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Abstract

Recent researches on video large language mod-
els (VideoLLM) predominantly focus on model
architectures and training datasets, leaving the
interaction format between the user and the
model under-explored. In existing works, users
often interact with VideoLLMs by using the
entire video and a query as input, after which
the model generates a response. This interac-
tion format constrains the application of Vide-
oLLMs in scenarios such as live-streaming
comprehension where videos do not end and
responses are required in a real-time manner,
and also results in unsatisfactory performance
on time-sensitive tasks that requires localizing
video segments. In this paper, we focus on a
video-text duet interaction format. This interac-
tion format is characterized by the continuous
playback of the video, and both the user and the
model can insert their text messages at any po-
sition during the video playback. When a text
message ends, the video continues to play, akin
to the alternative of two performers in a duet.
We construct MMDuetIT, a video-text training
dataset designed to adapt VideoLLMs to video-
text duet interaction format. We also intro-
duce the Multi-Answer Grounded Video Ques-
tion Answering (MAGQA) task to benchmark
the real-time response ability of VideoLLMs.
Trained on MMDuetIT, MMDuet demonstrates
that adopting the video-text duet interaction
format enables the model to achieve significant
improvements in various time-sensitive tasks
(76% CIDEr on YouCook2 dense video cap-
tioning, 90% mAP on QVHighlights highlight
detection and 25% R@0.5 on Charades-STA
temporal video grounding) with minimal train-
ing efforts, and also enable VideoLLMs to reply
in a real-time manner as the video plays.

1 Introduction

Videos are becoming an increasingly important
medium to acquire information on a daily basis.
Powered by recent advancements in large language

models (LLMs) (Touvron et al., 2023; Jiang et al.,
2023; Shao et al., 2024; Dubey et al., 2024; Yang
et al., 2024) and vision encoders (Radford et al.,
2021; Zhai et al., 2023; Sun et al., 2023; Oquab
et al., 2023; Wang et al., 2024b), several video
large language models (VideoLLM) (Li et al., 2023;
Liu et al., 2024; Li et al., 2024b,a; Zhang et al.,
2024b; Wang et al., 2024d) have already demon-
strated strong abilities for holding conversations
and answering questions about videos. A common
feature of these models is using visual encoders to
encode all frames sampled from the entire video
at first, and integrate them into text input by con-
catenating them to input embeddings or using cross
attention.

Recent research on VideoLLMs has primarily
concentrated on model architectures and training
datasets, with limited exploration of the interac-
tion format between the user and the model. In this
paper, the “interaction format” of VideoLLMs com-
prises the following two aspects: (1) a chat tem-
plate used to convert input sources, e.g., video, user
text query, and model response, into a sequence of
tokens; (2) a turn-taking rule organizing inputs of
different sources to finalize an interaction format.
For example, for most existing VideoLLMs, the
interaction format is: (1) for the chat template, the
model uses (frames sampled from) the full video
and a text query as input, and then outputs a re-
sponse; (2) for the turn-taking rule, usually the
model is permitted to take its turn to generate a
response when both the whole video content and
user query have ended, e.g., when an <eos> token
is explicitly provided. We refer to this traditional
interaction method as “whole video” in the rest of
this paper.

However, this all-along used whole video inter-
action has the following two defects, which hinder
the performance and real-world usage scenarios of
VideoLLMs: Firstly, it does not admit timely inter-
actions. As the video is often input as a whole, this
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Figure 1: An example of the common Whole Video Interaction Format and our Video-Text Duet Interaction Format.

limits its usage in more scenarios like live broad-
casts or surveillance videos, in which the video
does not end at a specific time. Even if we can seg-
ment the video into multiple fixed-length clips for
input, the model still cannot generate responses in
a real-time manner when necessary, as it does not
know whether it is feasible and appropriate to reply
at the end of this clip. Secondly, it performs un-
favorably on time-sensitive video comprehension

tasks. In this paper we use “time-sensitive tasks”

to refer to tasks in which the model is required
to provide responses that include specific times in
the video, such as temporal video grounding (Kr-
ishna et al., 2017; Gao et al., 2017; Hendricks et al.,
2017), video highlight detection (Lei et al., 2021),
dense video captioning (Zhou et al., 2017; Krishna
et al., 2017), grounded video question answering
(Xiao et al., 2023), etc.

In this work, we formalize the Video-Text Duet
Interaction Format, an interaction method that aims
to enhance VideoLLMs by addressing the afore-
mentioned issues. An illustration of the whole
video interaction format and the video-text duet
interaction format is shown in Fig. 1. With our
video-text duet interaction format, the video is con-
tinuously played and input to the model frame-by-
frame. Both the user and model can insert their text
messages right after any frame during the video
play. When a dialogue turn from either the user
or the model ends, the video stream can have the
floor and input video frames to the model until an-
other turn is started by either the user or the model,
akin to the show of two performers in a duet. This
improves the timeliness of interaction and better
suits real-world applications such as live-streaming
or surveillance video comprehension. Moreover,
by inserting responses to the video where is most
relevant, the model can learn to generate responses

by referencing a smaller but fine-grained fraction
of the video before this position. In this man-
ner, it facilitates information retrieval to describe
lengthy videos, as well as enables a response to
be “grounded” at the targeted position of the video.
We believe this design contributes to addressing
the above discussed issues of existing whole video
VideoLLMs.

To prove the effectiveness of the video-text duet
interaction format, we construct MMDuetIT, a
dataset to facilitate the training of a versatile Vide-
oLLM following the video-text duet interaction for-
mat. We propose Multi-Answer Video Grounded
QA (MAGQA), a novel task that requires the
model to generate answers at appropriate times-
pans in a real-time manner to align with potential
applications of live-streaming video comprehen-
sion. We also train MMDuet, a VideoLLM that
implements our proposed video-text duet interac-
tion format. Initialized with LLaVA-OneVision (Li
et al., 2024a) and trained with MMDuetIT at a low
cost, MMDuet achieves significant performance
improvement in various time-sensitive tasks, and is
able to generate responses in real-time as the video

plays.
2 Related Works

The advancement of large language models (LLMs)
and visual encoders has led to numerous efforts on
their integration, aiming to utilize the powerful
understanding and generation abilities of existing
LLMs for video-related tasks (Li et al., 2023; Liu
et al., 2024; Li et al., 2024b,a; Wang et al., 2024d;
Xu et al., 2023). These models exhibit a decent
ability of video understanding such as captioning
or summarizing (Xu et al., 2023). However, their
performance on time-sensitive tasks is still unsatis-
factory.
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Recent works attempt to empower VideoLLMs
with the ability to localize and represent segments
in videos, and thus achieve better performance on
tasks like temporal video grounding or dense video
captioning. These works explore new ways on
how to easily represent video clips with texts, such
as second numbers of timestamp (TimeChat (Ren
et al., 2023)), timeline percentage (VTimeLLM
(Huang et al., 2023)) or using special textual to-
kens (VTG-LLM (Guo et al., 2024), Grounded-
VideoLLM (Wang et al., 2024a)). However, their
performance has not been satisfactory yet, possibly
due to LLMs’ limited ability to accurately count
and generate numbers (Schwartz et al., 2024) to
localize each video frame. To alleviate this is-
sue, HawkEye (Wang et al., 2024c) uses a coarse-
grained method by referring to a larger fraction of
the video, but it requires multiple rounds of recur-
sive grounding to precisely locate a segment and
may not express multiple segments at a time.

The work most similar to our motivation is
VideoLLM-Online (Chen et al., 2024), which pro-
poses a framework named LIVE for training Vide-
oLLMs to interrupt video streams and insert re-
sponses. However, they only finetune a model on
Ego4D (Grauman et al., 2021) and COIN (Tang
et al., 2019) to demonstrate the LIVE training and
inference, and do not explore on how the model
capabilities vary with this new type of interac-
tion, especially the zero-shot performance on time-
sensitive tasks.

Our work differs from VideoLLM-Online at:
Firstly, providing a more general description of
the video-text dual interaction format, including a
wider variety of criteria for determining whether a
response should be generated, and its application
on new tasks such as temporal video grounding and
grounded question answering; Secondly, introduc-
ing a new dataset MMDuetIT and the method on
building such datasets; Thirdly, proposing a new
task MAGQA; Lastly, proposing a more power-
ful model MMDuet that has state-of-the-art per-
formance on various time-sensitive tasks and zero-
shot generalization ability.

3 The Video-Text Duet Interaction
Format

In Section 1, we have defined the concept of “inter-
action format” with two aspects (i.e., chat template
& turn-taking rule), as well as the drawbacks of
the commonly-used whole video interaction format.

Now we re-emphasize and formalize our video-
text duet interaction format, which is completely
different from previous to implement VideoLLM:s.

(1) For the chat template, inspired by but dif-
ferent from the LIVE framework which is used to
implement VideoLLM-Online (Chen et al., 2024),
we consider the video stream as a conversation par-
ticipant just like the role of user/assistant, and the
input sequence consists of alternating turns among
these three roles. (2) For the turn-taking rule, when
the turn of the user or assistant ends, the video
stream can take the floor and start its turn to input
video frames. When each single frame is consumed,
both the user and the assistant role can interrupt the
video stream at any time, and start its own turn to
query or generate a response, as totally decided by
the user or the assistant, respectively.

4 MMDuet: Our Proposed VideoLLM

4.1 Model Structure

We propose MMDuet, a model trained following
the video-text duet interaction format, which can
thus autonomously decide at what position in the
video to generate what response. Like almost all
existing VideoLLMs, MMDuet consists of three
components: 1) a visual encoder that encodes sam-
pled frames from the video to visual feature, 2)
a linear projector that transforms the encoded vi-
sual feature to a list of visual tokens that is aligned
into the LLM textual embedding space, and 3) a
transformer-decoder-based LLM that takes both
textual and visual tokens as input and uses its lan-
guage modeling head to predict the next token.
The only difference in model structure between
our MMDuet and existing VideoLLMs is that we
add two more heads in addition to the language
modeling head (LM Head) of the LLM, namely
the informative head and the relevance head, for
determining whether to start a response after each
frame. Each head is a linear layer and has a weight
with shape h x 2, where h is the hidden size of the
used LLM. Each head takes the final layer hidden
state of the last visual token of each frame as input,
and performs a binary classification. To be specific,
1) the informative head is designed to predict how
much new information is acquired upon viewing
the current frame. If the model can obtain a “sig-
nificant amount” of new information upon viewing
a new frame (which we will further discuss in Sec-
tion 5.1), it should classify this frame as TRUE cat-
egory; otherwise, it should classify it as FALSE. 2)
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The relevance head is designed to predict whether
the current frame is related to the user query. Sim-
ilarly, TRUE category means to be related, while
FALSE means not. We denote the probability of
TRUE category of informative head and relevance
head as informative score and relevance score for
each sampled video frame. These two scores will
be used to decide whether the model (i.e., assistant
role) should interrupt the video and start its own
turn. Compared with VideoLLM-Online (Chen
et al., 2024) that makes this decision by predicting
one special token using the LM Head, our design
has the following merits: (1) The ground truth la-
bels of informative scores and related scores are
acquired based on the characteristic of the video
itself, rather than on ad-hoc response decisions.
Therefore, there are better labels for models to con-
verge during training. (2) By combining two scores
we can flexibly set different criteria for response
generation, rather than only relying on the logits of
one special token; (3) The relevance head can be
used to precisely perform temporal video ground-
ing and highlight detection tasks, expanding the
application scenarios of MMDuet.

4.2 Inference Procedure

When consuming every single sampled frame of
the video, we first check if there is a user query
happening at this time. If yes, we first input this
user turn to the model. Then the sampled frame
is input to the model, after which the informative
score and relevance score are calculated. We use a
function need_response to estimate whether the
model should generate an assistant response ac-
cording to the informative scores and relevance
scores for this frame along with previous frames. If
yes, the generate function of the LLM outputs a
response. Different need_response functions can
be designed depending on the specific task, which
is introduced in the experiment section (Section 6).
This process can be efficiently implemented by up-
dating the KV Cache each time when a frame or
text is input or generated, and a python-style sudo
code is provided in Appendix B.3.

5 MMDuetIT: Dataset for Training
MMDuet

We build MMDuetIT, a dataset for training the MM-
Duet model to learn to calculate the informative and
relevance scores, and autonomously output replies
at any necessary time in the play of the video. MM-
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Figure 2: Example of reformatting the annotation of a
video segment to video-text duet interaction format in
MMDuetIT. Information from the original annotation is
emphasized with underlines.

DuetIT is composed of three different types of tasks
that benefit our model training: dense captioning,
multi-answer grounded video question answering,
and temporal video grounding. An example of the
input format for each task is listed in Appendix D.

5.1 Dense Captioning

We use Shot2Story (Han et al., 2023), a video-text
dataset with segment-level captions, as our dense
captioning training data. Specifically, we use the
43k human-annotated subset due to its high-quality
and detailed annotations. We preprocess the data
to serve our purposes, and an illustration of refor-
matting the video segment and caption annotations
to video-text duet interaction format is in Fig. 2:
we randomly sample a position from 50% to 75%
time duration for the corresponding video segment,
and insert the caption at that position as a model
response. We also create labels for the informa-
tive head in dense captioning tasks by setting the
informative head’s label to TRUE for frames be-
tween 50% of this segment and the insertion point
of the response, and set labels to FALSE for the
other frames. To adapt to long video input, we also
select videos with 2 to 4 minutes in length from
COIN (Tang et al., 2019) as a dense captioning
task to MMDuetIT. The annotations in COIN are
reformatted using the same method as Shot2Story.
For more details about this data reformat process
please refer to Appendix B.1.

5.2 Multi-Answer Grounded Video QA

An important application scenario for the video-
text duet interaction format is multi-answer
grounded video question-answering (MAGQA).
Consider when we are watching a live broadcast
of a basketball game and want to track the actions
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of a particular player in the game. This exempli-
fies a MAGQA task: the question is "What does
this particular player do in the video?". Each time
this player performs an action, the model should
respond with a description of this action (i.e., mul-
tiple answers) in a real time manner. We believe
this newly proposed MAGQA task can be widely
used in real-world scenarios when users interact
with a live-streaming video.

We construct training data for this task using
GPT40-2024-08-06 (OpenAl, 2024). Given the
captions of all segments from the video as input,
GPT4o is prompted to generate a question related
to one or more captions. For each of the segment
captions, if it is related to the question, then GPT40
should also generate an answer that can be inferred
from this caption. Otherwise, GPT4o0 should reply
with “Not Mentioned.”, and this answer is not
added to the training data. We use the same inser-
tion method of dense captioning task as described
in Section 5.1, to insert the answers into the video
stream and construct informative head labels, and
the question is inserted at a random place before the
first answer. We also use the same insertion method
to convert the human-annotated Shot2Story test
set and randomly sampled 2000 examples as the
test set of our MAGQA benchmark in Section 6.3.
Therefore, this dataset contains 36834 examples in
the train set and 2000 examples in the test set, and
we name it as “Shot2Story-MAGQA-39k”.

We have manually checked its data quality, and
details of this process are stated in Appendix A.

5.3 Temporal Video Grounding

We also add DiDeMo (Hendricks et al., 2017),
HiREST y; ounding (Zala et al., 2023) and QuerYD
(Oncescu et al., 2021), three temporal video ground-
ing tasks in MMDuetIT. Note that these data are
used only for training the relevance head, which
is designed for performing temporal video ground-
ing tasks and judging the relevance between the
question and the video for QA tasks. The query is
first added at the beginning of the input sequence.
For frames that are annotated as relevant to the
query, we set the relevance head’s label to TRUE;
otherwise, we set it to FALSE.

5.4 Dataset Statistics

The data distribution of MMDuetIT is shown in
Fig. 3. Note that this dataset only contains 109k
examples, which is relatively small compared to
modern post-training datasets like (Li et al., 2023,

2024a; Wang et al., 2024c). The reason is that due
to computational resource constraints, we plan to
demonstrate the feasibility of our proposed video-
text duet interaction format by fine-tuning a state-
of-the-art VideoLLM. We assume that the used
backbone model already possesses enough video
comprehension capabilities. By using a small
dataset, we aim to train this model to efficiently
adopt this new interaction with minimum catas-
trophic forgetting of its existing abilities.

6 Experiments

Implementations MMDuet is initialized with
LLaVA-OneVision (Li et al., 2024a). We train the
model on MMDuetIT for one epoch. The training
takes about one day on a node with 8 Tesla V100
GPUs, and the inference runs on 1 Tesla V100
GPU. More implementation details are listed in
Appendix B.2.

Baselines As MMDuet mainly focuses on time-
sensitive video tasks, we use the following base-
lines that are able to represent time spans in videos
by different representation formats: TimeChat (Ren
et al., 2023), VTimeLLM (7B) (Huang et al., 2023),
HawkEye (Wang et al., 2024c), VTG-LLM (Guo
et al., 2024), and VideoLLM-Online (Chen et al.,
2024). For VideoLLM-Online, we experimented
with # € {0.5,0.6,0.7,0.8} as suggested in their
paper and report the best results (0.8 for both dense
video captioning and MAGQA).

Since the initialization of MMDuet is stronger
than that of the baselines, for a fair comparison we
also conduct a controlled experiment in which the
only difference is the interaction format. Specifi-
cally, we use the same initialization model (LLaVA-
OneVision), training data (MMDuetIT) and train-
ing schedule, but reformat the data to the respective
interaction formats and video segment representa-
tion formats used by TimeChat and VTimeLLM to
train two baseline models. We name these models
as LLaVA-OV-TC and LLaVA-OV-VT.

6.1 Highlight Detection and Temporal Video
Grounding

We use highlight detection and temporal video
grounding to evaluate the performance of the rel-
evance head of MMDuet. Baseline models are
required to generate a list of float numbers to repre-
sent the relevance score for each clip in QVHigh-
lights (Lei et al., 2021), and a start and end time for
the relevant video span in Charades-STA. However,
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QVHighlights | Charades-STA YouCook?2
mAP/HIT@1 | R@IoU=0.5/0.7 SODACc/CIDEr/F1
Eoin sy T Video-LLaMA 1.3/15.6 2712 0.0/0.0/0.1
n=4574 MR VideoChat-Embed 13.1/18.1 32/14 0.2/0.6/3.4
Multi-Answer VideoChatGPT - 7.7/1.7 -
n=30834 TimeChat 14.5/23.9 32.2/13.4 1.2/3.4/12.6
- JHinest VTimeLLM - 31.2/11.4 -
Captioning < vides "9 HawkEye - 31.4/14.5 -
Tzen) ECrstnalngy VTG-LLM 16.5/33.5 33.8/15.7 1.5/5.0/17.5
S VideoLLM-Online - - 0.4/0.9/5.8
n=24381 LLaVA-OV-TC 17.6/32.9 33.1/12.4 1.9/3.3/21.8
ey LLaVA-OV-VT 19.0/40.0 36.5/12.3 2.5/6.7/14.0
MMDuet (Ours) 31.3/49.6 42.4/18.0 2.4/5.7/19.2
+ rm. prev. resp. - - 2.9/8.8/21.7
Figure 3: Data Distribution of
MMDuetlT. Table 1: Zero-shot performance on highlight detection, temporal video ground-

ing, and dense video captioning. All models uses 7B LLMs.

for LLaVA-OV-TC and LLaVA-OV-VT, despite us-
ing different prompts as input, we were still unable
to instruct the model to output a sequence of scores
as in (Ren et al., 2023). Therefore, we follow the
method of Charades-STA to instruct the model to
output a related span, and assign the score to 1 for
clips within this span and 0 otherwise. MMDuet
uses the relevance score min-max normalized to
[0,1] as the score in QVHighlights, and to clas-
sify whether this frame is relevant and calculate
frame-level IoU in Charades-STA.

Since the relevance head provides a relevance
score immediately after each frame, its prediction
cannot leverage the context from subsequent video
frames. To mitigate this limitation, we smooth
the relevance score sequence. Specifically, we set
each frame’s smoothed relevance score as the mean
value of its original score, the relevance scores
of the preceding w frames and the following w
frames, where w is the window size. We set w = 2
for QVHighlights and w = 6 for Charades-STA.
Results are shown in Table 1. We observe that,
compared to the baselines, MMDuet exhibits a sig-
nificantly greater improvement in performance on
QVHighlights. This indicates that traditional Vide-
oLLMs struggle with generating a long sequence
of relevance scores using a text-based form or iden-
tifying multiple related video segments in its text-
based responses, whereas MMDuet’s approach of
directly assigning relevance scores to each frame
circumvents this issue. For VideoLLM-Online, we
instruct it to reply with “start” / “end” at the start /
end time of the target clip following the examples
given in its paper but it does not follow the instruc-
tions despite trying different wordings, so we are
not able to report its performance.

w is robust to different values Though the w
is empirically set for the results in Table 1, we
also find that within a fairly large range of w, the
performance of MMDuet is robust and consistently
outperforms all baseline models. Detailed results
are listed in Appendix C.1.

6.2 Dense Video Captioning

We test dense video captioning performance on
YouCook2 (Zhou et al., 2017), a challenging task
that requires models to output the caption, start
point and end point for about 8 steps in a minutes-
long cooking video. Baseline models output the
start time, end time and caption for each step in the
text-based form. For MMDuet, since this task re-
quires the model to continuously identify important
actions from the video and output periodically, we
employ a heuristic method to determine whether a
model response should be output after each frame
(need_response function in Section 4.2). We sum
up the informative score for each frame as the video
plays. When the sum reaches a threshold s (we set
s = 2), the model generates a response right after
this frame as the caption for that step, and then we
reset the sum to O to start a new round of sum.

However, MMDuet cannot directly predict when
a step starts or ends just by this video-text duet
interaction format, as the model is unable to deter-
mine whether a frame is the beginning of a step
without observing enough subsequent content. To
get the start and end time for each step as required
by this task, we adopt a simple workaround: we use
the time of the previous response and the current
response as the start time and end time for a step.
If two adjacent steps have the same caption, we
merge them into one step. This workaround is also
applied on VideoLLM-Online.
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It has been a long-lasting problem that LLMs
tend to repeat previously-generated content (Xu
et al., 2022), and we find that this problem is espe-
cially severe in dense video captioning. It indicates
that VideoLLMs are probably generating captions
relying on text shortcuts rather than the video con-
tent. We have attempted common solutions such
as repetition penalty (Keskar et al., 2019), which
though is still sub-optimal. Since the responses
from MMDuet are separated across multiple turns,
we find that simply removing previously generated
turns from the context (“rm. prev. resp.” for short)
by not appending their attention keys and values
to the KV Cache alleviates this issue, leading to a
significant improvement in performance. However,
this simple trick is not applicable to “whole-video”
format baselines, as if the latest words are removed
from the KV Cache, it will remain the same as be-
fore generating the latest words and the model will
generate the same words again, despite some minor
changes due to random sampling. In contrast, for
MMDuet new video contents continuously bring
new KV Cache and drive the conversation forward.

As shown in Table 1, MMDuet does not show
significant improvements on F1 metric, likely due
to the simple solution we use to derive the start
and end time based on responses. Even so, the
CIDEr and CODA_c metric (inaccurate predicted
time spans can have negative effects on these met-
rics) of MMDuet is still higher than all baselines,
indicating that MMDuet outperforms baselines in
terms of text quality, possibly due to its facilitation
to information retrieval discussed in Section 1.

s is robust to different values We also find that
the threshold s is quite robust across a wide range
of from 1 to 3, and we can use different s to suit var-
ious downstream tasks especially in such zero-shot
setting. Detailed results are listed in Appendix C.1.

6.3 Multi-Answer Grounded Video QA

To align closely with the widely-used stream-
ing video comprehension scenario, we propose
MAGQA that requires a model to generate answers
at multiple necessary positions of a video. Different
from conventional Video QA in which one ques-
tion corresponds to only one answer, In MAGQA, a
question corresponds to multiple turns of answers,
and these turns are derived from different video seg-
ments. Therefore, this task requires the response to
be accurate and in time. Though under the video-
text duet interaction format users may raise arbitary

number of questions at any time, to ensure the fea-
sibility of evaluation, in this experiment we assume
that the user raises only one question at the be-
ginning of the video, and leave the extension to
multiple questions as future work.

As this task is a newly-proposed one, we intro-
duce an “in-span score” metric, which uses LLMs
to calculate the average similarity of pred answers
and gold answers that falls into the same time span
of response, to evaluate both the correctness and
timeliness of model responses. A detailed descrip-
tion of this metric is in Appendix B.5. To prevent
reproducibility issues due to potential changes of
OpenAl API, besides GPT-40-2024-08-06 (Ope-
nAl, 2024), we also report the in-span score ob-
tained using LLaMA 3.1 70B Instruct (Dubey et al.,
2024) to calculate pred-gold similarities.

As MAGQA requires the answers to be both
informative and related to the question, we set
need_response as: if the sum of informative score
and relevance score of a frame is larger than a
threshold ¢, then the model needs to generate a
response right after this frame. We also use the
“rm. prev. resp.” method in dense video captioning
task introduced in Section 6.2. As baseline models
are not capable of generating responses at specific
positions in the video, we employ an output format
the same as dense video captioning, i.e., output the
start time, end time, and predicted text for each
turn after watching the entire video in both training
and testing, and use the average of the start and end
time as the response time. We also observe that
for some cases the baseline models directly give
one answer instead of generating multiple replies
and their corresponding time spans, and we do
not count these examples into the metrics when
reporting results. Note that this is a significantly
simplified requirement than that of MMDuet, as
the MAGQA task simulates streaming video com-
prehension application scenario, which requires
the model to respond as soon as the video plays to
segments relevant to the question, which ensures
that users can see the responses timely, rather than
waiting until the entire video concludes before gen-
erating replies.

MMDuet has better performance than baselines
and provides real-time replies. Results on the
test set of Shot2story-MAGQA-39k are shown in
the lelf half of Table 2. We provide results for
different ¢ as it represents a trade-off between in-
ference time and performance: as ¢ decreases from
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original test set 5-time prolonged video test set
Model Real- | In-Span Score | # turns (w/o. | time per | In-Span Score | # turns (w/o. | time per
Time? | LLaMA/GPT | / w/. dedup) | example | LLaMA/GPT | / w/. dedup) | example
Baselines
LLaVA-OV-TC | 2718 2.7712.64 4.1/2.2 1.00 1.67/1.62 7.6/2.4 1.00
LLaVA-OV-VT | 2718 2.54/2.42 4.1/3.1 1.06 1.64/1.60 10.2/3.4 0.99
VideoLLM-Online | 2714 1.33/1.26 1.3/1.1 * - - -
MMDuet (Ours)
t=0.6 2714 2.46/2.33 13.7/4.0 1.90 1.83/1.73 22.3/7.0 1.04
=0.5 2714 2.77/2.61 18.4/5.3 2.36 2.16/2.02 31.2/9.8 1.45
t=0.4 2714 3.00/2.81 23.0/6.6 2.75 2.44/2.28 41.7/13.0 2.17
t=0.3 2714 3.13/2.93 27.0/7.6 2.90 2.63/2.45 52.8/16.5 2.62

Table 2: Results on the test set of Shot2Story-MAGQA-39k with the rm. ass. turns method used. For the “time per
example” column, the time used by “LLaVA-OV-VT” is set to 1, and the times for other rows are set as multiples of
the time used by “LLaVA-OV-TC”. *: Inference time of VideoLLM-Online is changed to gray and de-emphasized
as it only generates one reply immediately after the question and is hardly helpful for answering the question, and
thus we no longer evaluate it on the 5-times prolonged video test set.

Model | Acc Model YouCook?2
Flash-VStream 1.96 MMDuet 2.9/8.8/21.7
VLLM-Online 3.92 w/o rand.

Dispider ey resp. pos, | 21/7:3/190
MMDuet 29.44 i
ue Womulti ) g0 /16 5
informative

Table 3: Performance on
the Proactive Output task Table 4: Ablation study on
of StreamingBench. training methods.

0.6 to 0.3, the performance of MMDuet’s real-time
replies continuously rises and outperforms base-
lines with a simplified setting of providing non-
real-time replies after watching the entire video.
However, this is achieved at a cost of generating
lots of duplicate replies with more inference time.

MMDuet performs much better than baselines
on longer videos. Since the average video length
of the test set of Shot2story-MAGQA-39k is only
16.9 seconds, to demonstrate MMDuet ’s real-time
QA capabilities on longer videos we use a sim-
ple approach to make videos in the test set longer:
we splice the video with 4 other videos randomly
selected from the test set in random order to pro-
long the video to approximately 5 times longer by
padding with videos irrelevant to the question. Re-
sults on the prolonged videos are shown in the right
half of Table 2. When the videos are long, it be-
comes harder for baseline models to output correct
time spans for the answers which results in low
in-span scores, while MMDuet is more likely to
generate correct answers at the right time.

6.4 Proactive Output on StreamingBench

To further demonstrate the timeliness of the replies
of MMDuet, we also report results on the Proac-

tive Output task of StreamingBench (Lin et al.,
2024). StreamingBench evaluates VideoLLMs
in real-time, streaming video understanding tasks.
Specifically, for the “Proactive Output” task, a ques-
tion is considered as correctly answered if a reply
is raised by the model within two seconds when
a certain scene that contains the answer appears.
Results in Table 3 show that MMDuet outperforms
all Streaming or Proactive MLLMs (Zhang et al.,
2024a; Chen et al., 2024; Qian et al., 2025). Refer
to Appendix C.2 for more details and baselines.

6.5 Ablation Studies

We conduct ablation studies on YouCook?2 dense
video captioning to assess two empirical yet impor-
tant findings for effectively training the informative
head in data construction: randomly inserting the
response at a position from 50% to 75% of the
corresponding video segment (rand. resp. pos.),
and setting informative head’s label to TRUE for
all frames between 50% of the segment and the re-
sponse time (multi informative). When “rand. resp.
pos.” is disabled, the response is always inserted
at the end of the corresponding segment. When
“multi informative” is disabled, only the informa-
tive label of the frame right before the response is
set as TRUE. As illustrated in Table 4, disabling
either method negatively impact MMDuet’s perfor-
mance, which shows the importance of carefully
handling the response time and informative labels.

7 Conclusion

In this paper, we first formalize the video-text duet
interaction format. We collect MMDuetIT for train-
ing models to follow the video-text duet interaction
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format. Based on MMDuetlIT we train MMDuet,
a model with significant improvements on various
time-sensitive tasks and is able to automatically
decide when to response in a real-time manner. We
believe such improvements can be a substantial
step towards building powerful and useful video
comprehension applications.

Limitations

We acknowledge that there is much room for im-
provement which should be addressed in future
research: (1) Some hyperparameters (e.g., the
need_response criterion) are required during in-
ference. However, we have shown that this criterion
is quite robust across different thresholds. (2) Infor-
mation from subsequent frames is not incorporated
when generating in-time responses for the current
frame, especially for the live-streaming video that
indeed has unpredictable future frames. It can be
crucial in some scenarios, such as determining the
start of an action. (3) Slow inference speed. A
better inference process is needed for avoid gener-
ating duplicate responses. (4) Real-time response
datasets with longer live-streaming videos are re-
quired to be collected to better fit the real-world
application scenarios.
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A Data Quality Check of
Shot2Story-MAGQA-39k

We sample 100 examples (with 290 answers) from
our test set for manual quality assessment. Among
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the sampled examples, we find 1 example with a
question unanswerable from the video, 5 examples
have 6 answers (2.1%) that contradict the video
content, and 5 examples have 7 answers (2.4%)
unrelated to the question. Overall, manual quality
assessment shows that above 95% data of our test
set belongs to the high quality, which confirms the
potential value of using Shot2Story-MAGQA-39k
to benchmark models. The reason for the high qual-
ity is when the video captions are provided, gen-
erating questions and answers based on these text
captions is a very simple task for advanced LLMs
like GPT40. However, we also find that in 21 exam-
ples, the video contains additional information that
is not covered in the answers. This is because some
questions are very general, like "What scene is the
video displaying?", and describing scenes in videos
elaborately has been a long-lasting challenge for
annotating video datasets.

B Details of Training and Inference

B.1 Data Reformat Process of MMDuetIT

In Section 5.1 we briefly introduced how the anno-
tations for offline dense captioning / QA are con-
verted into image-text interleave interactive format
for training MMDuet. Here we elaborate more
details and the reasons of this design:

Choices of insertion We randomly sample a po-
sition from 50% to 75% time duration for the cor-
responding video segment, and insert the caption
at that position as a model response. Here we in-
troduce some randomness in the insertion position
to prevent the model from developing a bias or a
shortcut such as responses can only be generated at
some specific positions. The earliest and latest time
for inserting responses, i.e., at the 50% and 75%
place of segment duration, are empirically chosen,
as it works well in our preliminary study. We avoid
inserting responses too early like in the first half
of duration, because it is unfeasible to generate
responses related to this video segment at a very
starting point. It is reasonable that some further
observations are required to gain a more compre-
hensive understanding of it. We also avoid inserting
responses too late like in the last one-fourth dura-
tion, as we hope the model to output a response
as soon as it has a sufficient understanding of the
segment, rather than wait until the disappearance
of the segment. It thereby improves the timeliness
of the whole interaction between users and videos,

especially when the user can still watch the seg-
ment as well as perceive the content of the model
response talking about it.

Creating informative labels We also create la-
bels for the informative head in dense captioning
tasks. According to the previous paragraph, the
model can not have a comprehensive understand-
ing of this video segment until it has viewed a
sufficient portion of the segment (50% in this case).
Meanwhile, once the caption has been generated
as model response, we assume that the remaining
frames in this video segment no longer provide
new information that is not covered in the caption.
Therefore, we set the informative head’s label to
TRUE for frames between 50% of this segment and
the insertion point of the response, and set labels
to FALSE for the other frames.

B.2 Training Hyperparameters

LLaVA-OneVision uses SigLIP-Large (Zhai et al.,
2023) as the vision encoder, and converts an im-
age with 384 x 384 into 24 x 24 = 576 tokens.
In the official settings of LLaVA-OneVision (Li
et al., 2024a), when encoding videos, the visual
tokens corresponding to each frame are spatially
downsampled to 12 x 12 = 144 tokens using a
pooling operation with a size of 2. However, this
number of tokens is also too large when training
and inference with long videos. To address this, we
further modified the pooling size to 4, resulting in
7 x 7 =49 tokens per frame.

We set the maximum number of frames sam-
pled from each video to 120 in the training pro-
cess, which is constrained by the memory of our
GPUs. The sampling frame rates are set to differ-
ent numbers for different video sources to ensure
that for the vast majority (>90%) of videos, video
length (in seconds) = sampled frame per second
(fps) < 120. For the videos that are too long, we
only keep the first 120 frames (and the conversation
turns that are inserted within the first 120 frames),
and discard the subsequent contents. Specifically,
the sampled frame per second (fps) is set as: 2
for videos from Shot2Story (Han et al., 2023) and
DiDeMo (Hendricks et al., 2017), 0.5 for COIN
(Tang et al., 2019) and QueryD (Oncescu et al.,
2021), and 0.33 for HIREST ;.5unding (Zala et al.,
2023).

The projector, the relevance head, the informa-
tive head and LoRA (Hu et al., 2022) weights of
the LLM (add to all attention proj. layers and FFN

6350



Input:
system_prompt
video: list of frames
fps: frames per second to sample
from video
user_turns: list of (time,
sorted by time
Output:
model_turns:
time, text)

AW~
* O OHH

text)

H

generated list of (

9 | model_turns = []

10 |v_inf_list, v_rel_list = [], []
11 | kv_cache = model(system_prompt)
12 [time = 0

13 | for frame in video:

14 if len(user_turns) and time>=
user_turns[0]. time:
15 kv_cache = model (kv_cache,
user_turns[0]. text)
16 user_turns = user_turns[1:]
17 kv_cache, v_inf, v_rel = model(
kv_cache, frame)

18 v_inf_list.append(v_inf) #
informative score

19 v_rel_list.append(v_rel) #
relevance score

20 if need_response(v_inf_list,
v_rel_list):
21 kv_cache, response = model.
generate (kv_cache)
22 model_turns.append((time,
response))
23 time += 1 / fps

Listing 1: Inference Process of MMDuet

layers) are trained, while other parameters of the
model are frozen. More training hyperparameters
are listed in Table 5.

B.3 Pseudo Code of the Inference Process

We provide a python-style pseudo code of the in-
ference process in Listing 1.

B.4 Inference Settings

Videos from different sources are also sampled
with different fps during inference. Specifically,
we set the maximum number of frames sampled
from each video to 400, and fps to 2 for videos
from Shot2Story (Han et al., 2023) and Charades-
STA (Gao et al., 2017), 1 for videos from QVHigh-
lights (Lei et al., 2021), and 0.5 for videos from
YouCook?2 (Zhou et al., 2017). For a few videos in
YouCook? that are even longer than 400(frames) =+
0.5(fps) = 800 seconds, we uniformly sample 400
frames from this video to ensure that information
from the latter part of the video is not truncated.
This inference setting is consistent across MMDuet,
LLaVA-OV-TC, and LLaVA-OV-VT.

Hyper-parameter value
batch_size 1
gradient_acc_steps 8
learning_rate 2e-5
warmup_ratio 0.05
lora_r 16
lora_alpha 32
attn_implementation | sdpa

Table 5: Hyper-parameters used for training MMDuet.

B.5 Details of the In-Span Score

Suppose the model prediction has P answers, each
answer has a prediction time t7me,, and prediction
text pred,, p =1,2,..., P. The ground truth has
@ answers, each answer has a ground truth start
time start,, a ground truth end time end,, and a
ground truth text gold,, ¢ = 1,2, ..., Q. First, we
use an LLM to calculate a relevance score from
1 to 5 between each answer in prediction pred,
and ground truth gold,;: S = {s,,} € RF*Y.
For each ground truth answer ¢, we select the pre-
dicted answers with predicted time in ground truth
time span: P, = {p | time, € [starty, end,},
and use the average score between the ground
truth answer and the selected predicted answers
as the score for this ground truth answer: score, =
1 2opep, Spa if [Pgl > 0. If [Pg] = 0 (no
predicted answer falls in this ground truth span),
scoreg is set to 1. Finally, we calculate the aver-
age score of all ground truth answers as the final
in-span score of this example: in_span_score =

@H Elgl scoreg.
C More Experimental Results

C.1 Hyperparameter Sensitivity

We list the experiments using different window size
w for temporal grounding in Fig. 4 and threshold s
for dense captioning in Fig. 5.

C.2 Details of the Proactive Output
Experiment

More results and baselines are listed in Table 6. For
results of models without streaming abilities (Pro-
prietary MLLMs & Open-Sourced VideoLLMs),
we follow the evaluation method of (Lin et al.,
2024) and (Qian et al., 2025): We gradually ex-
tend the input video one second at a time and ask
the model with the question “Is it the right time
to output?”’. If the model responds with “Yes.”,

6351



QVHighlights Highlight Detection Charades-STA Grounding

50
40
45
35
40
=== TimeChat-R@0.5

30
35
—-= LLaVA-OV-VT-R@0.5

el
I -—~——'—~—-.__\__’_~‘~ L —— MMDuet-R@0.7
-=- TimeChat-R@0.7

20 —-- LLaVA-OVVTR@0.7
15 /_\_
—= LLaVA-OVVT-Hit@1
F—— MMDuet-mAP =
-~ TimeChat-mAP 10 /
15 —+= LLaVA-OVAT-MAP  +mmmmmmmme e

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Smoothing Window Size Smoothing Window Size w

—— MMDuet-R@0.5

251 —— MMDuet-Hit@1
-=- TimeChat-Hit@1
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and highlight detection with different w.
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Figure 5: Performance on dense video captioning with
different s.

this moment is recorded as the predicted output
timestamp. For MMDuet, we use the time of the
first reply after the user question is input as the pre-
dicted output timestamp. For examples that MM-
Duet does not provide any reply at all, we consider
them as failing cases and the difference between
ground truth output time and predicted output time
is recorded as +oo.

Model | Acc || Model | Acc
Proprietary MLLMs
Gemini 1.5 pro |45.10 GPT-40 56.86
Claude 3.5 Sonnet | 64.71
Open-Sourced VideoLLMs
LLaVA-OV 29.55 Qwen2-VL 22.73
MiniCPM-V 2.6 |22.22 || LLaVA-NeXT-Video | 18.18
InternVL2 40.91 LongVA 15.91
Streaming MLLMs
Flash-VStream | 1.96 || VideoLLM-Online | 3.92
Dispider 25.34
MMDuet ¢t = 0.3 {29.44 || MMDuett = 0.4 |31.85
MMDuet ¢t = 0.5 |26.61 || MMDuett =0.6 |18.95

Table 6: Performance of more baselines and MMDuet
on the Proactive Output task of StreamingBench with
different ¢.

D Example Inputs for Each Task in
MMDuetIT

Example inputs for each task for training and infer-
ence are listed in Table 7. The dense video caption-
ing user input is selected from one of the following
sentences:

Please concisely narrate the video in real time.

Help me to illustrate my view in short.

Please simply describe what do you see.

Continuously answer what you observed with simple text.
Do concise real-time narration.

Hey assistant, do you know the current video content? Reply
me concisely.

Simply interpret the scene for me.

What can you tell me about? Be concise.

Use simple text to explain what is shown in front of me.

What is the action now? Please response in short.

The temporal video grounding user input is se-
lected from one of the following sentences (where
“%s” denotes the caption to localize):

%s What segment of the video addresses the topic *%s’?

At what timestamp can I find information about *%s’ in the
video?

Can you highlight the section of the video that pertains to
"P0s’?

Which moments in the video discuss *%s’ in detail?

Identify the parts that mention ’%s’.

Where in the video is *%s’ demonstrated or explained?
What parts are relevant to the concept of *%s’?

Which clips in the video relate to the query *%s’?

Can you point out the video segments that cover *%s’?

What are the key timestamps in the video for the topic *%s’?

E Qualitative Study

We list some examples of dense video captioning
on videos with several minutes in length and con-
tains many actions in Figs. 6 to 8, and examples of
multi-answer grounding video question answering
(MAGQA) in Figs. 9 to 11. For LLaVA-OV-TC
and LLaVA-OV-VT, we directly list their generated
outputs. For MMDuet, we list the numerical order
(in round brackets), time (in square brackets) and
content (in the second line) for each turn. If a line
contains multiple numerical orders and times, this
indicates that these turns have the same content,
which is shown in the following line. To help read-
ers to identify the position of these turns within the
video, we also annotate the numerical order of the
turns at the corresponding timestamps in the video
stream.

When handling long videos for dense video cap-
tioning, baseline models often recall only part of
the video or generate repeated content, failing to
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<im_start>system

A multimodal Al assistant is helping users with some activities. Below is their
conversation, interleaved with the list of video frames received by the assistant.
<im_end>

<im_start>user

(A Dense Video Captioning Query)<im_end>

<im_start>stream

<frame><frame><frame> . . . <im_end>

Dense . .
Video <im_start>assistant
.. A person pulls a knife from a black bag.<im_end>
Captioning .
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>assistant
A man in a hat and red clothes speaks with a dagger, and a tree behind
him.<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
...(More stream and assistant turns)
<im_start>system
A multimodal Al assistant is helping users with some activities. Below is their
conversation, interleaved with the list of video frames received by the assistant.
<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>user
What happens during the basketball game?<im_end>
<im_start>stream
MAGOA <frame><fram§><frame> . . . <im_end>
<im_start>assistant
Several players in white jerseys are celebrating by high-fiving each
other.<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>assistant
A player in a white jersey makes a successful shot.<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
...(More stream and assistant turns)
<im_start>system
A multimodal AT assistant is helping users with some activities. Below is their
conversation, interleaved with the list of video frames received by the assistant.
Temporal <im end>
Video .
. <im_start>user
Grounding

(A Temporal Video Grounding Query)<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>

Table 7: Input examples of different tasks during the training and evaluation phase of MMDuet.
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provide a complete description of all steps in the
video. In contrast, MMDuet, due to its ability to
focus only on a small portion of the video content
preceding each generation step and using the “rm.
prev. turns” trick to avoid interference from previ-
ous turns, can provide more accurate and detailed
video descriptions.

For the MAGQA task, due to the relatively short
video length, baseline models can also locate video
segments and answer questions effectively. The
advantage of MMDuet in this task is its ability to
provide answers in a real-time manner.
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LLaVA-OV-TC LLaVA-OV-VT

(0) [0s] 10.0 seconds, pour the flour and water into the bowl. From 00 to 31, pour the batter.
USER: Please concisely narrate the video in real time. 23.0 seconds, stir the mixture. From 31 to 42, fry the vegetables.
(1) [44.0s] 45.0 seconds, fry the dough. From 42 to 56, pour the batter.
ASSISTANT: pour the flour into the bowl 69.0 seconds, fry the vegetables. From 56 to 70, wrap the spring rolls.
(2) [68.0s] 87.0 seconds, pour the flour and water into the bowl.

ASSISTANT: pour the dough into the pan 100.0 seconds, stir the mixture.

(3) [98.0s] . 110.0 seconds, fry the vegetables.

ASSISTANT: pour the filling 120.0 seconds, put the filling on the dough.

(4 [122.0s] . 130.0 seconds, fold the dough.

ASSISTANT: add the filling 140.0 seconds, fry the dough.

(5) [154.0s]

ASSISTANT: put the filling on the dough
(6) [168.0s]

ASSISTANT: fold the spring roll

150.0 seconds, fry the dough.
160.0 seconds, fry the dough.
170.0 seconds, fry the dough.
180.0 seconds, fry the dough.

(7) [180.0s] 200.0 seconds, fry the dough
ASSISTANT: fold the dough g i gh.
(8) [194.0s] (9) [206.0s] 210.0 seconds, fry the dough.

ASSISTANT: fry spring rolls

Figure 6: An example of dense video captioning with MMDuet, LLaVA-OV-TC and LLaVA-OV-VT.

LLaVA-OV-TC LLaVA-OV-VT

(0) [0s] 10.0 seconds, cut vegetables. From 00 to 31, prepare the ingredients.
USER: Please concisely narrate the video in real time. 34.0 seconds, prepare seasoning. From 31 to 42, prepare the dressing.

(1) [58.0s] 52.0 seconds, prepare seasoning. From 42 to 56, add the dressing to the salad.
ASSISTANT: prepare the ingredients 68.0 seconds, prepare seasoning. From 56 to 78, mix the salad.

(2) [82.0s] 79.0 seconds, add seasoning to vegetables.

ASSISTANT: pour the seasoning 100.0 seconds, add seasoning to vegetables.

(3) [102.0s] (4) [122.0s]

ASSISTANT: pour the ingredients into the bowl
(5) [140.0s]

ASSISTANT: pour the salad into the bowl

115.0 seconds, add seasoning to vegetables.

125.0 seconds, add seasoning to vegetables.

135.0 seconds, add seasoning to vegetables.

(6) 1156.05] 145.0 seconds, mix vegetables and seasoning.
5 160.0 seconds, add seasoning to vegetables.

ASSISTANT: pour the sauce -

() [170.05] (8) [188.0s 170.0 seconds, add seasoning to vegetables.

ASSISTANT: pour the salad into the bowl 180.0 seconds, mix vegetables and seasoning.

Figure 7: An example of dense video captioning with MMDuet, LLaVA-OV-TC and LLaVA-OV-VT.
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MMDuet

) [0s]

USER: What can you tell me about? Be concise.
(1) [44.0s] (2) [66.0s]

ASSISTANT: pour the noodles into the water
(3) [96.0s]

ASSISTANT: prepare the ingredients
(4)[126.0s]

ASSISTANT: pour the sauce into the pan

(5) [150.0s]

ASSISTANT: pour the oil into the pan

(6) [170.0s]

ASSISTANT: pour the raw materials into the pot
(7) [184.0s]

ASSISTANT: put the noodles into the pot

(8) [200.0s]

ASSISTANT: pour the noodles into the pot
(9) [214.0s]

ASSISTANT: add seasoning

(10) [228.0s]

ASSISTANT: pour sauce

(11) [240.0s]

ASSISTANT: pour the noodles into the pot
(12) [258.0s]

ASSISTANT: add seasoning

(13) [278.0s]

ASSISTANT: put the food on the plate

(14) [296.0s] (15) [308.0s]

ASSISTANT: add seasoning

; 288f)s—ﬁ?. 3

LLaVA-OV-TC LLaVA-OV-VT

10.0 seconds, Intro. From 00 to 31, pour the noodles into the water.
25.0 seconds, Showing noodles. From 31 to 42, fry the ingredients in the pan.
34.0 seconds, Boiling noodles.

67.0 seconds, Showing ingredients.

89.0 seconds, Showing sauce.

108.0 seconds, Cooking noodles.

130.0 seconds, Adding shrimp.

150.0 seconds, Adding tofu.

165.0 seconds, Adding eggs.

180.0 seconds, Stirring noodles.

200.0 seconds, Seasoning noodles.

220.0 seconds, Plating dish.

240.0 seconds, Outro.

Figure 8: An example of dense video captioning with MMDuet, LLaVA-OV-TC and LLaVA-OV-VT.
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ion
‘What are the people doing in the car?

MMDuet (Ours)

(0) [0s] o

USER: What are the people doing in the car?

(1) [5.55] (2) [6.0s] (3) [6.55]

ASSISTANT: A man is driving the car and a boy is sitting in the back seat.

(4) [9.5s]

ASSISTANT: A man and a child are sitting in the car, with the man driving and the child in the back seat.
(5) [10.0s]

ASSISTANT: A man and a child are sitting in the car, with the man driving and the child in the passenger seat.
(6) [10.5s]

ASSISTANT: A man and a child are sitting in the car, wearing sunglasses.

(7) [11.0s] (8) [11.5s]

ASSISTANT: A man and a child are sitting in the car, and the man is driving.

(9) [12.0s]

ASSISTANT: A man and a boy are sitting in the car, and the boy is wearing sunglasses.

(10) [12.5s] (11) [13.0s] (12) [13.5s] (13) [14.0s] (14) [14.55] (15) [15.0s] (16) [15.55]

ASSISTANT: A man and a boy are sitting in the car, and the boy is eating something.

(17)[16.0s]

ASSISTANT: A man and a child are sitting in the car, and the man is driving.

LLaVA-OV-TC

0.0 - 5.0 seconds, A man is driving a black convertible car with a child in the back seat.

5.0 - 6.5 seconds, A man is driving a black convertible car with a child in the back seat.

6.5 - 10.0 seconds, A man and a child are sitting in the back seat of a car, with the child eating something.
10.0 - 16.5 seconds, A man and a child are sitting in the back seat of a car, with the child eating something.

LLaVA-OV-VT

From 00 to 10, A man is driving a black convertible car with the top down.

From 10 to 20, A man is driving a black convertible car with the top down.

From 20 to 31, A man is driving a black convertible car with the top down.

From 31 to 41, A man is driving a black convertible car with the top down, and a child is sitting in the back seat.
From 41 to 51, A man is driving a black convertible car with the top down, and a child is sitting in the back seat.
From 51 to 94, A man is driving a black convertible car with the top down, and a child is sitting in the back seat.

Figure 9: An example of multi-answer grounded video question answering with MMDuet, LLaVA-OV-TC and
LLaVA-OV-VT.
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Question .
‘What happens to the rabbit and the duck?

MMDuet

(0) [0s]

USER: What happens to the rabbit and the duck?

(1) [3.0s] (2) [3.5s]

ASSISTANT: The rabbit and the duck are sitting at a table in a courtroom.
(3)[7.5s]

ASSISTANT: The rabbit and the duck are held by a policeman.

(4) [8.0s] (5) [8.5s]

ASSISTANT: The rabbit and the duck are held by a man in a police uniform and run away.
(6) [25.0s]

ASSISTANT: The duck and the rabbit are sitting at a table in a restaurant.

LLaVA-OV-TC
8.7 - 11.0 seconds, The rabbit and the duck are tied up by a man in a police uniform.

LLaVA-OV-VT

From 00 to 11, The rabbit and the duck are sitting at a table in a courtroom, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 11 to 20, The rabbit and the duck are sitting at a table in a courtroom, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 20 to 25, The rabbit and the duck are sitting at a table in a courtroom, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 25 to 31, The rabbit and the duck are sitting at a table in a courtroom, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 31 to 35, The rabbit and the duck are sitting at a table in a courtroom, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 35 to 41, The rabbit and the duck are sitting at a table in a courtroom, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 41 to 50, The rabbit and the duck are sitting at a table in a courtroom, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 50 to 60, The rabbit and the duck are sitting at a table in a cafeteria, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 60 to 65, The rabbit and the duck are sitting at a table in a cafeteria, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 65 to 70, The rabbit and the duck are sitting at a table in a cafeteria, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 70 to 75, The rabbit and the duck are sitting at a table in a cafeteria, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 75 to 81, The rabbit and the duck are sitting at a table in a cafeteria, with the rabbit wearing a purple shirt and the duck wearing a black shirt.
From 81 to 96, The rabbit and the duck are sitting at a table in a cafeteria, with the rabbit wearing a purple shirt and the duck wearing a black shirt.

Figure 10: An example of multi-answer grounded video question answering with MMDuet, LLaVA-OV-TC and
LLaVA-OV-VT.
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What is the man doing with the crocodile?

MMDuet (Ours)

(0) [0s]

USER: What is the man doing with the crocodile?

(1) [7.5s]

ASSISTANT: The man is standing next to a crocodile on a table.

(2) [8.0s] (3) [8.55]

ASSISTANT: The man is standing next to a crocodile on a table and talking to the camera.
(4) [9.0s] (5) [9.5s]

ASSISTANT: The man is standing next to a crocodile and talking to the camera.
(6) [10.0s]

ASSISTANT: The man is holding a crocodile and talking to the camera.

(7) [10.5s] (8) [11.0s] (9) [11.5s] (10) [12.0s]

ASSISTANT: The man is touching the crocodile's head.

(11) [12.5s] (12) [13.0s] (13) [13.55] (14) [14.0s]

ASSISTANT: The man is cutting the crocodile's head.

(15) [14.5s] (16) [15.0s] (17) [15.55] (18) [16.0s] (19) [16.5s] (20) [17.0s]
ASSISTANT: The man is cutting the crocodile's meat.

LLaVA-OV-TC
0.0 - 5.0 seconds, The man is talking to another man and gesturing towards the crocodile.
5.0 - 18.0 seconds, The man is standing in front of a table with a crocodile on it, touching it, and then cutting it with a knife.

LLaVA-OV-VT

From 16 to 27, The man is smiling and gesturing towards the crocodile.

From 27 to 42, The man is standing in front of a table with a crocodile on it.

From 42 to 94, The man is standing in front of a table with a crocodile on it, touching it, and then cutting it with a knife.

Figure 11: An example of multi-answer grounded video question answering with MMDuet, LLaVA-OV-TC and
LLaVA-OV-VT.
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