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Abstract

Large language models (LLMs) are prone
to generate hallucinations, which can under-
mine their reliability in high-stakes applica-
tions. Some works on LLM hallucination miti-
gation use the model’s internal signals to con-
trast different output during inference stage.
However, these works often focus on simple
forms of hallucinations, and struggle to effec-
tively mitigate hallucinations. To address the
issue, this paper exploits hard negative samples
to construct a factually weaker model for im-
proving contrastive decoding. We propose a
new inference-time method, Regularized Con-
trastive Decoding (RCD), to capture correct
hallucination signals for mitigating hallucina-
tions in LLMs. RCD learns more diverse hal-
lucination patterns via adversarial-aware fine-
tuning and mitigates hallucinations via con-
trastive decoding. Experiments on four hal-
lucination benchmarks demonstrate that our
method achieves better LLM hallucination mit-
igation performance. Further analysis shows
RCD generalizes well across different model
sizes, task formats, perturbation methods and
training data sizes.

1 Introduction

Large language models (LLMs) have demonstrated
substantial progress in a wide range of natural
language processing (NLP) tasks (Achiam et al.,
2023; Touvron et al., 2023). However, despite these
achievements, LLMs often produce hallucinations
outputs that factually incorrect or unfaithful to the
provided context (Bang et al., 2023; Ji et al., 2023).
These hallucinations pose significant risks, particu-
larly in high-stakes domains such as legal consul-
tation, medical advice, and specialized technical
support.

Various strategies have been pursued to mitigate
LLM hallucination. Some works leverage external
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Figure 1: An illustration of fine-tuning a weaker model
on hard negative samples to improve hallucination miti-
gation. Both methods fine-tune a factually weak model
to constrain the original output distribution during de-
coding for hallucination mitigation. The shaded circle
denotes the current input. The red dashed circles repre-
sent the hard negative samples we introduce to train a
factually weaker model (i.e., a hallucination model).

knowledge bases via retrieval augmented genera-
tion to improve factuality of model outputs (Sun
et al., 2023; Shuster et al., 2021). Although ef-
fective in many settings, these methods usually
require additional infrastructure and are sensitive
to retrieval errors. Other works rely on the model’s
internal signals to contrast different outputs with-
out external retrieval, offering simplicity and ease
of deployment (Chuang et al., 2024; Chen et al.,
2024; Li et al., 2024). However, such methods of-
ten struggle to provide subtle hallucinations that
are semantically close to the truth, resulting in sub-
optimal hallucination mitigation in LLMs.

To provide more accurate hallucination signals,
some studies use existing hallucination data to learn
implicit representations (Zhang et al., 2025). How-
ever, they focus on explicit and easily recognizable
hallucinations, leading models to fit the specific
patterns and biases of the limited training data. As
a result, by providing incorrect hallucination sig-
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nals during contrastive decoding, these methods
fail to effectively mitigate hallucinations, partic-
ularly when facing subtle cases in more complex
scenarios.

In this paper, we propose a new inference-time
method, Regularized Contrastive Decoding (RCD),
to mitigate hallucinations in LLMs by contrasting
against hard negative samples. Inspired by Hu et al.
(2023a,b), RCD generates hard negative samples
via adversarial training for better contrastive decod-
ing. Specifically, first, we introduce an adversarial-
aware fine-tuning with LoRA (Hu et al., 2022)
to construct a factually weaker LLM by inducing
more diverse hallucination patterns. We apply Fast
Gradient Method (FGM) (Miyato et al., 2017) to
generate adversarial perturbations. Then we put
perturbations on the embedding layer to generate
hard negative samples with a min-max training
strategy. As shown in Figure 1, these generated
hard negative samples allow the weak LLM to cap-
ture more precise hallucination patterns. Then, we
perform contrastive decoding with the factually
weaker model. This enables more diverse and ac-
curate hallucination signals, yielding outputs that
are more factual and reliable.

We conduct experiments on four public hal-
lucination benchmarks, i.e. TruthfulQA (Lin
et al., 2022), FACTOR (Muhlgay et al., 2024),
TriviaQA (Joshi et al., 2017) and Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019). Experi-
mental results demonstrate that RCD yields con-
sistent gains across tasks. For instance, RCD
achieves +19.75 absolute improvements on Truth-
fulQA MC2 and +12.71 accuracy scores on FAC-
TOR Expert. Further analysis shows that RCD pre-
serves the base model’s performance on MMLU
and ARC-Challenge. Latency measurements con-
firm that it introduces only negligible overhead
compared to standard contrastive decoding. More-
over, RCD is compatible with different adversar-
ial training strategies, scales well with model size
across model sizes, and consistently achieves effec-
tive hallucination mitigation across different train-
ing data sizes.

Our contributions are summarized as follows: 1)
We introduce hard negative samples to construct a
factually weaker model for improving contrastive
decoding. 2) We propose a new inference-time
method RCD, using diverse hallucination signals
to enhance contrastive decoding for hallucination
mitigation in LLMs. 3) Experiments on four hal-
lucination datasets demonstrate that RCD consis-

tently achieves better hallucination mitigation per-
formance. RCD also generalizes well across differ-
ent model sizes, task formats, perturbation methods
and training data sizes.

2 Related Work

2.1 Hallucination in Large Language Models

Large language models (LLMs) frequently produce
hallucinations fabricated or inaccurate statements
presented as facts (Achiam et al., 2023; Ji et al.,
2023). These errors are typically grouped into fac-
tual and faithfulness types. Factual hallucinations
arise when outputs contradict real-world knowl-
edge (Bang et al., 2023; Hu et al., 2024). Faithful-
ness hallucinations occur when responses deviate
from the given instructions or the source context
(Dale et al., 2023; Shi et al., 2023). Mitigating
both is essential for applications that require high
reliability.

Existing mitigation can be categorized into two
types: retrieval based and model internal.Retrieval-
based approaches incorporate external knowledge
during generation, as in retrieval-augmented gener-
ation (RAG) frameworks (Sun et al., 2023; Shuster
et al., 2021). More recent retrieval pipeline aim to
suppress “hallucination-on-hallucination” effects
without requiring additional model training (Hu
et al., 2025). Model-internal methods exploit inter-
nal states or consistency signals. For example, rein-
forcement learning from human feedback (RLHF)
(Ouyang et al., 2022) is used to better align outputs
with human judgments (Wang and Sennrich, 2020).
However, these methods usually incur substantial
training or adaptation costs.

To address these limitations, inference-time ap-
proaches introduce interventions during the infer-
ence stage. Contrastive Decoding (CD) uses the
internal signals to suppress hallucination output
during inference stage. However, these methods
often fail to generate subtle hallucinations that se-
mantically similar to truth, resulting in limited ef-
fectiveness in hallucination mitigation.

2.2 Contrastive Decoding

Li et al. (2023b) introduced Contrastive Decoding
(CD) to improve generation quality by contrasting
a large scale model with a small one. Subsequent
works have extended this idea beyond generation
quality to enhance factuality.Chuang et al. (2024)
contrasts layer wise outputs to enhance factual ac-
curacy. Kai et al. (2024) enhance factuality by
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Figure 2: Overview of our RCD framework. In the adversarial finetuning phase, we induce hard negative samples
through gradient-based perturbations, resulting in a factually weaker model (i.e., hallucination model). During
inference, contrastive decoding combines outputs from the original and hallucination models, filtering out fabricated
content and enhancing factual fidelity.

leveraging attention dispersion as a contrastive sig-
nal. Shi et al. (2024) improves quality by contrast-
ing inputs with and without context. Zhang et al.
(2025) induces hallucinations and contrast them to
filter inaccuracies. Xu et al. (2024)decouple identi-
fication and classification in medical information
extraction. Gema et al. (2024)contrast a base model
with a masked model equipped with retrieval heads.
Jiang et al. (2025) proactively generate counterfac-
tual errors by perturbing attention distributions and
use those errors as negative samples to improve
contrastive decoding.

To provide better hallucination signals, some
CD based methods leverage existing hallucination
datasets. However, these methods often focus on
explicit hallucinations, causing models to overfit to
specific patterns in limited training data and fail to
generalize to more subtle cases. RCD improves hal-
lucination mitigation by adversarially fine-tuning a
weaker model to generate more diverse and accu-
rate hallucination signals for contrastive decoding.

3 Regularized Contrastive Decoding
(RCD)

Consider a standard text generation setting where
an LLM receives an input sequence x =

(x1, x2, . . . , xL) and generates an output sequence
y = (y1, y2, . . . , yT ). Without additional con-
straints, the LLM may produce hallucinations,
which are tokens or phrases unsupported by factual
evidence. These hallucinations degrade the trust-
worthiness and reliability of the generated text.

As shown in Figure 2, we propose Regularized
Contrastive Decoding (RCD) to improve halluci-
nation mitigation by performing contrastive de-
coding between a strong model and an adversari-
ally trained weaker model. Inspired by Hu et al.
(2023a,b), which generate worst-case samples to
constrain contrastive representations, RCD gener-
ates hard negative samples via adversarial training
for better contrastive decoding.

3.1 Adversarial Fine-tuning with LoRA

Existing works on hallucination mitigation usually
generate hallucination samples that are often inac-
curate, offering limited mitigation benefits (Zhang
et al., 2025). To overcome this, an adversarial fine-
tuning strategy is designed to inject hard negative
samples near the decision boundary via adversarial
perturbations. Unlike simple data augmentation,
these perturbations serve as an implicit regulariza-
tion mechanism that guides the model to generalize
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better under subtle distributional shifts.
Formally, following Zhang et al. (2025), let D =

{(xi, yi)}mi=1 denote the fine-tuning dataset, where
xi is the input including system prompt and user
input, yi is the target output, m is the dataset size.
Let θ be the frozen base parameters and ∆θ the
trainable increment introduced during fine-tuning
via LoRA (Hu et al., 2022). We estimate ∆θ by
minimizing the negative log-likelihood:

min
∆θ

m∑

i=1

− log p(yi | xi; θ +∆θ) . (1)

This objective keeps θ fixed and updates only ∆θ,
thereby adapting the model while preserving the
base weights. For each adapted weight matrix, the
LoRA increment is parameterized as ∆θ = α

kBA,
where A ∈ Rk×d and B ∈ Rd×k with rank k ≪ d,
and α > 0 is a scaling factor.

We introduce Fast Gradient Method
(FGM) (Miyato et al., 2017) to generate
hard negative samples. At each iteration, given the
current (θ +∆θ), we construct an L2-normalized
adversarial perturbation with ϵ > 0:

min
∆θ

E(xi,yi)∼D max
∥r∥2≤ϵ

L(xi + ri, yi; θ +∆θ),

where ri = −ϵ
gi

∥gi∥2
,

gi = ∇xi log p(yi | xi; θ +∆θ̂),

(2)

where gi is the gradient of the log-likelihood with
respect to xi. ∆θ̂ is the current parameters of the
model. ri is an adversarial perturbation on word
embedding layer.

Then, we jointly train on original and adversarial
samples by minimizing the following objective:

Ltotal =
1

2

(
L(x, y) + Ladv(x+ r, y)

)
, (3)

where L denotes the cross entropy loss of the tar-
get sequence, and the term Ladv(x + r, y) acts as
a data-dependent regularization term. It penalizes
parameter updates that overfit to original samples
alone, encouraging the model to also fit perturbed
samples. Through this regularized fine-tuning pro-
cess, we can construct a factually weaker model
to improve contrastive decoding for hallucination
mitigation.

3.2 Contrastive Decoding with Factually
Weaker Model

Given the original model θ and the adversarially
fine-tuned weaker model θ + ∆θ, we apply con-

trastive decoding (Li et al., 2023b; O’Brien and
Lewis, 2023) to the log probabilities to enhance the
factuality by penalizing the untruthful candidates.
The adversarially fine-tuned weaker model tends to
generate hallucinations that are more diverse and
accurate. These hallucination signals help the out-
put distribution more reliable. At each timestep t,
both models compute the conditional probability
of the next token xt. We define the distribution as:

Ft = log p(xt | x<t; θ)−λ log p(xt | x<t; θ+∆θ),
(4)

where λ controls the balance between the two mod-
els’ outputs. The distribution improves the factual-
ity of the original model’s output by suppressing
the tokens predicted by the weaker model.

To further refine token selection, we employ the
adaptive relative top filtering mechanism (Li et al.,
2023b). Specifically, at each timestep t, we define
a valid token set Vvalid based on the probabilities
predicted by the strong model:

Vvalid = {xt ∈ V|
log p(xt | x<t) ≥ max

w
log p(w | x<t) + log γ},

(5)
where γ ∈ (0, 1] is a hyperparameter that deter-
mines the filtering threshold.

After determining Vvalid, we apply a softmax
over the distribution Ft(xt) for xt ∈ Vvalid:

p(xt | x<t) =
exp(Ft(xt))∑

x∈Vvalid
exp(Ft(x))

. (6)

By restricting the candidate tokens to this valid
set and then normalizing with respect to the con-
trastive scores, the final output distribution is more
factual and less susceptible to subtle hallucinations
introduced by the factually weaker LLM.

4 Experiments

4.1 Experimental Setup
Datasets Following previous work (Chen et al.,
2024), we evaluate our method on truthfulness-
related datasets (i.e., TruthfulQA, and FACTOR)
and knowledge-seeking datasets (i.e., TriviaQA,
and NQ). TruthfulQA (Lin et al., 2022) is a bench-
mark designed to assess the truthfulness of lan-
guage models, comprising 817 multiple choice
questions across 38 categories. FACTOR (Muhl-
gay et al., 2024) evaluates the factual accuracy of
large language models in text completion tasks,
consisting of three subsets: Wiki with 2,994 sam-
ples from Wikipedia, News with 1,036 samples
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Methods TruthfulQA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1

Greedy (Baseline) 37.62 54.60 28.12 65.05 56.96 66.10 46.50 46.50 23.49 21.45
ITI (Li et al., 2024) 37.01 54.66 27.82 53.28 43.82 51.69 – – – –
CD (Li et al., 2023b) 28.15 54.87 29.75 64.57 58.47 67.12 47.30 38.58 26.03 19.38
DoLa (Chuang et al., 2024) 32.97 60.84 29.50 64.32 57.63 67.30 47.08 45.94 24.01 22.15
AD (Chen et al., 2024) 33.90 51.62 25.78 61.87 53.84 62.28 48.55 48.24 24.34 22.35
ICD (Zhang et al., 2025) 46.32 69.08 41.25 65.05 57.66 68.64 50.88 50.66 26.23 24.38

RCD (Ours) 50.06 74.35 47.98 65.44 59.17 78.81 51.17 50.92 26.57 24.65
Improve (%) +12.44 +19.75 +19.86 +0.39 +2.21 +12.71 +4.67 +4.42 +3.08 +3.20

Table 1: Overall results of different inference based methods on four benchmarks. We reimplement all methods
according to their open source codes under the same environment except for ITI. The Llama2-13B-Chat vs. 7B-Chat
setting is used in experiments of CD. Follow Zhang et al. (2025), for ICD and RCD, we fine-tune Llama2-7B-Base
as the weak model for contrasting with Llama2-7B-Chat. Besides, to implement ICD and RCD, we fine-tune
the weak model on different training subsets of HaluEval (i.e., QA, Sum, Dialog, and All), and report the best
performance across these task formats on each benchmark. The best results are bolded. We also conduct efficiency
analysis in Appendix B.1. RCD holds a moderate and acceptable delay among CD based methods.

Methods %truth ↑ %info ↑ %truth*info ↑ %reject ↓

CD 70.21 42.25 19.23 29.98
ICD 62.85 77.65 41.16 23.50
RCD (Ours) 68.05 79.66 47.73 23.13

Table 2: Evaluation results on TruthfulQA for open-
ended generation task.

from news articles and Expert with 236 samples
from the validation and test splits of ExpertQA.
TriviaQA (Joshi et al., 2017) contains over 650K
question-answer pairs sourced from trivia web-
sites, accompanied by evidence documents from
Wikipedia and web sources. Natural Questions
(NQ) (Kwiatkowski et al., 2019) includes around
300K human generated questions with annotated
short and long answers derived from Wikipedia.

Evaluation Metrics We employ multiple-choice
accuracy metrics to assess model performance on
the truthfulness-related dataset, i.e., TruthfulQA.
Specifically, MC1 evaluates whether the model as-
signs the highest probability to the correct answer,
while MC2 measures the total normalized proba-
bility mass the model assigns to correct answers.
MC3 combines accuracy and consistency across
multiple questions to assess the model’s overall
reliability. For FACTOR, we use accuracy as the
sole evaluation metric to assess the text completion
performance of large language models. Follow-
ing Joshi et al. (2017), we adopt Exact Match
(EM) and F1 score (F1) as evaluation metrics to
measure the correctness of the model’s responses
on knowledge-seeking datasets, i.e., TriviaQA and
NQ. Following Lin et al. (2022), we evaluate the

generation task of the TruthfulQA dataset. Specifi-
cally, two fine-tuned GPT-3.5 models are used to in-
dependently score each response along two dimen-
sions: truth (factual accuracy) and info (informa-
tiveness). The truth&info score is then computed
as the harmonic mean of these two dimensions.
Furthermore, we report the reject rate, which quan-
tifies the proportion of responses where the model
abstains from answering.

Comparison Methods We compare with six rep-
resentative inference time hallucination mitigation
methods. Greedy Decoding (Greedy) determin-
istically chooses the highest probability token at
each step. Inference Time Intervention (ITI)
(Li et al., 2024) injects shifts internal activations
along learned truthful directions during decoding to
enhance truthfulness. Activation Decoding(AD)
(Chen et al., 2024) calibrates next-token probabil-
ities using an entropy metric over in-context ac-
tivations, amplifying contextual cues and down-
weighting language priors. Contrastive Decoding
(CD) (Li et al., 2023b) contrasts outputs from a
strong and a weak model to penalize non factual
content. Decoding by Contrasting Layers (DoLa)
(Chuang et al., 2024) refines factual accuracy by
contrasting internal layers of the same model. In-
duce then Contrast Decoding (ICD) (Zhang et al.,
2025) induces hallucinations in a factually weak
model and then enhances the factuality via con-
trastive decoding.

Implementation Details All experiments are
conducted on a single NVIDIA Tesla A100 80GB
GPU. Following Zhang et al. (2025), we take
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Methods TruthfulQA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1

RCD 50.06 74.35 47.98 65.44 59.17 78.81 51.17 50.92 26.57 24.65
w/o Adv Perturb. 38.31 65.56 37.23 55.88 38.92 55.50 50.88 50.76 26.26 24.40
w/o Perturb. 46.32 69.08 41.25 65.05 57.66 68.64 50.88 50.66 26.23 24.38

Table 3: Ablation study results on four hallucination benchmarks.

Llama2-7B-Chat as the original model and fine-
tune Llama2-7B-Base to obtain a factually weaker
model. The hallucination model is trained on
HaluEval (Li et al., 2023a). HaluEval dataset
covers both factual and faithfulness hallucination
types, and contains 35,000 hallucination samples
across different task formats of fine-tuning data sub-
sets, i.e., question answering (QA), summarization
(Sum), dialogue (Dialog), and general instruction
following (General), with 10,000 instances in QA,
Sum, and Dialog and 5,000 in General. We use QA,
Sum, Dialog, and their union (All) subsets for fine-
tuning the hallucination model. We adopt LoRA
(Hu et al., 2022) for parameter-efficient tuning
and implement the pipeline with LLaMA-Factory
(Zheng et al., 2024). For fine-tuning hallucination
model, the perturbation radius ϵ is searched from
{0.01, 0.1, 1}. We provide more detailed hyperpa-
rameter settings in Appendix A.

4.2 Main Results

Discriminative Evaluation Discriminative eval-
uation results on four datasets for hallucination
mitigation are shown in Table 1. The proposed
RCD achieves the best performance on all datasets
in terms of all evaluation metrics. This demon-
strates the superiority of our model for halluci-
nation mitigation. Specifically, for truthfulness-
related datasets, compared to the baseline Greedy,
RCD achieves improvements of +12.4%, +19.8%,
and +19.9% on MC1, MC2, and MC3 scores on
TruthfulQA. For knowledge-seeking tasks, RCD
outperforms the baseline by +4.7% EM and +4.4%
F1 scores on TriviaQA.

Generative Evaluation Table 2 presents the eval-
uation results on generative tasks for CD, ICD,
and our proposed RCD approach. Compared to
ICD, RCD achieves a +2.01% improvement in
info, a +6.57% improvement in truth&info, and
a -0.37% reduction in reject, indicating that RCD
produces more informative and factually consistent
responses. Additionally, the relatively high truth

score of the CD method may be incorrect. This is
because "reject" responses are often interpreted by
the scoring model as fully correct, thereby receiv-
ing the maximum truth score. As a result, CD’s
overall truth score does not necessarily reflect fac-
tual accuracy.

4.3 Ablation Study

We conduct the ablation study to evaluate the ef-
fectiveness by removing the key components in
RCD. The ablation models are as follows: 1) w/o
Adv Perturb. refers to replacing adversarial per-
turbations with random perturbations during the
fine-tuning of the hallucination induced models. 2)
w/o Perturb. indicates removing the adversarial
perturbations entirely during fine-tuning.

The ablation results on four hallucination bench-
marks are presented in Table 3. The full RCD
model achieves the best performance across all met-
rics on both datasets, showing the effectiveness of
each component for building hallucination LLMs.
Incorporating adversarial perturbations enhances
the generation of precise and diverse hallucinations.
In this way, RCD enables more effective filtering of
factual inaccuracies, leading to more reliable and
factually consistent outputs.

4.4 Hallucination Induction Analysis

Evaluation against Different Task Format in
Hallucination Induction Following Zhang et al.
(2025), we examine how the task format of the
training data affect the method’s mitigation per-
formance. We evaluate four task formats corre-
sponding to three HaluEval subsets, i.e., question
answering (QA), summarization (Sum), dialogue
(Dialog), and their combination (All). QA, Sum,
and Dialog contains 10,000 samples, respectively.
All aggregates the 30,000 samples from three sub-
sets. We fine-tune the hallucination LLM on these
data by using ICD and our RCD.

Table 4 shows results of ICD and our RCD
against different task formats on four hallucination
benchmarks. RCD outperforms ICD in most set-
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Methods Task
Format

TruthfulQA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1

RCD Sum 50.06 74.35 47.98 64.96 56.52 66.10 50.69 50.44 25.90 24.06
Dialog 49.69 70.24 44.05 65.54 59.07 69.91 51.17 50.92 26.43 24.54
QA 43.08 70.19 43.02 65.44 59.87 78.81 51.12 50.87 26.57 24.65
All 47.74 73.13 45.79 65.44 57.13 66.94 51.00 50.75 26.32 24.46

ICD Sum 45.22 63.67 36.33 64.96 56.56 68.22 50.76 50.56 26.23 24.38
Dialog 46.20 64.81 37.20 65.05 57.66 68.64 50.88 50.66 26.15 24.44
QA 46.32 69.08 41.25 64.47 56.02 65.25 50.46 50.33 25.59 23.94
All 41.73 67.74 41.34 64.48 56.26 65.87 50.78 50.56 25.96 24.03

Table 4: Results against different task formats of fine-tuning data on four benchmarks. We fine-tune the hallucination
model on each subset of data using perturbation radius values of {0.01, 0.1, 1}, and report the best mitigation
performance achieved on each benchmark.

Figure 3: Results against different ratios of fine-tuning data for inducing hallucinations on TruthfulQA.

tings, demonstrating its effectiveness across differ-
ent task formats for hallucination induction. RCD
allows the weaker model to learn more diverse hal-
lucination patterns across different task domains,
achieving better hallucination mitigation.

Evaluation Across Different Ratios of Training
Samples in Hallucination Induction We exper-
iment under different ratios of the hallucination
training set to evaluate the generalization when
training with data constraint settings in hallucina-
tion induction. Given a predefined ratio (e.g., 20%)
and a random seed, we randomly sample from the
original set (i.e., 30,000 samples) of HaluEval (Li
et al., 2023a) as the training set. As shown in Fig-
ure 3, our RCD consistently maintains higher MC
scores in almost all sampling scenarios. With a
smaller ratio of training samples, ICD struggles
to learn sufficient hallucination patterns from lim-
ited data, leading to poor generalization. Our RCD
can learn more diverse patterns from limited data
by dynamically generating hard negative samples
that better approximate the decision boundary of
hallucinations. With a higher ratio of training sam-
ples, ICD tends to overfit to provide specific hal-

Methods TruthfulQA
MC1 MC2 MC3

Baseline 37.62 54.60 28.12
ICD 46.32 69.08 41.25
RCD
w/ FGM 50.06 74.35 47.98
w/ PGD 47.36 70.65 44.63

Table 5: Results against different attack methods for
inducing hallucinations on TruthfulQA.

lucination patterns for contrastive decoding, while
RCD learns more generalized hallucination pat-
terns, maintaining steadily improved mitigation
performance.

Evaluation against Different Perturbation Meth-
ods for Fine-tuning Factually Weak LLM We
evaluate the effectiveness of our proposed method
under various adversarial attack settings. Firstly,
we perform adversarial fine-tuning on the weaker
model using two representative attack algorithms,
i.e., Fast Gradient Method (FGM) and Projected
Gradient Descent (PGD). FGM applies a single
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Methods TruthfulQA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1

Baseline 37.62 54.60 28.12 65.05 56.96 66.10 46.50 46.50 23.49 21.45
ICD 46.32 69.08 41.25 65.05 57.66 68.64 50.88 50.66 26.23 24.38
RCD
ϵ = 0.01 50.06 74.35 47.98 65.35 56.89 69.92 51.03 50.83 26.26 24.40
ϵ = 0.1 48.10 70.78 45.82 65.35 57.10 71.61 50.99 50.76 26.37 24.43
ϵ = 1 40.76 69.31 41.88 65.44 59.87 78.81 51.17 50.92 26.57 24.65

Table 6: Results against different perturbation radius when adversarially fine-tuning the hallucination model on
four benchmarks. We adopt the subset of the optimal task formats on main results as fine-tuning data to build
the hallucination model. For each benchmark, based on the same fine-tuning data, we experiment with different
perturbation radius ϵ ∈ {0.01, 0.1, 1}, and report the corresponding mitigation performance.

step perturbation along the normalized gradient di-
rection, while PGD generates adversarial samples
through iterative projected updates under a norm
constraint. As shown in Table 5, RCD w/ FGM
and w/ PGD consistently outperform comparison
methods, highlighting the benefit of incorporating
different adversarial perturbations in hallucination
induction.

4.5 Parameter Analysis

We perform parameter analysis to study how the
perturbation radius ϵ in adversarial fine-tuning af-
fects the mitigation performance. The perturba-
tion radius controls the magnitude of adversarial
fine-tuning to generate worst-case samples when
constructing the factually weaker model. We vary
ϵ over {0.01, 0.1, 1} during adversarial fine-tuning
a factually weak LLM.

Experimental results on four benchmarks of our
RCD against different ϵ are shown in Table 6. RCD
achieves optimal mitigation results on TruthfulQA
with ϵ = 0.01, and ϵ = 1 on other benchmarks. We
also observe that, under different perturbation mag-
nitudes, our RCD outperforms comparison meth-
ods on most evaluation metrics. This indicates
that, by introducing hard negative samples, RCD
learns more diverse hallucination features from the
limited training data, leading to better mitigation
results. We further provide parameter analysis of λ
in Appendix B.2.

4.6 Effectiveness Evaluation Across Different
LLM Scales

We evaluate the generalization capability of our
proposed RCD method across large language mod-
els of varying sizes. Specifically, we compare the
performance of the LLaMA2-7B model fine-tuned

Methods TruthfulQA

MC1 MC2 MC3

Llama2-7B-Chat
Baseline 37.62 54.60 28.12
ICD 46.32 69.08 41.25
RCD 50.06 74.35 47.98

Llama2-13B-Chat
Baseline 37.75 55.67 28.16
ICD 48.47 73.47 46.04
RCD 53.49 77.13 51.14

Llama2-70B-Chat
Baseline 37.70 58.99 29.79
ICD 51.04 75.01 46.54
RCD 54.71 80.45 53.78

Table 7: Performance comparison across different
model sizes on TruthfulQA. All baselines use greedy de-
coding. We contrast Llama2-Chat of different sizes with
Llama2-7B fine-tuned on 30k hallucinated samples.

with 30K hallucination samples to larger LLaMA2
variants, including the 13B and 70B models.

The results across different model sizes on Truth-
fulQA are shown in Table 7. RCD consistently
outperforms the baseline across all model sizes,
highlighting its scalability and strong generaliza-
tion ability to larger language models.

4.7 Impact on Overall LLM Performance

Following Zhang et al. (2025), we experiment to
assess whether our proposed method affects the
general reasoning and problem solving capabili-
ties of LLMs. We evaluate on two widely used
benchmarks: MMLU (Hendrycks et al., 2021) and
ARC-Challenge (Clark et al., 2018). MMLU con-
sists of multiple-choice questions covering a broad
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Methods MMLU ARC-Challenge

Baseline 0.472 0.548
ICD 0.467 0.498
RCD 0.472 0.550

Table 8: Performance comparison of different decoding
methods on overall LLM benchmarks.

Figure 4: Token-level probability generated by the hal-
lucination model for the query “When was the rock and
roll hall of fame built in Cleveland?” from NQ dataset.
The correct answer is 1995, and a hallucinated answer
is 1986.

range of academic and professional subjects, test-
ing general knowledge and factual reasoning. ARC-
Challenge includes complex science questions that
require multi-step reasoning. All experiments are
conducted under the 5-shot setting to ensure con-
sistency across methods.

Table 8 shows the results of different decoding
methods on MMLU and ARC-Challenge. First,
RCD outperforms ICD and achieves comparable
performance to Baseline on MMLU. This demon-
strates that our method does not compromise the
model’s general knowledge capabilities. Besides,
RCD slightly outperforms the Baseline and ICD on
ARC-Challenge, suggesting a potential benefit on
complex question answering tasks.

4.8 Case Study

We provide a case study to illustrate how the con-
trast signal is formed and why RCD succeeds
where ICD fails. Consider the query from NQ
dataset: “When was the rock and roll hall of fame
built in Cleveland?” The gold answer is 1995,
while a common hallucination is 1986. In Figure 4,
the bars labeled RCD and ICD report the weaker
model’s token probabilities for the two key next
token candidates token ‘8’ (from 1986) and token
‘9’ (from 1995) which are contrasted against the

original model’s probabilities. Under RCD, the
weaker model assigns relatively higher probabil-
ity to the hallucination token ‘8’ than the original
model, and relatively lower probability to the cor-
rect token ‘9’; this yields a large positive contrast
penalty for ‘8’ and a small penalty for ‘9’ in the
distribution Equation (4), thereby suppresses the
hallucinated ‘8’ while preserving the correct ‘9’.
In contrast, ICD makes the weaker model less con-
fident on the correct token ‘9’, which induces an
excessive contrast penalty on ‘9’ and mistakenly
suppresses the true answer.

5 Conclusion

We present Regularized Contrastive Decoding
(RCD), a new inference-time method that lever-
ages hard negative samples to enhance contrastive
decoding and achieve more effective hallucina-
tion mitigation. RCD learns diverse hallucina-
tion patterns to enhance the weaker model through
adversarial-aware fine-tuning and employs con-
trastive decoding to mitigate hallucinations effec-
tively. Experiments on four public hallucination
benchmarks demonstrate that RCD consistently ob-
tain better hallucination mitigation performance.
Experiments also verified the effectiveness of RCD
across different model sizes, task formats, pertur-
bation methods and training data size.

Acknowledgements

This work was supported by the National Natu-
ral Science Foundation of China (No.U24A20335),
the Fundamental Research Funds for the Central
Universities (No.CUC25SG002), the China Post-
doctoral Science Foundation (No.2024M753481),
and Youth Innovation Promotion Association CAS.
The authors thank the anonymous reviewers and
the metareviewer for their helpful comments.

Limitations

Although our proposed RCD method effectively
improves the factuality and reliability of LLM out-
puts, it requires additional computational resources
for generating adversarial perturbations and fine-
tuning a factually weaker model. Moreover, our
evaluation focus on the Llama-2 family, and its ef-
fectiveness on other LLM architectures remains to
be explored.
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Ethical Considerations

Our method trains a factually weaker language
model that is more prone to producing hallucina-
tions. While this is effective for improving hal-
lucination mitigation in LLMs, it raises ethical
concerns: such a model could be misused to in-
tentionally generate and spread misinformation or
disinformation. To mitigate this risk, it should be
handled responsibly and used only for research
within controlled environments.
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A Details of Hyperparameter Settings

We train Llama2-7B-Base with Adam optimizer
(Kinga et al., 2015), a learning rate of 5 × 10−4

with zero warmup ratio, a total batch size of 256
samples, and enable LoRA adapters on attention
projections (q_proj, k_proj, v_proj). We sum-
marize the hyperparameter settings on each bench-
mark in Table 9.

Configuration TruthfulQA FACTOR TriviaQA NQ

Number of epochs 5 5 5 5
Total batch size 256 256 256 256
Optimizer Adam Adam Adam Adam
Learning rate 5e−4 5e−4 5e−4 5e−4

Warmup ratio 0.0 0.0 0.0 0.0
Perturbation radius 0.1 1 1 1
Fine-tuning data Sum QA QA Dialog

Table 9: Hyperparameter settings of RCD on four bench-
marks.

B Supplementary Experimental Results

B.1 Efficiency Analysis
We compare the inference efficiency of different
inference-time methods, i.e., a baseline greedy de-
coding, CD, ICD, and our proposed RCD. The
baseline employs on a Llama2-7B-Chat model.
The measured times reflect approximate overhead
trends rather than a strict one-to-one comparison,
as CD experiment uses a Llama2-13B-Chat vs.
7B-Chat configuration, while both ICD and RCD
rely on a Llama2-7B-Chat model with a fine-tuned
Llama2-7B-Base weaker model.

Methods Decoding Latency (s)

Baseline 138.4 (×1.00)
CD 357.6 (×2.58)
ICD 402.4 (×2.91)
RCD 384.7 (×2.78)

Table 10: Inference time comparison across different
decoding strategies.

Table 10 shows inference time across different
decoding methods. CD-based methods typically
increase latency. Among them, our method holds
a moderate acceptable delay for hallucination mit-
igation. Specifically, the baseline decoding takes
approximately 138.4s. Under the CD setting, in-
creasing complexity leads to about a 2.58× slow-
down. For ICD and RCD, which directly compare
a 7B-Chat strong model to a fine-tuned 7B-Base
weaker model, the overhead is roughly 2.91× and
2.78× respectively. Although these configurations

Figure 5: MC1, MC2, and MC3 scores on the Truth-
fulQA dataset for different scaling factors λ.

differ, the general pattern holds: more sophisticated
contrastive strategies incur additional computation.
Notably, RCD offers improved factual fidelity over
ICD while slightly reducing the slowdown from
the baseline, indicating a more balanced trade-off
between accuracy and efficiency.

B.2 Supplementary Parameter Analysis
To better understand the behavior of RCD, we
analyze the scaling factor λ, which controls the
strength of the contrastive signal from the weaker
model. Unless otherwise noted, this analysis uses
the TruthfulQA benchmark with the weak model
adversarially fine-tuned on the HaluEval summa-
rization subset and an L2-normalized FGM mag-
nitude ϵ = 0.01. Figure 5 plots MC1/MC2/MC3
as λ varies from 1.0 to 2.0. Increasing λ amplifies
the penalty from the weaker (hallucination) model,
thereby strengthening hallucination suppression
and improving accuracy up to a point. Empirically,
λ = 1.6 offers a strong trade-off across metrics
(MC1 50.06, MC2 74.35, MC3 47.98): larger val-
ues can slightly boost MC2/MC3 but start to reduce
MC1, indicating over-penalization that suppresses
some potentially correct tokens.
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