OSC: Cognitive Orchestration through Dynamic Knowledge Alignment
in Multi-Agent LLLM Collaboration

Jusheng Zhang', Yijia Fan', Kaitong Cai', Jinzhou Tang',Xiaofei Sun?, Keze Wang''

'Sun Yat-sen University

Abstract

This paper introduces OSC (Orchestrating
Cognitive Synergy), a knowledge-aware
adaptive collaboration framework designed
to enhance cognitive synergy in multi-agent
systems with large language models. While
prior work has advanced agent selection
and result aggregation, efficient linguistic
interactions for deep collaboration among
expert agents remain a critical bottleneck. OSC
addresses this gap as a pivotal intermediate
layer between selection and aggregation,
introducing Collaborator Knowledge Models
(CKM) to enable each agent to dynamically
perceive its collaborators’ cognitive states.
Through real-time cognitive gap analysis,
agents adaptively adjust communication
behaviors, including content focus, detail level,
and expression style, using learned strategies.
Experiments on complex reasoning and
problem-solving benchmarks demonstrate that
OSC significantly improves task performance
and communication efficiency, transforming
“parallel-working individuals” into a “deeply
collaborative cognitive team”.

1 Introduction

Recently, large language models (LLMs) (Touvron
et al., 2023; Brown et al., 2020; Radford et al.,
2019; OpenAl, 2024) have shown exceptional
capabilities in tackling complex tasks, greatly
advancing artificial intelligence. However, scaling
a single LLM often leads to high computational
costs and performance bottlenecks. Multi-agent
systems (MAS) (Guo et al., 2024; Wang et al.,
2024b; Huang et al., 2024; Chen et al., 2024a) offer
a scalable alternative by leveraging diverse agents’
expertise to solve problems beyond the reach of
individual models, improving cost-efficiency and
unlocking LI.Ms’ full potential. Recent research
(Huang et al., 2024; Piskala et al., 2024; Zhang
et al.,, 2025d) has focused on efficient MAS
collaboration, with “dynamic expert selection” and

2Alibaba Group

knowledge-aware routing frameworks effectively
matching tasks to expert subsets, boosting
adaptability and resource efficiency. Moreover,
“aggregation strategies” aim to combine multi-agent
outputs into high-quality final solutions. A critical
challenge still remains for enabling experts (even
with an optimal expert combination) to dynamically
adapt their linguistic interactions, i.e., fostering
shared understanding, resolving discrepancies, and
producing coherent, high-quality outputs, remains
a key bottleneck in MAS-LLM research.

Attempting to address this issue, we propose
Orchestrating Cognitive Synergy (OSC), an end-
to-end, knowledge-aware adaptive collaboration
framework. OSC serves as an intermediate
layer, enhancing linguistic interactions among
selected experts without replacing expert selection
or aggregation. In its “inter-expert collaborative
communication” phase, each agent e; uses a
dynamically learned Collaborator Knowledge
Model (CKM) to track collaborators’ cognitive
states (knowledge, reasoning, task understanding).
The parameters of CKM, initially pre-trained,
are fine-tuned end-to-end within OSC’s RL loop,
tailoring them for effective collaboration. A
learnable cognitive gap analysis module informs
a policy 7comm, Which dynamically shapes
communication behavior M;_,; (content, style,
objectives; (Dl(t) as e;’s state). This enables precise
information sharing, plan coordination, and conflict
resolution. OSC’s components adapt through
task feedback, ensuring synergistic, adaptive
collaboration. ~Our OSC turns experts from
“parallel workers" into a “collaborative cognitive
team" through adaptive language interactions,
achieving consensus, resolving discrepancies, and
optimizing solutions. The main contributions
of this work are: i) We present A knowledge-
aware, end-to-end framework that enhances
MAS-LLM collaboration through adaptive inter-

6320

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 6320-6337
November 4-9, 2025 ©2025 Association for Computational Linguistics

agent linguistic interactions; ii) we propose
the Collaborator Knowledge Modeling (CKM),
cognitive gap analysis (G; ;), and communication
policies (m¢omm) and enable dynamic information
exchange and conflict resolution. Extensive and
comprehensive experimental results demonstrate
that our OSC outperforms baselines on complex
reasoning benchmarks (MATH(Hendrycks et al.,
2021)), offering new insights into LLM-agent
collaboration.

2 Related Works

LLM-Driven Multi-Agent Systems. Recent work
(Zhang et al., 2024a; Brawer et al., 2023; Zhang
et al., 2025c¢,a,b; Han et al., 2025) on LLM-based
multi-agent systems (MAS) explores their potential
for complex tasks by combining diverse model
strengths, improving efficiency over single models.
Some systems (Du et al., 2024; GenAl) simulate
software development teams, assigning roles like
product manager or programmer to LLM agents
for collaborative task completion. Others (Hong
et al., 2024; Li et al., 2023a) introduce structured
workflows to align with engineering practices or
enable flexible agent interactions that adapt to task
needs. These approaches show promise but rely
on fixed roles and protocols, lacking awareness of
agents’ knowledge states or adaptive adjustments.
They prioritize final task outcomes over optimizing
collaboration, which our OSC framework targets.

Agent Selection and Result Aggregation Agent
selection and result aggregation are critical for
MAS efficiency(Zhang et al., 2024b; Wang et al.,
2024a). Knowledge-aware routing(Dong et al.,
2024) matches tasks to agents based on capabilities,
while dynamic routing(Chen et al., 2024b) adjusts
allocations using historical performance. Continual
learning helps agents acquire new skills for
better task distribution. Aggregation methods
include voting-based techniques(Subramaniam
et al.,, 2025), self-assessment for response
reliability(Yoffe et al., 2025), and hierarchical
fusion(Sanwal, 2025) for integrating varied
information. These treat collaboration as a
black box, neglecting interaction optimization,
unlike OSC’s focus on enhancing mid-process
collaboration.

Inter-Agent Communication. Communication
enables deep collaboration. Some approaches
extend chain-of-thought prompting to share

reasoning, use debate frameworks(Du et al.,
2023; Khan et al., 2024) to refine solutions, or
standardize dialogue formats. These remain
static, lacking dynamic adaptation. Negotiation
mechanisms resolve disagreements, and consensus-
building techniques align diverse viewpoints,
but they lack systematic knowledge modeling.
Information-sharing methods, like shared
memory(Gao and Zhang, 2024) or incremental
learning(Jovanovic and Voss, 2024; Graziuso et al.,
2024), focus on transmission without considering
recipients’ cognitive states. In contrast, OSC
employs Collaborator Knowledge Models (CKM)
for precise cognitive state modeling, adaptive
communication strategies based on cognitive gap
analysis, and reinforcement learning(Schulman
et al., 2017) to optimize interactions and enhance
MAS collaboration.

3 Methodology

Expert Knowledge Profiling

1

D00 Lama3 [Grok » 0 —~Ri— o
Q Wh : ' § A measure
: What is ' ' .

p ' ChatGPT [, . _, 3 _, ofdisorderor
et @ ; Q Deepseek H S R. Lg randomness in
physics? [: ; S

VA Quen e - C Ry g a system.

L. Expert Pool------==------ !
= =-CKM Initialization- === m s m s ;
lieth 2 H p Dialogue N Round |

S History
7o L e | @

B | CRM, o e

Discrepancy 11\

Co— CKMoz
Agent 1 \ . Communication

,,,,,,, Lo g e AR Policy

Diserepurey 2 et i a®

Final | !
| Response | |
Ri

Victt 2)

Discrepancyn

o) o KM, Frowidse

(((((((((((

Figure 1: Cognitive gap analysis. The left panel
illustrates the overall OSC with N agents, each equipped
with Collaborator Knowledge Models (CKMs) that
maintain representations of other agents’ cognitive
states. The right panel shows the cognitive gap analysis
process, where agent i uses its CKM to identify
discrepancies between its own understanding and agent
j’s perceived state, triggering adaptive communication
through policy Teomm-

To address inefficiencies in collaborative
communication within multi-agent systems (MAS)
using LLMs post-expert selection, our OSC
introduces a structured linguistic interaction
phase, transforming selected expert agents from
parallel workers into a cohesive, intelligent
team. This phase features dynamically learned
models of agents’ cognitive states and adaptive
communication policies, fine-tuned end-to-end.
Through integrated learning, agents refine
solutions, resolve conflicts, and reach robust

6321

consensus before final answer aggregation, guided
by a reinforcement-learned communication policy,
Teomm (S€€ Section 3.4).

3.1 Framework Overview of OSC

Our OSC acts as an adaptive collaborative
reasoning layer between expert selection and
answer aggregation. For a query @ and expert
subset S = ej,...,ex, OSC’s intelligence
emerges via core, interconnected stages. Dynamic
Collaborator Knowledge Model (CKM) and
Adaptation. For each expert ¢; € St, a
Collaborator Knowledge Model C K M;(e;|Q, Hy)
is created for every other expert e; (j #
7). This dynamic model captures e;’s evolving
understanding of e;’s knowledge, reasoning,
confidence, and query () comprehension as
dialogue H; progresses. Initialized from
pre-training on large-scale dialogue corpora
(Section 3.2, Appendix 6.7), CKM parameters
OCKM and Oypdae are fine-tuned end-to-end in
OSC’s reinforcement learning loop.

Iterative Adaptive Communication. The
system engages in Nyoypg cCOmmunication rounds
(typically Niouna = 3to 5 in our experiments,
a hyperparameter tuned on a development
set). In each round r € [1, Nyouna], each
expert e; (following a round-robin speaking
order, though other scheduling policies can be
integrated) leverages its continuously updated
CKM" Y (e;|Q, H"=D) for all collaborators
ej. This model is used to perform a learned
cognitive gap analysis, yielding gl.(j"]). This
gap, detailed in Section 3.3, quantifies the
communicatively significant divergence between
e;’s internal cognitive state QDET*U (e.g., its own
solution plan or understanding related to ()) and
its CKM-derived assessment of e;’s corresponding
state. The function fg,p is a learnable component,
enabling OSC to identify discrepancies most
relevant for guiding communication.

Based on the matrix of identified cognitive gaps
{QZ-(;.) }ji across the team, expert e; employs its
adaptive communication strategy m.omm. This
policy, optimized via reinforcement learning (PPO
in Appendix 6.1), selects a structured, abstract
communication action agr) ~ Teomm(* | @gril),
{CEM{™(e))} 504617 Y0, Q. HUD).

The policy learns to map the rich, CKM-informed
state to multi-faceted actions that are predicted to

effectively bridge cognitive gaps.

The abstract action agr) encapsulates the learned

communicative intent: specifically, what cognitive
aspects to address, with which collaborator(s),
using what communication objective (e.g.,
clarification, proposal, critique), and employing
what interactional style (e.g., level of detail,
confidence expression). This structured directive

aﬁ” is then verbalized into a natural language

message mzm by a generative language model,
fuim. Importantly, fiim acts as a linguistic
realization engine conditioned on the precise,
strategically determined output from OSC’s learned
components. OSC dictates the communicative
strategy, while fiyiy renders it into language
(Section 3.4, with prompt details in Appendix 7.3).
All experts e; € S; update their dialogue history
H" = HO-D y {mgr)}iegt and, crucially,
update their respective Collaborator Knowledge
Models C’KMJ(T)(el\Q,H(T)) using the learned
update mechanism fypdaee (Section 3.2).

Optimized Independent Contribution
Generation. Following N;oung rounds of
OSC-driven communication, each expert e;
generates its refined individual response R; to
query (. This response is conditioned on its
final internal state <I>£N"°““d), which has been
significantly shaped and informed by the preceding
collaborative dialogue, and its comprehensive
understanding of collaborators’ likely final states

as encoded in CK M, Z.(Nm““").

Answer Aggregation and Propagated
Collaborative Reward. An aggregator module
then combines the individual, refined contributions
{Ri}¥., (e.g., using a learned meta-LLM
aggregator or task-specific heuristics) to produce
the final system output Rgna. The quality of Rgna
(e.g., task success, score on a benchmark) provides
the primary reward signal Ry for optimizing
Teomm- Lhis global reward signal is also used to
provide supervisory signals for the end-to-end
fine-tuning of the CKM parameters (Ockm, Gupdate)
and the cognitive gap analysis module (0gqp),

3.2 Dynamic Collaborator Knowledge Model

The CKM is the epistemic foundation of OSC,
enabling each agent e; to construct and maintain
a dynamic, internal model C K M;(e;|Q, Hy) of
each collaborator e;’s evolving cognitive state

6322

relevant to the task () and the dialogue history
H;. While a comprehensive ontology of cognitive
features can be vast, OSC starts from a broad
set of candidate cognitive dimensions C;, =
{e1,¢5,...,cpb. These can include general
linguistic markers, common reasoning patterns,
or task-agnostic conversational acts (examples
in Appendix 6.7 under "Candidate Cognitive
Dimensions"). Critically, OSC does not rely on
a fixed, manually selected subset of these for each
task. Instead, the CKM function fcgm learns to
attend to and represent the most task-relevant
facets indicated by these candidate dimensions,
effectively deriving a dynamic, latent cognitive
state representation zg.) € R%nm (dym = 128 in
our setup) that is optimally conditioned on e;’s
behavior, the query (), and history H;:

Zg») = fexm(ej, Q, Hy; Ockm))]

The architecture is detailed in Appendix 6.7,
Ockm are the parameters of fcxwm (typically
a Transformer encoder architecture; see
Appendix 6.7 for model details). The learned latent
vector zg.) implicitly encodes aspects crucial for
collaboration, such as e;’s evolving understanding
of specific sub-problems, its confidence in
particular deductions, or its awareness of specific
constraints, without these needing to be explicitly
predefined as rigidly structured slots. fckm
processes e;’s utterances and interaction patterns
to infer these latent attributes. The CKM
parameters Ocgm and the parameters 0ypgaee Of the
state transition function fupdae (implemented as a
GRU; dgy = 128; details in Appendix 6.7):

ZZ(';—FI) = fupdate(zg) ’ mg't)a Q? Ht; eupdate) (2)

The models are initialized via pre-training on large
dialogue corpora using self-supervised objectives
(see Appendix 6.7). Crucially, after initialization,
Ockm and Oypgae are continuously fine-tuned
during the main reinforcement learning phase
of 7Teomm. Gradients from the overall task
reward R, along with optional auxiliary losses for
intermediate collaborative success (e.g., conflict
resolution, plan alignment), are backpropagated to
these modules. This end-to-end training enables
CKM to represent collaborator states in ways that
directly benefit the agent’s communication policy
and task performance.

3.3 Learned Cognitive Gap Analysis and
Adaptive Communication Objectives

Effective communication hinges on identifying
and addressing the cognitive gap gitj between

an expert e;’s internal cognitive state @Et) (e.g.,
its current plan embedding or understanding of
() and its CKM-derived model of e;’s state
Z(j) The mapping of <I>Z(.t) and zg) into a
common, comparable representational space is
facilitated by learnable projection layers, which
are co-trained with the CKM and 7rcomm to ensure
semantic alignment. The cognitive gap function,
faap, 1s itself a learnable neural component
parameterized by 0gap:

Z

Gi) = Faun(@(". 2] Ouap) 3)
Unlike methods using manually weighted distances,
feap (e.g., multi-head attention and feed-forward
network) learns to detect discrepancies between
<I>Z(-t) and zij(") that predict communication
needs or collaboration risks. Parameters 0g,,
are optimized with meomm and CKM, making
gap representations gft]) highly informative for
communication actions, dynamically identifying
significant cognitive discrepancies based on task,
history, and collaborators.Using Gi, j*), OSC sets
a communication objective Ocomm®).

3.4 Adaptive Communication Strategy 7comm

The 7eomm 1S the core decision-making component
of each OSC agent, responsible for determining
the optimal communication action al(-t) at each step
t. This policy is learned through reinforcement
learning (PPO; details in Appendix 6.1) to
maximize the expected long-term cumulative
task reward R, appropriately balanced with
communication costs. The sophistication of 7comm
arises from its ability to process and act upon a rich

()

state representation, state; *, which is dynamically

constructed from its internal cognitive state <I>§t)
and the outputs of its continuously learned CKM
(Section 3.2) and learned cognitive gap analysis
module (Section 3.3). The action agt) is a structured
tuple that encompasses: (1) the dynamically
determined communication objective (’)ﬁfﬁnm (e.g.,
seek clarification, propose refinement, highlight
discrepancy), (2) the target audience e; (or a subset
of collaborators), and (3) nuanced style and focus
parameters () (e.g., level of detail, sentiment,

6323

evidential support, argumentation strategy). All
components of agt) are selected by the policy:

az(‘t) = (Oéf))mm7 €5 C(t)) ~ 7"'comm(StateZ(t); 97r)
4)

(t) is defined as:

i

where the comprehensive state

state!) = (@5”, {CKMi(er | Q, H) g, 169z Q, H,,)

®)
The policy network (a Transformer encoder
architecture; Ny ene = 4 layers, Hyepe = 4
heads, dr ;moder = 256; details in Appendix 6.1)
with parameters 0, learns to map this complex,
dynamically evolving state to effective, multi-
faceted communication actions.

Strategically Guided Linguistic Realization. The
abstract, structured communication action az(t)
selected by mcomm Serves as a detailed strategic
blueprint for communication. This blueprint is
then instantiated into a concrete natural language
message mgt) by a generative large language
model, firm. It is crucial to distinguish the
roles: OSC, through its learned components
(Tcomm» CKM, fgap), determines the high-level
communicative strategy, i.e., the content focus,
underlying intent, target selection, and stylistic
nuances of the interaction. The fipm functions
as a sophisticated linguistic realization engine,
translating these strategically determined, abstract
directives into fluent and contextually appropriate
natural language. The prompt generation function,
prompt(-), dynamically constructs a rich, tailored
input for fiim (see Appendix 7.3 for prompt
structure examples):

mi") = fum(prompt(af”), &, CKM;(e;|Q. Hy)))

(6)
The prompt carefully integrates the selected action
al(t) (objective and style), agent e;’s internal state
@Et) (e.g., hypothesis or solution fragment), and
insights from C K M;(e;|Q, Hy) (e.g., e;’s inferred
misunderstandings or divergent perspectives). This
structured, context-driven prompting aligns fiim’s
output with OSC’s strategic goals. OSC’s key
contribution is its learned formulation of these
directives, easing frim’s need for autonomous
high-level reasoning about collaboration and

reducing unconstrained generation.

Reinforcement Learning Optimization.
The adaptive communication strategy with
parameters 6 is optimized using Proximal Policy

Optimization (PPO), an actor-critic algorithm
known for its stability and sample efficiency. The
objective is to maximize the expected long-term
discounted cumulative reward R, which is a
composite function reflecting both task success
and communication efficiency (PPO details and
reward shaping logic are in Appendix 6.1):

%0, Brroropnn |45 7 (Ruask(75) = Acost Coomm(71))]

(7N
where 7 = (sg,ag, S1,a1,...) is the trajectory
from policy 7comm. 7 € [0,1] (e.g., 0.99) is
the discount factor, Ry (7x) is the extrinsic
reward (e.g., +1 for correct Rgpa, -0.1 for
incorrect), and Ceomm(7x) is the communication
cost (e.g., message length penalty, Acost =
0.001). To address sparse extrinsic rewards
and promote useful intermediate behaviors in
complex collaboration, we add an intrinsic shaped
reward Tgpape. Positive rgpape (€.g., 0.05) is
given for: (1) significant, verifiable reduction
in a cognitive gap G;; (e.g., a collaborator’s
confidence on a key concept rises above threshold
Teonf_increase after targeted communication); and
(2) successful completion of a high-value
communication goal that improves knowledge
alignment (e.g., a request_information action
is followed by relevant information, verified via
semantic matching in CKM).

4 Experiments

Main Results and Analysis. For fair comparison,
our multi-agent OSC adopts the same pool of six
strong open-source models as KABB (see Table
1)!. While KABB uses tailored prompts for expert
specialization, OSC leverages these models within
a collaborative framework featuring dynamic
Collaborator Knowledge Models (CKM), cognitive
gap analysis, and adaptive communication
strategies (comm; see Section 3). Qwen2-72B-
Instruct serves as the aggregator, consistent with
MoA and KABB. We also include a single-
model variant, OSC-Single-LLaMa3, using only
LLaMa-3-70B-Instruct for all roles. Evaluation
is primarily based on AlpacaEval 2.0 (Li et al.,
2023b) (805 instructions), with outputs compared
to GPT-4 Preview and judged by a GPT-4-based
evaluator using the length-controlled (LC) win rate.
Additional assessments include MT-Bench (Zheng
et al., 2023) for multi-turn dialogue,

"Inference is conducted using the Together Inference
Endpoint: https://api.together.ai/playground/chat.

6324

https://api.together.ai/playground/chat

AlpacaEval 2.0 MT-Bench
Model LC win. (%) win. (%) Avg. 1st turn2nd turn
OSC (Ours) 814 76.2 9.94 9.96 9.73
KABB 719 723 9.65 985 945
MoA 68.1 65.4 9.41 9.53 9.29
GPT-4 Omni (05/13) 57.5 51.3 9.19 9.31 9.07
GPT-4 Turbo (04/09) 55.0 46.1 9.31 9.35 9.28
GPT-4 Preview (11/06) 50.0 50.0 9.20 9.38 9.03
GPT-4 (03/14) 35.3 36.1 8.84 9.08 8.61
Qwen2-72B-Instruct 38.1 29.9 9.15 9.25 9.05
Gemma-2-27B 44.9 33.2 9.09 9.23 8.95
WizardLM-2-8x22B 51.3 62.3 8.78 8.96 8.61
OSC-Single-LLaMa3 36.1 374 9.37 9.34 9.42
KABB-Single-LLaMa3 34.7 36.2 9.16 9.10 9.23
LLaMa-3-70B-Instruct 34.4 33.2 894 9.20 8.68
Deepseek-V3 67.2 69.3 9.51 9.59 9.42
Deepseek-R1 80.1 75.4 9.30 9.40 9.20

Table 1: Comparison of OSC (Ours) and other models
on AlpacaEval 2.0 and MT-Bench. MoA (with 2 layers)
shares a similar expert model configuration as the
KABB and OSC setups, involving 6 different proposers
and 1 aggregator. For AlpacaEval 2.0, the performance
of GPT-4 variants, LLaMa-3-70B-Instruct, and Qwen2-
72B-Instruct are sourced from public leaderboards;
WizardLM-2-8x22B results are from prior work. We
reproduced results for Deepseek-V3, Deepseek-R1, and
Gemma-2-27B on AlpacaEval 2.0. For MT-Bench,
we conducted evaluations to obtain turn-based scores,
except for the results of GPT-4 variants, LLaMa-3-70B-
Instruct, and WizardLM-2-8x22B, which are from prior
work. OSC (Ours) results demonstrate the benefits of
its advanced collaboration mechanisms.

As shown in Table 1, OSC (Ours) achieves
the highest LC win rate on AlpacaEval 2.0
at 81.4%, outperforming KABB (77.9%) and
MOoA (68.1%), and also leading in the standard
win rate (76.2%). While Deepseek-R1 (80.1%)
is close, OSC’s ensemble approach delivers
a stronger overall collaborative effect. OSC-
Single-LLaMa3 (36.1%) also surpasses both
KABB-Single-LLLaMa3 (34.7%) and the base
LLaMa-3-70B-Instruct (34.4%), highlighting the
effectiveness of OSC’s collaboration framework
even with a single model. On MT-Bench, OSC sets
a new state-of-the-art with an average score of 9.94,
outperforming KABB (9.65), MoA (9.41), and all
other baselines, and maintains top scores on both
the first (9.96) and second (9.73) turns. Across
all benchmarks, OSC demonstrates robust and
consistent improvements, particularly in multi-turn
dialogue and collaborative tasks, confirming that its
advanced mechanisms for cognitive orchestration,
dynamic knowledge alignment, and adaptive
communication.

Communication Efficiency and Quality
Analyses. As evidenced in 2, OSC surpasses
SOTA multi-agent frameworks in communication
efficiency, completing tasks in 4.6 rounds and

Table 2: Comparison of communication efficiency and

quality metrics across different frameworks.

Method Avg. Rounds Avg. Tokens (k) Redundancy (%) Conflict Res. (%) Info Density (%)

OSC (Ours) 4.6 331 14.2 89.5 84.5
TalkHier 4.9 3.52 15.3 85.8 81.9
REMALIS 52 378 18.9 84.9 80.2
DyLAN 55 3.95 223 843 79.9
MAC 57 4.15 24.1 83.5 78.5

3.31k tokens, compared to TalkHier (4.9 rounds,
3.52k tokens), REMALIS (5.2 rounds, 3.78k
tokens), DyLAN (5.5 rounds, 3.95k tokens), and
MAC (5.7 rounds, 4.15k tokens). It achieves the
lowest Communication Redundancy at 14.2% (vs.
15.3% for TalkHier), highest Conflict Resolution
Rate at 89.5% (vs. 85.8% for TalkHier), and
highest Task-Relevant Information Density at
84.5% (vs. 81.9% for TalkHier). OSC’s dynamic
models and adaptive policies ensure efficient agent
coordination.

Ablation Study of OSC Components. To
assess the individual contributions of OSC’s key
components, i.e., CKM, learned cognitive gap
analysis (fgap), adaptive communication policy
(Tcomm)» and intrinsic shaped rewards (7shape), We
conducted a comprehensive ablation study on
the AlpacaEval 2.0 dataset, utilizing the same
diverse pool of six LLMs and aggregator as in
our main experiments, with all variants trained
via PPO for 5 x 10° timesteps. The detailed
performance metrics, including LC Win Rate
and various communication efficiency indicators
(average rounds, tokens, redundancy, conflict
resolution, and information density), are presented
in 3. These results consistently show that the OSC
(Full) framework achieves superior performance.
Notably, disabling critical elements such as the
CKM (reducing LC Win Rate from 81.4% to 71.2%
and significantly worsening all communication
metrics) or the adaptive policy Teomm (LC Win
Rate dropping to 69.4% with substantial increases
in communication overhead) leads to the most
pronounced degradation in both task success and
communication efficiency. Ablating the learned
foap module or removing 7ghape also results in clear,
albeit comparatively smaller, performance drops
across the board (e.g., LC Win Rates decreasing to
75.8% and 74.1%, respectively, with corresponding
impacts on communication metrics).

Scalability Experiment with Varying Number
of Agents. This scalability study was conducted
on the AlpacaEval 2.0 dataset, utilizing 805
instructions for training and evaluation, with
specific subsets of 160 instructions reserved for

6325

System Variant LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Redundancy (%) Conflict Res. (%) Info Density (%)
OSC (Full) 81.4 43 2.87 12.6 91.7 86.2

OSC w/o CKM 71.2 6.7 4.58 23.5 72.4 73.9

OSC w/o faup 75.8 6.2 4.12 20.8 79.3 78.5

OSC W/0 Tcomm 69.4 8.4 5.63 29.7 65.8 69.4

OSC W/0 Tshape 74.1 5.9 3.95 18.9 82.6 80.0

Table 3: Ablation study of OSC components. Performance metrics include LC Win Rate (%) on AlpacaEval 2.0 and

various communication efficiency indicators. The OSC (Full) configuration is highlighted.

#of Agents LC Win Rate Avg. Rounds Avg. Tokens Redundancy Conflict Info Density
(%) (k) (%) Resolution(%) (%)
2 72.3 3.8 2.45 18.2 85.1 80.4
4 78.9 4.1 2.72 14.5 89.3 84.7
6 814 4.3 2.87 12.6 91.7 86.2
8 80.2 4.6 3.15 13.8 90.5 85.3
10 71.5 5.2 3.62 16.7 87.8 82.9

Table 4: Comparison of performance with different numbers of agents. Optimal values are in bold and shaded.

development and validation, respectively. The
multi-agent system employed the same pool of
six open-source LLLMs previously detailed, with
Qwen2-72B-Instruct serving as the aggregator. We
systematically varied the number of collaborating
agents, evaluating configurations with 2, 4,
6, 8, and 10 agents. Key hyperparameters
for the OSC framework were maintained,
including Nyoqundg = 4 communication rounds
per interaction, a communication cost factor
Acost=0.001, and a discount factor v=0.99. Each
experimental configuration underwent training for
5 x 108 environment steps using Proximal Policy
Optimization (PPO), and results were averaged
over 3 independent runs to ensure robustness.
Performance was assessed using the LC Win Rate
(%) against GPT-4 Preview, along with detailed
communication metrics: Average Rounds, Average
Tokens exchanged (in thousands, k), Redundancy
(%), Conflict Resolution Rate (%), and Task-
Relevant Information Density (%).

Table 4 reveals several key insights into OSC’s
scalability. Optimal task performance, measured
by an LC Win Rate of 81.4%, was achieved with a
configuration of 6 agents. Employing fewer agents
(e.g., 2 agents, 72.3% LC Win Rate) appeared to
limit the depth of collaboration and diversity of
perspectives, while increasing the team to 10 agents
(77.5% LC Win Rate) introduced coordination
overhead that slightly diminished the primary
success metric. An examination of communication
dynamics shows that as the number of agents
increased from 2 to 10, the average number of
communication rounds naturally rose from 3.8 to
5.2, and the average token count increased from
2.45k to 3.62k. Despite this increase in overall
communication volume, OSC’s core mechanisms,
particularly the Collaborator Knowledge Models

(CKM) and learned cognitive gap analysis (fgap),
were effective in maintaining low communication
redundancy (reaching a minimum of 12.6 % with 6
agents) and high conflict resolution rates (peaking
at 91.7% with 6 agents). However, scalability
challenges became evident with larger teams.
With 10 agents, we observed an approximate
15% increase in CKM update latency and a 30%
growth in memory consumption per inference
step. Cognitive state modeling faced bottlenecks,
with conflict resolution dropping to 87.8%, as
agents sometimes misjudged collaborators’ states
in complex interactions.

Price-Performance Balance Analyses. This
experiment analyzes the price-performance trade-
off for the OSC framework on the AlpacaEval 2.0
benchmark. We evaluated OSC configurations
with a varying number of active expert agents
(N € {1,2,3,4,5,6}), where these experts
are dynamically selected and coordinated from
a shared pool of six open-source LLMs with
Qwen2-72B-Instruct serving as the aggregator.
The primary metrics are the Length-Controlled
(LC) Win Rate (%) and the average Cost per
Instruction ($), calculated based on OSC’s dynamic
expert routing statistics and public API pricing
for the constituent models.! The resulting price-
performance landscape, including comparisons
against individual base models, KABB (Full), and
several proprietary models, is visualized in 2. For
proprietary models like GPT-4 variants and Claude-
3.7, we reference the price from the OpenRouter
API. All API prices are indicative as of early 2025
and are normalized for relative comparison.

As shown in Figure 2, our OSC (N=1 to N=6
experts) traces a strong Pareto frontier, balancing
performance and cost. OSC (N=6) achieves

6326

N 0SC (N=6)
0SC (N=5)
8o osc (NL4;* A Deepseek-R1
] KABB (Full) Claudets.7
05C (N=3) * rrao
370 05C (N=2)
5
= fosc (N=1)
~N Deepseek-V3
©
2
o
©
® 60
2
<
c
S
s
& A wizardLM:2-8x228
30 - GPT-4-1106-preview
2
<
A Gemma-2-278
Model Type
40 * Proprietary
A Qwen2-72B-Instruct ® «KaBB
0oscC
A LLaMa-3-70B-Instruct A Single-Model

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Cost per Instruction on AlpacaEval 2.0 ($)

Figure 2: Price-performance trade-off on AlpacaEval
2.0. OSC configurations (hexagons) are compared
against KABB (Full) (circle), individual single-models
(triangles), and proprietary models (stars). OSC
demonstrates a strong Pareto frontier, optimizing
performance relative to cost. The dashed line
connects OSC configurations, highlighting improved
performance with increasing, yet efficiently managed,
expert collaboration.

the highest LC Win Rate (81.4%) among OSC
setups, outperforming KABB (Full) (77.9%) at
a slightly higher cost (0.97v5.0.91). Compared
to proprietary models like GPT-40 and Claude-
3.7, OSC (N=3 or N=4) offers comparable or
better LC Win Rates at lower costs. Even N=1
or N=2 setups beat many base models while
remaining cost-efficient. OSC’s expert routing
and adaptive communication enable precise control
over the price-performance curve, making it a
versatile, cost-effective solution for top results
across budgets.

Qualitative Analysis of CKM and Cognitive
Gap and Fine-Grained Ablation Study. We
further conduct a qualitative analysis of the
CKM and cognitive gap in the OSC framework,
focusing on how CKM represents knowledge
and how fg,, identifies and bridges cognitive
gaps, alongside a fine-grained ablation study
examining the impact of CKM feature dimensions,
fupdate mechanism, communication action agt)
components, prompt simplification, and fgap
alternatives. The qualitative analysis used
three complex instructions from the AlpacaEval
2.0 validation set (mathematical reasoning,
planning, argument generation) with 6 agents
(Qwen2-72B-Instruct, etc.), Qwen2 as tl(1?
¢

aggregator. We extracted CKM state vectors z; j

to analyze knowledge dimensions (understanding,

Table 5: Fine-Grained Ablation Study Results.

System LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Conflict Resolution (%)
OSC (Full) 78.6 32 2.5 88.4
CKM-Ling 742 3.7 3.0 82.1
CKM-Reas 75.8 35 2.8 84.3
fupdate-Avg 73.9 38 3.1 80.7
Fupdate-Static 715 40 34 782
FixObj 75.4 3.6 29 83.5
NoStyle 76.1 35 27 85.2
Simplified Prompt 732 39 32 79.8
feapL2 74.8 3.7 3.0 82.9
feap-MLP 763 34 2.8 86.1

confidence, assumptions) and inspected fgap
outputs gf? to identify gap types (factual
misunderstandings, reasoning divergences,
goal misalignments). Three dialogue snippets
were selected to demonstrate CKM and fgqp
guidance. Human evaluation assessed dialogue
clarity, relevance, and collaborativeness (1-5
scale). Case 1 (mathematical reasoning, solving
22 — 5246 = 0): CKM showed agent A with high
confidence (0.9) in factorization, agent B preferring
the quadratic formula (0.7); fg.p detected a method
divergence (cosine distance 0.4), A proposed
factorization, B agreed after verification, scores
(clarity 5, relevance 5, collaborativeness 4.7). Case
2 (planning, 3-week project): CKM captured agent
C’s 5-day estimate vs. D’s 7-day for task X; fgap
identified a timing discrepancy (attention weight
0.6 on time dimension), C queried D’s estimate, D
clarified testing needs, C adjusted, scores (clarity
4.7, relevance 4.3, collaborativeness 4.7). Case
3 (argument generation, environmental policy):
CKM reflected agent E’s focus on economic costs
vs. F’s on environmental benefits; f,,, detected a
priority gap (semantic distance 0.5), E prompted
long-term benefits, F provided data, scores (clarity
4.3, relevance 4.7, collaborativeness 4.3). CKM
dynamically captured task understanding, fgap
precisely identified method, timing, and priority
gaps, resolving them within 3 rounds, average
scores (clarity 4.7, relevance 4.7, collaborativeness
4.6). The ablation study used a single A100
80GB GPU, 6 agents, 1 x 10° training steps,
hyperparameters Niound = 3, Acost = 0.001,
v = 0.99. Ablations included: CKM feature
dimensions (linguistic-only, reasoning-only, full),
Jupdate (GRU vs. average, static), ait components
(fixed objective, no style), simplified prompts (only
agt)), and fg,p alternatives (L2 distance, MLP).
Metrics were LC win rate (%), average rounds,
tokens (k), and conflict resolution rate (%).

Pretraining and Fine-tuning: OSC Validation
on AlpacaEval 2.0. We validated the impact
of pretraining and fine-tuning the Collaborator

6327

Qualitative Analysis Case Study Scores

= Clarity
Relevance
= Collaborativeness

5.0 5.0

cai_f\;\ cai‘?‘;‘ casii‘
A Reago\'\\ k\’\am\ e“eraU
" ema{\ca Ngumer\l
(at [t

Figure 3: Qualitative Analysis Case Study Scores across
three representative tasks, including Mathematical
Reasoning, Planning, and Argument Generation. Each
task was evaluated along three qualitative dimensions:
Clarity, Relevance, and Collaborativeness. The scores
reflect expert ratings on a five-point scale, and the
average performance across all tasks is also reported.

Knowledge Model (CKM) and cognitive gap
analysis module (fgp) on OSC performance,
analyzing task success rate and communication
efficiency. Pretraining: CKM and f,,, learned
dialogue patterns via masked utterance prediction,
next action prediction, and contrastive learning.
CKM: Transformer encoder (Nekmenc = 2,
Hekmene = 2, dekmmodel = 128). f, gap- Multi-
head cross-attention. Fine-tuning: On AlpacaEval
2.0 (805 instructions, 160 for fine-tuning, 160
for validation) using PPO, 5 x 10° steps, reward
R = Riask —0.001-Ceomm+0.05. Hyperparameter:
Niomnd = 4. Experiments: (1) Pretraining
Only: Freeze CKM, foap, Optimize Teomm. (2)
Pretraining+Fine-tuning: Fine-tune all components.
Baseline: KABB (77.9% LC win rate). Metrics:
LC win rate (%), avg. rounds, avg. tokens (k).
Results: Pretraining Only: 76.8% LC win rate,
5.1 rounds, 3.45k tokens. Pretraining+Fine-tuning:
81.4% LC win rate, 4.3 rounds, 2.87k tokens.
KABB: 77.9% LC win rate, no communication
data. Analysis: Fine-tuning boosts LC win rate
(76.8% to 81.4%) and efficiency (rounds: 5.1 to
4.3; tokens: 3.45k to 2.87k), outperforming KABB,
highlighting dynamic collaboration benefits 5.

5 Conclusion

This paper presented OSC (Orchestrating Cognitive
Synergy), a framework that improves multi-
agent LLM collaboration by using Collaborator
Knowledge Models (CKM) to model each agent’s
knowledge. By analyzing cognitive gaps and
adapting communication through reinforcement
learning, OSC enables more efficient and

LC Win Rate (%) Avg. Rounds Avg. Tokens (k)

Figure 4: Comparison of fine-tuning the CKM and
fgap modules to improve task success (LC Win Rate)
and communication efficiency (Avg. Rounds and
Tokens) over a pretraining-only approach and the KABB
baseline.

targeted information sharing, reducing redundancy.
Experiments show our OSC achieves higher
performance and efficiency than baselines, with
an 81.4% win rate, demonstrating the benefits of
deeply collaborative cognitive teams.

Limitations

Scalability with Increasing Agent Numbers:
Increasing the number of agents of our OSC further
(e.g., to 8 or 10) can lead to coordination overhead
and a slight diminishment in the primary success
metric. Specifically, with 10 agents, there is an
observed increase in CKM update latency and
memory consumption per inference step.

Cognitive State Modeling Complexity in Larger
Teams: As the number of collaborating agents
increases, the complexity of accurately modeling
each collaborator’s cognitive state appears to
become more challenging. This was indicated by a
drop in the conflict resolution rate in larger teams,
with instances suggesting agents occasionally
misjudged collaborators’ cognitive states.

Acknowledgments

This work was supported in part by the
National Natural Science Foundation of China
(NSFC) under Grant 62276283, in part by
the China Meteorological Administration’s
Science and Technology Project under Grant
CMAIJBGS202517, in part by Guangdong
Basic and Applied Basic Research Foundation
under Grant 2023A1515012985, in part by
Guangdong-Hong Kong-Macao Greater Bay
Area Meteorological Technology Collaborative
Research Project under Grant GHMA2024Z04,
in part by Fundamental Research Funds for the
Central Universities, Sun Yat-sen University under
Grant 23hytd006, and in part by Guangdong
Provincial High-Level Young Talent Program
under Grant RL2024-151-2-11.

6328

References

Jake Brawer, Kayleigh Bishop, Bradley Hayes, and
Alessandro Roncone. 2023. Towards a natural language
interface for flexible multi-agent task assignment.
Preprint, arXiv:2311.00153.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, and 12
others. 2020. Language models are few-shot learners.
Preprint, arXiv:2005.14165.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter
Bailis, Ion Stoica, Matei Zaharia, and James Zou.
2024a. Are more llm calls all you need? towards
scaling laws of compound inference systems. Preprint,
arXiv:2403.02419.

Lingjiao Chen, Matei Zaharia, and James Zou. 2024b.
Frugalgpt: How to use large language models while
reducing cost and improving performance. Transactions
on Machine Learning Research.

Junnan Dong, Qinggang Zhang, Chuang Zhou, Hao
Chen, Daochen Zha, and Xiao Huang. 2024. Cost-
efficient knowledge-based question answering with
large language models. In Advances in Neural
Information Processing Systems, volume 37, pages
115261-115281. Curran Associates, Inc.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. Preprint, arXiv:2305.14325.

Zhuoyun Du, Chen Qian, Wei Liu, Zihao Xie, Yifei
Wang, Yufan Dang, Weize Chen, and Cheng Yang. 2024.
Multi-agent software development through cross-team
collaboration. Preprint, arXiv:2406.08979.

Hang Gao and Yongfeng Zhang. 2024. Memory sharing
for large language model based agents. Preprint,
arXiv:2404.09982.

Joe El Khoury GenAl. Strategies for team success in
IIm application development. https://medium.com/
@jelkhoury880.

Natalia Graziuso, Andrea Zugarini, and Stefano Melacci.
2024. Task-incremental learning on long text sequences.
In Proceedings of the 10th Italian Conference on
Computational Linguistics (CLiC-it 2024), pages 410-
416, Pisa, Italy. CEUR Workshop Proceedings.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi
Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. 2024. Large language model
based multi-agents: A survey of progress and challenges.
In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI-24,
pages 8048-8057. International Joint Conferences on
Artificial Intelligence Organization. Survey Track.

Chen Han, Wenzhen Zheng, and Xijin Tang.
2025. Debate-to-detect: Reformulating misinformation
detection as a real-world debate with large language
models. Preprint, arXiv:2505.18596.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. 2021. Measuring mathematical problem
solving with the math dataset. NeurIPS.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou,
Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jiirgen
Schmidhuber. 2024. MetaGPT: Meta programming for
a multi-agent collaborative framework. In The Twelfth
International Conference on Learning Representations.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,
Chen Zhang, Yang Jin, Kun Xu, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. 2024. Harder task
needs more experts: Dynamic routing in MoE models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 12883—-12895, Bangkok, Thailand.
Association for Computational Linguistics.

Mladjan Jovanovic and Peter Voss. 2024. Towards
incremental learning in large language models: A
critical review. Preprint, arXiv:2404.18311.

Akbir Khan, John Hughes, Dan Valentine, Laura
Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
Grefenstette, Samuel R. Bowman, Tim Rocktischel,
and Ethan Perez. 2024. Debating with more persuasive
lIms leads to more truthful answers. In Proceedings of
the 41st International Conference on Machine Learning,

ICML’24. JMLR.org.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023a.
Camel: Communicative agents for "mind" exploration
of large language model society. In Thirty-seventh
Conference on Neural Information Processing Systems.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

OpenAl. 2024.
arXiv:2303.08774.

Gpt-4 technical report. Preprint,

Deepak Babu Piskala, Vijay Raajaa, Sachin Mishra, and
Bruno Bozza. 2024. Optiroute dynamic llm routing
and selection based on user preferences: Balancing
performance, cost, and ethics. International Journal
of Computer Applications, 186(51):1-7.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Manish Sanwal. 2025. Layered chain-of-thought
prompting for multi-agent 1lm systems: A
comprehensive approach to explainable large language
models. Preprint, arXiv:2501.18645.

6329

https://arxiv.org/abs/2311.00153
https://arxiv.org/abs/2311.00153
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2403.02419
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d0aafec03d59db29a92fa683bd783374-Paper-Conference.pdf
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2406.08979
https://arxiv.org/abs/2406.08979
https://arxiv.org/abs/2404.09982
https://arxiv.org/abs/2404.09982
https://medium.com/@jelkhoury880
https://medium.com/@jelkhoury880
https://aclanthology.org/2024.clicit-1.49/
https://doi.org/10.24963/ijcai.2024/890
https://doi.org/10.24963/ijcai.2024/890
https://arxiv.org/abs/2505.18596
https://arxiv.org/abs/2505.18596
https://arxiv.org/abs/2505.18596
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2404.18311
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2303.08774
https://doi.org/10.5120/ijca2024924172
https://doi.org/10.5120/ijca2024924172
https://doi.org/10.5120/ijca2024924172
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645
https://arxiv.org/abs/2501.18645

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. Preprint, arXiv:1707.06347.

Vighnesh Subramaniam, Yilun Du, Joshua B.
Tenenbaum, Antonio Torralba, Shuang Li, and Igor
Mordatch. 2025. Multiagent finetuning: Self
improvement with diverse reasoning chains. Preprint,
arXiv:2501.05707.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Junlin Wang, Jue Wang, Ben Athiwaratkun,
Ce Zhang, and James Zou. 2024a. Mixture-of-
agents enhances large language model capabilities.
Preprint, arXiv:2406.04692.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024b. Rethinking the bounds
of LLM reasoning: Are multi-agent discussions the
key? In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 6106-6131, Bangkok, Thailand.
Association for Computational Linguistics.

Luke Yoffe, Alfonso Amayuelas, and William Yang
Wang. 2025. Debunc: Improving large language
model agent communication with uncertainty metrics.
Preprint, arXiv:2407.06426.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,
Bryan Hooi, and Shumin Deng. 2024a. Exploring
collaboration mechanisms for 1lm agents: A social
psychology view. Preprint, arXiv:2310.02124.

Jusheng Zhang, Kaitong Cai, Yijia Fan, Jian Wang,
and Keze Wang. 2025a. Cf-vim:counterfactual vision-
language fine-tuning. Preprint, arXiv:2506.17267.

Jusheng Zhang, Yijia Fan, Kaitong Cai, and Keze Wang.
2025b. Kolmogorov-arnold fourier networks. Preprint,
arXiv:2502.06018.

Jusheng Zhang, Yijia Fan, Wenjun Lin, Ruiqi Chen,
Haoyi Jiang, Wenhao Chai, Jian Wang, and Keze Wang.
2025c. Gam-agent: Game-theoretic and uncertainty-
aware collaboration for complex visual reasoning. arXiv
preprint arXiv:2505.23399.

Jusheng Zhang, Zimeng Huang, Yijia Fan, Ningyuan
Liu, Mingyan Li, Zhuojie Yang, Jiawei Yao, Jian Wang,
and Keze Wang. 2025d. KABB: Knowledge-aware
bayesian bandits for dynamic expert coordination in
multi-agent systems. In Forty-second International
Conference on Machine Learning.

Yi Zhang, Sen Wang, Zhi Chen, Xuwei Xu, Stano
Funiak, and Jiajun Liu. 2024b. Towards cost-efficient
federated multi-agent rl with learnable aggregation.
page 171-183, Berlin, Heidelberg. Springer-Verlag.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS *23, Red
Hook, NY, USA. Curran Associates Inc.

6330

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2501.05707
https://arxiv.org/abs/2501.05707
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331
https://arxiv.org/abs/2407.06426
https://arxiv.org/abs/2407.06426
https://arxiv.org/abs/2310.02124
https://arxiv.org/abs/2310.02124
https://arxiv.org/abs/2310.02124
https://arxiv.org/abs/2506.17267
https://arxiv.org/abs/2506.17267
https://arxiv.org/abs/2502.06018
https://openreview.net/forum?id=AKvy9a4jho
https://openreview.net/forum?id=AKvy9a4jho
https://openreview.net/forum?id=AKvy9a4jho
https://doi.org/10.1007/978-981-97-2253-2_14
https://doi.org/10.1007/978-981-97-2253-2_14

6 Appendix A: OSC Framework
Implementation Details

This appendix elaborates on the specific
implementation choices and learning paradigms
for the core components of the OSC (Orchestrating
Cognitive Synergy) framework, as deployed in the
experiments reported in this paper. These details
directly support the methodology described in
Section 3, focusing on the end-to-end learning of
the adaptive communication strategy, the dynamic
operationalization of the Collaborator Knowledge
Model (CKM), and the learned mechanisms for
cognitive gap analysis and adaptive communication
objective determination.

6.1 Adaptive Communication Strategy
(Teomm) Learning and End-to-End
Optimization

The adaptive communication strategy meomm 18
optimized via deep reinforcement learning (RL),
forming the central learning axis of OSC, as
introduced in Section 3.4.

6.2 Reinforcement Learning Algorithm

We employ Proximal Policy Optimization (PPO)
to train the policy meomm. PPO, an Actor-Critic
method, is selected for its stability in complex
action spaces and its sample efficiency. It optimizes
a clipped surrogate objective function to ensure
monotonic policy improvement.

6.3 State Representation and Input
Preprocessing

The input state stategt) (Equation 6 in Section 3.4)
for the policy 7comm 18 meticulously constructed to
provide a comprehensive view of the collaborative
context:

. <I>§t): The agent’s internal cognitive state (e.g.,
embedding of its current reasoning trace, plan,
or hypothesis concerning query ()). This is
typically derived from an intermediate layer of
the agent’s own internal LL.M or a dedicated,
fine-tuned sentence/document encoder (e.g.,
Sentence-BERT tailored to reasoning tasks).

* {CKM;(e)|Q, Hy)}14: The dynamic state
vectors ZS) for each collaborator, produced by
the fine-tuned fcxy module (see Section 3.2
and Appendix 6.7). These vectors represent
learned beliefs about collaborators’ cognitive

states.

. {gf?}l#: The cognitive gap representations
corflputed by the learned fg,, function (see
Section 3.3), highlighting communicatively
relevant discrepancies.

* : An embedding of the user query,
generated using the same fine-tuned sentence
encoder applied to (IDZ@

representational spaces.

to ensure consistent

* H;: A condensed representation of the recent
dialogue history (e.g., an aggregation of the
embeddings of the last k;, = 5 utterances, or
a context vector from a hierarchical dialogue
encoder).

All component embeddings are projected to a
consistent dimensionality and concatenated before
being fed into the policy network. The parameters
of any encoders used for <I>Z(-t), Q, and H; are also
fine-tuned alongside the policy 7comm to optimize
the state representation for decision-making.

6.4 Policy Network Architecture (7comm)

The policy network meomm (- |state§t); 0.) maps the

®)

t N
, to a distribution over
. . . t .
abstract communication actions ag). This network

employs a Transformer-based encoder architecture:

comprehensive state state

* Encoder Configuration: N;.. = 4
Transformer layers, Hr e = 4 attention
heads per layer, a model hidden dimension of
dr model = 256, and a feed-forward network
dimension of drg = 1024 within each
Transformer block.

* Action Head: The output representation
from the Transformer encoder is passed to
separate linear layers to produce distributions
for the different components of the abstract

(

action ait) (i.e., communication objective,
target, style parameters). For discrete
components, a softmax activation is used;
for continuous style parameters (if any),
appropriate continuous distributions are
modeled.

6.5 Reward Function and End-to-End Signal
Propagation

The composite reward function R(Hy, Rina)
(Equation 8 in Section 3.4) guides the learning
process.

* Task Performance Reward (Rask (Rfinal)):

6331

A primary sparse signal based on final task
outcome (e.g., +1 for success, -0.1 for failure
on benchmarks like MATH or GSM8K).

* Communication Cost
(Ccomm(Ht)): Ccomm(Ht) =
]kvi’;““ (length of message my), measured

in tokens, weighted by Acost = 0.001. This
encourages conciseness without sacrificing
clarity.

* Intrinsic Reward Shaping (7shape): To
mitigate sparsity and guide the learning of
nuanced collaborative behaviors, we augment
the extrinsic reward with an intrinsic shaped
reward 7ghape = 0.05. This is provided for:

— Learned Cognitive Gap Resolution:
A positive reward is given if a
communication action agt) leads to a
verifiable positive change in the CKM'’s
assessment of a targeted collaborator
e;’s state concerning a previously
identified significant cognitive gap
(e.g., if CK M;(e;) indicates increased
alignment or reduced misunderstanding
regarding a key aspect after e;’s
intervention, as measured by the learned
fgap or specific probes into the CKM

state ZE;H)). The threshold for
"significant” is dynamically learned
rather than being based on fixed
dimension scores.

— Effective Communication Objective
Fulfillment: A reward is given when the
execution of a chosen communication
objective (’)((xt))mm (determined by Tcomm)
demonstrably leads to an improved
collaborative state (e.g., a ‘request_-
explanation‘ action is followed by a
response from e; that C K M; assesses
as providing high-quality, relevant
information that fills an identified
knowledge gap).

The gradients from this overall reward signal are
not only used to update 6, but are also propagated
back to fine-tune the parameters of the CKM
modules (Ockm, Oupdae) and the cognitive gap
analysis module (0g,p). This ensures that these
representation-learning components are optimized
to produce states and gap analyses that best support
the policy’s long-term objectives.

6.6 Training Environment and Protocol

Training environments are constructed using tasks
from complex reasoning benchmarks such as
MATH and GSMS8K. Each episode consists of
a full collaborative dialogue over Nygpmg = 5
communication turns. The entire OSC system,
including 7comm, fckms fupdae. and feap, 1S
trained end-to-end for 5 x 10° total environment
timesteps. Detailed PPO hyperparameters and
specific configurations for actor and critic networks
are provided in 6.

6.7 Dynamic Collaborator Knowledge Model
(CKM) Implementation

The CKM, C K M;(e;|Q, Hy), dynamically models
collaborator e;’s cognitive state. Its parameters
are fine-tuned end-to-end as part of the OSC
learning loop. Candidate Cognitive Dimensions
and Learned Facet Representation As outlined
in Section 3.2, OSC begins with a broad set of
candidate cognitive dimensions Ca These are
not task-specific, hard-coded features but rather
general categories of information that might be
relevant for modeling collaborators. Examples
include:

* Linguistic Cues: Derived from utterance
embeddings (e.g., Sentence-BERT), capturing
sentiment, certainty, interrogative force, etc.

* Conversational Structure: Features related
to dialogue acts (question, answer, propose,
critique), turn-taking patterns, and topic
continuity.

* Reasoning Attributes (General):
Indicators of logical structure, presence
of claims/evidence, or common argument
patterns, identifiable via specialized classifiers
or pattern matchers applied to utterances.

» Task-Agnostic Meta-Cognitive States:
General indicators of confusion, confidence,
attention, or surprise, potentially inferred
from disfluencies, response latencies
(in simulated environments), or explicit
meta-cognitive expressions.

The CKM function fcgwm (a Transformer encoder:
Nekmene = 2 layers, Hekmenc = 2 heads,
dckm,model = 128) takes embeddings of e;’s recent
utterances (last Kpjst 5), the query @, and
the history H; as input. Through its attention
mechanisms and subsequent layers, fcxwm learns

6332

to dynamically select, combine, and transform
features corresponding to these candidate
dimensions into a dense, latent cognitive state
vector zl(-;) € R'?2. This vector zg.) implicitly
represents the most salient aspects of e;’s state
relevant for the current collaborative context, rather
than being a simple concatenation of pre-defined
feature values. The model learns which "facets" of
understanding, confidence, or intent are crucial for

effective collaboration on a given task type.

7 CKM Initialization and End-to-End
Fine-tuning of (Ockm, Oupdate)

The parameters Ockm Of fokm and Oupdae Of
the GRU-based update function fupdae (dgru =
128) are initialized through pre-training on a
large, diverse corpus of multi-turn dialogues (e.g.,
>1M turns from educational forums, collaborative
problem-solving datasets). Pre-training objectives
include:

* Masked Utterance Prediction: Predicting
missing utterances given the surrounding
context and a preliminary CKM state.

* Next Dialogue Act Prediction: Forecasting
the type of communicative act an agent might
perform next.

e Self-Supervised Contrastive Learning:
Training the CKM to produce similar
representations for dialogue states that lead to
similar collaborative outcomes, and dissimilar
representations otherwise.

This pre-training provides a robust initialization.
Subsequently, during the main RL training
of Teomm, both fOcxm and Oypgae are actively
fine-tuned. Gradients from the overall PPO
objective (Equation 8) are propagated back to these
parameters. Additionally, auxiliary prediction
tasks can be introduced during fine-tuning, such
as predicting specific elements of a collaborator’s
next utterance if it can be reliably estimated, or a
self-supervisory signal that rewards CKM states
that accurately predict successful intermediate
steps in the collaboration. This ensures the CKM
representations are not only descriptive but also
maximally useful for the policy Teomm-

7.1 A.3.1 Learned Cognitive Gap Function
(fgap)

The cognitive gap gff} is computed by a learnable
) @),

function foap(®; Vi

Section 3.3.

Ogap), as described in

* Architecture of fg,,: We implement
feap as a mneural network that takes the
agent’s own cognitive state embedding

@gt) and the CKM’s representation of the

collaborator zg-) as input. These are first

projected into a common dimensionality. A

common approach involves a multi-head

cross-attention mechanism where <I>l(-t) attends
to zgi) (and vice-versa) to identify points
of divergence and alignment. The outputs
of these attention layers are then processed
through feed-forward layers to produce the

final gap representation vector gft]) € R,

 Optimization of 0g,p: The parameters 6y
are learned jointly with 6, and the CKM
parameters. The utility of the generated gap
representation gftj) is implicitly judged by its
contribution to the policy’s ability to achieve
high rewards. An effective G,') will highlight
discrepancies that, if addressed, lead to better

collaboration and task outcomes.

7.2 A.3.2 Adaptive Communication Objective
Determination

As stated in Section 3.3, the determination of the
communication objective Oéf))mm is integrated into
the policy 7comm, rather than relying on a fixed
classifier over a predefined set of objectives.

* Mechanism: The policy network momm has
a dedicated output head (or part of its multi-
faceted action output) that determines Oéf,)mm.
This could involve selecting from a predefined
but extensible set of abstract objectives
O* (e.g., ‘query_understanding‘, ‘propose_-
step®, ‘challenge_assumption®, ‘align_plan_-
element‘). The key difference is that the
mapping from state (including gz.(fj)) to an
objective in O* is learned via RL.

* Alternative Latent Objectives: In a more
advanced formulation, (’)g))mm can be a
learned latent variable, an embedding itself,
which then conditions the rest of the action

generation (target, style). This allows the

6333

policy to discover and formulate nuanced
objectives beyond a predefined, discrete set.
For the experiments in this paper, we focus
on Teomm learning to select from an expanded,
strategically relevant candidate set O*.

* Learning: The choice of objective is thus
directly influenced by the overall task reward
‘R, ensuring that the agent learns to select
objectives that are instrumentally useful for
achieving its goals. This contrasts with
supervised learning on bootstrapped data,
which may not capture the full dynamics of
utility in diverse collaborative settings.

Any bootstrapping of initial objective selection
tendencies (e.g., using simpler heuristic rules
for pre-training initialization of meomm) 1S clearly
separated from the primary adaptive learning
mechanism.

7.3 A.4 Strategically Guided Linguistic
Realization via fim

The

communication action a,gt) = ((’)éé)mm,ej,g(t))
into a concrete message mgt) using fiim (e.g.,
GPT-4) is carefully structured to ensure OSC’s
strategic decisions are faithfully executed, as

detailed in Section 3.4.

process of converting the abstract

The dynamically generated prompt for fi v is rich
and multi-faceted:

* Role and Context: Explicitly defines e;’s
role, the collaborator e, the overarching task
@, and a summary of the pertinent dialogue
history Hy.

¢ OSC'’s Strategic Insights:

— CKM-derived Collaborator
Assessment: Provides a concise
summary from CKM;(e;|Q, Hy)

regarding e;’s inferred state concerning
the aspects relevant to the current
communication objective (e.g., "Expert
e; appears to be proceeding with
assumption Y, which CK M; flags as
potentially conflicting with constraint Z.
Confidence in this assessment is high.").

— Agent’s Own State Summary: A

summary of e;’s own internal state <I>§t)

relevant to the objective (e.g., "My

current plan involves step X, which relies
on constraint Z being met.").

— Cognitive Gap Focus: Highlights the
specific cognitive gap gf? that the
current communication aims to address.

* Explicit Communicative Directives from
(®),

a;

— Communication Objective (Og,)mm): A
clear instruction like "Your objective is
to request clarification from e; regarding
their use of assumption Y, highlighting
its potential conflict with constraint Z."

— Style Parameters ((()): Directives
such as "Adopt a collaborative and
questioning tone, not accusatory. Be
concise but ensure the potential conflict
is clearly stated."

* Instruction to Generate: A final prompt for
e;’s utterance.

This structured approach ensures that fryiwm’s
generation is tightly constrained by OSC’s learned
strategy, making fipm a powerful tool for linguistic
realization rather than the primary driver of
collaborative reasoning. The quality of OSC
is therefore assessed by its ability to formulate
effective abstract actions a'”

;> which are then
reliably translated by fiim.

7.4 A.5 Hyperparameter Settings

A summary of key hyperparameters for the OSC
framework components, reflecting the learning
setup described, is provided in 6 and 7.
These values were determined through systematic
ablation and tuning on a held-out development set
of tasks.

Note: The learning rates for CKM (owkm) and foap (0tgap)
modules during end-to-end fine-tuning are typically set lower
than the main policy learning rate o to ensure stability, as
these components influence the state representation itself. The

specific values are subject to empirical tuning.

8 OSC Hyperparameter Tuning on
AlpacaEval 2.0

We tuned the OSC framework on the AlpacaEval
2.0 development set by optimizing communication
rounds (/NVyoung) and communication cost weight
(Acost) to identify the optimal configuration,

6334

Table 6: Key Hyperparameters for the OSC Framework.

Component Group Parameter Value

PPO Algorithm
Learning Rate (Adam, o) for Teomm 1x10°*
Learning Rate (Adam, avr) for Critic 3x 1071
Discount Factor () 0.99
PPO Clipping Range (€) 02
Batch Size (experience replay) 2048 steps
Mini-batch Size for updates 256 steps
Epochs per PPO Update 10
GAE Lambda (AGag) 0.95
Entropy Coefficient for mcomm 0.01

Policy Network (7comm)
Transformer Layers (Nr enc) 4
Attention Heads (H enc) 4
Model Dimension (dr model) 256
Feed-Forward Network Dim. (dy) 1024

CKM (fckms fupdate)
Transformer Layers in fckm (Nekm,enc) 2
Attention Heads in fckm (Hekm enc) 2
Model Dimension (dckm, model) 128
GRU Hidden Size in fupdate (dgru) 128

History Length for CKM input (khist)
Learning Rate (Adam, ackm) for CKM fine-tuning

5 utterances
5x107°

Cognitive Gap Function (fgap)
Architecture MLP (2 layers, 128 units, ReLU)
Input Projection Dim. 128
Output Gap Vector Dim. (dgp) 64
Learning Rate (Adam, orgyp) for fine-tuning 5x107°

Reward Function
Communication Cost Weight (Acost) 0.001
Intrinsic Shaped Reward (7shape) 0.05

General Training Setup
Communication Rounds per Episode (Nouna)
Total Training Timesteps
Base Sentence Encoder
Linguistic Realization Engine (fi 1)

3-5 (curriculum or fixed)
5 10%to 1 x 107
Sentence-BERT
GPT-4 Series / Equivalent API

Table 7: Supplementary Hyperparameters for the OSC
Framework.

Component Group Parameter Value

State Representation
Embedding Projection Dimension 128
Dialogue History Encoder Hierarchical (2 layers, 128 units)
History Aggregation Length (k) 5 utterances

Reward Function
Success: +1, Failure: -0.1
Learned gap resolution

Task Performance Reward (Ryasx)
Intrinsic Reward Trigger

Policy Network (Teomm)
Discrete Action Space Size
Continuous Style Parameter Range

CKM Pre-training
Pre-training Dataset Size
Pre-training LR (pretrain)
Pre-training Objective Weights

10 objectives (extensible)
[0, 1] (uniform)

1 M dialogue turns
Lx107*
Equal (masked utterance, dialogue act)

Linguistic Realization (fLry)

Prompt Length Limit 512 tokens
Generation Temperature 0.7
Top-p Sampling 0.9

demonstrating their critical impact on task success
rate (LC win rate) and communication efficiency
(rounds, token count). Hyperparameter Selection:
Communication Rounds (Nygund): Defines the
number of dialogue rounds for agent collaboration,
determining interaction depth. Candidate values:
{2, 3, 4, 5}, covering the default range (3—
5). Reason: N;oung affects collaboration
quality; too few rounds lead to insufficient
information, while too many increase redundancy.
Communication Cost Weight (Acst): Defines
the penalty weight for message token count in
the PPO reward function, R = Rk — Acost °
Ceomm- Candidate values: {0.0005, 0.001, 0.002},
centered on the default 0.001. Reason: Acost
controls communication conciseness, balancing
information completeness. Experimental Setup:
Dataset: AlpacaEval 2.0 (805 instructions), using
development set (160 instructions) for tuning.
Models: Six open-source LLMs (Qwen2-72B-
Instruct, LLaMa-3-70B-Instruct, WizardLM-2-
8x22B, Gemma2-27B, Deepseek-V3, Deepseek-
R1), with Qwen2-72B-Instruct as aggregator.
Training: Each configuration is trained for 5 x 10°
steps using PPO, with a discount factor v =
0.99 (default). Evaluation Metrics: Task Success
Rate: LC win rate (%), based on GPT-4 evaluator.
Communication Efficiency: Average rounds (Avg.
Rounds, lower is better), Average token count
(Avg. Tokens, k, lower is better). Tuning Method:
Grid search (4 x 3 = 12 configurations), each
run 3 times, averaged. Experimental Procedure:
Used default configuration (Nyoung = 4, Acost =
0.001) as baseline. Tested all combinations
on the development set, recording LC win rate
and communication efficiency. Selected the
configuration with the highest LC win rate and
reasonable rounds and token count 5.

9 Reward Function Component Analysis:
Detailed Validation of the OSC
Framework on AlpacaEval 2.0

Analyzing the contribution of different components
(task reward Ry, communication cost Ceomm,
intrinsic shaping reward 7rghape) in the OSC
framework’s reward function to collaborative
behavior, and detailedly evaluating the impact
of each component on task success rate and
communication efficiency. The experimental
design is as follows: The reward function is
formulated as R = Ruk — Acost - Ceomm —+

6335

Tuning N_round for OSC on AlpacaEval 2.0
N_round=4 Gptimizes LC Win Rate and Efficiency

Figure 5: Hyperparameter tuning for communication
rounds (N,ounqd) on AlpacaEval 2.0 shows that
Nyouna = 4 achieves the optimal balance between task
success (LC Win Rate) and communication cost (Avg.
Tokens).

Tshape- Here, Rk is the task success reward, +1
for success and -0.1 for failure. C.omm is the
communication cost (number of message tokens),
with Acost = 0.001. 7ghape is the intrinsic shaping
reward (0.05), rewarding the reduction of cognitive
discrepancies or the achievement of collaborative
goals. Reward combinations include: Only R,
i.e., using only the task reward; Risk — Acost* Ceomm>
i.e., adding a communication cost penalty; Full
Reward (Riask — Acost - Ceomm = T'shape)s 1.€., adding
the intrinsic shaping reward. The baseline is
KABB, with an LC win rate of 77.9% (Table 1)
and no dynamic communication. Experimental
Settings: The dataset used is AlpacaEval 2.0
(containing 805 instructions), with its development
set (approx. 160 instructions) used for training
and the validation set (approx. 160 instructions)
for evaluation. Six open-source LLMs were
selected (e.g., Qwen2-72B-Instruct, LLaMa-3-70B-
Instruct, etc.), with Qwen2-72B-Instruct serving
as the aggregator. Training was conducted using
the PPO algorithm for 5 x 10° environment
steps, with Nyouna = 4. Evaluation metrics
include: Task Success Rate (LC Win Rate, %);
Communication Efficiency, specifically including
Average Rounds (Avg. Rounds, lower is better),
Average Tokens (Avg. Tokens, in k, lower is
better), Communication Redundancy (Redundancy,
%), and Conflict Resolution Rate (Conflict Res.,
%). Experimental Procedure: First, initialization
is performed by loading the pre-trained CKM and
feap- Then, reward combination experiments are
conducted: for each reward combination, OSC is
trained on the development set, and CKM, fg,p, and
Teomm are fine-tuned end-to-end. Finally, testing
is performed on the validation set, and the metrics

are recorded. The experimental results are shown
in the table below: Results Analysis: When using
only Rk, the LC win rate is 74.1%, lower than
KABB’s 77.9%, mainly due to a lack of guidance
for collaboration. At this point, Avg. Rounds
are 5.9, Avg. Tokens are 3.95k, Redundancy was
18.9%, and Conflict Res. was 82.6%, indicating
low communication efficiency. After introducing
Riask — Acost © Ceomm, the LC win rate increased to
78.2%, close to KABB. The communication cost
penalty effectively reduced the number of rounds
(5.0) and tokens (3.20k). Redundancy decreased
to 15.7%, and Conflict Res. improved to 86.5%,
indicating some improvement in collaborative
behavior. With the full reward, the LC win rate
reached 81.4% (Table 1), outperforming KABB.
Avg. Rounds decreased to 4.3, Avg. Tokens
to 2.87k, Redundancy to 12.6%, and Conflict
Res. increased to 91.7%, demonstrating optimal
collaborative performance. The KABB baseline
had an LC win rate of 77.9% but no relevant data on
dynamic communication. Further Analysis: When
using only Rk, the sparse reward led to slow
learning of collaborative behavior, resulting in a
lower LC win rate (74.1%) and more redundant
communication (18.9%). After adding Ciomm,
the communication cost penalty encouraged the
model to generate more concise communication,
reducing rounds from 5.9 to 5.0, tokens from 3.95k
to 3.20k, and increasing the LC win rate from
74.1% to 78.2%. After adding rghape, the intrinsic
shaping reward effectively guided collaborative
behavior (e.g., promoting the reduction of cognitive
discrepancies), leading to an LC win rate of 81.4%,
an increase in conflict resolution rate to 91.7%, and
a decrease in communication redundancy to 12.6%.
Compared to KABB, the OSC framework with the
full reward outperformed KABB in LC win rate
(81.4% vs. 77.9%), indicating that the dynamic
reward mechanism achieved significant effects.

10 OSC Computational Resource
Efficiency Results

We adopt the AlpacaEval 2.0 dataset (160
development examples, 160 validation examples),
six agents (e.g., LLaMa-3-13B-Instruct and other
compressed models) with a Qwen2-13B aggregator
in the OSC system, running on a single NVIDIA
A100 GPU. Training uses mixed precision for
1 x 10° steps, freezing the CKM and feap modules
and training only m.omm. During inference, we

6336

Reward Combination LC Win Rate (%) Avg. Rounds Avg. Tokens (k) Redundancy (%) Conflict Res. (%)

Only Ry 74.1 5.9 3.95 18.9% 82.6%
Riask — Aeost * Ceomm 78.2 5.0 3.20 15.7% 86.5%
Full Reward (Rigk — Acost * Ceomm + Tshape) 81.4 43 2.87 12.6% 91.7%
KABB (Baseline) 77.9% - - - -

Table 8: Analysis of the reward function components, showing that the full reward (including task success,
communication cost, and intrinsic shaping) achieves the best performance and communication efficiency compared
to simpler reward structures and the KABB baseline.

apply INT8 quantization, set Nyounq = 3, and
cache CKM states. Hyperparameters are Nygund =
3, Aeost = 0.001, and v = 0.99. We evaluate
training GPU hours, training memory usage
(GB), inference latency (seconds per instruction),
inference memory usage (GB), and LC win rate
(%). As shown in Table 1, OSC requires 10.8 GPU
hours for training, uses 11.3 GB of memory during
training, achieves 1.79 s per instruction and 7.8 GB
of memory during inference, and attains an LC win
rate of 78.6%.

6337

