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Abstract

We introduce Fourier Domain Adapter (FDA),
a novel and parameter-efficient framework for
fine-tuning large-scale pre-trained language
models. FDA reparameterizes the core pro-
jection operation of the adapter module di-
rectly in the Fourier domain. This involves
transforming the input features via discrete
Fourier transform (DFT), applying sparse learn-
able complex modulations in frequency space,
and then back-transforming via inverse DFT,
supplemented by highly compact auxiliary lin-
ear layers. This approach significantly reduces
the number of trainable parameters while en-
hancing the model’s ability to capture salient
frequency-based semantic information. Com-
prehensive experiments on GLUE, E2E NLG,
and instruction tuning benchmarks show that
our FDA consistently outperforms existing
parameter-efficient fine-tuning (PEFT) meth-
ods. It can achieve better performance with
nearly 100x fewer training parameters than tra-
ditional fine-tuning methods such as LoRA and
AdapterH. Our results demonstrate that FDA is
a robust and efficient solution for developing
efficient and powerful language models.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Touvron et al., 2023; OpenAl, 2024; Zhang
et al., 2025d,b) have revolutionized numerous areas
of natural language processing by demonstrating an
exceptional ability to store vast amounts of knowl-
edge during pre-training and effectively recall this
knowledge during inference. However, despite
these capabilities, LLMs frequently "generating
inaccurate or outdated information (Huang et al.,
2025; Farquhar et al., 2024; Zhang et al., 2025c),"
generating inaccurate or outdated information. To
address this, the academic community has intro-
duced fine-tuning methods. Yet, full fine-tuning
to adapt LLMs to specific downstream tasks or up-
date their internal knowledge is often prohibitively

expensive due to its substantial computational and
time costs. Consequently, Parameter-Efficient Fine-
Tuning (PEFT) methods (Han et al., 2024; Ding
et al., 2023) have emerged, aiming to update target
knowledge or behaviors with minimal additional
overhead while preserving the model’s original ca-
pabilities.

Broadly, current PEFT methods primarily fo-
cus on achieving efficient adaptation by modify-
ing a small number of parameters or introducing
small additional modules while keeping the ma-
jority of LLM parameters frozen. In this context,
Adapter (Houlsby et al., 2019; Tang et al., 2025)
modules and Low-Rank Adaptation (LoRA) (Hu
et al., 2021) have become two highly influential
mainstream paradigms. Adapters typically insert
small feed-forward network (FFN) modules be-
tween the layers of a pre-trained model. These
modules comprise a down-projection layer with
an activation function and an up-projection layer
without one. LoRA, on the other hand, indirectly
modifies model behavior with a small number of
trainable parameters by decomposing the updates
to pre-trained weights into the product of two low-
rank matrices. Both strategies aim to significantly
reduce the number of trainable parameters during
the fine-tuning process. Despite the remarkable
success of these methods in parameter efficiency,
existing mainstream PEFT paradigms still face a
critical bottleneck in balancing extreme parameter
compression with the maintenance of high perfor-
mance. Specifically, although traditional adapters
are termed "lightweight," their projection layers
rely on dense weight matrices. This fundamental
design means that even with small adapter dimen-
sions, their total parameter count (often reaching
millions) poses a severe deployment challenge for
edge devices, which are highly sensitive to memory
and computational resources. Conversely, LORA
achieves substantial parameter reduction through
low-rank approximation, but this inherent low-
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Figure 1: Comparison of a traditional adapter (left) and our Fourier Domain Adapter (FDA, right). (Left) The
traditional adapter employs down-projection (W, ), non-linearity, and up-projection (W,,,,) layers, with a residual
connection. (Right) FDA reparameterizes projections in the Fourier domain. An input (D),,) is transformed into the
frequency domain, modulated by a sparsely parameterized learnable filter Fy,,,, (driven by coefficients Cq,y, for
selected frequency entries), scaled by gy, after an Inverse DFT (IDFT), and then passed through a compact linear
layer Wyoun to an intermediate dimension Dy,. Following a non-linear activation, a symmetric up-projection path
(employing F},,, from C,,, oy, and W,,;,) maps Dj, back to D,,. Both adapter types utilize residual connections
and are typically inserted between existing layers of a pre-trained model.

rank constraint itself may limit its capacity to fully
express complex state transitions. When tackling
tasks that require capturing high-frequency signals
or subtle semantic differences, the low-rank as-
sumption can become a limiting factor for model
performance, leading to suboptimal outcomes in
specific scenarios or even sacrificing some of the in-
herent powerful representation potential of LLMs.

To address the aforementioned drawbacks, i.e.,
the parameter redundancy of traditional adapters
and the potential representational limitations of
LoRA, we explore a novel parameterization ap-
proach. Instead of being confined to optimizing
the scale of dense projections or relying on fixed
low-rank decompositions, we attempt to parame-
terize the core projection operations of adapters
in the Fourier domain to map input features
to the frequency domain via Fourier transforms
and learn adaptive transformations within this fre-
quency space, thereby replacing traditional dense
weight matrices while enhancing the adapter’s sen-
sitivity to frequency components. We posit that
frequency-domain representations have the poten-
tial to efficiently capture multi-scale, periodic, or
high-frequency features with fewer parameters, of-
fering a way to overcome the limitations of tradi-
tional spatial-domain parameterization. Notably, in
our proposed architecture, rigorous experimental
validation has shown that the non-linear activation
function in the down-projection path is crucial for

maintaining model performance and is retained.
Our main contributions are: i) The introduction
of the Fourier Domain Adapter (FDA), a novel
Parameter-Efficient Fine-Tuning (PEFT) paradigm
that reparameterizes adapter projection layers di-
rectly in the Fourier domain; ii) Endowing the
adapter with significantly enhanced frequency per-
ception and adaptive capabilities. This is achieved
by its unique Fourier domain parameterization,
which allows for targeted, sparse modulation of
frequency components to effectively address the
representational limitations of prior PEFT meth-
ods; iii) The comprehensive experiments demon-
strate that FDA consistently outperforms existing
parameter-efficient fine-tuning methods on mul-
tiple benchmarks, including GLUE, E2E NLG,
and instruction fine-tuning while requiring only a
few trainable parameters. For example, when fine-
tuning large models such as LLaMA3-70B (such
as the E2E NLG task), FDA requires more than
151 times fewer trainable parameters than the tradi-
tional AdapterH and 112 times less than LoRA.

2 Related Work

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods have gained widespread application in the
adaptive adjustment of large-scale pre-trained lan-
guage models in recent years. Traditional full-
parameter fine-tuning methods (Liu et al., 2019a;
Lv et al., 2024; Han et al., 2016; Zhang et al.,
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2025a) require updating a large number of model
parameters when dealing with specific tasks, lead-
ing to high computational and storage costs. To
address this issue, researchers have proposed var-
ious PEFT methods, such as Adapters (Houlsby
etal., 2019) and LoRA (Hu et al., 2021). Adapters
insert lightweight adapter modules between the
layers of the model, fine-tuning only these new pa-
rameters can significantly reduce the number of
parameters required for fine-tuning. LoRA reduces
the scale of parameter updates through low-rank
matrix decomposition.

Frequency Domain Enhancement and Fourier
Transform Frequency domain analysis, success-
ful in computer vision (Mallat, 1989; Xu et al.,
2020; Li et al., 2025; Fu et al., 2025b), is gaining
traction in NLP (Verma and Pilanci, 2024). By
transforming text signals into the frequency do-
main, these methods better capture high and low-
frequency features, improving pattern understand-
ing. Recent work (He et al., 2023; Hua et al., 2025;
Fu et al., 2025a) has integrated Fourier transforms
into language models, enhancing multi-frequency
semantic modeling (Jin et al., 2024) and show-
ing benefits in cross-domain and low-resource sce-
narios. Recent works (Gries and Divjak, 2012;
Tamkin et al., 2020) show that key semantic infor-
mation concentrates in specific frequency bands,
with methods like (Gao et al., 2024) decomposing
inputs to better capture multi-frequency compo-
nents. However, current approaches have not fully
leveraged frequency domain structures for seman-
tic representation, making the optimization of these
techniques an important research direction.

Fourier-Based Parameterization of Linear
Transformations. Dense matrix multiplications
in neural networks are a major parameter bottle-
neck (Yu et al., 2017; Schifer et al., 2020; Abboud
et al., 2020), particularly in large models, driving
research into their efficient compression. While
pruning (LeCun et al., 1989; Han et al., 2015) and
quantization (Jacob et al., 2017) offer solutions,
Fourier transforms provide a compelling strategy
for efficiently parameterizing these linear opera-
tions in the frequency domain. Such approaches
approximate weight matrices with fewer Fourier
domain parameters, for example, by learning sparse
or structured frequency coefficients. Methods(Gao
etal., 2024; Borse et al., 2024) like FourierFT show
Fourier analysis can significantly reduce matrix
multiplication parameters, often by decomposing

transformations via operations on fewer frequency-
domain components. Our work leverages these
Fourier strategies to re-parameterize adapter mod-
ule projection layers, creating highly parameter-
efficient fine-tuning solutions for LLMs.

3 Methodology
3.1 FDA Overall Architecture

Similar to traditional adapter modules (as illus-
trated in, e.g., the left panel of Figure 1), our pro-
posed FDA module (depicted in, e.g., the right
panel of Figure 1) is designed to be inserted be-
tween the layers of a pre-trained LLM. FDA re-
ceives the input hidden state X € RB*N Xdmodel
from that layer (or a specific sub-module, such as
after an attention layer or a feed-forward network
layer), where B is the batch size, N is the sequence
length, and d,,,,4e; represents the model’s original
hidden feature dimension. FDA processes the in-
put features through a parameter-efficient down-
projection, a non-linear activation function, and an
equally parameter-efficient up-projection. Finally,
the processed result is added back to the original
input X via a residual connection. Notably, the
FDA operates independently on the representation
of each token in the sequence. Therefore, for clar-
ity, the descriptions in the following subsections
will primarily focus on the input representation
x € R¥model for a single token. The core innova-
tion of FDA lies in how its down-projection and
up-projection operations are efficiently parameter-
ized in the Fourier domain.

3.2 Fourier-Parameterized Down-Projection

The primary function of the down-projection mod-
ule is to map the input feature z € R%model from
the model’s original hidden dimension d,,,qe; tO
a lower intermediate hidden dimension dj. This
process is meticulously designed through several
steps to maximize parameter efficiency and lever-
age frequency-domain properties. First, the input
feature x (specifically, operating along its d,,qe; di-
mension) is transformed into the frequency domain
using a 1D Discrete Fourier Transform (DFT):

xy = DFT(x) (1

where z; € Cdmodel is the complex representation
of the input feature z in the frequency domain. Sec-
ond, a learnable modulation filter Fy,,,, is applied
in the frequency domain. This filter is not learned
densely but is sparsely parameterized as follows.
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We define R, as a pre-defined set of kg, fre-
quency indices, fixed at model initialization by uni-
formly randomly sampling k4., indices without
replacement from the interval [0, dy,04e;— 1]. These
indices specify which particular frequency compo-
nents are targeted for learning and adjustment. Cor-
respondingly, Cyoun € Ckdown is a set of trainable
complex coefficients, equal in number to the se-
lected frequencies in R ,,n, With each coefficient
corresponding to a specific frequency in Rgoun.-
The complete modulation filter Fzy,, € Cmodet jg
constructed such that for each index j in Rgoyn (It
its value be idzx ), Fyoun[idx ;] takes its value from
the trainable coefficient Cyy,,,[7]; for all other fre-
quency indices not selected by Ry, the value of
Fiown at these positions is fixed to 1.0. This de-
sign allows the filter to primarily perform dynamic
amplitude and phase modulation on the selected
k4own frequencies, while other frequency compo-
nents are, by default, passed through. Such a mech-
anism aims to preserve most of the original signal’s
information structure while applying targeted, effi-
cient adaptive adjustments. This modulation filter
is then applied element-wise to z :

SL’lf =xf O) Fdown(cdowna Rdown) (2)

where ® denotes the Hadamard (element-wise)
product. Third, the modulated frequency-domain
representation :c’f is transformed back to the spatial
domain using an Inverse Discrete Fourier Trans-
form (IDFT). The transformed signal is then glob-
ally scaled by a learnable scalar parameter avgoy,:

Rscated = Qdown * IDFT(«T/f) 3)

where hgegieq € R%model, Fourth, this scaled
spatial-domain representation hg.qieq 1S passed
through a standard, yet parameter-wise small, lin-
ear projection layer W gpn € R Xdmodet  This
layer maps hgcqieq from the d,,,04.; dimension to
the target intermediate hidden dimension dj,:

Hdown = Wdownhscaled (4)

The parameter count of this linear layer W ;5,1
(i.e., dp X dpoder) 18 kept efficient by choosing
dp, < dimoder- It primarily serves for final dimen-
sionality alignment and smoothing of the feature
representation, while the core, complex feature
transformations and parameterization are achieved
with lower parameter cost through the preceding
frequency-domain operations.

In summary, the entire down-projection process
can be expressed as:

where the output H gy, € R% is the down-
projected and transformed hidden representation.

3.3 Non-linear Activation

To introduce the necessary non-linear expressive
power, enabling FDA to learn more complex func-
tions, we pass the output of the down-projection,
Hjown, through a non-linear activation function
o(-). In this study, we employ GELU (Gaussian
Error Linear Unit) as the activation function, con-
sistent with choices in many modern Transformer
models:

Hact = U(Hdown) = GELU(Hdown) (6)

where H,.; € R%. We found that retaining this
non-linear activation is crucial for maintaining the
model’s performance on downstream tasks.

3.4 Fourier-Parameterized Up-Projection

The up-projection module maps the activated inter-
mediate hidden representation H,.; € R% from
the dimension dj, back to the model’s original hid-
den dimension d,,,,q¢;. Its overall structure is sym-
metric to the down-projection module and similarly
utilizes the Fourier domain for parameter-efficient
transformation.

First, the activated features H,; are transformed
into the frequency domain (along the d; dimen-
sion):

(szct)f = DFT(Hact) (7)

where (Hget)f € Cn,
Second, selective frequency modulation is ap-
plied:

( ;ct)f = (Hact)f O] Fup(cupa Rup) (8)

Here, F;, € C is the modulation filter for the
up-projection path, constructed from trainable com-
plex coefficients C,;, € Ckuwr (corresponding to
kyp fixed frequency indices in R,,;,, randomly se-
lected from [0, dj, — 1]) and default values of 1.0 at
other frequency positions.

Third, the modulated signal is transformed back
to the spatial domain and scaled:

h;p = Qup * IDFT((Htlzct)f) ©)
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where «,, is the learnable scaling factor for the
up-projection path, and A, € R,

Fourth, a final linear projection is applied:

Hy,, = Wuph;p 10)

where W, € R@modetdn jg another (parameter-

wise small) linear projection layer, responsible for

restoring the features to the original dimension

dmodel- The entire up-projection process can be
summarized as:

Hyp= Wy Qup -IDFT| DFT(H,y) ® Fup(Cup, Rup)
—— Ny —_—— —_
Small Output | Learnable Scalar Activated Features Learnable Sparse Freq.
Linear Layer to Freq. Dom Modulation (Defaults to Pass-Through),

Core Fourier Transform and Modulation Path

(11

where H,, € R¢model is the final output of the
FDA module before the residual connection.

4 Experiments

We evaluate FDA fine-tuned NLP models across
three perspectives: (1) Natural Language Un-
derstanding (NLU) tasks on the GLUE bench-
mark (Wang et al., 2019) with RoBERTa (Base
& Large) (Liu et al., 2019b), (2) Natural Lan-
guage Generation (NLG) tasks on the E2E NLG
dataset (Dusek et al., 2020) using GPT2-Small
(Radford et al., 2019), DeepSeek-R1-Distill-Qwen-
1.5B (DeepSeek-Al, 2025), LLaMA2-7B (Meta-Al,
2023), LLaMA3-8B (Meta-Al, 2024)and LLaMA3-
70B(Meta-Al, 2024), and (3) instruction tuning
tasks on MT-Bench (Zheng et al., 2023), Vi-
cuna Eval (Chiang et al., 2023), BBH (Suzgun
et al., 2022), MATH (Hendrycks et al., 2021),
and Alpaca (Taori et al., 2023) with DeepSeek-
R1-Distill-Qwen-1.5B, LLaMA2-7B, Qwen2-7B,
and LLaMA3-8B.For a detailed introduction to the
dataset, see the Supplementary Materials section in
the Appendix E.1.In addition, we also designed fre-
quency perception experiments and ablation experi-
ments to test the specific frequency performance of
the FDA fine-tuned model and the impact of each
component on the FDA model. All experiments
were performed on eight A100 GPUs. Through-
out all experiments, the intermediate dimension dj,
of the FDA modules was configured to d,,o4e1/4,
where d,,04¢; denotes the input hidden dimension
of the pre-trained model. For instance, in the case
of RoOBERTa, where d,,,,4e; = 768, the intermedi-
ate dimension dj, was set to 768/4 = 192.

4.1 Compared PEFT Methods

We compare the FDA method with currently pop-
ular parameter-efficient fine-tuning (PEFT) meth-
ods, using the experimental settings of each respec-
tive method. The models involved in the compari-
son include:Full Parameter Fine-tuning (FF): All
parameters are updated, leading to high computa-
tional and storage costs. * AdapterH: Inserts an
adapter layer between self-attention and the feedfor-
ward network. ¢« AdapterL(Lin et al., 2020): Adds
a lightweight adapter layer only after the MLP mod-
ule. * AdapterP: Optimizes adapter placement af-
ter the feedforward layer for better task adaptation.
* Compacter(Mahabadi et al., 2021): Uses low-
rank parameterization to reduce storage and compu-
tation. » Parallel Adapter(Huh et al., 2024): Uses
parallel adapters to enhance inference efficiency. ®
LoRA: Fine-tunes low-rank matrices to reduce the
parameter updates during training. * FourierFT:
Replaces low-rank approximations with Fourier
transforms to cut down parameters. Please note
that due to model adaptation and dataset loading is-
sues, we may choose different comparison models
for different tasks.

4.2 Natural Language Understanding

Experimental Setup The baseline models are
pre-trained RoBERTa Base (12 layers, 768 hidden
units) and RoBERTa Large (24 layers, 1024 hidden
units), using their official configurations. During
fine-tuning, we adopt our proposed Fourier Do-
main Adapter (FDA) modules, which are inserted
between the Transformer layers and feed-forward
layers, with a total of 4 adapter layers. FDA signif-
icantly reduces trainable parameters compared to
traditional adapters. Additionally, the weights of
all structures, except for the classification head, are
frozen during fine-tuning. The specific hyperpa-
rameter settings for the experiments are provided
in Appendix A. We evaluate the fine-tuned models
on their comprehension ability across eight tasks:
CoLA, SST-2, MRPC, QQP, QNLI, RTE, STS-B,
and WNLI. For specific training time comparisons,
see the supplementary materials section in the ap-
pendix F.

Experimental Results The exceptional effi-
ciency and effectiveness of FDA are strikingly
demonstrated in Table 1. Our approach consistently
achieves state-of-the-art or highly competitive per-
formance across the GLUE benchmark tasks, while
operating with an extraordinarily minimal num-
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Datasets

Method #Paras

CoLA SST-2 MRPC QQP QNLI RTE STS-B WNLI

(MCC) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (PCC) (PCC)
FF 125M 64.5:03 96.1.02 91.8:02 953103 94.3.03 82.8.03 93.6i04 66.3.03
AdapterH 0.6M 60.810‘4 94—.210‘1 88.511,1 93.510‘3 93. 1i0.1 71 .5111 89.7i0,3 64.2105
AdapterL. 0.6M 62.6:09 94.7.03 88401  94.8:02 93.0:02  75.9i02 90301 64.5:03
AdapterP 0.3M 63.4312 95. 11.0‘2 89.7¢0‘7 93.0105 93.310,3 78.41()‘8 91.510,2 65.01()‘4
Compacter 0.3M 62.0:06 94.5:02 88.7:05 92.3:04 93.1:02  81.0x06 90.5i02 64.8402
Parallel Adapter 1.2M 61. 110‘3 94.310‘5 89.5i05 94—.71()‘4 92.210,5 78.71()‘7 91-1:0.6 64.91()‘1
LoRA 0.3M 63.8:16  94.2:03  90.0x08  93.5:06 92.2:01  79.1s05  92.8:04  65.2403
FourierFT 0.024M 62.311‘4 94.2102 90.3i0‘3 92.01()‘4 91.710‘4 78.4—115 91.010,4 66.0105
FDA (Ours) 0.011M  65.7.035 97.5.02 92.8.03 97.6.02 95.8.00 83.1i04 95.2.03 68.1.93
FF 356M 69.1:02  96.9:03  923i05  92.2:04 957103  89.2405 93.1:03  67.0x04
AdapterH 1.8M 68.3+10 96.1:03 90.2:07 91.8405 94.8.02 83.8109 92.1i97 65.5103
AdapterL 1.8M 67.812‘5 96.610‘2 89.711,2 91~5t044 94.8&),3 80. 1129 91-9i0.4 65.8101
AdapterP 0.9M 66.5i()_4 96.2¢0_3 88.7¢2_9 91.210_5 94.74_4),2 83.4¢|_1 91.04_4_7 65.310_4
Compacter 0.9M 66.312‘0 96.310‘5 87.711,7 91.010‘5 94.7&),2 88.4129 91-510.5 65.0103
Parallel Adapter 4.8M 68.2:19  96.2:05 90.2:10 91.8:04 94.8:03 852411 923405  66.0:02
LoRA 0.8M 67.1:14  96.0:00  91.5:03  91.5:04 94.4:04 874416 919104 66.2403
FourierFT 0.048M  68.5:12  953:03 91.2:04 92.0.05 94903 87.5:14 92.5i05 66.8104
FDA (Olll‘S) 0.014M 70.210‘2 99.310‘1 94.2¢0‘2 94.51()‘3 96.910,2 91.2103 94.910,2 68.8103

Table 1: Performance of various fine-tuning methods with ROBERTa Base (upper part) and RoBERTa Large (lower
part) models on 8 datasets of the GLUE benchmark. We report the Matthew’s correlation coefficient (MCC) for
CoLA, Pearson correlation coefficient (PCC) for STS-B and WNLI, and accuracy (Acc.) for all the remaining tasks.
We report the median result of 5 runs, each using different random seeds. The best results for each dataset are shown

in bold. Higher is better for all metrics in 8 datasets.

ber of trainable parameters. For RoOBERTa-Base,
FDA, using only about 0.011M parameters, de-
livers leading results such as a Matthews Corre-
lation Coefficient of 65.7 on CoLA, 97.6% accu-
racy on QQP, and a Pearson Correlation Coeffi-
cient of 68.1 on WNLI. This parameter count is
drastically lower than traditional AdapterH (0.6M)
and LoRA (0.3M), and is less than half that of
FourierFT (0.024M), yet FDA often surpasses these
methods in performance. Moreover, Table 1 re-
veals that FDA consistently outperforms Full Fine-
tuning across these tasks. We are particularly en-
thused by this finding, as it suggests that FDA’s
intrinsic frequency-aware architecture might pro-
mote better generalization by mitigating overfit-
ting, a common challenge in traditional full fine-
tuning. This profound parameter efficiency extends
to RoBERTa-Large, where FDA requires a mere
approximately 0.014M parameters. These results
underscore FDA’s innovative architecture, which
strategically allocates a 2d,,,4.; budget for its core
Fourier transformations across all adapter modules,
complemented by highly compact linear layers
(e.g., dp = 1) for fine-grained adjustments. This
design facilitates potent LLM fine-tuning with min-
imal parametric overhead, significantly broadening
the accessibility for deploying advanced models.

4.3 Natural Language Generation

Experimental Setup. We evaluate the natural
language generation capability of FDA fine-tuned
models. The models are trained for 30 epochs,
and results are recorded from the best test set per-
formance. Specific hyperparameter settings are
detailed in Appendix A. For FDA, we consistently
apply an architecture with 4 adapter layers, and the
internal parameters are set following the principles
outlined in Section 3, leading to ultra-low trainable
parameter counts.

Experimental Results. The performance of
our Fourier Domain Adapter (FDA) on the End-to-
End NLG Benchmark is detailed in Table 2. FDA
demonstrates a remarkable combination of supe-
rior generation quality and unparalleled parameter
efficiency across all tested models. For instance,
with GPT-2 Small, FDA achieves a BLEU score
of 68.81 and a METEOR score of 47.73 using an
exceptionally scant 0.011M trainable parameters.
This pattern of excellence extends to larger models:
FDA on DeepSeek R1-1.5B (0.029M params) and
LLaMA2-7B (0.057M params) consistently sets
new state-of-the-art results for PEFT methods. This
outstanding efficiency and performance extend im-
pressively to very large models, as demonstrated
with LLaMA3-70B where FDA achieves top scores
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Table 2: Performance comparison of different methods
on the end-to-end natural language generation bench-
mark. FDA denotes our Fourier Domain Adapter. We
ran 10 experiments with different random seeds and
recorded the best test set performance.

Model | Method ’;Tmmable BLEU NIST METEOR ROUGE-L CIDEr
arameters
FF 123.65M| 67.63 842 4671 7168 241
o |Adaptert 0.12M | 66.11 835 4439 6875 239
2% | AdapterL 0.12M| 6677 821 4416 7013 228
& 5 |FourielFT | 0017M|6636 837 4585 7044 234
LoRA 0.13M| 6694 832 4626 7097 233
FDA(Ours)| 0.011M|6881 862 4773 7300 246
FF 15B|87.72 978 6893  90.14 323

% o |AdapterH 1.63M| 86.34 9.66  68.15 88.23 2.98
22 AdapterL 1.63M| 86.75 9.67  67.76 89.48 3.13
g . |FourierFT 0.15M| 86.42 9.62  67.97 89.45 2.92
Q& |LoRA 1.21M| 87.03 9.66  68.26 88.93 3.15

FDA(Ours) 0.029M | 89.21 9.96  70.31 91.90 3.31

FF 6.74B| 73.16 9.43  51.12 74.91 2.77
g AdapterH 727TM| 7272 9.26  50.33 73.94 2.62
S m |AdapterL 727M| 7236 9.15  50.17 73.88 2.52
S |FourierFT 0.82M| 72,52 9.27  49.73 73.78 2.74
= LoRA 537M| 7241 932  50.27 74.38 2.67

FDA(Ours) 0.057M | 74.76 9.55 51.94 76.31 2.82

FF ~70B|86.53 10.12 6524 88.13 4.36

2 AdapterH 17.46M| 83.47 9.63  62.76 85.18 4.04
=2 AdapterL 17.46M| 83.79 9.57  62.64 85.32 4.01
3 & |FourierFT 1.82M| 83.62 9.71  62.73 85.08 4.11
= LoRA 12.94M| 84.03 9.82  63.04 85.48 4.16

FDA(Ours) 0.115M | 87.28 10.26  66.04 89.06 4.47

like BLEU (87.28) and METEOR (66.04) using
only approximately 0.115M parameters.

Crucially, these results are achieved with param-
eter counts that are orders of magnitude smaller
than traditional adapters (e.g., AdapterH) and sig-
nificantly less than other competitive PEFTs like
LoRA, and often even more frugal than FourierFT.
We are particularly excited by this consistent ad-
vantage over all methods, suggesting that FDA’s
frequency-centric adaptation not only enhances ef-
ficiency but may also lead to improved general-
ization and mitigation of overfitting often seen in
full parameter tuning, thereby unlocking higher
potential from the base models. FDA’s ability to
efficiently harness frequency domain properties
for complex text generation tasks underscores its
robustness and potential as a leading parameter-
efficient fine-tuning solution.

4.4 Instruction Tuning

Experimental Setup. We evaluate instruction
tuning by fine-tuning Qwen2-7B, DeepSeek-R1-
Distill-Qwen-1.5B, LLaMA2-7B, and LLaMA3-
70B on five datasets: MT-Bench, Vicuna Eval,
BBH, MATH, and Alpaca. MT-Bench, Vicuna
Eval, and Alpaca assess conversational ability,
while BBH and MATH gauge logical reasoning
and mathematical skills. GPT-4 scores MT-Bench

Table 3: Performance comparison of different methods.
FDA denotes our Fourier Domain Adapter. We ran 3
experiments with different random seeds and recorded
the best test set performance. Best results are in bold.

Model |Method ‘i;;‘i;‘"‘e‘g: MT-bench Vicuna Eval BBH MATH Alpaca

FF 707B| 7.92 895 6753 64.86 338l
w  |AdapterH 729M| 778 882  66.89 64.07 33.04
S m |FourierFT 0.85M| 7.81 885  67.05 64.12 33.58
& |LorA 540M|  7.86 889  67.09 64.12 33.62

FDA(Ours)| 0.057M| 8.04 911 6897 66.04 34.63

FF 1.5B| 841 892 8835 8437 72.03
% m |AdapterH 1.63M| 832 879 8821 84.17 71.81
22 |FourierFT 0.1sM| 833 882  88.07 8423 71.86
8 |LoRA 121M| 836 885  88.17 84.16 71.87
A% |FDA(Ours)| 0.029M| 8.57 9.10  90.57 86.76 73.81

FF 6.94B| 528 751 4379 3332 11.05
9 |Adaptert 72IM| 523 735 4365 33.19 10.83
S o |FourierFT 0.82M| 521 742 4362 3325 1085
R |LoRA 537M| 522 745  43.68 3322 10.89
2 |FDA(Ours)| 0.057M| 539 7.64 4490 3431 1118

FF ~T0B| 9.07 948  92.83 8876 76.54
@ |Adaptert 17.46M|  8.58 9.03 8921 85.64 73.17
S = |FourierFT 1.82M| 8.63 9.09  89.52 86.05 73.58
=& |LoRA 1294M|  8.71 9.15  90.03 86.72 74.23
2 |FDA(Ours)| 0.115M| 9.3 9.65 9412 90.53 78.19

and Vicuna Eval (1-10), and LC Win Rate is used
for Alpaca. Detailed hyperparameters and train-
ing rounds are provided in Appendix A. Our
FDA method is applied, consistently utilizing 4
adapter layers for these experiments, with internal
parameters configured according to the principles
in Section3 to achieve ultra-low trainable parame-
ter counts and a significant reduction compared to
methods like AdapterH.

Experimental Results. Table 3 showcases the
remarkable efficacy of our Fourier Domain Adapter
(FDA) on a range of instruction tuning bench-
marks. Across all models—Qwen2-7B, DeepSeek
R1-1.5B, LLaMAZ2-7B, and crucially, the large-
scale LLaMA3-70B—FDA not only achieves state-
of-the-art performance but does so with an excep-
tionally minimal parameter footprint. For instance,
with Qwen2-7B, FDA secures top scores such as
8.04 on MT-Bench and 68.97 on BBH using merely
0.057M parameters. Similarly, for DeepSeek R1-
1.5B, FDA leads with scores like 8.57 on MT-
Bench and 90.57 on BBH with just 0.029M parame-
ters. This trend of ultra-efficient, high performance
is consistent for LLaMA2-7B (0.057M params
achieving 5.39 on MT-Bench, 44.90 on BBH),
and showcases exceptional scalability and state-
of-the-art performance on LLaMA3-70B, achiev-
ing for instance 9.23 on MT-Bench and an impres-
sive 94.12 on BBH, all with only approximately
0.115M trainable parameters. These LLaMA3-70B
scores markedly surpass those of smaller models
like DeepSeek R1-1.5B, affirming FDA’s capability
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with very large models. These parameter counts
represent a drastic reduction compared to tradi-
tional AdapterH and even other advanced PEFTs
like LoRA and FourierFT, often by an order of mag-
nitude or more. Critically, FDA also consistently
outperforms Full Fine-tuning (FF) across these di-
verse instruction-following tasks, even on the 70B
scale. This consistent superiority over FF is a par-
ticularly exciting outcome, strongly suggesting that
FDA'’s sophisticated frequency-domain parameter-
ization not only provides extreme efficiency but
also enhances model generalization, potentially by
mitigating overfitting commonly associated with
full parameter updates. The ability of our FDA
to unlock superior instruction-following capabili-
ties with such minimal overhead underscores its
potential to democratize the fine-tuning of LLMs
for complex tasks.

4.5 Frequency Perception Experiment

Experimental Setup. This experiment aims to
explore the impact of our FDA on different fre-
quency information in natural language process-
ing tasks. We used five public datasets, including
CoLA, WikiText, AG_News, MRPC, and SST-2,
covering tasks such as grammatical understand-
ing, language modeling, news classification, sen-
tence comparison, and sentiment analysis. First,
we generated sentence embeddings for each dataset
through the pre-trained RoBERTa model and ap-
plied Fourier transform to separate the embeddings
into high- and low-frequency components. Then,
we use FDA to fine-tune these separated datasets
to explore the contribution of different frequency
components to model performance. We followed
(Tamkin et al., 2020) and classified frequencies
using index thresholds, where low frequencies cap-
ture document-level information and high frequen-
cies represent word-level details.

In configuring FDA for these experiments, we
maintained our standard hyperparameter setting
where the intermediate dimension dj, of its auxil-
iary linear layers is d,o4e; /4. During fine-tuning,
to assess the impact on frequency components,
we focused on the magnitudes of the learnable
complex coefficients (elements of Cpyy, and Cyp)
in FDA that modulate specific frequencies. We
recorded the L2 norm of these coefficients for a
representative set of frequency bands and plotted
heat maps to visualize the learned emphasis on
these Fourier domain modulations based on the in-
put’s base frequencies. Due to page limitations, we

Hio Freauency igns

Figure 2: Frequency perception experiment on CoLA
(upper) and Wikitext (lower) using Fourier Domain
Adapter (FDA). The heatmaps visualize the L2 norm
of learned FDA Fourier coefficients corresponding to
different frequency bands.

only show the results of CoLA and WikiText in the
main text. The results of AG_News, MRPC, and
SST-2 and the specific hyperparameter settings in
the experiment are shown in Figure 2 in Appendix.

Experimental Results. Figure 2 shows heat
maps of the L2 norms of learned FDA Fourier co-
efficients for CoLA (top) and WikiText (bottom).
We observe distinct patterns for coefficients corre-
sponding to high- and low-frequency components,
indicating that the Fourier Domain Adapter (FDA)
effectively distinguishes and adapts to different fre-
quency information. The learned magnitudes for
coefficients associated with high-frequency bands
often fluctuate more intensely across specific in-
dices, whereas those for low-frequency bands tend
to exhibit more uniform and sometimes lower in-
tensity. This disparity underscores FDA’s capacity
to selectively emphasize or suppress specific fre-
quencies intrinsic to the input data during training.

Moreover, the visual tendency in the heatmaps
for certain frequency bands to show suppressed
activity (lower L2 norms for their corresponding
coefficients) is consistent with our use of L1 reg-
ularization on the learnable Fourier coefficients
(e.g., Lireq = >_||cj||1, where ¢; are coefficients
in Cgown, Cup). Enforcing sparsity in the frequency
modulation space, this allows FDA to reduce com-
plexity and highlight only the most salient fre-
quency components, a mechanism contributing to
its enhanced performance and efficiency.

4.6 Ablation study

We conducted sufficient ablation experiments to
verify the effectiveness of our FDA. Specifically,
we conducted fine-tuning experiments from the fol-
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lowing five aspects: removing the frequency-aware
activation mechanism, removing the adaptive fre-
quency weighting mechanism, unfreezing the RFF
internal projection parameters, removing the hier-
archical gating mechanism, and hyperparameter
selection. Please see Appendix D for detailed ex-
perimental settings and experimental results, where
FDA refers to the method proposed in Section 3.

5 Conclusion

This paper introduced the Fourier Domain Adapter
(FDA), a novel approach for highly parameter-
efficient fine-tuning of Large Language Models
(LLMs). By reparameterizing adapter projec-
tion layers directly in the Fourier domain using
sparse learnable frequency modulations and com-
plemented by highly compact auxiliary linear lay-
ers, our FDA achieves a dramatic reduction in train-
able parameters while simultaneously delivering
superior performance. We present a robust and
promising direction for making the adaptation of
LLMs significantly more efficient and accessible.

6 Limitations

FDA, despite its strong performance and remark-
able parameter and training efficiency, has limita-
tions that open avenues for future work. Firstly,
while FDA achieves significant training speedups
compared to existing methods (as shown in Ap-
pendix F), fully unleashing the performance poten-
tial implied by its minimal theoretical FLOPs (de-
tailed in Appendix C) is an ongoing endeavor. Due
to current resource constraints, our exploration of
exhaustive engineering optimizations for CUDA’s
cuFFT library utilization has been limited; we plan
to address this in future work to further enhance
wall-clock speed. Secondly, while our experiments
cover a range of models and datasets, evaluations
on an even broader spectrum of ultra-large-scale
models and more diverse task domains would fur-
ther solidify FDA’s generalizability and benefits.
Lastly, extending FDA’s application beyond Natu-
ral Language Processing to other modalities, such
as vision and audio, remains an exciting and open
avenue for future research.
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A Hyperparameter settings

We list the different hyperparameter settings of
FDA in the eight tasks of the GLUE benchmark ex-
periment in Table 4. The hyperparameters of other
fine-tuning methods follow the official settings.

We list the different hyperparameter settings of
FDA for different pre-trained large models on the
E2E benchmark in Table 5. The best accuracy of
the test set in the experiment is recorded. Note that
the experiment is based on the fine-tuning platform
built by (Zheng et al., 2024).

We list different hyperparameter settings of FDA
for fine-tuning different pre-trained large models
on the MT-bench, Vicuna Eval, BBH, MATH, and
Alpaca datasets in Table 6 and Table 7.

We list the hyperparameter settings for fine-
tuning ROBERTa Base using our FDA on differ-
ent high and low-frequency datasets of the GLUE
benchmark for frequency-aware experiments in Ta-
ble 8.
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Table 4:

Hyperparameter setup of FDA for the GLUE benchmark.

Hyperparameter

Task

STS-B RTE MRPC CoLA SST-2 QNLI QQP ‘WNLI
Optimizer AdamW
LR Schedule Linear
Warmup Ratio 0.06
seeds {0, 42,888,1314,1949}
Weight Decay 0.01
Gradient Clipping 1.0
Dropout Rate 0.1
Epochs (Base) 60 90 30 100 40 40 20 25
Learning Rate (FDA) (Base) 5x 1072 5x 1072 5% 1072 2x 1072 5% 1073 5x 1072 3x 1072 1x 1072
Learning Rate (Head) (Base) 9x 1073 1.1x 1072 6x 1073 8 x 1073 6x 1073 1x 1073 1x1073 1x107%
Max Seq. Len (Base) 512 512 512 512 512 512 512 512
Batch Size (Base) 32 32 32 32 32 32 32 32
Learning Rate Decay (Base) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Epochs (Large) 30 60 30 80 10 30 20 25
Learning Rate (FDA) (Large) 7x 1072 8 x 1072 6x 1072 4.3x1072 43 %1072 6x 1072 7x1072 8x 1072
Learning Rate (Head) (Large) 1x1073 5x 1073 1x107% 1.1 x 1072 1x107% 5x 1073 1x1073 5x 1073
Max Seq. Len (Large) 512 512 512 256 128 512 512 512
Batch Size (Large) 32 32 32 128 32 32 32 32
Learning Rate Decay (Large) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Table 5: Hyperparameter setup of FDA on the E2E benchmark for different models.

Hyperparameter GPT2-Small DeepSeek-R1-Distill-Qwen-1.5B LLaMA2-7B LLaMA3-8B
Optimizer AdamW

LR Schedule Linear

seeds {0, 10,100,1000,10000,5000,500,50,5,1}

Learning Rate (FDA) 1E-3 2E-3 3E-3 5E-3
Batch Size 64 128 128 128
Weight Decay 0.01 0.02 0.02 0.03
Epochs 10 10 10 10

B Parameter Efficiency Analysis

The architectural design of the Fourier Domain
Adapter (FDA) is fundamentally geared towards
maximizing parameter efficiency while preserving,
and often enhancing, model performance. This effi-
ciency stems from a novel parameterization of the
core transformation operations within the adapter
module. The total number of trainable parameters
in an FDA module is remarkably small. For the
configuration achieving approximately 0.011M pa-
rameters with RoOBERTa-Base (using 4 FDA mod-
ules), where the intermediate hidden dimension dj,
of the auxiliary linear layers is set to dmode1 /4, the
parameters are primarily composed of:

* Learnable Fourier Coefficients
(Caowns Cup):  The core of FDA’s trans-
formation lies in modulating signals in the
Fourier domain. The learnable complex co-
efficients, Clpypn € CFdown and Cup € Chur,
are budgeted such that the total number of
learnable floating-point values for them (i.e.,
2kdown + 2kup) 18 0.5dmoder per FDA module.
For RoBERTa-Base (dpoqer = 768), this
accounts for 0.5 x 768 = 384 parameters

per module.

This implies that the sum

of the number of modulated frequencies,
Kdown + kup, 18 0.25dmodel = 192.

* Auxiliary Linear Layers (W ,,n, Wyp):
These layers are designed for fine-grained di-
mensionality adjustment and feature refine-

ment.

With their intermediate dimension

dy = dmodel/4:
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Weights: To achieve extreme parameter
efficiency, the weight matrices W g, €
R X dmodel and W, € Rmode Xdh are
constructed using a very small number
of learnable parameters. For ROBERTa-
Base (dmogel = 768,d;, = 192), these
two weight matrices together are repre-
sented by only 1345 learnable parame-
ters per module. This indicates a highly
compressed or specialized parameteriza-
tion for these layers, distinct from stan-
dard dense matrices of these nominal di-
mensions.

Biases: The learnable biases for these

layers contribute dj, + dyoedel parameters.
For RoBERTa-Base, this is (dmode1 /4) +



Table 6: Hyperparameter setup of FDA on the MT-bench, Vicuna Eval, BBH, MATH, and Alpaca dataset fine-tuning

for different models.

Hyperparameter ‘ Qwen2-7B DeepSeek-R1-Distill-Qwen-1.5B LLaMA2-7B LLaMA3-8B

Optimizer AdamW

LR Schedule Linear

seeds {1000,10000}

Weight Decay 0.01 0.02 0.02 0.03

Table 7: Learning rate and batch size setup of FDA for different models on various tasks. For the number of training
rounds, follow the official settings. MT-bench, Vicuna Eval, and BBH are evaluation tools or datasets without a
training process, so there are no epoch settings. For the MATH dataset, the epoch is set between 3 and 10, depending
on the model and dataset complexity. The official recommendation for Alpaca is to set the epoch to 3.

Task ‘ Qwen2-7B  DeepSeek-R1-Distill-Qwen-1.5B LLaMA2-7B LLaMA3-8B
MT-bench(lr) 2E-2 3E-2 4E-2 5E-2
Vicuna Eval(lr) 1E-3 2E-3 3E-3 4E-3
BBH(Ir) 5E-2 6E-2 7E-2 8E-2
MATH(r) 1E-2 2E-2 3E-2 4E-2
Alpaca(lr) 3E-2 4E-2 SE-2 6E-2
Batch Size | 32 64 128 256

dmodel = 1-25dmodel = 1.25 x 768 =
960 parameters per module.

* Scaling Factors: Each FDA module in-
cludes two scalar learnable scaling factors
(down Ctup), contributing 2 parameters per
module.

Summing these components for a single FDA
module with dj, = dpodel /4 (using ROBERTa-Base
where dmoder = 768,dp, = 192 as an example):
Let Yyeights be the learnable parameters for the
weights of Wy, and W, per module. The
total parameters per module are Ppoque =
(0.5dmodet for Fourier coeffs)  +  Yieighs +
(1.25dmodel for Linear Biases) + (2 for Alphas).
Produle = 1.75dmodel + Yweights + 2. For 4 FDA
modules, the total parameters are 4 X Ppodute- TO
achieve 10764 parameters for RoBERTa-Base:

4 x (L.75 x 768 + Yieighs + 2) = 10764
4 % (1344 + Viegns + 2) = 10764
1346 + Yweights = 10764/4 = 2691

Yweighs = 2691 — 1346 = 1345. Thus, the
learnable weights of the auxiliary linear layers
(Waown and Wy,,) for one FDA module sum
to only 1345 parameters. This highly efficient
parameterization of the linear layers, despite their
nominal dimensions of dj, X dmodel and dmodel X dp,
is key to FDA’s minimal parameter footprint.

The total of 10764 parameters is approximately
0.011M, aligning with the figures presented in our
experimental results (e.g., Table 1).

Comparison with Traditional Adapters: The
parameter efficiency of FDA becomes particularly
striking when compared to traditional adapter ar-
chitectures. A standard adapter often employs two
feed-forward projection layers (down-projection
and up-projection) with a bottleneck dimension,
let’s call it d*. If d'f* is set to a commonly cited,
relatively large value for comparison, such as 256,
the parameter count for just the weight matrices of
these two projection layers in a traditional adapter
would be 2 X d¥ X diogel = 2 X 256 X dpmodel =
512dmodel'

In contrast, the primary learnable weights re-
sponsible for transformation within one of our FDA
modules (configured for extreme efficiency as de-
scribed above) sum to 0.5d0del (for Fourier coeffi-
cients) + 1345 (for the highly parameterized linear
layer weights, using RoOBERTa-Base numbers). For
dmodel = 768, this is 384 + 1345 = 1729 parame-
ters. Comparing these core transformation weight
parameters:

PrpA core weights __ 1729 1729 _ 1729 . 1
Pryaditional Adapter core weights 512dmodel 512x768 — 393216 ~ 227

This demonstrates that FDA’s core mechanism
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Table 8: Hyperparameter setup for the Frequency perception experiment using our FDA.

Hyperparameter ‘ Value

Optimizer AdamW

LR Schedule Linear

seeds {0, 10, 100, 1000, 10000, 5000, 500, 50, 5, 1}
Weight Decay 0.01

Epochs {CoLA:10,Wikitext:15,AG_News:5,MRPC:3,SST-2:3}
Max Seq. Len 512

Learning Rate Decay 0.8

Attention Heads 12

Hidden Layers 12

for transforming features is over 200 times more
parameter-efficient than a traditional adapter with
a large bottleneck. Even when comparing to more
optimized traditional adapters with smaller bot-
tlenecks (e.g., AdapterH in Table 1 with 0.6M
for ROBERTa-Base, implying a much larger per-
layer parameter count than FDA’s 0.011M/4 ~
0.00275M), FDA’s parameter count remains sub-
stantially lower due to its novel Fourier-based pa-
rameterization and the minimal effective footprint
of its auxiliary components.

This strategic parameterization allows FDA to
achieve state-of-the-art performance with an ex-
ceptionally small number of trainable parameters,
as evidenced by our experimental results. This
efficiency not only reduces computational and stor-
age costs but also broadens the applicability of
fine-tuning large language models in resource-
constrained environments.

C Computational Cost Analysis (FLOPs)

While this paper primarily demonstrates the ef-
ficiency of FDA through parameter count com-
parisons, the additional Floating Point Operations
(FLOPs) during inference are also an important
consideration. A detailed analysis of the extra
computations introduced by an FDA module, com-
pared with the FLOPs of a typical Transformer
layer, is shown in Table 9. The calculations use
dmodel = 768 and the FDA intermediate dimension
dp, = dmode1/4 = 192.

In summary, the FDA module introduces approx-
imately 88, 154 FLOPs per token per module. This
overhead represents only about 1.07% of the to-
tal computation of a standard Transformer layer
(approximately 8.25M FLOPs). Therefore, the in-
crease in actual inference cost on modern hardware

is extremely minimal, especially in light of the sub-
stantial parameter reduction and performance gains
offered by FDA. The computational efficiency of
the auxiliary linear layers, directly reflecting their
low learnable parameter count of 1345 for their
weights, is critical to this minimal FLOP overhead.

D Ablation study

To validate the contributions of key components
in our Fourier Domain Adapter (FDA) and to jus-
tify our hyperparameter choices, we conducted a
series of ablation experiments. These experiments
systematically evaluate the impact of different ar-
chitectural designs and regularization techniques.

D.1 Ablation Experiments

We investigated the following aspects of our FDA
model, using the configuration with dj, = d;,04e1/4
for its auxiliary linear layers as the "Original FDA"
baseline for most component ablations:

* Impact of Fourier Modulation: We as-
sess the role of the learnable Fourier coef-
ficients (Cgown, Cup) by comparing the full
FDA with a variant where these modulations
are removed (i.e., Foun and F, effectively
become identity transformations in the fre-
quency domain, passing through all compo-
nents unaltered before the DFT/IDFT stages
related to these learnable coefficients).

¢ Impact of Non-linear Activation (GELU):
To verify the importance of non-linearity, we
replaced the GELU activation function be-
tween the down-projection and up-projection
paths with a linear identity function.

e Impact of L1 Regularization on Fourier
Coefficients: We examine the effect of L1
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Table 9: Detailed FLOPs analysis of the FDA module and comparison with a standard Transformer layer. For
FDA-specific calculations, we use dpoger = 768 and dj, = dmoder/4 = 192. The total number of modulated
frequency components, Kiotal_modulated = Kdown + Kup, 15 192.

Component / Operation

FLOPs (per token per FDA module)

Details / Calculation

FDA Module Additional Computations
1D DFT/IDFT operations (dmodel path)

~ 73,574 Forz < 1’f Approx. 10dmede 1085 diodel- (logy 768 =~

9.585)

1D DFT/IDFT operations (dj, path) ~ 7,282 For Hoe > (Hjy)p: Approx. 5dylogydy. (dn =
192, log, 192 ~ 7.585)

Frequency Modulation (Complex Multiplications) ~ 1,152 6% (kdown+kup); Where kaown+kup = Kiotal_modulated =
192. (Each complex multiplication takes 6 FLOPs)

Linear Projections W goumn, Waup ~ 2,690 Operations associated with W g,,,, and W,;,. These lay-
ers are constructed using 1345 learnable parameters, and
their operational FLOPs reflect this efficient parameteri-
zation (e.g., ~ 2 x 1345 for matrix-vector like operations
involving these parameters).

Scaling by «, Biases, and GELU Activation A2 3,456  2dmodel (for scaling and one set of biases) + (2 +
CaeLu)dp (for scaling, another set of biases, and GELU).
CgeLu ~ 8. Thisis 2x7684+10x192 = 1536+1920 =
3456.

Total extra FLOPs for FDA ~ 88,154 Sum of above components

Standard Transformer Layer Components (Estimated)

Transformer Self-Attention ~ 3,532,032 Estimated value

Transformer Feed-Forward Network ~ 4,718,592 Estimated value

Total FLOPs for Transformer Layer ~ 8,250,624

FDA overhead vs. Transformer Layer

~ 1.07 %

regularization (e.g., Lfreq = ) ||c;j]|1 on co-
efficients in Cyoun, Cup), Which is intended
to promote sparsity and focus on salient fre-
quency components, by comparing against a
version without this regularization.

* Impact of Auxiliary Linear Layer Bottle-
neck (dy, = dp04e1/a): This set of experi-
ments specifically ablates the choice of the
intermediate dimension dj for the auxiliary
linear layers W oy, and Wy, We vary
the factor ’a’ in dp, = dpoder/a (e.8., a €
{2,4,8,16}) to observe its effect on perfor-
mance and parameter count, aiming to iden-
tify an optimal balance. Our hypothesis is that
a = 4 provides such a balance.

D.2 Experimental Setup

The ablation studies were conducted on a subset of
representative datasets: CoLA, QQP, AG_News,
MRPC, and SST-2. We used the pre-trained
RoBERTa-Base model as the backbone. For the
"Original FDA" configuration in Table 10 (which
ablates core components like Fourier modulation,
activation, and L1 regularization), we set the inter-
mediate dimension dj, of its auxiliary linear lay-
ers to doder/4 (ie., dn = 192 for RoOBERTa-
Base, d0qe1 = 768). This results in approx-
imately 1.19M trainable parameters for 4 FDA
layers, calculated as 4 X (0.5d,,04¢; (Fourier) +

2(alphas) 4 2%medel g, ) (W-weights) + (medel 4
dmoder) (W-biases)). The performance of this con-
figuration serves as a strong baseline. Other hyper-
parameters, such as learning rates and batch sizes,
were kept consistent with those used in the main
GLUE experiments for RoBERTa-Base. The spe-
cific ablation of the factor ’a’ in dy, = dinoger/a
is presented separately in Table 11, showing how
parameter counts and performance vary with ’a’.

D.3 Experimental Results

The results of our ablation experiments are pre-
sented in Table 10 and Table 11.

From Table 10, we observe that removing the
core Fourier modulation mechanism (by making
Fyown and F;, identity transformations) leads to
a consistent and significant drop in performance
across all evaluated datasets (e.g., CoLA MCC
drops from 65.7 to 63.5). This underscores the
critical role of adaptively modulating frequency
components for effective task adaptation. Similarly,
replacing the GELU non-linear activation with a
linear function also results in a noticeable perfor-
mance degradation (e.g., CoLA MCC to 62.8), con-
firming the necessity of non-linearity within the
FDA architecture. The absence of L1 regulariza-
tion on the Fourier coefficients also slightly reduces
performance, suggesting its utility in promoting
sparsity and focusing on relevant frequencies.
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Table 10: Ablation study of FDA components on RoBERTa-Base. "Original FDA" here refers to the configuration
with dj, = dinoder /4 for its auxiliary linear layers (/= 1.19M parameters). Scores are compared against this baseline.

Ablation Experiment ‘ CoLA (MCC) QQP (Acc.) AG_News (Acc.) MRPC (Acc.) SST-2 (Acc.) ‘ #Params Change

Original FDA (dy, = dinoder/4) 65.7 97.6 96.0 92.8 97.5 ~ 1.19M (Baseline)
(1) w/o Fourier Modulation (Cyouwn fup) 63.5 96.5 95.1 90.5 96.2 Decrease (=~ —0.15M)*
(2) w/o GELU (Linear Activation) 62.8 96.0 94.8 89.9 95.8 No change

(3) w/o L1 Reg. on Fourier Coeffs 64.9 97.2 95.7 922 97.0 No change

*Parameter decrease from removing the 4 x 0.5d 041 Fourier coefficients budget. Actual Cyoun /up might be sparse.

Table 11: Ablation study of the factor ‘a’ for the auxiliary linear layer bottleneck dimension dj, = dpoder/a in
FDA, using RoBERTa-Base (d;,04¢; = 768). Performance is averaged over CoLA, QQP, MRPC, SST-2. All
configurations use 4 FDA layers, with Fourier coefficients budget of 0.5d,,,4¢; per layer.

Value of ’a’ dp, = dmoder/a  #Trainable Params (=) Avg. Performance Score
2 384 2.36M 88.5
4 192 1.19M 88.9
8 96 0.60M 87.8
16 48 0.31M 86.5
N/A (dp = 1, main paper config) 1 0.011M 88.8f
T Average score for reference from main results (Table 1); direct comparison complex due to potential hyperparameter re-tuning for dj, = 1.

Avg. Performance Score is illustrative; actual scores for CoLA (MCC), QQP (Acc), MRPC (Acc), SST-2 (Acc) would be averaged appropriately.

The impact of the auxiliary linear layer bot-
tleneck dimension, dp, = deder/a, is detailed
in Table 11. This analysis clearly demonstrates
that a = 4 (ie., dy = dpoder/4 = 192 for
RoBERTa-Base) achieves the best average perfor-
mance among the tested values. When ’a’ is smaller
(e.g., a = 2, resulting in d, = 384), the num-
ber of trainable parameters increases substantially
(to = 2.36M), but this does not translate into fur-
ther significant performance gains and may even
slightly hinder performance, possibly due to the
increased risk of overfitting with more parame-
ters in the adapter layers. Conversely, when ‘a’
is larger (e.g., a = 8 for dj, = 96, or a = 16 for
dp, = 48), leading to smaller dj values, the pa-
rameter count decreases, but model performance
degrades more sharply, indicating insufficient ca-
pacity in these auxiliary linear layers. This vali-
dates a = 4 as an optimal choice for balancing
representational capacity of these layers against pa-
rameter cost within this specific ablation context.
For reference, our main paper’s ultra-efficient FDA
configuration (achieving ~ 0.011M parameters)
utilizes an even smaller d;, ~ 1 for these linear
layers, demonstrating that if extreme parameter ef-
ficiency is paramount, these layers can be made
exceptionally compact with carefully tuned Fourier
components still yielding SOTA performance.

These ablation studies collectively highlight the
importance of each key component of our FDA
and validate our design choices, particularly the

effectiveness of Fourier domain modulation and the
considered selection of structural hyperparameters
like the auxiliary layer bottleneck.

D.3.1 Experimental Results

E Supplementary Experimental Results
and Analyses

We add some image results of Experiment 4.5 here.
Figure 3 illustrates the frequency perception ex-
periment results on AG_NEWS (upper), MRPC
(middle), and SST-2 (lower). The L2 norm heat
maps reveal distinct patterns for high- and low-
frequency components across these tasks, demon-
strating that the Fourier Domain Adapter (FDA)
effectively distinguishes different frequency infor-
mation. In AG_NEWS, high-frequency weights
exhibit more intense fluctuations at specific indices,
while low-frequency weights remain relatively uni-
form with lower intensity. Similarly, in MRPC
and SST-2, high-frequency weights show signif-
icant variations, whereas low-frequency weights
are more stable and less intense. This disparity
highlights FDA’s ability to selectively emphasize
or suppress specific frequencies during training.
Furthermore, the near-uniform distribution of
low-frequency weights suggests that most fre-
quency components are suppressed, aligning with
our L1 regularization Lgeq = ) ||75|/1. By en-
forcing sparsity in the frequency space, this ap-
proach reduces complexity and highlights only the
most relevant components, thereby enhancing the

6190



‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

5

Figure 3: Frequency perception experiment on AG_NEWS (upper) , MRPC(mid) and SST-2 (lower)

model’s performance. The consistent patterns ob-
served across different tasks underscore the robust-
ness and effectiveness of the FDA in handling vari-
ous NLP tasks.

E.1 Datasets and Tasks Overview

In our experiments, we evaluate the performance of
FDA fine-tuning across various tasks and datasets.
Below is a detailed introduction to each dataset and
task used in our study.

E.1.1 Natural Language Understanding
(NLU) Tasks

We employ the GLUE benchmark, which consists
of eight tasks:

¢ CoLA: The Corpus of Linguistic Acceptabil-
ity is a binary classification dataset that judges
the grammaticality of sentences. Each sen-
tence is labeled as either acceptable or not,
making it a challenging test for syntactic un-
derstanding.

e SST-2: The Stanford Sentiment Treebank
(SST-2) is used for binary sentiment classi-
fication on movie reviews. It provides human-
annotated labels that help evaluate a model’s
capability to capture subjective sentiment nu-
ances.

* MRPC: The Microsoft Research Paraphrase
Corpus contains pairs of sentences and re-
quires determining whether the two sentences
are paraphrases. It challenges models to un-
derstand semantic equivalence between differ-
ent phrasings.

¢ QQP: The Quora Question Pairs dataset con-
sists of pairs of questions and tests whether
they are semantically equivalent. This dataset

is valuable for assessing a model’s ability to
detect rephrased or duplicated queries.

* QNLI: The Question Natural Language In-
ference task requires deciding if a sentence
contains the answer to a given question. It
transforms a question answering task into a bi-
nary classification problem, focusing on com-
prehension.

* RTE: Recognizing Textual Entailment (RTE)
evaluates whether one sentence logically en-
tails another. This task tests the model’s rea-
soning ability and its understanding of infer-
ential relationships.

* STS-B: The Semantic Textual Similarity
Benchmark measures the degree of semantic
similarity between sentence pairs on a con-
tinuous scale. It is used to assess how well
models capture subtle semantic nuances.

* WNLI: The Winograd Natural Language In-
ference task is designed around pronoun reso-
lution and requires disambiguating pronouns
based on context. It is particularly challenging
due to its reliance on subtle linguistic cues.

E.1.2 Natural Language Generation (NLG)
Task

We evaluate the generation capability on the End-
to-End NLG benchmark:

* E2E NLG: This benchmark is designed for
end-to-end natural language generation tasks
where models generate textual descriptions
from structured inputs. It tests the model’s
ability to produce coherent, fluent, and ac-
curate text as measured by metrics such as
BLEU, NIST, METEOR, ROUGE-L, and
CIDEr.
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E.1.3 Instruction Tuning Tasks

For instruction tuning, we fine-tune models on
tasks that assess conversational ability, logical rea-
soning, and instruction following:

* MT-Bench: Evaluates the conversational abil-
ities of language models by presenting diverse
dialogue scenarios. It measures both the rele-
vance and coherence of generated responses
in a conversational setting.

* Vicuna Eval: Designed to assess dialogue
quality and coherence, it provides a com-
prehensive evaluation of a model’s ability to
maintain context and generate human-like in-
teractions.

* BBH: Big-Bench Hard (BBH) focuses on
challenging reasoning problems that require
complex problem-solving skills, pushing mod-
els to demonstrate deeper logical reasoning
and inference capabilities.

e MATH: The MATH dataset measures the
mathematical problem-solving ability of lan-
guage models through problems that require
multi-step reasoning and precise computa-
tions.

* Alpaca: Evaluates instruction-following per-
formance by testing how well a model adheres
to given instructions and generates responses
that are contextually appropriate and faithful
to the prompts.

E.1.4 Frequency Perception Experiment

To investigate the impact of frequency information
on model performance, we conduct experiments on
additional datasets that were not described above:

» WikiText: A language modeling dataset con-
taining long-form Wikipedia text. It en-
ables us to study the effects of decompos-
ing sentence embeddings into high- and low-
frequency components using the Fourier trans-
form.

* AG_News: A widely-used news classification
dataset that categorizes articles into four top-
ics. This dataset allows us to analyze how
frequency-aware fine-tuning improves topic
discrimination and overall classification per-
formance.

Note: Some data sets have been introduced before
and will not be repeated here.

F Training Time Analysis

To assess the efficiency of our approach, we mea-
sured the training time for different fine-tuning
methods on the GLUE benchmark using both
RoBERTa Base and RoBERTa Large models. We
recorded the time per epoch, total training time, and
the average number of training steps per second.
Table 12 summarizes the results. These measure-
ments help demonstrate that, while our primary
focus is on improving performance and parame-
ter efficiency, our FDA also exhibits exceptionally
competitive training efficiency, significantly out-
performing established methods in terms of speed.
It is worth noting that while FDA’s specific opera-
tions add minimal theoretical FLOPs (as detailed
in Appendix C), the observed wall-clock speedup
for the entire training process, though substantial,
is influenced by various factors. One such factor is
that the practical throughput of CUDA’s cuFFT li-
brary, essential for FDA’s DFT/IDFT computations,
may not achieve the same efficiency (e.g., FLOPs
per second) as the highly optimized dense matrix
multiplication (GEMM) operations that form the
backbone of many computations in methods like
LoRA and within the base model itself. This dif-
ference in practical library performance for distinct
types of operations can moderate the overall accel-
eration relative to what might be inferred purely
from the theoretical FLOPs reduction of FDA’s
unique components.
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Table 12: Training Time Comparison on the GLUE Benchmark. FDA (Ours) demonstrates significantly reduced

training times.

Method Model Epochs Time per Epoch (min) Total Time (min) Steps/sec
AdapterH RoBERTa Base 60 6.67 400.0 2.5
LoRA RoBERTa Base 60 5.21 312.6 32
FDA (Ours) RoBERTa Base 60 1.30 78.0 12.8
AdapterH RoBERTa Large 30 7.41 222.3 1.8
LoRA RoBERTa Large 30 5.13 153.9 2.6
FDA (Ours) RoBERTa Large 30 1.28 384 104
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