
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 6044–6060
November 4-9, 2025 ©2025 Association for Computational Linguistics

Retrieval-Augmented Generation with Hierarchical Knowledge

Haoyu Huang1,2*, Yongfeng Huang2*, Junjie Yang2, Zhenyu Pan1,2, Yongqiang Chen1

Kaili Ma1, Hongzhi Chen1, James Cheng2

1KASMA.ai
2CSE, The Chinese University of Hong Kong

{haoyuhuang,zhenyupan,yqchen,klma,chenhongzhi}@kasma.ai
{haoyuhuang,zhenyupan,1155215805}@link.cuhk.edu.hk

{yfhuang22,jcheng}@cse.cuhk.edu.hk

Abstract

Graph-based Retrieval-Augmented Generation
(RAG) methods have significantly enhanced the
performance of large language models (LLMs)
in domain-specific tasks. However, existing
RAG methods do not adequately utilize the
naturally inherent hierarchical knowledge in
human cognition, which limits the capabilities
of RAG systems. In this paper, we introduce
a new RAG approach, called HiRAG, which
utilizes hierarchical knowledge to enhance the
semantic understanding and structure captur-
ing capabilities of RAG systems in the index-
ing and retrieval processes. Our extensive ex-
periments demonstrate that HiRAG achieves
significant performance improvements over
the state-of-the-art baseline methods. The
code of our proposed method is available at
https://github.com/hhy-huang/HiRAG.

1 Introduction

Retrieval Augmented Generation (RAG) (Gao
et al., 2023; Lewis et al., 2020; Fan et al., 2024)
has been introduced to enhance the capabilities of
LLMs in domain-specific or knowledge-intensive
tasks. Naive RAG methods retrieve text chunks
that are relevant to a query, which serve as refer-
ences for LLMs to generate responses, thus help-
ing address the problem of "Hallucination" (Zhang
et al., 2023; Tang and Yang, 2024). However, naive
RAG methods usually overlook the relationships
among entities in the retrieved text chunks. To
address this issue, RAG systems with graph struc-
tures were proposed (Edge et al., 2024; Liang et al.,
2024; Zhang et al., 2025; Peng et al., 2024a), which
construct knowledge graphs (KGs) to model rela-
tionships between entities in the input documents.
Although existing RAG systems integrating graph
structures have demonstrated outstanding perfor-
mance on various tasks, they still have some serious

*Equal contribution. This research was conducted at
kasma.ai.

limitations. GraphRAG (Edge et al., 2024) intro-
duces communities in indexing using the Leiden
algorithm (Traag et al., 2019), but the communities
only capture the structural proximity of the enti-
ties in the KG. KAG (Liang et al., 2024) indexes
with a hierarchical representation of information
and knowledge, but their hierarchical structure re-
lies too much on manual annotation and requires
a lot of human domain knowledge, which renders
their method not scalable to general tasks. Ligh-
tRAG (Guo et al., 2024) utilizes a dual-level re-
trieval approach to obtain local and global knowl-
edge as the contexts for a query, but it ignores the
knowledge gap between local and global knowl-
edge, that is, local knowledge represented by the
retrieved individual entities (i.e., entity-specific de-
tails) may not be semantically related to the global
knowledge represented in the retrieved community
summaries (i.e., broader, aggregated summaries),
as these individual entities may not be a part of the
retrieved communities for a query.

We highlight two critical challenges in exist-
ing RAG systems that integrate graph structures:
(1) distant structural relationship between se-
mantically similar entities and (2) knowledge
gap between local and global knowledge. We
illustrate them using a real example from a public
dataset, as shown in Figure 1.

Challenge (1) occurs because existing methods
over-rely on source documents, often resulting in
constructing a knowledge graph (KG) with many
entities that are not structurally proximate in the
KG even though they share semantically similar
attributes. For example, in Figure 1, although the
entities "BIG DATA" and "RECOMMENDATION
SYSTEM" share semantic relevance under the con-
cept of "DATA MINING", their distant structural
relationship in the KG reflects a corpus-driven dis-
connect. These inconsistencies between semantic
relevance and structural proximity are systemic in
KGs, undermining their utility in RAG systems

6044

https://github.com/hhy-huang/HiRAG

Layer-0
Layer-1

Retrieve

The Apache Spark and MLlib ecosystem is a
comprehensive framework designed for large-
scale data processing and machine learning
tasks. It includes a variety of components such
as Spark Streaming, Spark SQL, and MLlib.

"AMAZON AWS": ...
"AMAZON RING": ...
"JEFF BEZOS": ...
"ANDY JASSY": ...
 ...

Local

Knowledge Gap

Q: Please introduce Amazon.

Global

Amazon is primarily known
for its expansive e-commerce
platform, founded by Jeff
Bezos, which sells cloud
computing services ...

Answer

❌

Figure 1: The challenges faced by existing RAG systems: (1) Distant structural relationship between semantically
similar entities. (2) Knowledge gap between local and global knowledge.

where contextual coherence is critical.

Challenge (2) occurs as existing methods (Guo
et al., 2024; Edge et al., 2024) typically retrieve
context either from global or local perspectives but
fail to address the inherent disparity between these
knowledge layers. Consider the query "Please in-
troduce Amazon" in Figure 1, where global context
emphasizes Amazon’s involvement in technolog-
ical domains like big data and cloud computing,
but local context retrieves entities directly linked
to Amazon (e.g., subsidiaries, leadership). When
these two knowledge layers are fed into LLMs as
the contexts of a query without contextual align-
ment, LLMs may struggle to reconcile their distinct
scopes, leading to disjointed reasoning, incomplete
answers, or even contradictory outputs. For in-
stance, an LLM might conflate Amazon’s role as a
cloud provider (global) with its e-commerce oper-
ations (local), resulting in incoherent or factually
inconsistent responses as the red words shown in
the case. This underscores the need for new meth-
ods that bridge hierarchical knowledge layers to
ensure cohesive reasoning in RAG systems.

To address these challenges, we propose
Retrieval-Augmented Generation with Hierar-
chical Knowledge (HiRAG), which integrates hier-
archical knowledge into the indexing and retrieval
processes. Hierarchical knowledge (Sarrafzadeh
and Lank, 2017) is a natural concept in both graph
structure and human cognition, yet it has been
overlooked in existing approaches. Specifically,
to address Challenge (1), we introduce Indexing
with Hierarchical Knowledge (HiIndex). Rather
than simply constructing a flat KG, we index a
KG hierarchically layer by layer. Each entity (or
node) in a higher layer summarizes a cluster of
entities in the lower layer, which can enhance

the connectivity between semantically similar en-
tities. For example, in Figure 1, the inclusion of
the summary entity "DATA MINING" strengthens
the connection between "BIG DATA" and "REC-
OMMENDATION SYSTEM". To address Chal-
lenge (2), we propose Retrieval with Hierarchical
Knowledge (HiRetrieval). HiRetrieval effectively
bridges local knowledge of entity descriptions to
global knowledge of communities, thus resolving
knowledge layer disparities. It provides a three-
level context comprising the global level, the bridge
level, and the local level knowledge to an LLM, en-
abling the LLM to generate more comprehensive
and precise responses.

In summary, we make the following main contri-
butions:

• We identify and address two critical chal-
lenges in graph-based RAG systems: distant
structural relationships between semantically
similar entities and the knowledge gap be-
tween local and global information.

• We propose HiRAG, which introduces unsu-
pervised hierarchical indexing and a novel
bridging mechanism for effective knowledge
integration, significantly advancing the state-
of-the-art in RAG systems.

• Extensive experiments demonstrate both the
effectiveness and efficiency of our approach,
with comprehensive ablation studies validat-
ing the contribution of each component.

2 Related Work

In this section, we discuss recent research con-
cerning graph-augmented LLMs, specifically RAG

6045

methods with graph structures. GNN-RAG (Mavro-
matis and Karypis, 2024) employs GNN-based rea-
soning to retrieve query-related entities. Then they
find the shortest path between the retrieved entities
and candidate answer entities to construct reason-
ing paths. LightRAG (Guo et al., 2024) integrates
a dual-level retrieval method with graph-enhanced
text indexing. They also decrease the computa-
tional costs and speed up the adjustment process.
GRAG (Hu et al., 2024) leverages a soft pruning
approach to minimize the influence of irrelevant
entities in retrieved subgraphs. It also implements
prompt tuning to help LLMs comprehend textual
and topological information in subgraphs by in-
corporating graph soft prompts. StructRAG (Li
et al., 2024) identifies the most suitable structure
for each task, transforms the initial documents into
this organized structure, and subsequently gener-
ates responses according to the established struc-
ture. Microsoft GraphRAG (Edge et al., 2024)
first retrieves related communities and then let the
LLM generate the response with the retrieved com-
munities. They also answer a query with global
search and local search. KAG (Liang et al., 2024)
introduces a professional domain knowledge ser-
vice framework and employs knowledge alignment
using conceptual semantic reasoning to mitigate
the noise issue in OpenIE. KAG also constructs
domain expert knowledge using human-annotated
schemas. ReG (Zou et al., 2025) uses LLMs to
refine weak supervision signals to align retrievers
in fine-grained graph-based RAG systems.

3 Preliminary and Definitions

In this section, we give a general formulation of
an RAG system with graph structure referring to
the definitions in Guo et al. (2024) and Peng et al.
(2024b).

In an RAG framework M as shown in Equa-
tion 1, LLM is the generation module,R represents
the retrieval module, φ denotes the graph indexer,
and ψ refers to the graph retriever:

M = (LLM,R(φ,ψ)). (1)

When we answer a query, the answer we get from
an RAG system is represented by a∗, which can be
formulated as

a∗ = argmax
a∈A
M(a|q,G), (2)

G = φ(D) = {(h, r, t)|h, t ∈ V, r ∈ E}, (3)

where M(a|q,G) is the target distribution with
a graph retriever ψ(G|q,G) and a generator
LLM(a|q,G), and A is the set of possible re-
sponses. The graph database G is constructed from
the original external database D. We utilize the
total probability formula to decomposeM(a|q,G),
which can be expressed as

M(a|q,G) =
∑

G∈G
LLM(a|q,G) ·ψ(G|q,G). (4)

Most of the time, we only need to retrieve the
most relevant subgraph G from the external graph
database G. Therefore, here we can approximate
M(a|q,G) as follows:

M(a|q,G) ≈ LLM(a|q,G∗) · ψ(G∗|q,G), (5)

whereG∗ denotes the optimal subgraph we retrieve
from the external graph database G. What we fi-
nally want is to get a better generated answer a∗.

4 The HiRAG Framework

HiRAG consists of the two modules, HiIndex and
HiRetrieval, as shown in Figure 2. In the HiIndex
module, we construct a hierarchical KG with differ-
ent knowledge granularity in different layers. The
summary entities in a higher layer represent more
coarse-grained, high-level knowledge but they can
enhance the connectivity between semantically sim-
ilar entities in a lower layer. In the HiRetrieval
module, we select the most relevant entities from
each retrieved community and find the shortest path
to connect them, which serve as the bridge-level
knowledge to connect the knowledge at both lo-
cal and global levels. Then an LLM will generate
responses with these three-level knowledge as the
context.

4.1 Indexing with Hierarchical Knowledge
In the HiIndex module, we index the input docu-
ments as a hierarchical KG. First, we employ the
entity-centric triple extraction to construct a basic
KG G0 following (Carta et al., 2023). Specifically,
we split the input documents into text chunks with
some overlaps. These chunks will be fed into the
LLM with well-designed prompts to extract entities
V0 first. Then the LLM will generate relations (or
edges) E0 between pairs of the extracted entities
based on the information of the corresponding text
chunks. The basic KG can be represented as

G0 = {(h, r, t)|h, t ∈ V0, r ∈ E0}. (6)

6046

Normal Entities

Summary Entities

Meta Summary Entities

GMM Clustering

HiIndex: Indexing with Hierarchical Knowledge

x k

x k

HiRetrieval: Retrieval with Hierarchical Knowledge

Documents

Flatten KG

Query Key Entity
Reasoning Paths

Communities Global

Local

Bridge

Community Report

Reasoning Paths

Key Entity
Descriptions

Generation by LLM

Layer[i-1]

Layer[i]

Layer[i+1]

Summarization by LLM

Figure 2: The overall architecture of the HiRAG framework.

The basic KG is also the 0-th layer of our hierar-
chical KG. We denote the set of entities (nodes) in
the i-th layer as Li where L0 = V0. To construct
the i-th layer of the hierarchical KG, for i ≥ 1,
we first fetch the embeddings of the entities in the
(i − 1)-th layer of the hierarchical KG, which is
denoted as

Zi−1 = {Embedding(v)|v ∈ Li−1}, (7)

where Embedding(v) is the embedding of an en-
tity v. Then we employ Gaussian Mixture Models
(GMMs) to conduct semantical clustering on Li−1

based on Zi−1, following the method described in
RAPTOR (Sarthi et al., 2024). We obtain a set of
clusters as

Ci−1 = GMM(Li−1,Zi−1) = {S1, . . . ,Sc}, (8)

where ∀x, y ∈ [1, c], |Sx ∩ Sy| ≥ 0 and⋃
1≤x≤c Sx = Li−1. After clustering with GMMs,

the descriptions of the entities in each cluster in
Ci−1 are fed into the LLM to generate a set of sum-
mary entities for the i-th layer. Thus, the set of sum-
mary entities in the i-th layer, i.e., Li, is the union
of the sets of summary entities generated from all
clusters in Ci−1. Then, we create the relations be-
tween entities in Li−1 and entities in Li, denoted as
E{i−1,i}, by connecting the entities in each cluster
S ∈ Ci−1 to the corresponding summary entities in
Li that are generated from the entities in S.

To generate summary entities in Li, we use a
set of meta summary entities X to guide the LLM

to generate the summary entities. Here, X is a
small set of general concepts such as "organiza-
tion", "person", "location", "event", "technology",
etc., that are generated by LLM. For example, the
meta summary "technology" could guide the LLM
to generate summary entities such as "big data" and
"AI". Note that conceptually X is added as the top
layer in Figure 2, but X is actually not part of the
hierarchical KG.

After generating the summary entities and rela-
tions in the i-th layer, we update the KG as follows:

Ei = Ei−1 ∪ E{i−1,i}, (9)

Vi = Vi−1 ∪ Li, (10)

Gi = {(h, r, t)|h, t ∈ Vi, r ∈ Ei}. (11)

We repeat the above process for each layer from
the 1st layer to the k-th layer. We will discuss
how to choose the parameter k in Section 5. Also
note that there is no relation between the summary
entities in each layer except the 0-th layer (i.e., the
basic KG).

We also employ the Leiden algorithm (Traag
et al., 2019) to compute a set of communities P
from the hierarchical KG. Each community may
contain entities from multiple layers and an entity
may appear in multiple communities. For each
community p ∈ P , we generate an interpretable
semantic report using LLMs. Unlike existing meth-
ods such as GraphRAG (Edge et al., 2024) and

6047

LightRAG (Guo et al., 2024), which identify com-
munities based solely on direct structural proxim-
ity in a basic KG, our hierarchical KG introduces
multi-resolution semantic aggregation. Higher-
layer entities in our KG act as semantic hubs that
abstract clusters of semantically related entities re-
gardless of their distance from each other in a lower
layer. For example, while a flat KG might sepa-
rate "cardiologist" and "neurologist" nodes due to
limited direct connections, their hierarchical ab-
straction as "medical specialists" in upper layers
enables joint community membership. The hierar-
chical structure thus provides dual connectivity en-
hancement: structural cohesion through localized
lower-layer connections and semantic bridging via
higher-layer abstractions. This dual mechanism
ensures our communities reflect both explicit re-
lational patterns and implicit conceptual relation-
ships, yielding more comprehensive knowledge
groupings than structure-only approaches.

4.2 Retrieval with Hierarchical Knowledge
We now discuss how we retrieve hierarchical
knowledge to address the knowledge gap issue.
Based on the hierarchical KG Gk constructed in
Section 4.1, we retrieve three-level knowledge at
both local and global levels, as well as the bridging
knowledge that connects them.

To retrieve local-level knowledge, we extract the
top-n most relevant entities V̂ as shown in Equa-
tion 12, where Sim(q, v) is a function that measures
the semantic similarity between a user query q and
an entity v in the hierarchical KG Gk. We set n to
20 as default.

V̂ = TopN({v ∈ Vk|Sim(q, v)}, n). (12)

To access global-level knowledge related to a query,
we find the communities P̂ ⊂ P that are con-
nected to the retrieved entities as described in Equa-
tion 13, where P is computed during indexing in
Section 4.1. Then the community reports of these
communities are retrieved, which represent coarse-
grained knowledge relevant to the user’s query.

P̂ =
⋃

p∈P
{p|p ∩ V̂ ≠ ∅}. (13)

To bridge the knowledge gap between the retrieved
local-level and global-level knowledge, we also
find a set of reasoning paths R connecting the re-
trieved communities. Specifically, from each com-
munity, we select the top-m query-related key en-

tities and collect them into V̂P̂ , as shown in Equa-
tion 14. The set of reasoning pathsR is defined as
the set of shortest paths between each pair of key
entities according to their order in V̂P̂ , as shown in
Equation 15. Based onR, we construct a subgraph
R̂ as described in Equation 16. Here, R̂ collects a
set of triples from the KG that connect the knowl-
edge in the local entities and the knowledge in the
global communities.

V̂P̂ =
⋃

p∈P̂
TopN({v ∈ p|Sim(q, v)},m), (14)

R =
⋃

i∈[1,|V̂P̂ |−1]

ShortestPathGk
(V̂P̂ [i], V̂P̂ [i+1]),

(15)
R̂ = {(h, r, t) ∈ Gk|h, t ∈ R}. (16)

After retrieving the three-level hierarchical knowl-
edge, i.e., local-level descriptions of the individual
entities in V̂ , global-level community reports of the
communities in P̂ , and bridge-level descriptions of
the triples in R̂, we feed them as the context to the
LLM to generate a comprehensive answer to the
query. We also provide the detailed procedures of
HiRAG with pseudocodes in Appendix C.

4.3 Why is HiRAG effective?

HiRAG’s efficacy stems from its hierarchical archi-
tecture, HiIndex (i.e., hierarchical KG) and HiRe-
trieval (i.e., three-level knowledge retrieval), which
directly mitigates the limitations outlined in Chal-
lenges (1) and (2) as described in Section 1.

Addressing Challenge (1): The hierarchical
knowledge graph Gk introduces summary entities
in its higher layers, creating shortcuts between enti-
ties that are distantly located in lower layers. This
design bridges semantically related concepts effi-
ciently, bypassing the need for exhaustive traversal
of fine-grained relationships in the KG.

Resolving Challenge (2): HiRetrieval con-
structs reasoning paths by linking the top-n entities
most semantically relevant to a query with their
associated communities. These paths represent
the shortest connections between localized entity
descriptions and global community-level insights,
ensuring that both granular details and broader con-
textual knowledge inform the reasoning process.

Synthesis: By integrating (i) semantically sim-
ilar entities via hierarchical shortcuts, (ii) global
community contexts, and (iii) optimized pathways
connecting local and global knowledge, HiRAG

6048

generates comprehensive, context-aware answers
to user queries.

5 Experimental Evaluation

We report the performance evaluation results of
HiRAG in this section.

Baseline Methods. We compared HiRAG with
state-of-the-art and popular baseline RAG methods.
NaiveRAG (Gao et al., 2022, 2023) splits original
documents into chunks and retrieves relevant text
chunks through vector search. GraphRAG (Edge
et al., 2024) utilizes communities and we use the
local search mode in our experiments as it re-
trieves community reports as global knowledge,
while their global search mode is known to be
too costly and does not use local entity descrip-
tions. LightRAG (Guo et al., 2024) uses both
global and local knowledge to answer a query.
FastGraphRAG (Circlemind, 2024) integrates KG
and personalized PageRank as proposed in Hip-
poRAG (Gutiérrez et al., 2024). KAG (Liang et al.,
2024) integrates structured reasoning of KG with
LLMs and employs mutual indexing and logical-
form-guided reasoning to enhance professional do-
main knowledge services.

Datasets and Queries. We used four datasets
from the UltraDomain benchmark (Qian et al.,
2024), which is designed to evaluate RAG sys-
tems across diverse applications, focusing on long-
context tasks and high-level queries in specialized
domains. We used Mix, CS, Legal, and Agriculture
datasets like in LightRAG (Guo et al., 2024). We
also used the benchmark queries provided in Ultra-
Domain for each of the four datasets. The statistics
of these datasets are given in Appendix A.

LLM. We employed DeepSeek-V3 (DeepSeek-
AI et al., 2024) as the LLM for information extrac-
tion, entity summarization, and answer generation
in HiRAG and other baseline methods. We utilized
GLM-4-Plus (GLM et al., 2024) as the embedding
model for vector search and semantic clustering be-
cause DeepSeek-V3 does not provide an accessible
embedding model.

5.1 Overall Performance Comparison

Evaluation Details. Our experiments followed the
evaluation methods of recent work (Edge et al.,
2024; Guo et al., 2024) by employing a power-
ful LLM to conduct multi-dimensional comparison.
We used the win rate to compare different methods,
which indicates the percentage of instances that

a method generates higher-quality answers com-
pared to another method as judged by the LLM.
We utilized GPT-4o (Achiam et al., 2023) as the
evaluation model to judge which method generates
a superior answer for each query for the following
four dimensions: (1) Comprehensiveness: how
thoroughly does the answer address the question,
covering all relevant aspects and details? (2) Em-
powerment: how effectively does the answer pro-
vide actionable insights or solutions that empower
the user to take meaningful steps? (3) Diversity:
how well does the answer incorporate a variety of
perspectives, approaches, or solutions to the prob-
lem? (4) Overall: how does the answer perform
overall, considering comprehensiveness, empower-
ment, diversity, and any other relevant factors? For
a fair comparison, we also alternated the order of
the answers generated by each pair of methods in
the prompts and calculated the overall win rates of
each method.

Evaluation Results. We present the win rates of
HiRAG and five baseline methods in Table 1. Hi-
RAG consistently outperforms existing approaches
across all four datasets and four evaluation dimen-
sions in the majority of cases. Key insights derived
from the results are summarized below.

Graph structure enhances RAG systems:
NaiveRAG exhibits inferior performance com-
pared to methods integrating graph structures,
primarily due to its inability to model relationships
between entities in retrieved components. Fur-
thermore, its context processing is constrained by
the token limitations of LLMs, highlighting the
importance of structured knowledge representation
for robust retrieval and reasoning.

Global knowledge improves answer qual-
ity: Approaches incorporating global knowledge
(GraphRAG, LightRAG, KAG, HiRAG) signifi-
cantly surpass FastGraphRAG, which relies on lo-
cal knowledge via personalized PageRank. An-
swers generated without global context lack depth
and diversity, underscoring the necessity of holis-
tic knowledge integration for comprehensive re-
sponses.

HiRAG’s superior performance: Among graph-
enhanced RAG systems, HiRAG achieves the high-
est performance across all datasets (spanning di-
verse domains) and evaluation dimensions. This
superiority stems primarily from two innovations:
(1) HiIndex which enhances connections between
remote but semantically similar entities in the hier-
archical KG, and (2) HiRetrieval which effectively

6049

Table 1: Win rates (%) of HiRAG, its two variants (for ablation study), and baseline methods.

Mix CS Legal Agriculture

NaiveRAG HiRAG NaiveRAG HiRAG NaiveRAG HiRAG NaiveRAG HiRAG

Comprehensiveness 16.6% 83.4% 30.0% 70.0% 32.5% 67.5% 34.0% 66.0%
Empowerment 11.6% 88.4% 29.0% 71.0% 25.0% 75.0% 31.0% 69.0%
Diversity 12.7% 87.3% 14.5% 85.5% 22.0% 78.0% 21.0% 79.0%
Overall 12.4% 87.6% 26.5% 73.5% 25.5% 74.5% 28.5% 71.5%

GraphRAG HiRAG GraphRAG HiRAG GraphRAG HiRAG GraphRAG HiRAG

Comprehensiveness 42.1% 57.9% 40.5% 59.5% 48.5% 51.5% 49.0% 51.0%
Empowerment 35.1% 64.9% 38.5% 61.5% 43.5% 56.5% 48.5% 51.5%
Diversity 40.5% 59.5% 30.5% 69.5% 47.0% 53.0% 45.5% 54.5%
Overall 35.9% 64.1% 36.0% 64.0% 45.5% 54.5% 46.0% 54.0%

LightRAG HiRAG LightRAG HiRAG LightRAG HiRAG LightRAG HiRAG

Comprehensiveness 36.8% 63.2% 44.5% 55.5% 49.0% 51.0% 38.5% 61.5%
Empowerment 34.9% 65.1% 41.5% 58.5% 43.5% 56.5% 36.5% 63.5%
Diversity 34.1% 65.9% 33.0% 67.0% 63.0% 37.0% 37.5% 62.5%
Overall 34.1% 65.9% 41.0% 59.0% 48.0% 52.0% 38.5% 61.5%

FastGraphRAG HiRAG FastGraphRAG HiRAG FastGraphRAG HiRAG FastGraphRAG HiRAG

Comprehensiveness 0.8% 99.2% 0.0% 100.0% 1.0% 99.0% 0.0% 100.0%
Empowerment 0.8% 99.2% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0%
Diversity 0.8% 99.2% 0.5% 99.5% 1.5% 98.5% 0.0% 100.0%
Overall 0.8% 99.2% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0%

KAG HiRAG KAG HiRAG KAG HiRAG KAG HiRAG

Comprehensiveness 2.3% 97.7% 1.0% 99.0% 16.5% 83.5% 5.0% 99.5%
Empowerment 3.5% 96.5% 4.5% 95.5% 9.0% 91.0% 5.0% 99.5%
Diversity 3.8% 96.2% 5.0% 95.0% 11.0% 89.0% 3.5% 96.5%
Overall 2.3% 97.7% 1.5% 98.5% 8.5% 91.5% 0.0% 100.0%

w/o HiIndex HiRAG w/o HiIndex HiRAG w/o HiIndex HiRAG w/o HiIndex HiRAG

Comprehensiveness 46.7% 53.3% 44.2% 55.8% 49.0% 51.0% 50.5% 49.5%
Empowerment 43.2% 56.8% 38.8% 61.2% 47.5% 52.5% 50.5% 49.5%
Diversity 40.5% 59.5% 40.0% 60.0% 48.0% 52.0% 48.5% 51.5%
Overall 42.4% 57.6% 40.0% 60.0% 46.5% 53.5% 48.0% 52.0%

w/o Bridge HiRAG w/o Bridge HiRAG w/o Bridge HiRAG w/o Bridge HiRAG

Comprehensiveness 49.2% 50.8% 46.5% 53.5% 49.5% 50.5% 47.0% 53.0%
Empowerment 44.2% 55.8% 43.0% 57.0% 38.5% 61.5% 41.0% 59.0%
Diversity 44.6% 55.4% 44.0% 56.0% 43.5% 56.5% 46.0% 54.0%
Overall 47.3% 52.7% 42.5% 57.5% 44.0% 56.0% 42.0% 58.0%

bridges global knowledge with localized context to
optimize relevance and coherence.

5.2 Hierarchical KG vs. Flat KG

To evaluate the significance of the hierarchical KG,
we replace the hierarchical KG with a flat KG (or
a basic KG), denoted by w/o HiIndex as reported
in Table 1. Compared with HiRAG, the win rates
of w/o HiIndex drop in almost all cases and quite
significantly in at least half of the cases. This abla-
tion study thus shows that the hierarchical indexing
plays an important role in the quality of answer gen-
eration, since the connectivity among semantically
similar entities is enhanced with the hierarchical
KG, with which related entities can be grouped
together both from structural and semantical per-
spectives.

From Table 1, we also observe that the win rates
of w/o HiIndex are better or comparable to those
of GraphRAG and LightRAG when compared with
HiRAG. This suggests that our three-level knowl-
edge retrieval method, i.e., HiRetrieval, is effective
even applied on a flat KG, because GraphRAG and
LightRAG also index on a flat KG but they only
use the local entity descriptions and global commu-
nity reports, while w/o HiIndex uses an additional
bridge-level knowledge.

5.3 HiRetrieval vs. Gapped Knowledge

To show the effectiveness of HiRetrieval, we also
created another variant of HiRAG without using the
bridge-level knowledge, denoted by w/o Bridge in
Table 1. The result shows that without the bridge-
layer knowledge, the win rates drop significantly

6050

The Apache Spark and MLlib ecosystem is a comprehensive
framework designed for large-scale data processing and
machine learning tasks. It includes a variety of components
such as Spark Streaming, Spark SQL, and MLlib...

"AMAZON AWS": ...
"AMAZON RING": ...
"JEFF BEZOS": ...
"ANDY JASSY": ...
 ...

Community Report

Entity
Descriptions

Generation by LLM

1. AWS account is required to use Spark on Amazon
EC2, showing a dependency relationship.
2. SPARK can be run on Amazon\'s Elastic MapReduce
service using custom bootstrap action scripts.
3. Amazon is one of the companies that developed open
source technologies to handle big data."
<SEP>"Amazon is one of the companies that developed
open source technologies to handle big data."
...

Bridge Descriptions

Amazon, founded by Jeff Bezos,
not only serves as a marketplace,
but also drives global tech with big
data, machine learning, and cloud
infrastructure solutions...

Answer

Figure 3: Answer to the query in Figure 1 with additional bridge-level knowledge.

Mix CS Legal Agriculture
Recall (%) Recall (%) Recall (%) Recall (%)

Global 38.61 48.96 53.44 50.75
Local 83.07 81.88 78.13 64.47

Table 2: The average knowledge coverage of bridge-
level descriptions over global- and local-level knowl-
edge across four datasets.

across all datasets and evaluation dimensions, be-
cause there is knowledge gap between the local-
level and global-level knowledge as discussed in
Section 1. We also report the knowledge cover-
age of bridge-level descriptions over global- and
local-level knowledge in Table 2 and Appendix G,
which further proofs both local- and global-level
knowledge are well connected in the bridge-level
descriptions.

Case Study. Figure 3 shows the three-level
knowledge used as the context to an LLM to answer
the query in Figure 1. The bridge-level knowledge
contains entity descriptions from different commu-
nities, as shown by the different colors in Figure 3,
which helps the LLM correctly answer the question
about Amazon’s role as an e-commerce and cloud
provider.

5.4 Determining the Number of Layers

One important thing in HiIndex is to determine the
number of layers, k, for the hierarchical KG, which
should be determined dynamically according to the
quality of clusters in each layer. We stop build-
ing another layer when the majority of the clusters
consist of only a small number of entities, mean-
ing that the entities can no longer be effectively
grouped together. To measure that, we introduce
the notion of cluster sparsity CSi, as inspired by

0 2 4 6 8
Layer

0
25
50
75

100

C
lu

st
er

 S
pa

rs
ity

 (%
)

Sparsity
Change Rate

Figure 4: Cluster sparsity CSi and change rate from
CSi to CSi+1, where the shadow areas represent the
value ranges of the four datasets and the blue/pink lines
are the respective average values.

graph sparsity, to measure the quality of clusters in
the i-th layer as described in Equation 17.

CSi = 1−
∑

S∈Ci |S|(|S| − 1)

|Li|(|Li| − 1)
. (17)

The more the clusters in Ci have a small number
of entities, the larger is CSi, where the worst case
is when each cluster contains only one entity (i.e.,
CSi = 1). Figure 4 shows that as we have more
layers, the cluster sparsity increases and then sta-
bilizes. We also plot the change rate from CSi
to CSi+1, which shows that there is little or no
more change after constructing a certain number
of layers. We set a threshold ϵ = 5% and stop
constructing another layer when the change rate of
cluster sparsity is lower than ϵ because the cluster
quality has little or no improvement after that.

5.5 Efficiency and Costs Analysis
To evaluate the efficiency and costs of HiRAG,
we also report the token costs, the number of API
calls, and the time costs of indexing and retrieval of
HiRAG and the baselines in Table 3. For indexing,

6051

Token Cost API Calls Time Cost (s)
Dataset Method Indexing Retrieval Indexing Retrieval Indexing Retrieval

Mix

GraphRAG 8,507,697 0.00 2,666 1.00 6,696 0.70
LightRAG 3,849,030 357.76 1,160 2.00 3,342 3.06

KAG 6,440,668 110,532.00 831 9.17 8,530 58.47
HiRAG 21,898,765 0.00 6,790 1.00 17,208 0.85

CS

GraphRAG 27,506,689 0.00 8,649 1.00 19,255 0.98
LightRAG 12,638,997 353.37 3,799 2.00 14,307 4.97

KAG 7,358,717 89,746.00 2,190 6.29 14,837 46.37
HiRAG 56,042,906 0.00 16,535 1.00 44,994 1.17

Legal

GraphRAG 51,168,359 0.00 13,560 1.00 30,065 1.12
LightRAG 30,299,958 353.77 9,442 2.00 21,505 5.44

KAG 18,431,706 97,683.00 4,980 7.82 29,191 51.26
HiRAG 106,427,778 0.00 27,224 1.00 115,232 2.04

Agriculture

GraphRAG 27,974,472 0.00 8,669 1.00 20,362 1.17
LightRAG 12,031,096 354.62 3,694 2.00 13,550 5.64

KAG 7,513,424 93,217.00 2,358 6.83 22,557 49.57
HiRAG 96,080,883 0.00 22,736 1.00 50,920 1.76

Table 3: Comparisons in terms of tokens, API calls and time cost across four datasets.

we record the total costs of the entire indexing
process. For retrieval, we calculate the average
costs per query during the retrieval process, which
could reflect the performance while the methods
are deployed online.

Although HiRAG needs more time and resources
to conduct indexing for better performance, we
remark that indexing is offline and the total cost
is only about 7.55 USD for the Mix dataset using
DeepSeek-V3. In terms of retrieval, unlike KAG
and LightRAG, HiRAG does not cost any tokens
for retrieval. Therefore, HiRAG is more efficient
for online retrieval.

6 Conclusions

We presented a new approach to enhance RAG sys-
tems by effectively utilizing graph structures with
hierarchical knowledge. By developing (1) HiIn-
dex which enhances structural and semantic con-
nectivity across hierarchical layers, and (2) HiRe-
trieval which effectively bridges global conceptual
abstractions with localized entity descriptions, Hi-
RAG achieves superior performance than existing
methods.

7 Limitations

HiRAG has the following limitations. Firstly, con-
structing a high-quality hierarchical KG may incur
substantial token consumption and time overhead,
as LLMs need to perform entity summarization in
each layer. However, the monetary cost of using
LLMs may not be the major concern as the cost
is decreasing rapidly recently, and therefore we
may consider parallelizing the indexing process to

reduce the indexing time. Secondly, the retrieval
module requires more sophisticated query-aware
ranking mechanisms. Currently, our HiRetrieval
module relies solely on LLM-generated weights
for relation ranking, which may affect query rel-
evance. In the future, we will research for more
effective ranking mechanisms to further improve
the retrieval quality. Besides, we can also incor-
porate causality into HiRAG to enhance reasoning
capabilities of LLMs (Liu et al., 2024; Chen et al.,
2022).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Salvatore Carta, Alessandro Giuliani, Leonardo Piano,
Alessandro Sebastian Podda, Livio Pompianu, and
Sandro Gabriele Tiddia. 2023. Iterative zero-shot llm
prompting for knowledge graph construction. arXiv
preprint arXiv:2307.01128.

Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han
Yang, MA Kaili, Binghui Xie, Tongliang Liu,
Bo Han, and James Cheng. 2022. Learning causally
invariant representations for out-of-distribution gener-
alization on graphs. Advances in Neural Information
Processing Systems, 35:22131–22148.

Circlemind. 2024. fast-graphrag. https://github.
com/circlemind-ai/fast-graphrag.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,

6052

https://github.com/circlemind-ai/fast-graphrag
https://github.com/circlemind-ai/fast-graphrag

Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical
report. Preprint, arXiv:2412.19437.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Shahul Es, Jithin James, Luis Espinosa Anke, and
Steven Schockaert. 2024. Ragas: Automated evalua-
tion of retrieval augmented generation. In Proceed-
ings of the 18th Conference of the European Chap-
ter of the Association for Computational Linguistics:
System Demonstrations, pages 150–158.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing

Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491–
6501.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Precise zero-shot dense retrieval without rele-
vance labels. arXiv preprint arXiv:2212.10496.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2023. Retrieval-augmented gen-
eration for large language models: A survey. arXiv
preprint arXiv:2312.10997.

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang,
Chenhui Zhang, Da Yin, Dan Zhang, Diego Ro-
jas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao
Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale
Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun,
Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong,
Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai
Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin
Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao,
Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin
Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan
Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu,
Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong,
Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du,
Zhenyu Hou, and Zihan Wang. 2024. Chatglm: A
family of large language models from glm-130b to
glm-4 all tools. Preprint, arXiv:2406.12793.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and
Chao Huang. 2024. Lightrag: Simple and fast
retrieval-augmented generation. arXiv preprint
arXiv:2410.05779.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michi-
hiro Yasunaga, and Yu Su. 2024. Hipporag: Neu-
robiologically inspired long-term memory for large
language models. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan,
Chen Ling, and Liang Zhao. 2024. Grag: Graph
retrieval-augmented generation. arXiv preprint
arXiv:2405.16506.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu
Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xian-
pei Han, Le Sun, and Yongbin Li. 2024. Struc-
trag: Boosting knowledge intensive reasoning of llms

6053

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793

via inference-time hybrid information structurization.
arXiv preprint arXiv:2410.08815.

Lei Liang, Mengshu Sun, Zhengke Gui, Zhongshu
Zhu, Zhouyu Jiang, Ling Zhong, Yuan Qu, Pei-
long Zhao, Zhongpu Bo, Jin Yang, Huaidong Xiong,
Lin Yuan, Jun Xu, Zaoyang Wang, Zhiqiang Zhang,
Wen Zhang, Huajun Chen, Wenguang Chen, and
Jun Zhou. 2024. Kag: Boosting llms in profes-
sional domains via knowledge augmented generation.
Preprint, arXiv:2409.13731.

Chenxi Liu, Yongqiang Chen, Tongliang Liu, Mingming
Gong, James Cheng, Bo Han, and Kun Zhang. 2024.
Discovery of the hidden world with large language
models. Advances in Neural Information Processing
Systems, 37:102307–102365.

Costas Mavromatis and George Karypis. 2024. Gnn-
rag: Graph neural retrieval for large language model
reasoning. arXiv preprint arXiv:2405.20139.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. 2024a. Graph retrieval-augmented generation:
A survey. Preprint, arXiv:2408.08921.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. 2024b. Graph retrieval-augmented generation:
A survey. arXiv preprint arXiv:2408.08921.

Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao,
and Zhicheng Dou. 2024. Memorag: Moving to-
wards next-gen rag via memory-inspired knowledge
discovery. arXiv preprint arXiv:2409.05591.

Bahareh Sarrafzadeh and Edward Lank. 2017. Improv-
ing exploratory search experience through hierarchi-
cal knowledge graphs. In Proceedings of the 40th
international ACM SIGIR conference on research
and development in information retrieval, pages 145–
154.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh
Khanna, Anna Goldie, and Christopher D Man-
ning. 2024. Raptor: Recursive abstractive pro-
cessing for tree-organized retrieval. arXiv preprint
arXiv:2401.18059.

Yixuan Tang and Yi Yang. 2024. Multihop-rag: Bench-
marking retrieval-augmented generation for multi-
hop queries. Preprint, arXiv:2401.15391.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck.
2019. From louvain to leiden: guaranteeing well-
connected communities. Scientific reports, 9(1):1–
12.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Qinggang Zhang, Shengyuan Chen, Yuanchen Bei,
Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan
Dong, Hao Chen, Yi Chang, and Xiao Huang. 2025.
A survey of graph retrieval-augmented generation
for customized large language models. Preprint,
arXiv:2501.13958.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023. Siren’s song in the ai ocean:
a survey on hallucination in large language models.
arXiv preprint arXiv:2309.01219.

Deyu Zou, Yongqiang Chen, Mufei Li, Siqi Miao,
Chenxi Liu, Bo Han, James Cheng, and Pan Li.
2025. Weak-to-strong graphrag: Aligning weak
retrievers with large language models for graph-
based retrieval augmented generation. arXiv preprint
arXiv:2506.22518.

Appendix

A Experimental Datasets

Dataset Mix CS Legal Agriculture
of Documents 61 10 94 12
of Tokens 625948 2210894 5279400 2028496

Table 4: Statistics of datasets.

Table 4 presents the statistical characteristics
of the experimental datasets, where all documents
were consistently tokenized using Byte Pair Encod-
ing (BPE) tokenizer "cl100k_base".

B Evaluations with Objective Metrics

2WikiMultiHopQA HotpotQA
Method EM (%) F1 (%) EM (%) F1 (%)

NaiveRAG 15.60 25.64 21.60 40.19
GraphRAG 22.50 27.49 31.70 42.74
LightRAG 16.50 40.95 25.00 43.20

FastGraphRAG 20.80 44.81 35.00 49.56

HiRAG 46.20 60.06 37.00 52.29

Table 5: QA performances of HiRAG and other baseline
methods with EM and F1 scores.

To objectively evaluate the QA performance of
HiRAG and the baseline methods, we leverage
two established metrics: exact match (EM) and
F1 scores, applied to the generated answers. We
perform systematic evaluations using GPT-4o-mini
on two multi-hop QA datasets: HotpotQA (Yang
et al., 2018) and 2WikiMultiHopQA (Ho et al.,
2020). For a consistent comparison with previous

6054

https://arxiv.org/abs/2409.13731
https://arxiv.org/abs/2409.13731
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2401.15391
https://arxiv.org/abs/2401.15391
https://arxiv.org/abs/2401.15391
https://arxiv.org/abs/2501.13958
https://arxiv.org/abs/2501.13958

work, we follow the settings of HippoRAG (Gutiér-
rez et al., 2024), obtaining 1,000 queries from each
validation set. We did not present the results of
KAG because, despite our efforts to implement
it, we were unable to make it fully work on this
benchmark.

Compared with the metric of win rates, the per-
formances with EM and F1 scores can indicate
HiRAG’s ability to achieve correctness. Given that
the RAG system has access to richer contexts, it
tends to produce more comprehensive responses.
Nevertheless, while comprehensiveness, empower-
ment, and diversity are important qualities for the
generated answers, correctness is equally essential.
As illustrated in Table 5, HiRAG is also capable of
generating more accurate answers compared to the
baseline methods.

C Implementation Details of HiRAG

We give a more detailed and formulated expres-
sion of hierarchical indexing (HiIndex) and hier-
archical retrieval (HiRetrieval). As described in
Algorithm 1, the hierarchical knowledge graph is
constructed iteratively. The number of clustered
layers depends on the rate of change in the cluster
sparsity at each layer. As shown in Algorithm 2,
we retrieve knowledge of three layers (local layer,
global layer, and bridge layer) as contexts for LLM
to generate more comprehensive and accurate an-
swers.

D The Clustering Coefficients of HiIndex

Mix CS Legal Agriculure
Dataset

0.00

0.02

0.04

0.06

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

GraphRAG
LightRAG
HiRAG

Figure 5: Comparisons between the clustering coeffi-
cients of GraphRAG, LightRAG and HiRAG across four
datasets.

We calculate and compare the clustering coeffi-
cients of GraphRAG, LightRAG and HiRAG in Fig-
ure 5. HiRAG shows a higher clustering coefficient
than other baseline methods, which means that
more entities in the hierarchical KG constructed by
the HiIndex module tend to cluster together. And
this is also the reason why the HiIndex module can

Algorithm 1: HiIndex
Input: Basic knowledge graph G0 extracted by

the LLM; Predefined threshold ϵ;
Output: Hierarchical knowledge graph Gk;

1: L0 ← V0;
2: Z0 ← {Embedding(v)|v ∈ L0};
3: i← 1;
4: while True do
5: /*Perform semantical clustering*/
6: Ci−1 ← GMM(Gi−1,Zi−1);
7: /*Calculate cluster sparsity*/

8: CSi ← 1−
∑

S∈Ci−1
|S|(|S|−1)

|Li−1|(|Li−1|−1) ;
9: if change rate of CSi ≤ ϵ then

10: i← i− 1;
11: break;
12: end if
13: /*Generate summary entities and

relations*/
14: Li ← {};
15: E{i−1,i} ← {};
16: for Sx in Ci−1 do
17: L, E ← LLM(Sx,X);
18: Li ← Li ∪ L;
19: E{i−1,i} ← E{i−1,i} ∪ E ;
20: end for
21: Zi = {Embedding(v)|v ∈ Li};
22: /*Update KG*/
23: Ei ← Ei−1 ∪ E{i−1,i};
24: Vi ← Vi−1 ∪ Li;
25: Gi ← {(h, r, t)|h, t ∈ Vi, r ∈ Ei}
26: i← i+ 1;
27: end while
28: k ← i;
29: Gk ← {(h, r, t)|h, t ∈ Vk, r ∈ Ek};

improve the performance of RAG systems.

E A Simple Case of Hierarchical KG

As shown in Figure 6, we fix the issues mentioned
in Section 1 with a hierarchical KG. This case
demonstrates that the GMMs clustered semanti-
cally similar entities "BIG DATA" and "RECOM-
MENDATION SYSTEM" together. The LLM sum-
marizes "DISTRIBUTED COMPUTING" as their
shared summary entities in the next layer. As a con-
sequence, the connections between these related
entities can be enhanced from a semantic perspec-
tive.

6055

Algorithm 2: HiRetrieval
Input: The hierarchical knowledge graph Gk; The

detected community set P in Gk; The number
of retrieved entities n; The number of selected
key entities m in each retrieved community;

Output: The generated answer a;
1: /*The local-layer knowledge context*/
2: V̂ ← TopN({v ∈ Vk|Sim(v, q)}, n);
3: /*The global-layer knowledge context*/
4: P̂ ← ⋃

p∈P{p|p ∩ V̂ ≠ ϕ};
5: R̂ ← {};
6: V̂P̂ ← {};
7: /*Select key entities*/
8: for p in P̂ do
9: V̂P̂ ← V̂P̂ ∪ TopN({v ∈ p|Sim(v, q)},m);

10: end for
11: /*Find the reasoning path*/
12: for i in [1, |V̂P̂ | − 1] do
13: R ← R∪ShortestPathGk

(V̂P̂ [i], V̂P̂ [i+1]);
14: end for
15: /*The bridge-layer knowledge context*/
16: R̂ ← {(h, r, t) ∈ Gk|h, t ∈ R};
17: /*Generate the answer*/
18: a← LLM(q, V̂, R̂, P̂);

F Cross Validation for LLM as a Judge

Although our LLM-based evaluation approach for
the query-focused summarization task is a com-
mon practice in the performance evaluation by ex-
isting graph RAG methods (Es et al., 2024; Guo
et al., 2024; Edge et al., 2024), we also conducted
cross-verification using Qwen-turbo and Claude-
3.5-sonnet as the LLM judge to further make our
experimental results more convincing. As shown
in Table 6, the results consistently demonstrate Hi-
RAG’s superiority over all the other graph RAG
methods compared, confirming that our conclu-
sions remain stable even when neutralizing LLM
evaluator-specific biases. To reduce the cost, we re-
port the results on the Mix dataset while the results
on the other datasets follow a similar pattern.

G Knowledge Coverage of Bridge-Level
Descriptions

To further validate that both local- and global-level
knowledge are well connected in the bridge-level
descriptions, we counted the average token-level
recall ratio of local- and global-level context in
the bridge-level context across four datasets. As

Figure 6: The shortest path with hierarchical KG be-
tween the entities in the case mentioned in the introduc-
tion.

shown in Table 2, the results demonstrate that our
bridge-level retrieval effectively captures a signif-
icant portion of both entity-level and community-
level information, providing empirical support for
the method’s effectiveness. Here, the recall indi-
cates that the percentage of global-level info or
local-level info that is captured in the bridge-level
context.

H Prompt Templates used in HiRAG

H.1 Prompt Templates for Entity Extraction
As shown in Figure 7, we used that prompt tem-

plate to extract entities from text chunks. We also
give three examples to guide the LLM to extract
entities with higher accuracy.

H.2 Prompt Templates for Entity Extraction
As shown in Figure 7, we used that prompt template
to extract entities from text chunks. We also give
three examples to guide the LLM to extract entities
with higher accuracy.

H.3 Prompt Templates for Relation
Extraction

As shown in Figure 8, we extract relations from the
entities extracted earlier and the corresponding text
chunks. Then we can get the triples in the basic
knowledge graph, which is also the 0-th layer of
the hierarchical knowledge graph.

H.4 Prompt Templates for Entity
Summarization

As shown in Figure 9, we generate summary en-
tities in each layer of the hierarchical knowledge
graph. We will not only let the LLM generate the
summary entities from the previous layer, but also
let it generate the relations between the entities of
these two layers. These relations will clarify the
reasons for summarizing these entities.

6056

GPT-4o Claude-3.5-sonnet Qwen-turbo

NaiveRAG HiRAG NaiveRAG HiRAG NaiveRAG HiRAG

Comprehensiveness 16.6% 83.4% 13.0% 87.0% 13.6% 86.4%
Empowerment 11.6% 88.4% 10.0% 90.0% 12.7% 87.3%
Diversity 12.7% 87.3% 28.0% 72.0% 18.2% 81.8%
Overall 12.4% 87.6% 11.0% 89.0% 12.7% 87.3%

GraphRAG HiRAG GraphRAG HiRAG GraphRAG HiRAG

Comprehensiveness 42.1% 57.9% 39.1% 60.9% 32.4% 67.6%
Empowerment 35.1% 64.9% 31.8% 68.2% 33.3% 66.7%
Diversity 40.5% 59.5% 48.2% 51.8% 40.7% 59.3%
Overall 35.9% 64.1% 32.7% 67.3% 32.4% 67.6%

LightRAG HiRAG LightRAG HiRAG LightRAG HiRAG

Comprehensiveness 36.8% 63.2% 36.4% 63.6% 35.5% 64.5%
Empowerment 34.9% 65.1% 31.8% 68.2% 35.5% 64.5%
Diversity 34.1% 65.9% 40.1% 59.1% 39.1% 60.9%
Overall 34.1% 65.9% 33.6% 66.4% 35.5% 64.5%

FastGraphRAG HiRAG FastGraphRAG HiRAG FastGraphRAG HiRAG

Comprehensiveness 0.8% 99.2% 0.0% 100.0% 0.8% 99.2%
Empowerment 0.8% 99.2% 0.0% 100.0% 0.8% 99.2%
Diversity 0.8% 99.2% 0.9% 99.1% 0.8% 99.2%
Overall 0.8% 99.2% 0.0% 100.0% 0.8% 99.2%

KAG HiRAG KAG HiRAG KAG HiRAG

Comprehensiveness 2.3% 97.7% 1.8% 98.2% 3.6% 96.4%
Empowerment 3.5% 96.5% 2.7% 97.3% 5.5% 94.5%
Diversity 3.8% 96.2% 12.7% 87.3% 10.9% 89.1%
Overall 2.3% 97.7% 1.8% 98.2% 3.6% 96.4%

Table 6: Win rates (%) of HiRAG and baseline methods on four tasks with three different powerful LLMs as the
evaluator.

H.5 Prompt Templates for RAG Evaluation

In terms of the prompt templates we use to conduct
evaluations, we utilize the same prompt design as

that in LightRAG. The prompt will let the LLM
generate both evaluation results and the reasons in
JSON format to ensure clarity and accuracy.

6057

Entity Extraction

-Goal-
Given a text document that is potentially relevant to a list of entity types, identify all entities of those types.

-Steps-
1. Identify all entities. For each identified entity, extract the following information:
- entity_name: Name of the entity, capitalized
- entity_type: One of the following types: [{entity_types}], normal_entity means that doesn’t belong to any other types.
- entity_description: Comprehensive description of the entity’s attributes and activities

Format each entity as
("entity"{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>)
Return output in English as a single list of all the entities identified in step 1. Use **{record_delimiter}** as the list
delimiter.

3. When finished, output {completion_delimiter}

######################
-Examples-
######################
Example 1:
Entity_types: [person, technology, mission, organization, location]
Text:
while Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor’s authoritarian certainty. It was
this competitive undercurrent that kept him alert, the sense that his and Jordan’s shared commitment to discovery was an
unspoken rebellion against Cruz’s narrowing vision of control and order.

Then Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin
to reverence. “If this tech can be understood. . . ” Taylor said, their voice quieter, “It could change the game for us.
For all of us.”

The underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay
in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor’s, a wordless clash of wills
softening into an uneasy truce.

It was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought
here by different paths
######################
Output:
("entity"{tuple_delimiter}Alex{tuple_delimiter}person{tuple_delimiter}Alex is a character who experiences frustration and
is observant of the dynamics among other characters.){record_delimiter}
("entity"{tuple_delimiter}Taylor{tuple_delimiter}person{tuple_delimiter}Taylor is portrayed with authoritarian certainty
and shows a moment of reverence towards a device, indicating a change in perspective.){record_delimiter}
("entity"{tuple_delimiter}Jordan{tuple_delimiter}person{tuple_delimiter}Jordan shares a commitment to discovery and has a
significant interaction with Taylor regarding a device.){record_delimiter}
("entity"{tuple_delimiter}Cruz{tuple_delimiter}person{tuple_delimiter}Cruz is associated with a vision of control and
order, influencing the dynamics among other characters.){record_delimiter}
("entity"{tuple_delimiter}The Device{tuple_delimiter}technology{tuple_delimiter}The Device is central to the story, with
potential game-changing implications, and is revered by Taylor.){record_delimiter}

######################
Example 2:
. . .
######################
Example 3:
. . .
######################
-Real Data-
######################
Entity_types: {entity_types}
Text: {input_text}
######################
Output:

Figure 7: The prompt template designed to extract entities from text chunks.

6058

Relation Extraction

-Goal-
Given a text document that is potentially relevant to a list of entities, identify all relationships among the given
identified entities.

-Steps-
1. From the entities given by user, identify all pairs of (source_entity, target_entity) that are *clearly related* to
each other.
For each pair of related entities, extract the following information:
- source_entity: name of the source entity, as identified in step 1
- target_entity: name of the target entity, as identified in step 1
- relationship_description: explanation as to why you think the source entity and the target entity are related to each
other
- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target
entity

Format each relationship as
("relationship"{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<
relationship_description>{tuple_delimiter}<relationship_strength>)

2. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use
{record_delimiter} as the list delimiter.

3. When finished, output {completion_delimiter}

######################
-Examples-
######################
Example 1:
Entities: ["Alex", "Taylor", "Jordan", "Cruz", "The Device"]
Text:
while Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor’s authoritarian certainty. It was
this competitive undercurrent that kept him alert, the sense that his and Jordan’s shared commitment to discovery was an
unspoken rebellion against Cruz’s narrowing vision of control and order.

Then Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin
to reverence. “If this tech can be understood. . . ” Taylor said, their voice quieter, “It could change the game for us.
For all of us.”

The underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay
in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor’s, a wordless clash of wills
softening into an uneasy truce.

It was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought
here by different paths
######################
Output:
("relationship"{tuple_delimiter}Alex{tuple_delimiter}Taylor{tuple_delimiter}Alex is affected by Taylor’s authoritarian
certainty and observes changes in Taylor’s attitude towards the device.{tuple_delimiter}7){record_delimiter}
("relationship"{tuple_delimiter}Alex{tuple_delimiter}Jordan{tuple_delimiter}Alex and Jordan share a commitment to
discovery, which contrasts with Cruz’s vision.{tuple_delimiter}6){record_delimiter}
("relationship"{tuple_delimiter}Taylor{tuple_delimiter}Jordan{tuple_delimiter}Taylor and Jordan interact directly
regarding the device, leading to a moment of mutual respect and an uneasy truce.{tuple_delimiter}8){record_delimiter}
("relationship"{tuple_delimiter}Jordan{tuple_delimiter}Cruz{tuple_delimiter}Jordan’s commitment to discovery is in
rebellion against Cruz’s vision of control and order.{tuple_delimiter}5){record_delimiter}
("relationship"{tuple_delimiter}Taylor{tuple_delimiter}The Device{tuple_delimiter}Taylor shows reverence towards the
device, indicating its importance and potential impact.{tuple_delimiter}9){completion_delimiter}

######################
. . .
######################
. . .
######################
-Real Data-
######################
Entities: {entities}
Text: {input_text}
######################
Output:

Figure 8: The prompt template designed to extract relations from entities and text chunks.

6059

Summary Entity and Relation Extraction

-Goal-
You are tasked with analyzing a set of entity descriptions and a given list of meta attributes. Your goal is to summarize
at least one attribute entity for the entity set in the given entity descriptions. And the summarized attribute entity
must match the type of at least one meta attribute in the given meta attribute list (e.g., if a meta attribute is
"company", the attribute entity could be "Amazon" or "Meta", which is a kind of meta attribute "company"). And it should
be directly relevant to the entities described in the entity description set. The relationship between the entity set and
the generated attribute entity should be clear and logical.

-Steps-
1. Identify at least one attribute entity for the given entity description list. For each attribute entity, extract the
following information:
- entity_name: Name of the entity, capitalized
- entity_type: One of the following types: [{meta_attribute_list}], normal_entity means that doesn’t belong to any other
types.
- entity_description: Comprehensive description of the entity’s attributes and activities
Format each entity as
("entity"{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>)

2. From each given entity, identify all pairs of (source_entity, target_entity) that are *clearly related* to the summary
entities identified in step 1. And there should be no relations between the summary entities.
For each pair of related entities, extract the following information:
- source_entity: name of the source entity, as given in entity list
- target_entity: name of the target entity, as identified in step 1
- relationship_description: explanation as to why you think the source entity and the target entity are related to each
other
- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target
entity
Format each relationship as
("relationship"{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<
relationship_description>{tuple_delimiter}<relationship_strength>)

3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use
{record_delimiter} as the list delimiter.

4. When finished, output {completion_delimiter}

######################
-Examples-
######################
Example 1:
Input:
Meta summary entity list: ["company", "location"]
Entity description list: [("Instagram", "Instagram is a software developed by Meta, which captures and shares the world’s
moments. Follow friends and family to see what they’re up to, and discover accounts from all over the world that are
sharing things you love."), ("Facebook", "Facebook is a social networking platform launched in 2004 that allows users to
connect, share updates, and engage with communities. Owned by Meta, it is one of the largest social media platforms
globally, offering tools for communication, business, and advertising."), ("WhatsApp", "WhatsApp Messenger: A messaging
app of Meta for simple, reliable, and secure communication. Connect with friends and family, send messages, make voice and
video calls, share media, and stay in touch with loved ones, no matter where they are")]
#######
Output:
("entity"tuple_delimiter"Meta"tuple_delimiter"company"tuple_delimiter"Meta, formerly known as Facebook, Inc., is an
American multinational technology conglomerate. It is known for its various online social media
services."){record_delimiter}
("relationship"tuple_delimiter"Instagram"tuple_delimiter"Meta"tuple_delimiter"Instagram is a software developed by
Meta."tuple_delimiter8.5){record_delimiter}
("relationship"tuple_delimiter"Facebook"tuple_delimiter"Meta"tuple_delimiter"Facebook is owned by
Meta."tuple_delimiter9.0){record_delimiter}
("relationship"tuple_delimiter"WhatsApp"tuple_delimiter"Meta"tuple_delimiter"WhatsApp Messenger is a messaging app of
Meta."tuple_delimiter8.0){record_delimiter}
######################
Example 2:
. . .
######################
Example 3:
. . .
######################
-Real Data-
######################
Input:
Meta summary entity list: {meta_attribute_list}
Entity description list: {entity_description_list}
#######
Output:

Figure 9: The prompt template designed to generate summary entities and the corresponding relations.

6060

