-Augmented Generation
(RAG) (Gao et al., 2022; Sun et al., 2024) has been
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Figure 1: Examples of the B-side task. Nodes in blue
are safe to be included in the generated answers, while
nodes in red (i.e., Bomb) should be blocked in the gen-
erated responses.

proposed to enhance the LLLMs to generate accu-
rate answers to users’ domain-specific questions
by retrieving relevant document chunks or knowl-
edge. At the same time, textual graphs, possessing
a graph structure and rich textual information, func-
tion as fundamental data storage in many applica-
tions (e.g., question answering systems (Liu et al.,
2022)). Recently, textual graph-based retrieval-
augmented generation (GraphRAG) has attracted
more and more attention due to its unique advan-
tage of combining both RAG and textual graphs
together. Most, if not all, of the existing GraphRAG
works (Logan IV et al., 2019; He et al., 2024; Luo
et al., 2023a) follow the basic assumption that gen-
erated answers should comprehensively integrate
all relevant information from the textual graph.
However, this assumption of including all rele-
vant information from the graph does not always
hold when certain information requires selective
blocking. Consider Figure 1, where a user re-
quests "glycerol, sulphuric acid, and nitric acid."
The textual graph reveals these chemicals’ poten-
tial use in bomb-making—information that should
be blocked in the response for safety.! Likewise,
in e-commerce recommendation systems (Weise,

'The focus of this paper is not sensitive/dangerous/ethical
information detection, please refer to Appendix 8.1 for details
about the scope of our paper.
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2024; Zeng et al., 2024b; Liang et al., 2025; Liu
etal., 2024; Yoo et al., 2024; Ban et al., 2021, 2023;
Yan et al., 2022, 2024a; Li et al., 2022; Jing et al.,
2022, 2024; Wang et al., 2023a,d), where numerous
products match user queries, only certain products”
might appear in response.

In this paper, we tackle both aspects of textual
graph understanding and question answering (QA)
tasks. For the standard Answering (A-side) task,
the objective is to include all relevant information
from the textual graph in the generated responses.
In this context, the GraphRAG model is designed to
achieve this goal by producing accurate and com-
prehensive answers. Conversely, in the Blocked
(B-side) question answering task, the GraphRAG
model must infer the relevant but should be se-
lectively blocked nodes in the textual graph and
intentionally exclude these nodes from the gener-
ated answers to the user’s query. To address these
dual tasks, we propose a novel framework, TAONA,
which features two tailored variants: TAONA-A for
the A-side task and TAONA-B for the B-side task.
The TAONA framework operates in five stages: (1)
indexing and retrieval, (2) subgraph construction
and refining, (3) subgraph encoding and prompting,
(4) textual prompt construction, and (5) response
generation using a frozen LLM. While steps (1)
and (5) adopt methodologies from the state-of-the-
art G-Retriever model (He et al., 2024), TAONA
introduces innovations in steps (2), (3), and (4).
Specifically, TAONA-A incorporates a customized
TAONA-GraphEncoder to model interactions be-
tween node pairs in the textual graph, generating
a graph prompting vector that serves as input to
the frozen LLM. Building on this, TAONA-B adds
a semi-supervised TAONA-NodeClassifier, which
predicts node statuses (e.g., Unblocked/Blocked)
and incorporates this information during the tex-
tual prompt construction stage. Extensive experi-
ments conducted on the GraphQA benchmark (He
et al., 2024) demonstrate the effectiveness of both
TAONA-A and TAONA-B, confirming their abil-
ity to handle A-side and B-side tasks with high
performance.

To summarize, our contributions are threefold:

* Problem. To the best of our knowledge, we
are the first to propose and explore the B-side
task, which aims to provide accurate informa-

2These could be the so-called high-priority products
determined by platform-specific factors like advertisement
fees (Weise, 2024).

tion while excluding contents that should be
blocked based on the textual graph.

e Model. We introduce a novel model named
TAONA, featuring two variants: TAONA-A for
the A-side task and TAONA-B for the B-side
task.

* Experiments. We conducted extensive exper-
iments on the GraphQA benchmark, empiri-
cally demonstrating that TAONA outperforms
other baselines in both the A- and B-side tasks,
highlighting the superiority of our approach.

2 Problem Definition

In this section, we formally define the A-side and
B-side tasks. Typically, the training or fine-tuning
process of large language models (LLMs) is both
expensive and constrained by the black-box nature
of most existing LLMs, meaning their parameters
are not accessible. Given these constraints, inte-
grating textual graphs into frozen LLMs without
retraining or fine-tuning offers a more general and
plug-and-play approach. Therefore, in this paper,
we focus on GraphRAG with frozen LLMs. In ad-
dition, we also conduct experiments on fine-tuning
the LLM, which are included in Appendix 8.3 due
to page limit. In the A-side task, all nodes are un-
blocked and the formal definition of this task is as
follows:

Problem 1. A-SIDE TASK. Given: (1) a textual
graph G = (V, E), where V is the node set and
E is the edge set>; (2) a query q about G; (3) a
frozen large language model LLM(-). Output: the
answer Ggen for q via LLM(-).

Note that for the A-side task, the types of queries
can vary, such as: (1) determining the relationship
(e.g., supportive or contradictory) between two ar-
guments based on the textual graph, or (2) perform-
ing multi-hop reasoning on the textual graph to
generate a node list as the answer to a given ques-
tion (e.g., knowledge graph question answering,
KGQA). Accordingly, the generated answers may
be a single word (e.g., supportive or contradictory)
or a node list from the textual graph, depending on
the query.

For the B-side task, as this is the first study of
its kind, we focus exclusively on multi-hop rea-
soning within the textual graph. The goal is to

3For each node/edge in G, it corresponds to some textual
information (e.g., text(v;)) as shown in Figure 1.
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generate a node list as the response to a given ques-
tion (e.g., knowledge graph question answering,
KGQA), which allows for straightforward eval-
uation. We would like to emphasize that the B-
side task is not specifically designed for question-
answering on graphs containing sensitive, danger-
ous, or ethical information. Actually, it is a general
selective question-answering task on knowledge
graphs. Please refer to Appendix 8.1 for more clar-
ification about the scope of the B-side task. The
formal definition of the B-side task is as follows:

Problem 2. B-SIDE TASK. Given: (1) a tex-
tual graph G = (V, E); (2) a query q about G;
(3) a frozen large language model LLM(-); (4) a
node set Vipain C V with labeled statuses (i.e.,
Unblocked/Blocked) for nodes. Qutput: the an-
swer agen for q via LLM(-), where agen is an
answer list and each answer is formulated as
(Sv,, text(v;)), where s, is the node status (i.e.,
Unblocked/Blocked) and text(v;) is the text of node
v;. For example, one answer can be (Blocked,
Bomb) or (Unblocked, Glycerol).

Remarks. One naive idea to solve the B-side task
is to simply delete all nodes that are labeled with
Blocked from the textual graph. However, this idea
does not work for two reasons. First, most nodes in
the textual graph are not labeled with statuses and
their statuses need to be inferred. Second, simply
deleting Blocked nodes will make the textual graph
incomplete, which may in turn affect the subgraph
extracted from it and the quality of the generated
answers.

3 Model

In this section, we detail the proposed TAONA
model, which comprises two variants: TAONA-
A for the A-side task and TAONA-B for the B-
side task. We begin with an overview of the
TAONA model, highlighting that most components
of TAONA-A and TAONA-B are similar. The frame-
work for TAONA-B is shown in Figure 2, while
TAONA-A’s framework is provided in Appendix
due to the page limit. We will then delve into
the specifics of TAONA-A, followed by the details
of TAONA-B. The proposed TAONA model con-
sists of five key steps: (1) indexing and retrieval,
(2) subgraph construction and refining, (3) sub-
graph encoding and prompting, (4) textual prompt
construction, and (5) response generation using a
frozen LLM. Our focus is primarily on steps (2),
(3), and (4), while steps (1) and (5) adhere to stan-

dard procedures as outlined in (He et al., 2024).
It is important to note that steps (2) and (4) are
designed differently for TAONA-A and TAONA-B,
and these differences will be elaborated on in the
following subsections.

3.1 TAONA-A

For the A-side task, given the question ¢ and the
underlying textual graph G = (V| E), the target
is to generate the most accurate answer age, to
q without considering whether the information in
agen should be blocked or not. For TAONA-A,
the core component is the TAONA-GraphEncoder,
which we will introduce in details.

Indexing and retrieval. We first utilize a lan-
guage model LM(-) (i.e., SentenceBert (Reimers
and Gurevych, 2019)) to initialize the embedding
for (1) the question ¢, and (2) nodes and edges in
the textual graph as follows:

zq =LM(q), (D
z,, =LM(text(v;)), ()
Ze, ; =LM(text(e;;)), 3)

where text(v;) and text(e; ;) are textual attributes
of node v; € V and edge e; ; € E. After initializ-
ing these embeddings, we adopt the cos(+, -) to cal-
culate the similarity between the query embedding
z, and all node/edge embeddings zvi/zei,]. .Then,
we sort the similarity scores and retrieve the most
similar nodes and edges to the query:

Visim =argtopk,, ¢y cos(2zq, Zy, ), (4)

Esim =argtopk,, .cpcos(zq, ze,;), (5

where argtopk(-) refers to the operation of sorting
and selecting the top-k.

Subgraph construction. After identifying the rel-
evant nodes and edges, we construct a connected
subgraph that includes other potentially relevant
nodes and edges. For the A-side task, we assume
all nodes in G are unblocked. Thus, the subgraph is
built directly from the retrieved Vg, and Egy, with-
out the need for the refining process that TAONA-B
undertakes, as described in the next subsection. To
construct the subgraph for steps (3) and (4), we em-
ploy the same approach as G-Retriever (He et al.,
2024), utilizing the Prize-Collecting Steiner Tree
(PCST) algorithm (Bienstock et al., 1993). Specifi-
cally, for a node or edge in Vi, or Fgiy,, we assign
a prize based on its rank: prize(v;) = k — ry, for
nodes and prize(e; ;) = k — e, ; for edges, where
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Figure 2: Overview of TAONA-B. Nodes in blue are labelled with Unblocked. Nodes in red are labelled with
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belong to Fg;m. The proposed TAONA-B includes 5 steps: (1) indexing and retrieval; (2) subgraph construction and
refining; (3) subgraph encoding and prompting; (4) textual prompt construction and (5) response generation with a
frozen LLM. The framework of TAONA-A is attached in Appendix due to the page limit. Compared with TAONA-B,
TAONA-A removes the TAONA-NodeClassifier in step (2) and has a different textual prompt construction in step
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Figure 3: One layer of TAONA-GraphEncoder on Ggp.
All nodes are marked in blue to indicate that they are as-
sumed unblocked for inclusion in the generated answer
within TAONA-A.

Ty, 1s the rank of v; in Vg, and Tei, is the rank
of e; j in Egy,. The k here is a hyper-parameter,
which means that the top k£ nodes/edges with the
top k largest similarities are considered in the sub-
graph construction. The PCST algorithm aims to
maximize the total prize of the subgraph while min-
imizing its size (i.e., cost):

Geub = argmax g prize(v;)
GsubCY 4 Vigmm

+ Z prize(e; ;) — cost(Gsup),

€i,5 €Fgim

(6)

where cost(Gsub) = ¢ * ||Eg,,, ||, and c is the cost
for each edge in the constructed subgraph.

TAONA-GraphEncoder. After retrieving relevant
information and constructing Gg,1,, we introduce
the TAONA-GraphEncoder to encode the informa-
tion within Gg,1,, the key component of TAONA-A.

For the A-side task, the goal of the graph encoder
is to generate a graph prompting vector, which will
be used as part of the prompt for the frozen LLM.
In this context of TAONA-A, we do not need to con-
sider the blocked status of nodes (Figure 3). In G-
Retriever (He et al., 2024) and other related works,
a Graph Convolutional Network (GCN) (Kipf and
Welling, 2016) or Graph Attention Network (GAT)
(Velickovic et al., 2017) is commonly employed
as the graph encoder. However, as highlighted in
(Bo et al., 2021; Xu et al., 2024), GCNs and GATs
belong to homophilic GCNs, which rely on Lapla-
cian smoothing (Chung, 1997) and tend to produce
similar embeddings for adjacent nodes. This de-
sign is suitable for the A-side task. However, the
proposed graph encoder should also work for the
B-side task. Unfortunately, GCN and GAT do not
satisfy this requirement. In the B-side task, the ho-
mophilic assumption that connected nodes should
have similar embeddings does not always hold. For
instance, in the examples provided in Figure 1, the
node Glycerol is unblocked to be included in the
generated response, whereas the node Bomb should
be blocked. Therefore, the proposed graph encoder
must be capable of adaptively determining whether
connected node pairs should have similar embed-
dings. To address this, we propose the TAONA-
GraphEncoder, which meets this requirement by
capturing the interaction between nodes v; and v;
connected by edge e; ;. The computation of the
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interaction weight Ce(f)j in one convolution layer of
TAONA-GraphEncoder is as follows:

al!) = LINEAR, (z{)), (7)
BY) = LINEAR,(2)), (8)
%%,j = LINEARg(ZeiJ), (9)

¢ = tanh(al) + 7., — 8D),  (10)

j

where zz(,li) and sz} represent the embeddings of
nodes v; and v; in the [-th layer, respectively.
The functions LINEAR;(-), LINEARj(-), and
LINEARs3(-) are linear layers that map their in-
puts to scalar values. The interaction weight Céf)J
captures the relationship between the nodes and
serves as the attention weight for message passing
along edge ¢; ;:

1
2 = T > ¢ LINEAR(CONCAT (2,2, ., ,)),

an
where d,; denotes the degree of node v; in
Gsub- To highlight the strengths of the TAONA-
GraphEncoder, we briefly compare the learned Céf)]
with the attention « learned in a GAT encoder.
From Eq. (10), it is evident that Ce(f)] first cap-
tures the relationship among (v;, €; j, v;), similar
to TransE (Bordes et al., 2013), and then maps this
relationship to the range (—1, 1) using a tanh(-)
function. During the message-passing process, if
Ce(f)] € (0,1), the embeddings of v; and v; will
become similar. Conversely, if Céf)J € (—1,0), the
embeddings of v; and v; will diverge, which meets
the requirement for the B-side task mentioned ear-
lier. In contrast, the attention mechanism in GAT
always produces attention values « in the range
(0, 1), making embeddings of connected nodes be-
coming similar. Thus, the convolution layer of
TAONA-GraphEncoder generalizes the attention
mechanism used in GAT and offers enhanced capa-
bilities by incorporating negative attentions.

After passing through L layers of convolution,
we obtain the embedding zl(,JL.) for each node v;
in Gg,p. We then perform mean pooling on these
embeddings to obtain the overall embedding for

gsub:
2G.,, = POOL(z(")), v; € Go.  (12)

Then, we leverage a multilayer perceptron (MLP)
(Hastie, 2009) to map this embedding to the em-
bedding space of the frozen LLM:

Pgraph = MLP(zg,,,.), (13)

where pgrapn s the graph prompting vector for the
frozen LLM.

Textual prompt construction. Since the A-side
task does not involve any node status (i.e., Un-
blocked/Blocked), all nodes and edges in G, are
textualized (e.g., text(v;) and text(e; ;)). Then,
Prext = text(Gsup) serves as the textual prompt for
the frozen LLM (e.g., step (4) in Figure 2).
Response generation with frozen LLM. In the fi-
nal step, we add task-specific descriptions, such as
"please answer the following question:", to serve
as the task prompt. All textual information is vec-
torized using the first layer of the frozen LLM, pro-
ducing the query vector, the task prompting vector,
and the textual prompting vector®:

q =tokenize(q), (14)
Ptask =tokenize (ptask)a (15)
Ptext :tokenize (ptext) . (16)

Next, all embeddings of the prompts (i.e., Ptask,
Pgraph and Prext) and the query vector q are con-
catenated and fed into the frozen LLM to generate
the answer agen:

Ggen = LLM(CONCAT((L Ptask; Pgraph, ptext))a

(17)
where agey is the generated answer. Note that in
TAONA-A, only the TAONA-GraphEncoder and
the projection MLP in Eq. (13) are trainable.

3.2 TAONA-B

After presenting TAONA-A for the A-side task,
we will now introduce TAONA-B for the B-side
task. For TAONA-B, the initial steps of indexing
and retrieval are the same as those in TAONA-A.
However, unlike TAONA-A, where all nodes are
considered unblocked, most nodes in TAONA-B
have unlabelled statuses that need to be inferred.
Therefore, we employ a TAONA-NodeClassifier to
perform semi-supervised node classification on the
textual graph G.

TAONA-NodeClassifier. As described in the prob-
lem definition, each textual graph G contains a
small proportion of nodes with labelled statuses,
denoted as Vi;ain, Which serves as the training set
for the node classification task. The architecture
of the TAONA-NodeClassifier is designed to be
similar to that of the TAONA-GraphEncoder in
TAONA-A, ensuring that the interaction properties

*In this paper, the terms vector and embedding are used
interchangeably.
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between node pairs are adaptively detected. Specif-
ically, the TAONA-NodeClassifier consists of M
convolution layers, analogous to those in TAONA-
GraphEncoder, followed by a linear layer that maps
the output embeddings to 2 dimensions. A softmax
(Goodfellow, 2016) layer is then used to predict the
status §,, of each node (i.e., Unblocked or Blocked),
with the model optimized using the cross-entropy
loss function (Goodfellow, 2016):

1 .
Lg=— > ((sv log(p(8n, = 1))
||‘/train|| ) )
V; € Virain
+ (1 = sv,) log(p(5, = 0))),
(18)
where s,, = 1 indicates that node v; should be

blocked in the generated answer, while s,, = 0
means that v; is fine to include. After performing
node classification, TAONA-B can infer the statuses
of all nodes in the subgraph Ggp,.
Subgraph refining and textual prompt construc-
tion. In the B-side task, after predicting the statuses
of all nodes in Gg,1,, we add the predicted status 5,,
with the original text of the node v; to act as v;’s
new textual information:

bs_text(v;) = §,, + text(v;). (19)
One example for the above equation is §,, =
Blocked and text(v;) is Bomb, then bs_text(v;)
would be Blocked Bomb. Then, the textual prompt
Dbs_text for the B-side task is constructed with
bs_text(v;) and text(e; ;). Note that all remain-
ing components of TAONA-B are same as those
in TAONA-A. The model will also input q, Ptask,
Pgraph and Pps_text into the frozen LLM, but the
expected output will include both the answer node
and its status.

4 Experiments

In this section, we evaluate the proposed TAONA-A
for the A-side task and TAONA-B for the B-side
task. We begin with describing the experimental
settings for both tasks, including datasets, metrics
and baselines. The hyper-parameter settings are
attached in Appendix 8.2. Next, we present the
results for both the A-side and B-side tasks based
on frozen LLM. Additional results on fine-tuning
LLM are attached in Appendix 8.3 due to page
limit. Finally, we conduct an ablation study and a
hyperparameter study.

4.1 Datasets

A-side task. For the A-side task, we utilize the
GraphQA benchmark (He et al., 2024) for evalua-
tion. This benchmark includes three datasets: Ex-
plaGraphs, SceneGraphs, and WebQSP. Detailed
descriptions of these three datasets are attached in
Appendix 8.4.

B-side task. To the best of our knowledge, we are
the first to explore the B-side task, and currently,
there are no existing datasets tailored for this task.
Therefore, we modify the WebQSP dataset used in
the A-side task to construct the B-WebQSP dataset
for the B-side task. Notice that WebQSP is not
a QA dataset containing sensitive or dangerous
information, nor is B-WebQSP designed for sensi-
tive information detection. Instead, B-WebQSP is
constructed to generally evaluate whether models
can learn and infer a blocking status pattern be-
fore generating responses via LLM. The details of
the dataset construction are attached in Appendix
8.5. To demonstrate the robustness of TAONA-B,
we adopt various blocking and construction strate-
gies. The experimental results of additionally con-
structed B-WebQSP dataset are attached in Ap-
pendix 8.6.

4.2 Metrics

A-side task. For the A-side task, we strictly adhere
to the evaluation metrics of the GraphQA bench-
mark. Specifically, accuracy (ACC) is used as
the metric for both ExplaGraphs and SceneGraphs
datasets. In the WebQSP dataset, where multiple
correct answers may exist for a single question, the
Hit@1 metric is employed. This metric considers a
generated answer to be correct if it exactly matches
any of the answers in the ground truth list.

B-side task. For the B-WebQSP dataset, designed
for the B-side task, we aim to evaluate the model’s
ability to correctly generate both the status (i.e.,
Unblocked or Blocked) and the corresponding an-
swer (e.g., Bomb). We employ the more stringent
ExactMatch-based F1-score metric to assess the
quality of the generated answer list. For instance, if
the ground truth answer list is [Unblocked Glycerol,
Blocked Bomb, Unblocked Nitric Acid], and the
model generates [Unblocked Glycerol, Unblocked
Bomb], the precision would be % and the recall
would be % Consequently, the F1-score would be
%, while Hit@1 for this example would be 1 be-
cause Unblocked Glycerol is correctly generated.
Overall, the F1-score provides a more precise eval-
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Table 1: Performance comparison for the A-side task (%).

Dataset (Metrics) ExplaGraphs (ACC) SceneGraphs (ACC) WebQSP (Hit@1)
Zero-shot 56.50 39.74 41.06
Zero-CoT(Kojima et al., 2022) 57.04 52.60 51.30
CoT-BAG (Wang et al., 2024) 57.94 56.80 39.60
KAPING (Baek et al., 2023) 62.27 43.75 52.64
Graph-based Inference 33.93 42.17 47.22
Frozen LLM + Prompt Tuning (PT) 58.98 63.72 54.11
GraphToken (Perozzi et al., 2024) 85.08 49.03 57.05
G-Retriever 86.19 80.86 70.02
TAONA-A 87.01 82.20 71.23

uation of the performance for the B-side task.

4.3 Baselines

For the A-side task, we have two categories of
baselines: (1) Inference-Only methods: Zero-shot,
Zero-CoT(Kojima et al., 2022), CoT-BAG (Wang
et al., 2024), KAPING (Baek et al., 2023) and
Graph-based Inference; (2) Prompt-Tuning meth-
ods: Frozen LLM + Prompt Tuning (PT), GraphTo-
ken (Perozzi et al., 2024) and G-Retriever (He et al.,
2024). For the B-side task, since most methods’
performances are close to 0°, we mainly compare
with the SOTA method, i.e., G-Retriever. In addi-
tion, we have a specific baseline G-Retriever-B for
the B-side task, which is a modified version of the
original G-Retriever. This variant incorporates the
groundtruth statuses of nodes in Vi, into the gen-
erated textual prompt. More details about baselines
are attached in Appendix 8.7.

4.4 Effectiveness of TAONA-A

The results for the A-side task, comparing TAONA-
A with all baselines, are presented in Table 1.
Firstly, TAONA-A consistently outperforms all
baselines across different datasets. For instance, it
surpasses the best baseline, G-Retriever, by approx-
imately 1% on ExplaGraphs and 1.5% on Scene-
Graphs. Secondly, the performance improvements
of TAONA-A over G-Retriever highlight the effec-
tiveness of the TAONA-GraphEncoder component,
which is the key difference between TAONA-A
and G-Retriever. Lastly, an interesting observation
is that the performance of Graph-based Inference
(33.93% Accuracy) is significantly lower than other
Inference-Only methods on ExplaGraphs. This in-
dicates that simply feeding the graph information
can prevent LLM from making the best of its own
reasoning ability to conduct commonsense tasks.

>We include Frozen LLM + Prompt Tuning (PT) in Table
2 as an example to demonstrate the low performances of most
baselines in the B-side task.

4.5 Effectiveness of TAONA-B

For the B-side task, we conducted experiments on
the B-WebQSP dataset, and the F1-scores are pre-
sented in Table 2. Firstly, since the B-side task
involves predicting both the status and the node, it
is significantly more challenging than the A-side
task. As a result, some simple baselines struggle
with this complexity. For instance, Inference-Only
and Graph-based Inference methods yield almost
zero performance, while soft prompt tuning with a
frozen LLM achieves only about 1.29% F1-score.
Secondly, our proposed TAONA-B achieves the
highest F1-score for the B-side task. We also in-
troduced a modified version of G-Retriever, which
incorporates the groundtruth node status informa-
tion in the training set, named G-Retriever-B. G-
Retriever-B shows the best performance among
all baselines. However, TAONA-B still outper-
forms G-Retriever-B, with a 2% improvement in
F1-score. This enhancement is attributed to its spe-
cially designed components, such as the TAONA-
GraphEncoder and TAONA-NodeClassifier. In ad-
dition, the result of removing Pgraph OF Ptext drops,
which demonstrates that both of them play an im-
portant role in the performance gain of TAONA-B.

Table 2: Performance comparison for the B-side task
(%) on B-WebQSP.

Metrics \ F1-score
TAONA-B W/0 Pgraph 0.43
Frozen LLM + Prompt Tuning (PT) 1.29
G-Retriever 28.24
G-Retriever-B 28.57
TAONA-B W/0 Ptext 22.03
TAONA-B 30.53

4.6 Ablation study and hyperparameter study

In this subsection, we perform an ablation study
on TAONA-B and a hyperparameter study on
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Figure 4: Ablation study (a) & parameter study (b and c).

the number of layers in TAONA-GraphEncoder
for both TAONA-A and TAONA-B. For the abla-
tion study, we focus on evaluating the effective-
ness of the TAONA-NodeClassifier, as TAONA-
GraphEncoder’s role in TAONA-A was previously
analyzed. Figure 4 (a) shows the performance of
TAONA-B without TAONA-NodeClassifier. It is
evident that TAONA-NodeClassifier enhances F1-
score by approximately 2%, demonstrating its cru-
cial role in improving TAONA-B’s performance
on the B-side task. Additionally, we examine the
impact of varying the number of layers in TAONA-
GraphEncoder, with results presented in Figure 4
(b) and Figure 4 (c). The results indicate that three
layers achieve the best performance in TAONA-A
on ExplaGraphs, whereas two layers offer about a
2% improvement in F1-score over configurations
with one, three, or four layers in TAONA-B. These
findings suggest that two/three layers are enough
for textual graph understanding and question an-
swering tasks.

5 Related Work

5.1 Retrieval Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) (Gao
et al., 2022; Sun et al., 2024) has earned signifi-
cant attention for its ability to address limitations
of large language models (LLMs), such as hal-
lucinations, when answering domain-specific or
knowledge-intensive questions. Existing RAG ap-
proaches can be categorized into three types: naive
RAG, advanced RAG, and modular RAG. Naive
RAGs (Ma et al., 2023) follow a straightforward
process consisting of indexing, retrieval, and gener-
ation. To enhance the performance of naive RAGs,
advanced RAGs employ additional techniques in
the pre-retrieval stage, such as query transforma-
tion, expansion, and rewriting (Peng et al., 2024;
Zheng et al., 2023; Gao et al., 2022). In the post-

retrieval stage, reranking (Blagojevi, 2023) is com-
monly used to improve results. Modular RAGs
integrate diverse strategies to enhance the RAG
pipeline. They may include various data types,
such as text, databases, and knowledge graphs, in
the search module. Additionally, modular RAGs
often use LLMs to refine retrieval queries (Yu et al.,
2022). The proposed TAONA framework falls into
the category of modular RAGs.

5.2 Graphs and Large Language Models

Large language models (LLMs) are trained on
extensive corpora, while textual and knowledge
graphs provide rich factual and structural informa-
tion (Wang et al., 2018; Du et al., 2021; Zhang et al.,
2025; Yan et al., 2021a,b, 2023a,b; Chen et al.,
2024; Ai et al., 2025; Lin et al., 2024, 2025a,b;
Liu et al., 2025). Combining LLMs with graphs
is a natural choice for applications such as ques-
tion answering and text generation (Zeng et al.,
2023a, 2024a, 2023b, 2024c, 2025; Roach et al.,
2020; Li et al., 2024; Yan et al., 2024b,c; Yu et al.,
2025a,b; Bao et al.; Yang et al., 2024). This in-
tegration can be categorized into three main ap-
proaches: KG-enhanced LLMs involve incorporat-
ing knowledge graphs (KGs) into LLMs in vari-
ous ways. KG-enhanced pre-training (Liu et al.,
2020; Sun et al., 2020) improves LLMs’ knowl-
edge representation by integrating KGs during the
training process. KG-enhanced inference (Lewis
et al., 2020; Wang et al., 2023b; Sun et al., 2023;
Ma et al., 2024; Li et al., 2023) enables LLMs to
utilize KG information during inference without
retraining. KG-enhanced interpretability (Meng
et al., 2021; Luo et al., 2023b) uses KGs to better
understand the knowledge learned by LLMs. LLM-
augmented KGs enhance traditional KG tasks with
the capabilities of LLMs. This includes KG em-
bedding (Wang et al., 2023c), which improves the
representation of KGs; KG completion (Kim et al.,
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2020; Liao et al., 2023), which helps fill in missing
information; and KG construction (Bosselut et al.,
2019; Hao et al., 2022), which supports the creation
of new KGs. Synergized LLMs+KGs (Yasunaga
et al., 2022) merge KG-enhanced LLMs and LLM-
augmented KGs in an iterative fashion, leveraging
the strengths of both approaches to create a unified
solution. Additional insights into the integration
of graphs and LLMs can be found in (Pan et al.,
2024).

6 Conclusion

In this paper, we explore the problem of textual
graph understanding and question answering, ad-
dressing both the A-side and B-side tasks. To the
best of our knowledge, we are the first to intro-
duce the B-side task. To tackle these tasks, we
present a novel model, TAONA, which includes
TAONA-A for the A-side task and TAONA-B for
the B-side task. TAONA-A features a specialized
TAONA-GraphEncoder designed to generate the
graph prompting vector, while TAONA-B incor-
porates a TAONA-NodeClassifier to predict node
statuses. Extensive experiments demonstrate the
effectiveness of both TAONA-A and TAONA-B.

7 Limitations and Ethical Impact

Our work focuses on a plug-and-play approach
with frozen LLMs, which limits potential per-
formance improvements that could be achieved
through fine-tuning. Integrating the node status
inference module with an LLM fine-tuning module
in an end-to-end training pipeline may yield better
results, which we leave for future work.

Additionally, our approach may have ethical im-
plications, as the proposed TAONA-B framework
can be used to filter toxic or harmful information
in QA systems designed to exclude such content.
However, we do not emphasize this aspect in our
paper, as TAONA-B is not restricted to such use
cases; it can also be applied to other domains, such
as product recommendation in e-commerce plat-
forms.
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8 Appendix

In this appendix, we include the following con-
tents for the reviewers’ reference: Clarification on
the scope of the B-side task (Subsection 8.1); (2)
Hyperparameter settings (Subsection 8.2); (3) Ex-
perimental results on fine-tuning the LLM (Sub-
section 8.3); (4) Detailed descriptions for datasets
in the A-side task (Subsection 8.4) and examples
of datasets and corresponding tasks of GraphQA
benchmark from (He et al., 2024) (Figure 6); (5)
Construction of B-WebQSP (Subsection 8.5); (6)
New B-WebQSP dataset construction and evalua-
tion; (7) Baselines for the A-side task (Subsection
8.7); and (8) The overview of TAONA-A in Fig-
ure 5.

8.1 Clarification on the scope of the B-side
task

We would like to clarify that the B-side task is
not specifically designed for question-answering
on graphs containing sensitive, dangerous, or
ethical information. Actually, the B-side task
is a general selective question-answering task
on knowledge graphs, where a small subset of
nodes is labeled with a selective preference (e.g.,
Blocked/Unblocked). Due to space constraints,
we primarily illustrated the B-side task using
question answering on graphs containing sensi-
tive/dangerous/ethical information as an example
application in Introduction and throughout the pa-
per.

To further clarify, we present an additional ex-
ample application and contrast it with the one used
in Introduction:

* Example Application 1: Question Answer-
ing on Graphs Containing Sensitive, Dan-
gerous, or Ethical Information. In this sce-
nario, a small subset of nodes is manually la-
beled as "dangerous" or "safe", determined en-
tirely by users/experts employing our TAONA-
B model. The goal of the B-side task in this
application is to learn connectivity patterns
from labeled nodes and infer the status of un-
labeled nodes, reducing human annotation ef-
fort. TAONA-B ensures that only safe nodes
are included in the generated response.

» Example Application 2: Product Search on
an E-commerce Platform A user searches
for a product, and a shop-product knowledge
graph indicates that two shops sell it. Shop 1
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has paid a higher advertisement fee, granting
it higher priority (Unblocked), while Shop 2
is Blocked. The B-side task here is to learn
the blocking pattern (i.e., based on ad fees and
shop connectivity in the KG) from a small set
of labeled nodes and infer the status of other
shops. TAONA-B ensures that only unblocked
shops appear in the response.

e Comparison and Objective of the B-side
Task. In Application 1, dangerous nodes tend
to be connected or located closely in the under-
lying graph, so TAONA-B learns positive at-
tention weights between them. In Application
2, competing shops selling similar products
tend to be connected but may have opposite
statuses (e.g., one blocked, one unblocked), so
TAONA-B learns negative attention weights
between connected nodes. This negative at-
tention mechanism is a key motivation for our
model, enabling it to capture different selec-
tive status patterns in the graph.

Summary of clarification. The B-side task
is general-purpose, designed to capture selec-
tive status patterns from a small set of labeled
nodes, regardless of the application. The initial
blocked/unblocked nodes are completely deter-
mined/annotated by the user (e.g., the e-commerce
platform), and blocking patterns vary across appli-
cations. The initial labeling process is not the focus
of our paper; our model’s goal is to infer the status
of other nodes based on these initial labels.

Specifically, WebQSP is not a QA dataset con-
taining sensitive or dangerous information, nor is B-
WebQSP designed for sensitive information detec-
tion. Instead, B-WebQSP was constructed to evalu-
ate whether models can learn and infer a blocking
status pattern before generating responses via LLM.
The application of question answering on graphs
containing sensitive or dangerous information is
merely an example use case, not the definition of
the B-side task.

8.2 Hyperparameters configuration

We utilize the open-source LLaMA 2-7b model
(Touvron et al., 2023) as the frozen large lan-
guage model (LLM). All experiments are con-
ducted on two NVIDIA A100-80G GPUs, with
four random seeds 0, 1, 2, 3. The number of lay-
ers for both TAONA-GraphEncoder and TAONA-
NodeClassifier is selected from 1, 2, 3, 4, while the
dropout rate is fixed at 0.05. In the Frozen LLM

+ Prompt Tuning setup, the virtual token length
is set to 10, with a maximum text length of 512
tokens and a maximum generated token length of
32. We use the AdamW optimizer (Loshchilov and
Hutter, 2017) with a learning rate of le-5. The
batch size is selected from 1, 2, 4, 8, and the num-
ber of epochs is searched within 1, 5, 10. The
hidden dimension for both TAONA-GraphEncoder
and TAONA-NodeClassifier is set to 1024. For the
subgraph construction process, the parameter £ and
all other parameters follow those set in G-retriever
(He et al., 2024). Specifically: For SceneGraphs,
we set k = 3 for both edges and nodes, with ¢ = 1.
For WebQSP and B-WebQSP, we set £ = 3 for
nodes, k = 5 for edges, and ¢ = 0.5 for edge cost.
For ExplaGraphs, given the small graph size, the
entire graph is retrieved as the subgraph. The hyper-
parameters for all baseline models are consistent
with those specified in the GraphQA benchmark
(He et al., 2024).

8.3 Experimental results on fine-tuning the
LLM

To further demonstrate the effectiveness of the pro-
posed TAONA-B, we conducted additional exper-
iments on B-WebQSP, enabling LLM fine-tuning
via LoRA (Hu et al., 2022). Specifically, we com-
pare the following three models:

e G-Retriever
Retriever-FT)

with fine-tuned LLM (G-

* TAONA-B with fine-tuned LLM but excluding
the NodeClassifier (TAONA-B-FT w/o Node-
Classifier)

* TAONA-B with fine-tuned LLM (TAONA-B-
FT)

The average precision, recall, and F1-score are pre-
sented in Table 3.

First, we observe that fine-tuning the LLM
via LoRA significantly boosts TAONA-B’s perfor-
mance. TAONA-B-FT achieves an Fl-score of
35.05%, up from 32.28% in G-Retriever-FT, rep-
resenting a relative improvement of 10%. This
improvement is substantial compared to the frozen
LLM setting presented in the paper, where TAONA-
B (30.53%) outperformed G-Retriever (28.24%).

Second, we find that the NodeClassifier plays
a crucial role in performance improvement, in-
creasing the F1-score from 33.44% to 35.05% in
TAONA-B-FT.
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Additionally, for the A-side task, we conducted
experiments with LLM fine-tuning via LoRA on
WebQSP. TAONA-A-FT achieves 75.12% Hit@1,
compared to 73.04% from G-Retriever-FT. Notably,
the performance gain with LoRA fine-tuning is
more pronounced than that in the frozen LLM set-
ting presented in the paper (71.23% in TAONA-A
vs. 70.02% in G-Retriever).

Opverall, these results further validate the effec-
tiveness of TAONA-A/-B, and the observed im-
provements are non-trivial.

8.4 Dataset descriptions for A-side task

The statistics for three datasets in A-side task are
provided in Table 4. ExplaGraphs is designed for
generative commonsense reasoning and focuses
on constructing explanation graphs for stance pre-
diction in debates. It offers detailed, unambigu-
ous commonsense-augmented graphs to evaluate
whether arguments support or refute a given be-
lief. The primary task is to determine whether the
arguments are supportive or contradictory. Scene-
Graphs is a visual question answering dataset that
includes 100,000 scene graphs, each describing
objects, attributes, and relations within an image.
This dataset challenges users with tasks that require
spatial understanding and multi-step inference. The
task is to answer open-ended questions based on the
textual description of a scene graph. WebQSP is a
large-scale multi-hop knowledge graph QA dataset
containing 4,737 questions. It utilizes a subset of
Freebase (Bollacker et al., 2008), focusing on facts
within 2 hops of the entities mentioned in the ques-
tions. The task involves answering questions that
necessitate multi-hop reasoning.

8.5 Construction of B-WebQSP

In this subsection, we introduce the details of con-
structing the B-WebQSP dataset. Specifically, we
start by randomly selecting a small ratio of nodes
as initial blocked nodes (w; = 0.1). Then, using
these labelled nodes as a starting point, we apply
the Breadth-First Search (BFS) algorithm (Cormen
et al., 2022) within an H-hop area © to label addi-
tional nodes. During the BFS process, within H
hops from the initially labelled nodes, we assign
a probability of wy = 0.95 that the next reach-
able node will be marked as a blocked node. After
completing this step, any remaining nodes are con-
sidered unblocked nodes. Once the ground truth

®H = 1 in our experiments.

statuses for all nodes are established, we randomly
select 10% of the nodes’ statuses as labelled to
form the training set Vi ain for the B-side task. The
output of the B-side task is a list of the combination
of status and the node itself (e.g., Blocked Bomb).

8.6 New B-WebQSP dataset construction and
evaluation

To better illustrate that (1) the scope of the B-
side task in Subsection 8.1 is a general selective
question-answering task on knowledge graphs; and
(2) the dataset B-WebQSP is constructed to evalu-
ate whether models can learn and infer a blocking
status pattern before generating responses via LLM
rather than designed for sensitive information detec-
tion, we construct an additional B-WebQSP dataset
with a different blocking pattern. The new mask-
ing strategy aligns with Example Application 2 in
Subsection 8.1, where connected node pairs tend
to have opposite block statuses. This new strategy
is entirely different from the one used in the main
content of our paper.

Original B-WebQSP used in the main content.

* 10% nodes are randomly selected as initially
blocked.

* For nodes connected to these blocked nodes,
the probability of being blocked is 95%.

¢ Connected nodes tend to have the same status.
New B-WebQSP.

* 10% nodes are randomly selected as initially
blocked.

* For nodes directly connected to blocked nodes,
the probability of being blocked is 20%.

* If a one-hop node is blocked, its two-hop
neighbor has a 20% chance of being blocked.

* If a one-hop node is unblocked, its two-hop
neighbor has a 80% chance of being blocked.

* Connected nodes tend to have opposite sta-
tuses, which differs entirely from the original
strategy.

The results of G-Retriever and TAONA-B on the
new B-WebQSP dataset are shown in Table 5.
TAONA-B still outperforms G-Retriever, demon-
strating its robustness.
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Table 3: Additional Results about fine-tuning the LLM on B-webQSP (%).

Models Average Precision Average Recall Average F1 Score
G-Retriever-FT 39.58 32.04 32.28
TAONA-B-FT w/o NodeClassifier 39.76 34.28 33.44
TAONA-B-FT 43.05 34.53 35.05

Table 4: Statistics of datasets.

Dataset ExplaGraphs SceneGraphs WebQSP B-WebQSP
#Graphs 2,766 100,000 4,737 4,737
Average #Nodes 5.17 19.13 1370.89 1370.89
Average #Edges 4.25 68.44 4252.37 4252.37
Node Attribute Commonsense concepts  Object attributes  Entities in Freebase Entities in Freebase
Edge Attribute Commonsense relations ~ Spatial relations  Relations in Freebase Relations in Freebase
Task Commonsense reasoning  Scene graph QA KGQA KGQA with blocked information
Evaluation metrics Accuracy Accuracy Hit@1 F1-score

Table 5: Experimental results on newly built B-WebQSP
dataset.

Models Average F1 Score (%)

G-Retriever 37.00
TAONA-B 39.17

8.7 Baselines

We have 8 baselines for the A-side task.

* Zero-shot. In this baseline, Given a textual
graph description and a task description, the
LLM is immediately asked to produce the de-
sired output without any other information.

* Zero-CoT (Kojima et al., 2022). This base-
line is a follow-up to CoT prompting (Wei
et al., 2022) and appends the words "Let’s
think step by step." to the end of a question.

* CoT-BAG (Wang et al., 2024). This method
adds "Let’s construct a graph with the nodes
and edges first." after the textual description
of the graph, which forms a whole prompt.

¢ KAPING (Baek et al., 2023). This method is
specially designed for knowledge graph ques-
tion answering. It first retrieves all relevant
triples and adds them to the input question in
the form of a prompt, which is then forwarded
to LLMs to generate the answer.

¢ Graph-based Inference. In this method, all
textual information in G is included as a tex-
tual prompt, and a frozen LLM is used for
question answering, with the query.
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* Frozen LLM + Prompt Tuning (PT). This
approach adds a soft prompt for tuning while
keeping the LLM’s parameters frozen;

* GraphToken (Perozzi et al., 2024). This
method encodes the whole graph with clas-
sical GNN (Kipf and Welling, 2016) as an
embedding and regards this embedding as a
graph prompting vector.

¢ G-Retriever (He et al., 2024). This base-
line performs RAG over the textual graph and
is also part of the GraphQA benchmark (He
et al., 2024).
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