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Abstract

While text-based emotion recognition methods
have achieved notable success, real-world dia-
logue systems often demand a more nuanced
emotional understanding than any single modal-
ity can offer. Multimodal Emotion Recognition
in Conversations (MERC) has thus emerged as
a crucial direction for enhancing the natural-
ness and emotional understanding of human-
computer interaction. Its goal is to accurately
recognize emotions by integrating information
from various modalities such as text, speech,
and visual signals.

This survey offers a systematic overview of
MERC, including its motivations, core tasks,
representative methods, and evaluation strate-
gies. We further examine recent trends, high-
light key challenges, and outline future direc-
tions. As interest in emotionally intelligent sys-
tems grows, this survey provides timely guid-
ance for advancing MERC research.

1 Introduction

Emotion recognition in conversations (ERC) (Peng
et al., 2022; Deng and Ren, 2023) is an increas-
ingly important task in natural language process-
ing (NLP), focusing on identifying the emotional
state associated with each utterance in a dialogue.
Unlike conventional emotion classification on iso-
lated sentences, ERC requires understanding the
interplay between utterances and tracking speaker-
specific context across the conversation (Gao et al.,
2024). Its relevance has grown due to its potential
in various real-world applications, including social
media monitoring (Kumar et al., 2015), intelligent
healthcare services (Hu et al., 2021b), and the de-
sign of emotionally aware dialogue agents (Jiao
et al., 2020; Gong et al., 2023).

However, human emotions are typically con-
veyed through multiple modalities, including audi-
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Figure 1: An example of MERC. Text, audio, and visual
inputs are integrated through a multimodal model to
detect various emotional states.
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tory (e.g., speech), visual (e.g., facial expressions,
gestures), and linguistic (e.g., the semantic con-
tent conveyed by transcribed text). As a result,
recent research (e.g., Ma et al., 2024a; Van et al.,
2025; Dutta and Ganapathy, 2025) has increasingly
focused on multimodal settings in dialogue, a direc-
tion we refer to as Multimodal Emotion Recogni-
tion in Conversations (MERC). Researchers aim to
identify the emotional state of a given utterance by
integrating contextual information from different
modalities, which often includes subtle personal
emotional states such as happiness, anger, and ha-
tred (Poria et al., 2019b; Gong et al., 2024), thereby
improving the effectiveness of emotion recognition
in dialogues. Figure 1 illustrates an example of
ERC with textual, acoustic, and visual inputs.

Multimodal emotion recognition (MER) itself
has gained increasing attention due to the chal-
lenges of integrating diverse modalities, prompting
research in both non-conversational and conversa-
tional settings. Existing surveys such as A.V. et al.
(2024) and Aruna Gladys and Vetriselvi (2023) fo-
cus on non-conversational MER but overlook key
aspects like interlocutor modeling and context. Fu
et al. (2023) reviews both unimodal and multimodal
conversational MER, yet primarily centers on fea-
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ture fusion, offering limited insight into core chal-
lenges such as cross-modal alignment, reasoning,
modality missingness, and conflicts.

Despite growing interest, the MERC task re-
mains underexplored. Existing surveys (Fu et al.,
2023; Zhang and Tan, 2024) also lag behind recent
advances, particularly the rise of multimodal large
language models (MLLMs). To bridge this gap,
we present a timely and comprehensive review of
MERC. We first introduce the task definition and
our survey methodology (§2), benchmark datasets
and evaluation methods (§3), followed by a review
of preprocessing techniques (§4); then categorize
recent methods (§5) and outline key challenges and
prospects (§6).

In summary, the specific contributions of this
survey are threefold:

Compilation of recent MERC research devel-
opments. We systematically review and integrate
the latest research progress made by MERC in re-
cent years, covering diverse datasets and method-
ologies.

* Summarizing and comparing various MERC
methods. We evaluate the strengths and lim-
itations of various MERC approaches, offering
theoretical insights and practical guidance to help
researchers and practitioners select appropriate
methods.

Proposing challenges and future directions.
We identify key open issues in the MERC domain
and put forward several potential future research
directions, aiming to guide ongoing and future
investigations by researchers and practitioners in
MERC.

2 Task Settings and Review Methodology

In this section, we present the task settings of
MERC and outline the methodology employed to
compile the content of this survey, which details
the strategy and selection criteria used to curate the
final content for this survey paper.

Modalities. In the context of MERC, we define
a modality as a distinct source or channel of infor-
mation that conveys emotional or communicative
signals. These modalities correspond to observable
representations derived from different sensory in-
puts and are typically processed in separate feature
spaces. The most common modalities include:

* Textual modality: The transcribed representa-
tion of spoken utterances, capturing the semantic
and syntactic content of language.

* Acoustic modality: Prosodic and paralinguis-
tic features extracted from speech, such as tone,
pitch, and energy.

* Visual modality: Non-verbal cues such as fa-
cial expressions, head movements, eye gaze, and
gestures.

Task Definition. Given a dialogue D =
{u1,ug,...,un} consisting of N utterances spo-
ken by multiple speakers, the goal of the MERC
task is to predict an emotion label e; € ) for each
utterance u;. Each utterance is associated with
three modalities: textual (u?f), acoustic (uf), and
visual (u;), which provide complementary infor-
mation for emotion recognition. The multimodal
representation of an utterance is denoted as:

w; = [ubsudu?], fori=1,2,...,N (1)

where |- ;- ;- | denotes combination of modalities.
Methodology for Literature Compilation:

Strategy. We conduct a comprehensive litera-
ture search using sources such as the ACL Anthol-
ogy, Google Scholar, and general search engines
(e.g., Google Chrome). Within the ACL Anthology,
we focus on top venues including EMNLP, ACL,
NAACL, and related workshops.!

Selection Criteria. We select papers that are di-
rectly relevant to MERC, with a focus on works
that used at least two modalities (e.g., text, audio,
visual), included conversational context, and eval-
uated on benchmark datasets such as IEMOCAP,
MELD, and CMU-MOSEI. We prioritize recent
papers from 2020 onward to reflect the state-of-
the-art, while including foundational work when
appropriate for historical context. The selection is
based on a careful review of the abstract, introduc-
tion, conclusion, and limitations of each paper.

3 Datasets and Evaluation

In this section, we describe the evaluation datasets
and the evaluation metrics used for the MERC task,
focusing on multimodal resources across multiple

'We used keywords such as “multimodal emotion recogni-
tion”, “emotion recognition in conversation”, “multimodal af-
fective computing”, “dialogue emotion recognition”, “MERC
benchmark”, “context-aware emotion detection”, and “multi-
modal conversational modeling”.
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languages. For more detailed information about
the single benchmarks, see Appendix §A.

(1) English-centered: IEMOCAP, MELD, CMU-
MOSEI, AVEC, EmoryNLP, and MEmoR
dataset.

(2) Non-English: M-MELD (French, Spanish,
Greek, Polish), ACE (African), M®ED (Man-
darin).

As shown in Table 1, the domains covered by
multimodal datasets have become increasingly di-
verse over time. The sources of these datasets in-
clude TV series, videos, and movies. At the same
time, linguistic diversity has expanded to include
languages such as French, Spanish, Greek, Polish,
and Mandarin. Notably, there has also been a grow-
ing emergence of datasets targeting low-resource
languages, such as African languages.

Datasets Lang. Source Year
IEMOCAP (Busso et al., 2008) en Videos 2008
AVEC (Schuller et al., 2012) en Videos 2012
EmoryNLP (Zahiri and Choi, 2017) en TV series 2017
CMU-MOSEI (Bagher Zadeh et al., 2018) en Videos 2018
MELD (Poria et al., 2019a) en TV series 2019
MEmoR (Shen et al., 2020) en Videos 2020
M?ED (Zhao et al., 2022) zh TV series 2022

M-MELD (Ghosh et al., 2023)
ACE (Sasu et al., 2025)

fres,el,pl TV series 2023
Akan Movies 2025

Table 1: Overview of Datasets.

Datasets. We divide the existing mainstream
dataset into the following two categories:

Evaluation Metrics. Existing studies (Majumder
et al., 2019; Ghosal et al., 2019, inter alia) typi-
cally adopt multiple evaluation metrics to compre-
hensively assess the overall performance of mod-
els, including Accuracy (e.g., Shou et al., 2024),
Weighted-F1 (e.g., Ma et al., 2024a), Macro-F1
(e.g., Chudasama et al., 2022), and Micro-F1 (e.g.,
Xie et al., 2021) scores. To enable fine-grained
analysis, these works also report per-emotion met-
ric scores.

4 Feature Processing

Preprocessing dataset features is essential for ef-
fectively extracting meaningful information. We
summarize feature preprocessing methods used in
prior MERC research and analyze the typical pre-
processing pipeline, which is often tailored to con-
versational settings. Specifically, we distinguish
between two key components: feature extraction
and context modeling.

4.1 Feature Extraction

For effective multimodal analysis, features must
first be extracted from each modality stream (text,
audio, visual). Mainstream approaches (e.g., Shi
and Huang, 2023) typically process these modali-
ties separately at this initial stage. While the core
extraction techniques often overlap, the key differ-
ence in the multimodal setting lies in the objective
and subsequent use of these features. In unimodal
ERC, the extractor aims to capture enough informa-
tion within that single modality for emotion classi-
fication. Table 2 provides an overview of common
feature extraction models employed in the multi-
modal studies surveyed in this paper.

Modality | Models

LSTM (Hochreiter and Schmidhuber, 1997)
CNN (Kim, 2014; Tran et al., 2015)
Text Transformer (Vaswani et al., 2017)
RoBERTa (Liu et al., 2019)
sBERT (Reimers and Gurevych, 2019)

3D-CNN (Tran et al., 2015)
OpenFace (Baltrugaitis et al., 2016)
MTCNN (Zhang et al., 2016)
DenseNet (Huang et al., 2017)
VisExtNet (Shi and Huang, 2023)

Visual

openSMILE (Eyben et al., 2010)
COVAREP (Degottex et al., 2014)
librosa (McFee et al., 2015)
DialogueRNN (Majumder et al., 2019)

Audio

Table 2: Feature Extraction models.

4.2 Context Modeling

Context modeling primarily involves two types
of contextual dependencies: situation-level and
speaker-level modeling.

Situation-level. The emotional state of a speaker
is influenced not only by the semantic content of the
current utterance but also by the surrounding con-
textual semantics. Therefore, existing approaches
(Hu et al., 2021a; Majumder et al., 2019) com-
monly employ specialized networks to model the
sequential dependencies among utterances, aiming
to more accurately capture the speaker’s tempo-
ral emotional dynamics. Given the textual feature
u; € R% for each utterance, the sequential context
representation ¢; € R2%u is computed as follows:

c;, hj = Model (u;, hj_;) ()

where h; € R4 represents the i-th hidden state of
the contextual sequence.

Speaker-level. Speaker identity information typi-
cally exhibits temporal and relational properties of
emotions, which can enhance the model’s ability
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Figure 2: A taxonomy of mainstream methods.

to perceive speaker role information. Therefore, to
more effectively learn and distinguish speaker-level
contextual representations, many studies have fur-
ther introduced speaker-related structured informa-
tion on top of dialogue context modeling. Common
approaches include using Speaker Embeddings
(Ma et al., 2024a; Shen et al., 2020) to explicitly
differentiate between different speakers, or lever-
aging Graph Neural Networks (Ai et al., 2025a;
Van et al., 2025) to construct interaction graphs
between speakers, thereby more comprehensively
modeling the dependencies between them:
Speaker Embeddings: The speaker embedding
S; is combined with the modality features (e.g.,
text, audio, or vision) to produce modality repre-
sentations that are speaker- and context-aware.

Xm = Cf +8S;, me {t,a,v} 3)

Graph Neural Networks: Speaker interactions
can be further modeled by constructing a dia-
logue graph to capture inter-utterance and inter-
speaker dependencies beyond sequential seman-
tics. A dialogue graph is typically defined as
G = (V, E,W, R), where each node v; € V cor-
responds to the i-th utterance, and its associated
feature vector c is obtained from sequential mod-
eling of contextual dependencies. Edges e;; € E
represent interaction links between utterances, with
associated weights w;; € W reflecting the interac-
tion strength and types r;; € R encoding speaker-
related or structural relationships.

Based on this graph, the context-aware represen-
tation hY for node v; is computed using a graph

neural network as follows:

h{ = GNN(c;}, {(cj,wij,rij) | eij € E}) (4

where cj are the contextual node features from
neighboring utterances. The GNN aggregates infor-
mation from connected nodes to enhance cj with
speaker- and structure-aware interaction knowl-
edge.

S Methodology

This section discusses state-of-the-art approaches
to the MERC tasks. We summarize them from three
perspectives: Graph-based Methods (§5.1), Fusion-
based Methods (§5.2), and Generation-based Meth-
ods (§5.3). An overview of the methods and subcat-
egories with representative examples is presented
in Figure 2.

It is worth noticing that some methods in MERC
inherently involve multiple components (e.g., fu-
sion modules within graph-based or generation-
based frameworks). Our taxonomy is not intended
to be strictly disjoint, but rather to organize the
literature based on the core modeling paradigm or
innovation focus of each method. The categoriza-
tion of methods is thus as follows:

* Graph-based: Methods are categorized as graph-
based when the primary architecture centers
around graph neural networks for modeling con-
versational structure, even if auxiliary modules
(e.g., fusion layers) are integrated.
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* Fusion-based: Methods are grouped under
fusion-based when their main contribution lies
in the design of cross-modal interaction mech-
anisms, regardless of the backbone architecture
(e.g., Transformer, LSTM).

* Generation-based: Generation-based methods
refer to recent approaches that leverage LLMs to
generate predictions or intermediate reasoning,
often using prompt engineering or instruction
tuning, even if lightweight fusion components
are present.

5.1 Graph-based Methods

Dialogues can be naturally interpreted as graph
structures due to the intrinsic correlations and de-
pendencies among utterances. Conversations often
feature multi-turn interactions with complex de-
pendency and interaction patterns, which can be
effectively modeled through the edge structures of
Graph Neural Networks (GNNs) (Scarselli et al.,
2009). With the increasing interest in multimodal
dialogue understanding, GNNs have evolved be-
yond their application (Liu et al., 2024a) in textual
data to embrace multimodal inputs. Besides, re-
cent methods also integrate auxiliary modules (e.g.,
convolution, contrastive learning, and fusion) to en-
hance the performance. Figure 3 illustrates recent
advancements in graph-based methods. We catego-
rize them into traditional graphs, hypergraphs, and
fourier graph neural networks.

(a) Traditional Graph Neural Networks (b) Hypergraph Neural Networks  (c) Fourier Graph Neural Networks

(PP (PP @D

i
Gmpth\ Hypergraph Module™ Graph Module Gpthl

Fusi
e Ma
Output

Figure 3: Development of Graph-based Methods.

Traditional Graph Neural Networks. Previous
works such as bc-LSTM (Poria et al., 2017) and
ICON (Hazarika et al., 2018) primarily relied on se-
quential approaches. DialogueGCN (Ghosal et al.,
2019) was the first to introduce GNNs into ERC, ad-
dressing the limitations of earlier sequence-based
models like DialogueRNN (Majumder et al., 2019)
in capturing contextual dependencies. To effec-
tively integrate information from different modali-
ties, Hu et al. (2021b) constructed a graph structure
that fuses multimodal features, enabling the model
to capture inter-modal dependencies through graph

convolutional networks and incorporating speaker
information to enhance the representation of con-
versational semantics. Inspired by the application
of graph convolutions in ERC, Li et al. (2024b)
proposed the GSF module, which introduces an
alternating graph convolution mechanism to hierar-
chically extract both cross-modal and intra-modal
emotional information. Some studies further en-
hanced graph-based models with attention mech-
anisms for multimodal fusion; for example, Feng
and Fan (2025) integrated a Cross-modal Attention
Module to better fuse information from different
modalities, while Nguyen et al. (2023) designed
a cross-modal attention mechanism to explicitly
model the heterogeneity between modalities.

Hypergraph Neural Networks. Although tradi-
tional graph-based methods can capture long-range
and multimodal contextual information, they are
often challenged by missing modalities during con-
versations. Lian et al. (2023) tackled this issue
by jointly optimizing classification and reconstruc-
tion tasks in an end-to-end manner to effectively
model incomplete data. The related works (Li et al.,
2023b; Huang et al., 2024a) considered the limi-
tations imposed by the pairwise relationships be-
tween GNNs nodes.Van et al. (2025) constructed
a multimodal fusion graph and introduced Hyper-
graph Neural Networks (Feng et al., 2019) to con-
nect multiple modalities or utterance nodes simul-
taneously, thereby capturing more complex multi-
variate dependencies and high-order interactions
in conversations, and enhancing the modeling of
emotion propagation.

Fourier Graph Neural Networks. Increasing
the depth of GNN layers can lead to the over-
smoothing problem (Liu et al., 2022; Yi et al,,
2023), which hampers the modeling of long-range
semantic dependencies and complementary modal-
ity relations. To address this issue, GS-MMC (Ai
et al., 2025b) proposes a graph-based framework
for multimodal consistency and complementarity
learning. This method employs a Fourier graph op-
erator to extract high- and low-frequency emotional
signals from the frequency domain, capturing both
local variations and global semantic trends. Addi-
tionally, a contrastive learning mechanism (van den
Oord et al., 2019) is designed to enhance the se-
mantic consistency and complementarity of these
signals in a self-supervised manner, thereby im-
proving the model’s ability to recognize true emo-
tional states.

Graph-based methods effectively capture long-
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range dependencies and speaker interactions by
modeling utterances as nodes and relations as
edges. In traditional NLP tasks, they are partic-
ularly effective for structured inputs such as token-
level representations (Zhang et al., 2023, 2024b).
However, integrating heterogeneous multimodal
signals into graph structures remains challenging,
as naive connections may introduce noise without
proper modality alignment.

5.2 Fusion-based Methods

In MERGC, effective fusion of heterogeneous mul-
timodal features is crucial but challenging due
to noise introduced during interaction modeling.
The advancements of the Transformers architec-
ture (Vaswani et al., 2017), with its self-attention
mechanism, promote advancements of the MERC
methods for capturing cross-modal and contextual
dependencies. To enhance cross-modal interac-
tions, recent methods build on Transformers with
tailored fusion strategies. We refer to these meth-
ods as fusion-based and illustrate them in Figure
4. Some approaches promote equal interaction
among modalities to improve robustness, while
others adopt a primary-auxiliary scheme, typically
using text as the core, with other modalities provid-
ing complementary signals.

(a) Equal Modality Weights

(b) Text-Dominant Modality

Confextual Memory Graph Module
etwork

LSTM
GRU
Transformer

Attention
Module |

DHR@!

;

‘ ——
H Output
o h Distillation i Output

Figure 4: Development of Fusion-based Methods.

Equal Modality Weights. Equal interaction can
fully utilize information from various modalities,
preventing over-reliance on a single modality. Li
et al. (2022) proposed achieving emotion recogni-
tion by equally integrating emotional vectors and
sentence vectors from different modalities to form
emotion capsules. Zhang and Li (2023) designed a
local constraint module for modalities within the
Transformer to promote modality interaction and
incorporates a semantic graph to address the lack
of semantic relationship information between utter-
ances. Mao et al. (2021) constructed a hierarchi-
cal Transformer where each modality can flexibly
switch between sequential and feedforward struc-

tures based on contextual information. Inspired by
hierarchical modality interaction, Ma et al. (2024a)
introduced a hierarchical gating (Ma et al., 2019)
fusion strategy into the Transformer architecture
to enable fine-grained modality interaction and de-
signs self-distillation (Zhang et al., 2019) to further
learn better modality representations.

Text-Dominant Modality. Some methods pro-
pose models based on primary—auxiliary modality
collaboration, where auxiliary modalities are used
to enhance the performance of the primary (tex-
tual) modality. Huang et al. (2024b) suggested
that enhancing a text-dominant model with auxil-
iary modalities can improve performance. Zou
et al. (2022) employed a Transformer architec-
ture to design cross-modal attention for learning
fusion relationships between different modalities,
preserving the integrity of the primary modality’s
features while enhancing the representation of
weaker modality features. It also uses a two-stage
emotional cue extractor to extract emotional evi-
dence. Building on this, Zou et al. (2023) proposed
using weaker modalities as multimodal prompts
while performing deep emotional cue extraction for
stronger modalities. The cue information is embed-
ded into various attention layers of the Transformer
to facilitate the fusion of information between the
primary and auxiliary modalities. Zhu et al. (2024)
introduced an asymmetric CMA-Transformer mod-
ule for central and auxiliary modalities to obtain
fused modality information and proposes a hierar-
chical distillation (Yang et al., 2021) framework to
perform coarse- and fine-grained distillation. This
approach ensures the consistency of modality fu-
sion information at different granularities.

Fusion-based methods focus on learning cross-
modal interactions through attention mechanisms,
with Transformer-based models achieving strong
generalization. These approaches are efficient for
tasks with well-aligned modality inputs but often
overlook dialogue-level structures such as speaker
dependencies. Compared to graph-based models,
they emphasize modality-level fusion over rela-
tional reasoning.

5.3 Generation-based Methods

In recent years, pretrained LLMs have achieved
remarkable success in natural language processing
tasks (Chu et al., 2024), demonstrating strong emer-
gent capabilities (Wei et al., 2022). However, de-
spite their powerful general-purpose abilities, lever-
aging their full potential in specific sub-tasks still

6262



requires carefully crafted, high-quality prompts
(Wei et al., 2021) to bridge the gap in reasoning
capabilities.As shown in Figure 5, researchers have
proposed various model improvement strategies
to effectively integrate contextual and multimodal
information into LL.Ms while addressing their sub-
stantial computational resource demands.

(a) Instruction-Tuned with (b) Behavior-Aware and
Speaker and Context Modelmg Mulhmoda! Instruction-| Fmefuned

(¢) Lightweight Multimodal
7777777777777777777777777777777777777777777 Fusion and Adaptation

So9 =o9)
= -

r-Aware Module Text Embedd

uuuuuuuu
e Srgg'\' ing

| Stepl.(nD) Stepn p1

Alignment Module.

LLM

Figure 5: Development of Generation-based Methods.

Instruction-Tuned with Speaker and Context
Modeling. ERC tasks have predominantly relied
on discriminative modeling frameworks. With the
emergence of LLMs, InstructERC (Lei et al., 2023)
was the first to propose a generative framework for
ERC. It introduces a simple yet effective retrieval-
based prompting module that helps LLMs explic-
itly integrate multi-granularity supervisory signals
from dialogues. Additionally, it incorporates an
auxiliary emotion alignment task to better model
the complex emotional transitions between inter-
locutors in conversations. Inspired by the inte-
gration of commonsense knowledge in COSMIC
(Ghosal et al., 2020), recent work (Fu, 2024; Fu
et al., 2025a) designed a prompt generation ap-
proach based on dialogue history to elicit speaker-
related commonsense using LLMs by injecting
commonsense knowledge into ERC.

Behavior-Aware and Multimodal Instruction-
Tuned. To address the lack of multimodal in-
tegration, Dutta and Ganapathy (2025) incorpo-
rated both acoustic and textual modalities. Consid-
ering that visual information may provide richer
emotional cues, Zhang et al. (2025) constructed a
high-quality instruction dataset using image and
text data, and fine-tunes the model using Low-
Rank Adaptation (LoRA) (Song et al., 2024). Fur-
thermore, Fu et al. (2025b) introduced a novel
behavior-aware Multimodal LLM (MLLM)-based
ERC framework. It consists of three core compo-
nents: a video-derived behavior generation module,
a behavior alignment and refinement module, and
an instruction tuning module (Wei et al., 2021).
The first two modules enable the model to infer hu-
man behaviors from limited information, thereby

enhancing its behavioral perception capability. The
instruction tuning module improves the model’s
emotion recognition performance by aligning and
fine-tuning the concatenated multimodal inputs.

Lightweight Multimodal Fusion and Adap-
tation. As LLMs become increasingly large, the
computational costs for ERC also rise significantly
(Zhang et al., 2025). Inspired by domain-specific
LLM paradigms tailored for affective computing
(Hu et al., 2022; Li et al., 2023c; Tanioka et al.,
2024), MSE-Adapter (Yang et al., 2025) proposed a
lightweight and adaptable plug-in architecture with
two modules: TGM, for aligning textual and non-
textual features, and MSF, for multi-scale cross-
modal fusion. Built on a frozen LLM backbone
and trained via backpropagation, it enables effi-
cient and multimodally-aware ERC with minimal
computational cost. Similarly, SpeechCueLLM
(Wu et al., 2025) introduced a lightweight plug-in
that converts speech features into natural language
prompts, enabling LLMs to perform multimodal
emotion recognition without architectural changes.

Generation-based methods leverage LLMs to re-
formulate ERC as a text generation task, enabling
flexible adaptation across datasets and domains.
Their end-to-end nature simplifies input processing
but limits fine-grained control over multimodal in-
tegration. In contrast to structured models, LL.Ms
excel at scalability but require further refinement
to model multimodal dependencies explicitly.

6 Challenges and Prospects

Based on current trends and developments in the
MERC task, in this section, we outline several exist-
ing challenges and open questions, highlighting op-
portunities for future improvements. We structure
our discussion along a logical progression: starting
with foundational limitations in data collection and
FAIR compliance, we then examine challenges in
multimodal modeling and conclude with consider-
ations for real-world deployment. This trajectory
reflects how upstream issues in data and modeling
propagate downstream, ultimately shaping the ro-
bustness, inclusivity, and applicability of MERC
systems.

FAIR-related Issues Pose Challenges in
MERC. The FAIR principles provide guidelines
for improving the Findability, Accessibility, In-
teroperability, and Reusability of digital assets
(Wilkinson et al., 2016). Collecting large and di-
verse multimodal emotion data is costly and time-
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consuming; some large dialogue datasets (e.g.,
M3ED, Zhao et al., 2022) are still monolingual and
domain-bound. These limitations directly conflict
with the FAIR principles. Some ERC datasets lack
rich metadata or persistent identifiers, undermining
findability and interoperability. Others are subject
to access restrictions or copyright constraints, while
many adopt inconsistent labeling schemes that hin-
der reusability. Consequently, researchers often
have to train on small or biased samples, which
undermines generalization and the reuse of mod-
els. To address these issues, future work could
prioritize the development of multilingual bench-
mark datasets with standardized metadata and open
licensing, possibly through collaborative consor-
tiums that align with FAIR principles.
Low-Resource, Multilingual, and Multicul-
tural Settings. As described in the previous para-
graph, most state-of-the-art MERC systems are
trained on English-language datasets, which lim-
its their global applicability. Although building a
large-scale, diverse MER corpus is essential, it re-
mains an obvious challenge as it requires expert an-
notation of data. The limited annotated data forces
researchers to rely on transfer learning (Ananthram
et al., 2020), zero-shot (Qi et al., 2021), or few-shot
methods (Yang et al., 2023). However, data scarcity
and the high cost of emotion annotation continue
to be major obstacles for MER in low-resource
domains (Hussain et al., 2025). Emotions are ex-
pressed differently across languages and cultures,
further compounding the challenges of MER. Vari-
ations in emotional expression and interpretation
due to cultural differences can lead to inconsisten-
cies in labeling. Most existing corpora are culture-
specific, limiting their generalizability. Although
researchers have acknowledged this challenge (A.
and V., 2024; Ghaayathri Devi et al., 2024), MER
systems aiming for global applicability must ac-
count for both linguistic diversity and culturally
driven display rules. Future work could explore
culture-adaptive pretraining and cross-lingual trans-
fer learning methods that embed culturally sensitive
emotion semantics across languages.
Complexities of Fusion Strategies across
Modalities. Multimodal fusion techniques include
early fusion, mid-level fusion, late fusion, hybrid
fusion, and others (Atrey et al., 2010; Gandhi et al.,
2023). A key challenge is that conversational sig-
nals, such as voice, facial expressions, and tran-
scripts, are inherently asynchronous and occur at
different time scales, making it difficult to align

them at the utterance level. Emotions also depend
on the context of preceding and subsequent con-
versation turns, so the model must capture tempo-
ral dynamics (Wang et al., 2024). Previous stud-
ies have used recurrent or self-attention layers to
model sequential context (Houssein et al., 2024;
Dutta et al., 2024), but long-range dependencies
remain challenging to learn. How to balance and in-
tegrate contextual sentiment cue features with mul-
timodal fusion features in decision-making, and
how to determine which fusion strategies are most
effective across different modalities, remain open
and important research questions (A.V. et al., 2024;
Ramaswamy and Palaniswamy, 2024). Recent ad-
vances in adaptive fusion strategies and dynamic
attention mechanisms show promise, and future
methods could explore transformer-based fusion
that dynamically reweights modalities based on
conversational context.

Cross-Modal Alignment, Noise Modality,
Missing Modality, and Modality Conflicts. Mis-
aligned or inconsistent features can inhibit the abil-
ity of a model to fully utilize multimodal signals, af-
fecting its robustness and generalization (Ma et al.,
2024b; Li and Tang, 2024). Noise modality, miss-
ing modality, or imbalanced modality distributions
may bias simple fusion strategies (Mai et al., 2024;
Zhang et al., 2024a). Even when all modalities are
available, they may convey conflicting emotional
signals, further complicating fusion and decision-
making. Perceiving the uncertainty of different
modalities for feature enhancement and resolving
conflicts between modality features are important
areas that need further exploration in MER research.
Therefore, exploring cross-modal transfer and fu-
sion to improve generalization in ERC has attracted
the attention of more and more researchers (Fan
et al., 2024; Li et al., 2024a; Feng and Fan, 2025).
Some ERC methods incorporate variants of cross-
modal attention (Guo et al., 2024; N. and Patil,
2020), graph-based fusion (Li et al., 2023a; Hu
et al., 2021b), or mutual learning to align features
during training and improve cross-domain perfor-
mance (Lian et al., 2021). Future research can fur-
ther investigate robust training frameworks that in-
clude modality dropout, uncertainty-aware fusion,
or reinforcement learning to selectively attend to
trustworthy modalities.

Effective Modality Selection. Multimodal
learning refers to the integration of information
from various heterogeneous sources and aims to ef-
fectively leverage data from diverse modalities (He
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et al., 2024; Tsai et al., 2024). In multimodal rep-
resentation learning, not all modalities contribute
equally to the task. Some modalities may introduce
noise and need to be removed, while others may
not be essential for the task at hand but could be
indispensable for other subtasks. Existing research
proposes modality selection algorithms that iden-
tify the contribution of each modality (Marinov
et al., 2023; Mai et al., 2024). However, select-
ing the most appropriate subset of modalities for
a task remains one of the key challenges in multi-
modal learning. An emerging direction is to inte-
grate learnable modality gates or sparsity-inducing
regularization into fusion models to automatically
suppress uninformative modalities during training.

Efficient Fine-tuning Approach Using Multi-
modal LLMs. Multimodal LLLMs have brought
major advances in enabling machines to learn
across modalities. Some models are increasingly
used in MERC, offering zero-shot or few-shot gen-
eralization across different modalities (Li et al.,
2024c; Yang et al., 2024; Bo-Hao et al., 2025). The
use of LLMs in MERC opens up new possibili-
ties for capturing deeper semantic and conversa-
tional cues beyond surface-level emotion signals.
However, efficiently fine-tuning these models for
emotion understanding still presents challenges,
especially in low-resource and culturally diverse
settings. Efficient adaptation of MLLMs to cap-
ture the nuance of emotions across diverse datasets,
languages, or cross-cultural settings remains an
open research frontier. Promising future directions
include using adapter modules or low-rank fine-
tuning techniques to adapt large models to specific
emotion tasks with minimal data.

MERC Application. With the growing use of in-
teractive machine applications, MERC has become
a critical research area. Applications in human-
computer interaction (Ahmad et al., 2024; Moin
et al., 2023), healthcare (Ayata et al., 2020; Islam
et al., 2024), education (Villegas-Ch et al., 2025;
Vani and Jayashree, 2025), and virtual collabora-
tion demand robust and adaptable emotion recog-
nition technologies that function effectively in nat-
uralistic and dynamic environments. Yang et al.
(2022) investigated MER in contexts affected by
face occlusions, such as those introduced by sur-
gical and fabric masks. Khan et al. (2024) stud-
ied contactless techniques in MER, surveying a
range of nonintrusive modalities (e.g., visual cues,
physiological signals). Huang (2024) developed a
MER system for online learning to enable real-time

monitoring and feedback on learners’ emotional
states. These studies highlight key directions for
advancing MERC systems, particularly to make
them more robust and context-aware. The ongoing
research should continue to focus on real-world de-
ployment scenarios. Future MERC systems could
benefit from incremental learning techniques and
user-in-the-loop feedback mechanisms that allow
adaptation in dynamic, real-time environments.
Expanding the Modality Space in Emotion
Recognition. Current MER systems mainly rely
on vision, audio, and text, given their accessibil-
ity and prevalence in datasets. Yet human emo-
tion is expressed through additional channels such
as gaze, gestures, posture, and physiological sig-
nals (e.g., heart rate, skin conductance, brain activ-
ity) (Noroozi et al., 2021; Udahemuka et al., 2024;
Wang et al., 2023; He et al., 2020; Liu et al., 2024c¢).
These modalities remain underrepresented due to
challenges in collecting synchronized, high-quality
data and evolving annotation standards (Udahe-
muka et al., 2024; He et al., 2020; Kim and Hong,
2024). Expanding beyond the traditional three can
reduce reliance on potentially misleading cues and
open new application domains. For instance, bio-
signals and contextual cues could enhance emo-
tion sensing in health and education, while wear-
able sensors and eye-trackers may enable emotion-
aware experiences in VR, driver monitoring, or
social robotics. In summary, gaze, physiologi-
cal, and other embodied modalities are promis-
ing but underexplored in affective computing. Fu-
ture work should explore how to systematically
integrate these diverse modalities into large-scale
benchmarks and develop models capable of ro-
bustly leveraging them in real-world scenarios.

7 Conclusion

MERC seeks to understand emotions by integrat-
ing various modalities in to dialogue of linguistic,
acoustic, visual signals, and beyond. While recent
progress has introduced diverse modeling strate-
gies, significant challenges remain in data scarcity,
modality alignment, and generalization across lan-
guages and cultures.

This survey provides a structured review of
the MERC landscape, compares representative ap-
proaches, and highlights key open research prob-
lems. We hope it serves as a practical reference
to support the future development of robust and
inclusive emotion recognition systems.
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Limitations

This survey offers a structured and up-to-date
overview of MERC, with an emphasis on recent
deep learning-based approaches. However, several
limitations should be acknowledged to contextual-
ize the scope of our work.

First, due to the focus on more advanced re-
cent technologies, we provide only high-level sum-
maries of representative methods, without delving
into full technical details. Additionally, approaches
developed prior to 2020 receive limited coverage,
as our focus is primarily on recent trends that align
with the rapid evolution of large-scale multimodal
systems.

Second, our literature review is largely drawn
from English-language publications in major con-
ferences and repositories, including Interspeech,
ICASSP, ACM, *ACL, ICML, AAAI, CVPR, COL-
ING, and preprints on arXiv. While these venues
represent core research communities in MERC, rel-
evant contributions from other regions, languages,
or domains may be underrepresented.

In the benchmark section, we highlight widely-
used datasets, but do not aim for exhaustive com-
parison. For more in-depth benchmarking, we refer
readers to complementary surveys such as Zhao
et al. (2022), Sasu et al. (2025) and Gan et al.
(2024).

Finally, while we identify several open chal-
lenges and underexplored directions, our discus-
sion is not exhaustive. Rather than providing defini-
tive answers, we aim to surface critical issues and
foster further inquiry. We view these open ques-
tions as productive entry points for future research
and hope this survey supports ongoing efforts to
develop more advanced MERC systems.
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A Datasets Details

IEMOCAP. The IEMOCAP dataset (Busso etal.,
2008) consists of dyadic conversation videos from
ten speakers, comprising 151 dialogues and 7,433
utterances. Sessions 1 to 4 are used as the training
set, while the last session is held out as the test
set. Each utterance is annotated with one of six
emotion labels: happy, sad, neutral, angry, excited,
and frustrated.

MELD. The Multimodal EmotionLines Dataset
(MELD) (Poria et al., 2019a) is an extension of
the EmotionLines corpus (Hsu et al., 2018), con-
structed from the TV series Friends. It contains
1,433 multi-party conversations and 13,708 utter-
ances. Each utterance is annotated with one of
seven emotion categories: anger, disgust, fear,
joy, neutral, sadness, and surprise. Unlike dyadic
datasets, MELD captures the complexity of multi-
speaker interactions, making it well-suited for
studying emotion recognition in multi-party con-
versational settings.

CMU-MOSEIL. The CMU-MOSEI dataset
(Bagher Zadeh et al., 2018) consists of 23,453
sentence-level video segments from over 1,000
speakers covering 250 topics, collected from
YouTube monologue videos. Each segment is
annotated for sentiment on a 7-point Likert scale
([-3: highly negative, -2: negative, -1: weakly
negative, 0: neutral, +1: weakly positive, +2:
positive, +3: highly positive]) and for the intensity
of six Ekman (Ekman et al., 1980) emotions:
happiness, sadness, anger, fear, disgust, and
surprise. The dataset provides aligned language,
visual, and acoustic modalities, making it a
large-scale benchmark for multimodal sentiment
and emotion recognition.

M3ED. The M3ED dataset (Zhao et al., 2022)
consists of 990 dyadic dialogues and 24,449 utter-
ances collected from 56 Chinese TV series. Each
utterance is annotated with one or more of seven
emotion labels: happy, surprise, sad, disgust, anger,
fear, and neutral. The dataset covers text, audio,
and visual modalities and features blended emo-
tions and speaker metadata, making it the first
large-scale multimodal emotional dialogue corpus
in Chinese.

ACE. The ACE dataset (Sasu et al., 2025) con-
tains 385 emotion-labeled dialogues and 6,162 ut-
terances in the Akan language, collected from 21
movie sources. It includes multimodal information
across text, audio, and visual modalities, and is
annotated with one of seven emotion categories:
neutral, sadness, anger, fear, surprise, disgust, and
happiness. Word-level prosodic prominence is also
provided, making it the first such dataset for an
African language. The dataset is gender-balanced,
featuring 308 speakers, and is split into training,
validation, and test sets in a 7:1.5:1.5 ratio.
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MEmoR. The MEmoR dataset (Shen et al.,
2020) consists of 5,502 video clips and 8,536
person-level samples extracted from the sitcom The
Big Bang Theory, annotated with 14 fine-grained
emotions. Unlike most datasets focusing solely
on speakers, MEmoR includes both speakers and
non-speakers, even when modalities are partially
or completely missing. Each sample comprises a
target person, an emotion moment, and multimodal
inputs (text, audio, visual, and personality features),
making it a challenging benchmark for multimodal
emotion reasoning beyond direct recognition.

AVEC. The AVEC dataset (Schuller et al., 2012),
derived from the SEMAINE corpus (McKeown
et al., 2012), features human-agent interactions an-
notated with four continuous affective dimensions:
valence, arousal, expectancy, and power. While the
original labels are provided at 0.2-second intervals,
we aggregate them over each utterance to obtain
utterance-level annotations for emotion analysis.

M-MELD. M-MELD (Ghosh et al., 2023) is a
multilingual extension of the MELD dataset, cre-
ated to support emotion recognition in conversa-
tions across different languages. While MELD is
an English-only multimodal dataset, M-MELD in-
cludes human-translated versions of the original
utterances in four additional languages: French,
Spanish, Greek, and Polish. This multilingual
corpus retains the original multimodal structure
and emotion labels, enabling research in cross-
lingual and multimodal emotion analysis. By bal-
ancing high-resource and low-resource languages,
M-MELD offers a valuable benchmark for devel-
oping and evaluating multilingual ERC models.

EmoryNLP. EmoryNLP (Zahiri and Choi, 2017)
is a textual emotion-labeled dataset derived from
the Friends TV series, containing over 12,000 utter-
ances across multi-party dialogues. Each utterance
is annotated with one of seven emotions: neutral,
joyful, peaceful, powerful, mad, sad, or scared,
offering a fine-grained resource for emotion recog-
nition in conversational settings.
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