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Abstract

Model merging has emerged as a key technique
for enhancing the capabilities and efficiency of
Large Language Models (LLMs). The open-
source community has driven model evolution
by iteratively merging existing models, yet a
principled understanding of the gains and un-
derlying factors in model merging remains lim-
ited. In this work, we study model evolution
through iterative merging, drawing an analogy
to biological evolution, and introduce the con-
cept of model kinship, the degree of similar-
ity or relatedness between LLMs. Through
comprehensive empirical analysis, we show
that model kinship is closely linked to the per-
formance improvements achieved by merging,
providing a useful criterion for selecting can-
didate models. Building on this insight, we
propose a new model merging strategy: Top-k
Greedy Merging with Model Kinship, which
can improve benchmark performance. Specif-
ically, we discover that incorporating model
kinship as a guiding criterion enables contin-
uous merging while mitigating performance
degradation caused by local optima, thereby
facilitating more effective model evolution'.

1 Introduction

Fine-tuning pre-trained models (PTMs) for down-
stream tasks has become a popular practice, and
has proven particularly effective for Large Lan-
guage Models (LLMs) (Kolesnikov et al., 2020;
Qiu et al., 2020; Askell et al., 2021; Ouyang et al.,
2022; Zhao et al., 2023). However, deploying
separate fine-tuned models for each task can be
resource-intensive (Fifty et al., 2021), which drives
increasing demands for multi-task learning solu-
tions (Zhang and Yang, 2022; Yu et al., 2024a; Lu
et al., 2024; Liu et al., 2024).
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Figure 1: An intuitive comparison between wheat
evolution and model evolution. A parallel can be
drawn between biological reproduction (Part a) and
the process of model evolution (Part b). In biological
systems, offspring inherit genetic material from both
parents, forming a new genotype through the combina-
tion of parental traits. Similarly, in model merging, the
merged model inherits parameters or weights from the
contributing models. Part ¢ demonstrates the iterative
execution of model evolution. Starting with a group
of LLMs, the repository evolves through a Selection-
Merge-Recycle iteration. Notably, model kinship can
serve as an effective tool to guide this iterative model
merging process (e.g., infer whether there may be gains
after model merging.).

Recent studies suggest that model merging
(Singh and Jaggi, 2020; Sung et al., 2023; Goddard
et al., 2024; Matena and Raffel, 2022; Yang et al.,
2024a; Jang et al., 2024) offers a viable approach
for achieving multi-task objectives by integrating
multiple expert models. Furthermore, advances
in model merging toolkits (Goddard et al., 2024;
Tang et al., 2024) have lowered the technical bar-
rier, allowing users with limited expertise to easily
conduct merging experiments, thus leading to an
evolution of LLMs for the community.

At present, researchers have developed various
powerful LLMs using model merging techniques
(Beeching et al., 2023). Many of these models are
created through a biologically inspired evolutionary
process involving iterative merging, an approach
that we refer to as model evolution (Figure 1(a,b)).
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Despite these successes, current merging practice
faces critical limitations. Progress often relies on
continuous trial and extensive human expertise,
with little formal guidance or standardized proce-
dure. To address this problem, we propose an it-
erative model merging framework (Figure 1(c)),
leveraging explicit strategies to guide the direction
of model evolution toward improved performance.
We show that even a simple greedy strategy can
outperform baseline merging approaches.

However, in the later stages of both community-
driven model merging experiments and greedy
evolution strategies, achieving additional gains in
multi-task capability becomes increasingly chal-
lenging. To explore possible solutions, we intro-
duce ‘model kinship’, a metric inspired by the
concept of kinship in evolutionary biology (Sahlins,
2013), to inform and enhance the merging process.
Model kinship is designed to quantify the degree of
similarity or relationship between models through-
out the iterative merging process. By offering a
principled framework for measuring these relation-
ships, model kinship provides valuable insights that
can refine merging strategies for model evolution.

We conduct a comprehensive analysis of model
merging experiments based on model kinship. We
observe that the model merging process consists of
two distinct stages: (1) an improving stage, where
models exhibit significant performance gains, and
(2) a saturation stage, where improvements dimin-
ish and eventually plateau. Empirically, we find a
strong correlation between model kinship and
variations in average task performance, suggest-
ing that model kinship is indicative of potential
effectiveness for model merging. These findings in-
spire two main insights: (1) high-kinship merges
can lead to performance stagnation, akin to in-
breeding; (2) low-kinship merges carry greater
risk but may yield larger gains and facilitate
escape from local optima.

Inspired by this, we propose a novel continual
model merging strategy: Top-k Greedy Merging
with Model Kinship. Specifically, we find that lever-
aging model kinship as a criterion enables more
effective model merging, helping mitigate degrada-
tion and avoid local optima during model evolution.
Furthermore, model kinship also proves useful as
an early stopping criterion, improving efficiency of
the merging process.

In general, this paper mainly contains four key
contributions:

1. Iterative Model Merging as a Framework
for Model Evolution: We propose contin-
ual model merging as a viable framework for
evolving LLMs. Through strategically guided
merging across iterations, this approach yields
consistent improvements in generalization and
task performance.

2. Introducing Model Kinship: We introduce
model kinship, designed to assess the degree
of similarity or relationship between LLMs
during the merging process, which can guide
model merging strategies and holds promise
for advancing auto merging research.

3. Empirical Analysis of Model Evolution: We
present a comprehensive empirical analysis
of model evolution through iterative merging.
Our findings highlight the dynamics of multi-
task performance improvement and stagna-
tion during evolution. In addition, we propose
a preliminary explanation of the underlying
mechanisms using model kinship.

4. Practical Model Merging Strategies with
Model Kinship: We demonstrate how model
kinship guides the model merging process to
tackle optimization challenges, and provide
practical strategies: Top-k Greedy Merging
with Model Kinship, to enhance efficiency and
effectiveness of model evolution.

2 Background
2.1 Model Merging: Fundamentals

Model merging aims to integrate two or more
domain-specific models into a unified framework,
thereby harnessing their composite capabilities
across multiple tasks (Sung et al., 2023). While
this approach shares conceptual similarities with
ensemble methods (Dietterich et al., 2002; Dong
et al., 2020; Jiang et al., 2023b), model merging
generates a single, generalized model, avoiding the
increased inference time associated with ensem-
bles. Let f; represent the i-th model for merging,
each with its unique parameters 6;. If the merging
process follows method F, the prediction g of the
merged model fierge for input 2 is:

G = ferge(x) = F (f1(z;601), fo(2;02), ..., fa(2;0n))

€8]
2.2 Model Evolution: Benefits and Challenges

Parameter averaging methods allow merged models
to retain the same architecture and parameter size
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as their original components, enabling reuse in sub-
sequent merging steps. Leveraging this property,
the open-source community has progressively en-
hanced model performance through repeated merg-
ing, leading to a “Model Evolution”. Empirical ev-
idence from the Open LLM Leaderboard (Beeching
et al., 2023) shows that this iterative model merging
process can produce highly generalized models, of-
ten outperforming those produced through a single
merging step (Maxime Labonne , 2024).

Despite these advances, current community prac-
tices largely rely on random merging by multiple
contributors, which results in high computational
costs and unstable behavior, limiting their practi-
cality for industrial applications.

3 Iterative Model Merging and Strategy
Boost

In this section, we present controlled experiments
to demonstrate that iterative model merging, the
process of repeatedly combining models, can help
stabilize improvements in multi-task capability.
Moreover, we demonstrate that incorporating a
selection strategy, such as Top-k Greedy, yields
more substantial performance improvements.

3.1 Iterative Model Merging Framework

We formally define iterative model merging as
a modular framework that evolves a population
of models through repeated merging. It is gov-
erned by three components: a selection strategy S,
which selects candidate models from the pool Py; a
merging operator M, such as SLERP or weighted
averaging, to combine the selected models; and an
stopping criterion £, which determines when to
stop the process.

At each generation ¢, a subset S; C P; is se-
lected using S, merged via M, and the resulting
model M}, 1 is added back to the pool. The process
continues until the stopping criterion £ is met:

My = M(S(Py)) until  E(Mi1) (2)

3.2 Setup
Baseline Methods. We consider two types of
baselines: (1) Multi-model merging methods

that support merging all models at once, such
as TIES (Yadav et al., 2023), Dare-TIES (Yu
et al., 2024b), and Linear; and (2) Sequential
merging, where models are merged pairwise using
SLERP (Shoemake, 1985).

Top-k Greedy Merging. Our approach applies
iterative model merging using a Top-k greedy
selection strategy on n LLMs (see Algorithm 1).
Each merge step uses SLERP. We also include a
random merge baseline (Appendix C.2).

Models and Datasets. We use three Hugging-
Face LLMs based on Mistral-7B: mistral-7b-
instruct-v0.2, metamath-mistral-7b, and open-
chat-3.5-1210.

Evaluation. Models are evaluated on Wino-
grande, GSM8Kk, and TruthfulQA, which highlight
their task-specific strengths. Dataset details are in
Appendix A.3.

3.3 Results

As shown in Table 1, iterative model merging
can yield better generalization when combining
multiple tasks. In particular, both random and
Top-k greedy iterative merging outperform one-
step baselines, demonstrating the effectiveness
of continual merging. While single-step merg-
ing methods can sometimes achieve strong results
(e.g., Linear or Dare Ties), their performance is of-
ten unstable and sensitive to hyperparameter. Ties,
for instance, fails drastically on GSM8k. Sequen-
tial SLERP merging shows similar limitations, as
its performance varies significantly depending on
the merge order. In contrast, iterative merging
strategies are more stable, consistently yielding
robust performance across tasks.

However, these methods offer only marginal im-
provements. This raises a key question: How can
we further enhance performance beyond the cur-
rent limits of naive or greedy strategies?

4 Preliminary Analysis of Model Kinship

To address this limitation, we investigate whether
structural signals beyond raw performance can
guide model selection. We introduce model kin-
ship, a metric capturing parameter-space similarity,
and conduct a preliminary analysis to examine its
correlation with merge gains in community-merged
LLMs. This helps assess the potential of kinship-
aware strategies in guiding continual merging and
avoiding local optima.

4.1 Model Kinship

Drawing inspiration from the parallel between ar-
tificial selection and model evolution (as detailed
in Appendix G), we hypothesize that a concept
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Method | TruthfulQA Winogrande GSMS8k | Avg.

Ties (Density=0.5, Weight=0.3) 62.76 79.56 8.79 | 50.37
Dare Ties (Density=0.5, Weight=0.3) 59.36 79.08 65.73 | 68.05
Linear (Weight=0.3) 56.37 78.08 68.54 | 67.66
Sequential SLERP Merge (ord1) 47.15 76.24 53.15 | 58.84
Sequential SLERP Merge (ord2) 61.01 79.56 63.76 | 68.11
Sequential SLERP Merge (ord3) 49.80 78.53 55.72 | 61.35
Random Merging (k=3) 54.32 78.53 72.81 | 68.55
Top k Greedy Merging (k=3) 50.94 80.11 75.13 | 68.72

Table 1: Performance Comparison across multi-model merging, sequential model merging with different SLERP

orders, and iterative model merging with strategy.

analogous to kinship, the genetic relatedness stud-
ied in evolutionary biology (Thompson, 1985), can
also apply to model merging. Specifically, we intro-
duce the notion of model kinship, a metric designed
to capture and quantify the evolutionary relation-
ships between the merge candidates. This analogy
suggests that, as genetic kinship affects breeding
outcomes, model kinship similarly influences the
effectiveness of merging strategies in enhancing
multi-task performance.

We adopt the most intuitive representation, in-
spired by the cosine similarity analysis introduced
in the Task Arithmetic paper (Ilharco et al., 2023).
This metric is designed to evaluate the degree of
similarity or relatedness between the task capa-
bilities of large language models (LLMs) based
solely on their "genetic" information, meaning the
changes in their weights, during model evolution.
Considering two models m;, m; involved in a
model evolution originated from the pre-trained
model mpqse, the weights of m;, m; are denoted
as 0;,0; € R, Similarly, Opyse € R4 represents
the weights of the pre-trained model. Since the dif-
ferences between models emerge after fine-tuning
and merging, the variation of weights during model
evolution is crucial. It is calculated as:

0 = 0; — ebasev 5j = 0j — Obase (3)

Model kinship r is designed to capture the simi-
larity of task capabilities between models. In this
paper, we explore multiple potential metrics for
evaluating similarity. For the calculation, sim(-, -)
denotes the similarity metric function used. Consid-
ering two cases merging of 2 models and merging
of n models, we define model kinship r as:

sim(dy1, 02), (Merge 2)
r= 9 .
2h=T) Zl§i<j§n sim(di, d;), (Merge N)
“)
We investigate the relationship between task per-
formance and model kinship (see Appendix E for

the full analysis). The results reveal strong corre-
lations, reinforcing the view that model kinship
reflects task-related differences between models.

4.2 Evaluation Metrics

Let T be the set of tasks in the task group, where
T ={T1,T>,...,T,}. Each task T; in the set T is
associated with a performance measure P; for the
LLM. For a multi-task objective, the Average Task
Performance (Avg.) P is calculated by:

P=2Y"R 5)

n
i=1

To evaluate the effectiveness of a single merge,
we propose the merge gain metric. Assume we
have two models 1.1 and myp,._2 and their
average task performance are Ppre_l and Ppre_g,
intuitively, we believe the Pmerged lie around the
mean of Ppm_l and Ppre_g. The merge gain is
calculated as the difference of Pmerged from the
mean value of Ppre_l and Ppre_g. For a merging
recipe with k£ models, the merge gain is:

k

o 1L
GCLZTL — Pmerged - E zzl Ppre—i (6)

In the following analysis, we use the task group
T = {ARC, HellaSwag, MMLU, Truthful QA, Wino-
grande, GSMS8K}. All models are either fine-tuned
or merged from the Mistral-7B architecture.

4.3 Analysis of Model Kinship: Correlation
and Evolution Dynamics

In this section, we analyze model kinship from
two perspectives: (1) its correlation with perfor-
mance gain across a broad range of open-sourced
LLM merges, and (2) its dynamic along specific
model evolution paths. These analyses aim to clar-
ify the relationship between model kinship and
multi-task capability improvements, as well as to
identify phases of merge effectiveness.
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Figure 2: Distribution of Sample Experiments: Relationship Between Model Kinship (X-axis) and Merge Gain
(Y-axis). Model kinships are calculated using PCC, CS, and ED.
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Figure 3: Change in Average Task Performance and Merge Gain across the Model Evolution Process: Paths
originate from two different base models. The vertical line marks the transition to the saturation stage. Path 2 is

temporally aligned with Path 1 for clarity.

4.3.1 Correlation Between Model Kinship and
Performance Gain

We begin by exploring the potential relationship
between merge gain and model kinship using three
similarity metrics: Pearson Correlation Coefficient
(PCC), Cosine Similarity (CS), and Euclidean Dis-
tance (ED). The models used are based on the
Mistral-7B architecture (Jiang et al., 2023a) and
collected from HuggingFace, with reference to the
Open LLM Leaderboard (see Appendix A).

As illustrated in Figure 2, the scatter plots de-
rived from all three metrics suggest a moderate
correlation between model kinship and merge gain.
Table 2 reports Pearson correlation values for both
signed and absolute merge gains. While the correla-
tions for signed gains appear relatively weak (with
p-values between 0.05 and 0.1), those for absolute
merge gains are comparatively stronger and show
greater statistical significance. These observations
imply that model kinship may offer some indica-
tion of the potential magnitude of merge gains,
though it appears less effective at predicting the
direction of change. While we cannot assert a
causal relationship, the association provides use-
ful insight into how kinship might relate to merge

outcomes. In light of the comparable performance
across the three metrics, we use PCC-based kinship
in the remainder of our analysis for consistency.

4.3.2 Model Kinship in Evolution Paths

As a further exploration, we examine model kin-
ship across independent model evolution paths to
investigate potential phase patterns in the merging
process. This analysis centers on the yamshadow
experiment 28-7B (Labonne, 2024), a Mistral-7B-
based model that ranks among the top-performing
merged models on the Open LLM Leaderboard.
From its model family tree, we extract two main
merging trajectories, referred to as Path 1 and Path
2, for comparison.

Figure 3 displays the average task performance
and the merge gains along the two evolution paths.
The merging process exhibits two distinct phases:

* Improving Stage. Rapid performance gains
and significant merge improvements, driven
by active multi-task balance.

* Saturation Stage. Performance stabilizes,
and additional merges result in minimal or
no measurable improvement.
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Metric Correlation Correlation

(Normal Value) | (Absolute Value)
PCC -0.50 -0.59
P-value 0.063 0.023
CS -0.45 -0.66
P-value 0.098 0.008
ED 0.46 0.67
P-value 0.091 0.007

Table 2: Correlation of Model Kinship based on dif-
ferent correlation function sim(-,-) with Merge Gain,
along with their corresponding p-values.

Figure 4 shows how the model kinship and
normalized average performance change over the
course of the merging process. Both metrics ex-
hibit a consistent two-phase trend: an Improving
Stage, characterized by steady increases, followed
by a Saturation Stage, where growth plateaus. This
parallel progression highlights a potential corre-
lation between model kinship and performance
gains, indicating that enhancements in generaliza-
tion are not only concurrent with but may also be
facilitated by increases in model kinship.

To move beyond individual Evolution Paths,
we further investigate how model kinship devel-
ops across different stages of the merging pro-
cess, thereby extending our analysis to the broader
evolutionary landscape (refer to Appendix D.1).
Our findings reveal that the highest-performing
models maintain strong mutual kinship. However,
this close relatedness can also induce a stagnation
phase, where the lack of diversity limits further
performance improvements.

4.4 Discussion

Considering all results that we observed, this anal-
ysis provides two main insights for the application
of model kinship:

* High kinship merges may lead to perfor-
mance stagnation, similar to biological in-
breeding, where excessive similarity limits
the ability to adjust.

* Low Kkinship merges involve risk, but can
result in greater gains, potentially enabling
escape from local optima caused by the
greedy strategy.
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Greedy Strategy | + Model Kinship
Model | Avg. Gain AAvg. toTop Kinship | Model | Avg. Gain AAvg. toTop Kinship
MetaMath | 63.72 / / / MetaMath | 63.72 / / /
Instruct 61.82 / / / Instruct 61.82 / / /
Open-chat | 66.28 / / / Open-chat | 66.28 / / /
model-1-1 62.17 -0.6 -4.11 0.01 model-1-1 62.17 -0.6 -4.11 0.01
model-1-2 64.02 -0.03 -2.26 -0.02 model-1-2 64.02 -0.03 -2.26 -0.02
model-1-3 66.84 +1.84 +0.56 0.05 model-1-3 66.84 +1.84 +0.56 0.05
model-2-1 68.72 +2.16 +1.88 0.93 model-2-1 68.72 +2.16 +1.88 0.93
model-2-2 61.47 -3.96 -7.25 0.57 model-2-2 61.47 -3.96 -7.25 0.57
model-2-3 61.32 -3.83 -7.40 0.58 model-2-3 61.32 -3.83 -7.40 0.58
model-3-1 68.59 +1.09 -0.13 0.95 model-3-2 67.74 +1.09 -0.98 0.93
model-3-2 67.74 -0.04 -0.98 0.93 model-3-3 69.06 +0.74 +0.34 0.24
- - - - model-3-4 68.61 +1.13 -0.11 0.32
model-4-1 68.51 -0.14 -0.08 0.98 model-4-4 68.75 -0.14 -0.31 0.54
model-4-2 68.04 -0.19 -0.67 0.98 model-4-5 68.39 -0.27 -0.36 0.66
model-4-3 68.53 +0.37 -0.06 0.94 model-4-6 69.03 +0.15 +0.42 0.52
- - - - model-5-1 69.13 +0.04 +0.10 0.65
- - - - model-5-2 68.98 +0.07 -0.15 0.65
- - - - model-5-3 68.63 -0.37 -0.50 0.98

Table 3: Results of merging experiments comparing the vanilla greedy strategy and our proposed approach. The
first three models serve as the foundation models in both experiments. Note: The model kinship experiment was
terminated at generation 5, as it has already outperformed the greedy strategy by that point.

5 Using Model Kinship to Improve Model
Merging

Building on the insights from section 4, we explore
how model kinship can be leveraged to improve
the model merging process. Our main experiment
centers on the Mistral-7B model, with detailed re-
sults presented in the main text. To further evaluate
the generalization of our approach, we also con-
duct two supplementary experiments: one based
on Llama-2 (see Appendix B) and another on a dis-
tinct task set to test robustness across different eval-
uation settings. Our results indicate that while
greedy strategy focuses on short-term gains, it
can lead to suboptimal outcomes. By integrating
model kinship, we can help the strategy avoid local
optima and gain further improvements.

5.1

For the main experiments, we follow the same
settings as described in section 3, including the
use of the three fine-tuned Mistral-7B variants and
the evaluation on Winogrande, GSM8k, and Truth-
fulQA. We adopt the Top-k Greedy Merging strat-
egy as the baseline iterative merging strategy>.

Main Experiment Setup

Top k& Greedy Merging with Model Kinship.
We propose an enhanced merging strategy that aug-
ments the original greedy approach with an ad-
ditional exploration step guided by model kinship

2We provide a Google Colab Notebook.

(highlighted in blue in Algorithm 1). This approach
aims to merge the best-performing model with the
model that has the most distinct kinship, in order
to discover potentially better solutions. In Figure 5
(b), models generated by our strategy are marked
in purple, while the best-performing models are
marked in yellow.

5.2 Results and Discussion

Figure 5 (a) illustrates
the improvements in
top average task perfor-
mance across merging
generations.  Table 3 Cover 123
provides model average il

Layer 16
Layer 17

task performance, merge Layer 18
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for each generation,
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multi-task objective,

the vanilla greedy strategy ceases to improve
after Generation 2, plateauing at an average
task performance of 68.72. In contrast, strategy
utilizing model kinship escapes the local optima
(Model-2-1) and continues to improve, reaching
69.13 by Generation 5.
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Merging Models with Low Kinship can Boost
Exploration. Figure 5 (b) shows the main branch
of the model family tree. To explore how low-
kinship merges help escape local optima during
saturation, we analyze weight changes: v; (from
Model-2-1 to Model-3-1) and vy (from Model-2-1
to Model-3-3), with vy, (from Model-1-3 to Model-
2-1) as baseline. Figure 6 shows that merging with
the exploration model (v3) produces significant,
novel weight changes, while v; shows minimal
change due to the high similarity between openchat-
3.5 and Model-2-1.

Early Stopping at High Kinship can Improve
Efficiency. Iterative model merging can be re-
source intensive. In our main experiments, a greedy
strategy saturated after 2/4 merges with no further
gains. Looking back at community experiments,
5/14 merges in path 1 averaged only 0.57 improve-
ment, and 3/12 merges in path 2 averaged 0.36. A
high kinship score (PCC > 0.9) among top models
may indicate convergence. Stopping merges early
at high kinship generation saves 30% time with
negligible performance loss.

6 Related work

Weight averaging, a widely used technique in
model merging, traces its origins to Utans (1996).
Since the 2010s, weight averaging has been widely
applied in deep neural networks, notably for com-
bining checkpoints to improve training stability
and performance. (Nagarajan and Kolter, 2019;
Tarvainen and Valpola, 2017; Izmailov et al., 2018;
Li et al., 2023a; Stoica et al., 2023; Padmanab-
han et al., 2023; Jang et al., 2023), leveraging
task-specific information (Li et al., 2023b; Ilharco
et al., 2022; Izmailov et al., 2018; Smith and
Gashler, 2017), and parallel training of large lan-
guage models (LLMs) (Li et al., 2022). Discov-
ery of Linear Mode Connectivity (LMC) (Garipov
et al., 2018; Frankle et al., 2020; Entezari et al.,
2022) further expands the use of weight averag-
ing in fusing fine-tuned models through averag-
ing methods (Neyshabur et al., 2020; Wortsman
et al., 2022). Further studies have explored optimiz-
able weights for merging, such as Fisher-Merging
(Matena and Raffel, 2022), RegMean (Jin et al.,
2023), AdaMerging (Yang et al., 2024b), MaTS
(Tam et al., 2024). Ilharco et al. (2023) introduce
task vectors, representing the weight difference be-
tween a fine-tuned model and its base. Further
research on parameter interference led to TIES

(Yadav et al., 2023), which preserves important
weights and reduces sign conflicts, and DARE (Yu
et al., 2024b), which prevents interference by ran-
domly dropping weights. The Model Breadcrumbs
(Davari and Belilovsky, 2023) show that the re-
moval of outliers in parameters can reduce noise
in model merging. Merging models with different
initializations requires additional considerations.
Common methods exploit the permutation sym-
metry of neural networks (Ainsworth et al., 2022;
Tatro et al., 2020; Singh and Jaggi, 2020; Guerrero-
Peiia et al., 2023), using alignment techniques to
mitigate the interpolation barrier (Xu et al., 2024;
Navon et al., 2024). While weight averaging cannot
be applied to models with different architectures, it
can still be used to enhance feasible fusion meth-
ods. Recent work like FuseChat (Wan et al., 2024b)
integrates it with Knowledge Fusion (Wan et al.,
2024a) to enable novel fusion approaches. Li et al.
(2025) further demonstrate that model merging can
stabilize training and serve as a low-cost simula-
tor for annealed performance during pretraining,
enabling checkpoint reuse and faster validation.

Recently, there have been some works explor-
ing “model evolution”. Tellamekala et al. (2024)
propose the CoLLD Fusion method, showing that
iterative fusion can create effective multi-task mod-
els. Labonne (2024) develop a tool to automatically
merge models on HuggingFace. Akiba et al. (2024)
introduce Evolutionary Model Merge, employing
evolutionary techniques to optimize model com-
binations. Tang et al. (2025) present a continual
model merging method that enables training-free
projection-based merging of models as they arrive
sequentially, improving efficiency and task reten-
tion without retraining.

7 Conclusion

We propose iterative model merging as a frame-
work for evolving large language models through
strategic, iterative merges that yield consistent
gains in generalization and task performance. To
support this framework, we introduce model kin-
ship, a metric that guides merge candidate selection
and explains both performance gains and stagna-
tion during merging. Building on this, we propose
Top-k Greedy Merging with Model Kinship, a
strategy that uses kinship to escape local optima
and achieve further improvements. Kinship also
serves as an early stopping signal by detecting con-
vergence and reducing redundant computation.
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In a broad sense, our work explores how models
can achieve autonomous evolution through model
merging. Model merging can, to some extent, be
likened to biological hybridization. Biological or-
ganisms have undergone billions of years of evo-
lution to reach their current state. However, how
silicon-based intelligence, represented by LLMs,
evolves remains an unresolved mystery. We aspire
that this work offer guidance and insights for the
future merging and evolution of LLMs.

Limitations

This study has several limitations: a) Our exper-
iments are limited to two model architectures. It
remains unclear whether our metric and method
generalize to other architectures, such as Mamba
(Gu and Dao, 2023). In addition, the scalability of
tasks and candidate models requires further evalu-
ation to assess computational costs in diverse set-
tings. b) The analysis relies on open-source data
from the Open Leaderboard. As this dataset is
community-generated, it may be affected by noise
or user bias. ¢) We have not fully explored al-
ternative correlation metrics for measuring model
kinship. Other metrics may yield stronger or more
consistent performance. d) Our demonstration of
model kinship is empirical. A more rigorous the-
oretical framework, such as the assumptions out-
lined in Appendix E.1, is needed to explain model
evolution and kinship in greater depth. e¢) While
model kinship currently guides merging and im-
proves performance, it does not support sustained
evolution. Future progress may require incorporat-
ing environmental feedback, reward models (Silver
et al., 2021), and novel architectures.
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A Details of Experiments in Main
Sections

This section provides comprehensive details on the
models used in the analysis of community exper-
iments. The open merged models from these ex-
periments are accessible through the Hugging Face
Hub?. The evaluation results can be accessed in the
Openleaderboard* The following tables cover two
primary aspects:

* (1) Information on the selected model family
trees for two distinct evolution paths, along
with detailed analysis results for each merge.

* (2) A summary of the merge experiments con-
ducted for distribution analysis.

A.1 Selecting the Evolution Path

The evolution paths are selected using a structured
process, focusing on identifying key sequences
within the model family trees. The steps were as
follows:

* Model Family Tree Construction: The com-
plete model family tree is constructed by ref-
erencing model card details for each model
involved.

* Branch Identification: We identified the two
longest branches within each tree, represent-
ing significant sequences of model merging.

* Performance and Kinship Evaluation:
These branches were analyzed for changes
in merging performance, particularly focusing
on shifts in multi-task capabilities and model
kinship metrics.

Table 4 and 5 present detailed information on
the sequential merging process. The second and
third columns record the foundational models in-
volved in each merge, while the final column lists
the resulting merged models.

A.2 Additional Results in Analysis

Table 6 and Table 7 present detailed analysis re-
sults that are not reported in the main paper. These
include Average Task Performance (ATP), merge
gains, and model kinship values, which are com-
puted using Pearson Correlation coefficient, Cosine
Similarity, and Euclidean Distance for each merge.
3https://huggingface.co/datasets

4https://huggingface.co/spaces/
open-11m-1leaderboard-old/open_l1lm_leaderboards

Table 8 presents all merge experiments contribut-
ing to the distribution analysis. The selection of
sample experiments adheres to two rules: (1) Sam-
ples are evenly chosen across average task perfor-
mance values ranging from 0.7 to 0.7686 (the aver-
age task performance of the best 7B merged model)
to accurately reflect the full scope of model evolu-
tion. (2) The experiments involve merges of two
foundation models, as including multiple models
introduces excessive noise.

A.3 Details of Datasets Selection

In the main experiments, we utilize three
task-specific benchmark datasets—Winogrande,
GSMB8k, and TruthfulQA—to evaluate the distinct
strengths of the models. These datasets assess the
following capabilities:

* Winogrande: Evaluates the model’s common-
sense reasoning.

¢ GSMS8Kk: Measures the model’s mathematical
reasoning.

* TruthfulQA: Assesses the model’s ability to
identify and address human falsehoods.
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Gen Model-1 Model-2 Model-Merged

1 Marcoroni-7B-v3 Mistral-7B-Merge-14-v0.1 distilabeled-Marcoro14-7B-slerp
2 distilabeled-Marcoro14-7B UNA-TheBeagle-7b-v1 Beagle14-7B
3 NeuralBeagle14-7B Turdus TurdusBeagle-7B
4 TurdusBeagle-7B FernandoGPT-v1 StrangeMerges_9-7B-dare_ties
5 StrangeMerges_9-7B-dare_ties MBX-7B-v3 StrangeMerges_10-7B-slerp
6 StrangeMerges_10-7B-slerp NeuralBeagle14-7B StrangeMerges_11-7B-slerp
7 StrangeMerges_11-7B-slerp MBX-7B-v3 StrangeMerges_20-7B-slerp
8 StrangeMerges_20-7B-slerp NeuTrixOmniBe-7B-model ~ StrangeMerges_21-7B-slerp
9 StrangeMerges_21-7B-slerp Experiment26 StrangeMerges_30-7B-slerp
10 StrangeMerges_30-7B-slerp Experiment24 StrangeMerges_31-7B-slerp
11 StrangeMerges_31-7B-slerp Experiment28 StrangeMerges_32-7B-slerp
12 StrangeMerges_32-7B-slerp e shadow-clown-7B-slerp
13 shadow-clown-7B-slerp yam-jom-7B YamShadow-7B
14  YamShadow-7B Experiment28 YamshadowExperiment28-7B
Table 4: Model Family tree of evolution Path 1.
Gen Model-1 Model-2 Model-Merged

1 neural-chat-7b-v3-3 openchat-3.5-1210 CatPPT-base

2 Marcoroni-7B-v3 CatPPT-base CatMacaroni-Slerp

3 LeoScorpius-7B CatMacaroni-Slerp SamirGPT-v1

4 SamirGPT-v1 .. Daredevil-7B

5 NeuralBeagle14-7B NeuralDaredevil-7B DareBeagle-7B

6 Turdus DareBeagle-7B TurdusDareBeagle-7B

7 MarcMistral-7B TurdusDareBeagle-7B MarcDareBeagle-7B

8 MarcBeagle-7B MarcDareBeagle-7B MBX-7B

9 MBX-7B pastiche-crown-clown-7b-dare

10 pastiche-crown-clown-7b-dare . shadow-clown-7B-slerp

11 yam-jom-7B shadow-clown-7B-slerp  YamShadow-7B

12 Experiment28-7B YamShadow-7B YamshadowExperiment28-7B

Table 5: Model Family tree of evolution Path 2.
Gen Model-Merged ATP Gain PCC CS ED

1 distilabeled-Marcoro14-7B-slerp 73.63  0.55 0.82 0.76 5.15
2 Beagle14-7B 74.74 1.01 081 0.79 643
3 StrangeMerges_9-7B-dare_ties 75.15 045 093 0.89 4.66
4 StrangeMerges_9-7B-dare_ties  73.32 -0.69 090 0.84 4.70
5 StrangeMerges_10-7B-slerp 7477 059 059 0.59 943
6 StrangeMerges_11-7B-slerp 74.8 0.045 087 0.86 5.31
7 StrangeMerges_20-7B-slerp 7552 0.6 084 0.85 4.82
8 StrangeMerges_21-7B-slerp 76.29 038 085 0.89 4.28
9 StrangeMerges_30-7B-slerp 76.58 0.065 096 0.94 2.83
10 StrangeMerges_31-7B-slerp 76.67 -0.02 097 097 221
11 StrangeMerges_32-7B-slerp 76.68 0.11 099 099 0.62
12 shadow-clown-7B-slerp 76.64 -0.02 093 094 249
13 YamShadow-7B 76.6 -0.02 097 097 2.19
14 YamshadowExperiment28-7B ~ 76.86 0.25 098 0.98 1.61

Table 6: Summary of Path 1 Results.
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Gen Model-Merged ATP Gain PCC CS ED
1 CatPPT-base 7225 289 0.02 001 2041
2 CatMacaroni-Slerp 7274 035 0.88 0.83 6.16
3 SamirGPT-v1 73.11  0.64 079 070 647
4 Daredevil-7B 74.12 033 0.87 0.83 481
5 DareBeagle-7B 7458 0.15 079 077 6.01
6 TurdusDareBeagle-7B 7494 032 090 086 4.59
7 MarcDareBeagle-7B 7475 0.67 087 0.87 4.17
8 MBX-7B 75.04 0.11 096 096 2.90
9 pastiche-crown-clown-7b-dare  76.50 029  0.83 0.84 5.38
10 shadow-clown-7B-slerp 76.64 -0.02 093 094 249
11 YamShadow-7B 76.60 -0.02 097 097 2.19
12 YamshadowExperiment28-7B  76.86 025 098 098 1.61

Table 7: Summary of Path 2 Results.
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Model 1 Model 2 Merge Gain
Multi_verse_model-7B Experiment26-7B 0.06
M7-7b StrangeMerges_32-7B-slerp -0.03
Ognoexperiment27 Multi_verse_model-7B 0.03
YamShadow-7B Experiment28 0.25
shadow-clown-7B-slerp yam-jom-7B -0.02
StrangeMerges_21-7B-slerp Experiment26 0.06
StrangeMerges_31-7B-slerp Experiment28 0.11
NeuralBeagle14-7B Turdus 0.45
DareBeagle-7B Turdus 0.32
TurdusBeagle-7B FernandoGPT-v1 -0.69
StrangeMerges_10-7B-slerp NeuralBeagle14-7B 0.04
TurdusDareBeagle-7B MarcMistral-7B 0.67
StrangeMerges_20-7B-slerp NeuTrixOmniBe-7B-model-remix 0.38
StrangeMerges_11-7B-slerp MBX-7B-v3 0.6
Marcoroni-7B-v3 Mistral-7B-Merge-14-v0.1 0.55
distilabeled-Marcoro14-7B-slerp UNA-TheBeagle-7b-v1 1.01
UNA-TheBeagle-7b-v1 distilabeled-Marcoro14-7B-slerp 0.89
CatPPT-base Marcoroni-7B-v3 0.35
CatMacaroni-Slerp LeoScorpius-7B 0.64
NeuralDaredevil-7B NeuralBeagle14-7B 0.15
StrangeMerges_9-7B-dare_ties =~ MBX-7B-v3 0.59
mistral-ft-optimized-1218 NeuralHerems-Mistral-2.5-7B -0.85
neural-chat-7b-v3-2 OpenHermes-2.5-Mistral-7B 1.91
StrangeMerges_30-7B-slerp Experiment24 -0.02
openchat-3.5-1210 neural-chat-7b-v3-3 2.89
MultiverseEx26-7B-slerp CalmExperiment-7B-slerp -0.09
CapybaraMarcoroni-7B DistilHermes-2.5-Mistral-7B 0.47
Multi_verse_model-7B Calme-7B-Instruct-v(.9 0.04
StrangeMerges_16-7B-slerp coven_7b_128k_orpo_alpha -0.35
Kunoichi-DPO-v2-7B AlphaMonarch-7B -1.05
StrangeMerges_15-7B-slerp Kunoichi-7B 0.39
Mistral-T5-7B-v1 Marcoroni-neural-chat-7B-v2 -0.18
Marcoro14-7B-slerp mistral-ft-optimized-1218 -0.61
mistral-ft-optimized-1218 NeuralHermes-2.5-Mistral-7B -0.85
MarcDareBeagle-7B MarcBeagle-7B -0.07
MetaMath-Mistral-7B Tulpar-7b-v2 -0.29
YugoGPT AlphaMonarch-7B -5.96

Table 8: All Sample Experiments used in distribution analysis.
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B Full Evaluation Results of Main
Experiments and Additional
Experiments

B.1 Main Mistral-7B Experiments

Table 9 provides a detailed evaluation of the main
experiments, including the results for the explo-
ration models and their performance on specific
tasks. The model kinship experiment is terminated
early at generation 5, as a more promising evolution
path is subsequently identified.

B.2 Additional Experiments

To assess the generalization of our strategy across
different model architectures and task sets, we con-
duct two additional experiments.

B.2.1 Mistral-7B Experiments with a
Different Task Set

We perform further evaluations using Mistral-
7B, based on three distinct foundation mod-
els: MistralHermes-CodePro-7B-v1, metamath-
mistral-7b, and open-chat-3.5-1210. These mod-
els are assessed on the HumanEval, GSM8k, and
Truthful QA benchmarks. The model kinship-based
merging process is terminated early at generation
3, as a more promising evolution trajectory is iden-
tified.

In this task setting, model kinship-guided explo-
ration successfully discovers models (e.g., Child3-
3) that significantly outperform their respective ini-
tial baselines.

B.2.2 LLaMA-2-8B Experiments

We further evaluate our strategy on LLaMA-2-8B
using three task-specific fine-tuned models. Ta-
ble 11 summarizes the results of these additional
experiments. The model kinship-based merging
process is terminated early at generation 6 upon the
discovery of a more favorable evolutionary path.

Consistent with the results from Mistral-7B,
model evolution guided by model kinship contin-
ues to facilitate performance improvements beyond
the capabilities of the original models.
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Model TruthfulQA Winogrande GSMS8K ‘ Avg. ‘ Model Kinship

MetaMath 44.89 75.77 70.51 63.72 /

Instruct 68.26 77.19 40.03 | 61.82 /

Open-chat 52.15 80.74 65.96 | 66.28 /

model-1-1-greedy 52.51 76.16 57.85 62.17 0.01
model-1-2-greedy 58.04 76.32 57.72 64.02 -0.02
model-1-3-greedy 48.96 78.69 72.86 | 66.84 0.05
model-2-1-greedy 50.94 80.11 75.13 | 68.72 0.93
model-2-2-greedy 49.78 78.93 55.72 | 61.47 0.57
model-2-3-greedy 52.36 78.61 5299 | 61.32 0.58
model-2-exp 61.01 79.56 63.76 | 68.11 -0.02
model-3-1-greedy 51.95 80.51 73.31 68.59 0.95
model-3-2-greedy 49.96 79.72 73.54 | 67.74 0.93
model-3-3 56.95 80.25 70.00 | 69.06 0.24
model-3-4 54.38 78.45 73.01 68.61 0.32
model-3-exp 54.13 78.69 71.65 | 68.15 0.03
model-4-1-greedy 50.82 80.11 74.60 | 68.51 0.98
model-4-2-greedy 50.36 79.47 74.31 68.04 0.98
model-4-3-greedy 51.04 79.72 74.83 | 68.53 0.94
model-4-4 53.31 79.40 73.54 | 68.75 0.54
model-4-5 52.48 79.01 73.68 | 68.39 0.66
model-4-6 53.69 79.72 73.69 | 69.03 0.52
model-4-exp 55.16 78.53 71.80 | 68.49 0.48
model-5-1 54.85 79.37 73.31 69.13 0.65
model-5-2 54.78 79.40 72.86 | 68.98 0.65
model-5-3 53.49 79.24 73.16 | 68.63 0.98
model-5-exp 52.98 79.32 72.78 | 68.36 0.59

Table 9: Evaluation Results of Main Experiments of Mistral-7B.
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Model TruthfulQA GSM8K HumanEval ‘ Avg. ‘ Model Kinship

MetaMath 44.89 70.51 17.68 44.36 /

Openchat-3.5-1210 52.15 65.96 2.44 40.18 /

MistralHermes-CodePro-7B-v1 49.67 60.88 22.56 44.37 /

child1-1-greedy 51.87 69.60 15.80 45.76 0.19
child1-2-greedy 48.04 72.78 9.15 43.32 0.08
child1-3-greedy 48.96 72.86 18.29 46.70 0.05
child2-1-greedy 50.24 71.72 12.20 44.72 0.15
child2-2-greedy 50.88 73.24 7.32 43.81 0.92
child2-3-greedy 51.15 67.32 19.51 45.99 0.34
child2-4-greedy 50.05 72.33 4.88 42.42 0.21
child2-exp 50.33 71.11 18.90 46.78 0.21
child3-1-greedy 51.47 69.22 21.34 47.34 0.73
child3-2-greedy 50.71 72.40 9.15 44.09 0.82
child3-3 49.69 74.37 21.34 48.47 0.82
child3-4 50.57 69.75 17.68 46.00 0.91
child4-1-greedy 50.56 68.46 12.20 43.74 0.79
child4-2-greedy 51.28 68.46 19.51 46.42 0.95
child5-1-greedy 51.36 68.69 20.73 46.93 0.99
child5-2-greedy 50.49 73.24 9.76 44.50 0.78
child6-1-greedy 50.50 73.24 9.15 44.30 0.78
child6-2-greedy 51.42 69.14 20.12 46.89 0.99
child7-1-greedy 51.36 68.82 20.34 46.84 0.99
child7-2-greedy 51.42 68.74 20.81 46.99 0.99
child7-3-greedy 51.44 69.15 20.44 47.01 0.99

Table 10: Evaluation Results of Additional Experiments of Mistral-7B.
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Model | TruthfulQA  Winogrande GSMSK | Avg. | Model Kinship

winogrande 42.0 77.9 6.4 42.1 /

GSMSK 39.0 73.4 38.0 50.1 /

Truthful QA 56.7 68.9 9.5 45.0 /

child1-1-greedy 40.2 79.3 342 51.2 0.03
child1-2-greedy 46.7 74.4 342 51.7 0.01
child1-3-greedy 46.1 77.1 1.9 41.7 0.01
child-2-1-greedy 44.5 78.5 36.8 53.2 0.19
child-2-2-greedy 43.7 74.0 40.4 52.7 0.45
child-2-3-greedy 38.9 71.5 37.1 51.1 0.39
child-2-exp 433 81.2 28.5 51.0 0.01
child-3-1-greedy 44.2 77.1 37.3 52.8 0.88
child-3-2-greedy 454 77.5 34.5 524 0.79
child-3-3-greedy 45.0 73.8 36.6 51.8 0.89
child-3-exp 45.1 78.6 30.3 51.3 0.58
child-4-1-greedy 44 .4 78.5 36.8 53.2 0.95
child-4-2-greedy 44.1 75.5 40.0 53.1 0.97
child-4-exp 433 80.9 32.6 522 0.81
child-5-1-greedy 44.2 77.1 37.2 52.8 0.97
child-5-2-greedy 443 774 36.7 52.8 0.91
child-5-3-greedy 443 78.3 36.8 53.1 0.98
child-5-exp 44.5 78.1 32.0 51.5 0.64
child-6-1-greedy 44.5 78.5 36.8 532 0.99
child-6-2-greedy 44 .4 78.3 36.8 53.2 0.99
child-6-3-greedy 44.3 78.3 36.8 53.1 0.99
child-6-exp 443 80.4 353 534 0.80

Table 11: Evaluation Results of addtional experiments of Llama-2.
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C Algorithm Details for the Main
Experiment

In this section, we present the detailed algorithms
employed in our main experiment, along with an
ablation study to validate our baseline method, Top
k Greedy Merging.

C.1 Algorithms

The Top-k Greedy Merging algorithm aims to
iteratively construct improved models through pair-
wise merging, guided by performance evaluation
and, in the extended version, model kinship. It
begins with a set of n foundation models M =
{mi,ma,...,my}. In the first step, all possible
pairs of models are merged to form the first genera-
tion GG; of merged models. These new models are
added back into the candidate set M.

The algorithm then evaluates all models in M us-
ing a task-specific evaluation function f and selects
the top k performing models to form the working
set S. It maintains an iterative loop that continues
as long as the top-k set S changes between itera-
tions, ensuring exploration continues only while
performance improves. Within each iteration, all
model pairs from S are merged to produce the next
generation of models GG;. These new models are
added into M, and their performance is evaluated
using f to update S.

In the variant with model kinship, additional
steps introduce a model exploration mechanism.
This kinship-guided exploration step is designed to
escape local optima by encouraging diversity in the
merging path, potentially leading to models with
better generalization or complementary capabilities.
The algorithm terminates when the top-k set S
stabilizes, indicating no further performance gains
are observed. Each model is named according to
its generation and creation order to track its origin
during analysis.

C.2 Ablation Study of Greedy Strategy

The ablation study on the Greedy Strategy is con-
ducted using the Mistral-7B architecture, follow-
ing the same experimental settings outlined in the
main experiments. For comparison, we employ the
random-merge strategy, where models in each
generation are merged with randomly selected mod-
els (excluding themselves) from the repository, as
illustrated in Algorithm 2.

The following table presents the evaluation re-
sults. Each column represents:

e Model: The name of each model. Note that
the first three entries are fine-tuned foundation
models used in our experiments.

e TruthfulQA_mc2, Winogrande, GSM8K:
The benchmark results for each dataset, indi-
cating the model’s task-specific capabilities.

* Average: The average score across all bench-
marks, reflecting the model’s overall general-
ization performance.

* Model Kinship: The kinship score (Here,
we use cosine similarity to measure model
kinship) of the parent models involved in the
merge, indicating their relatedness.

* Parent-1 and Parent-2: The names of the
parent models used in the merging process.

In the random-merge strategy, the average per-
formance in each generation fluctuates. The high-
est average performance achieved is 68.55, slightly
lower than the 68.72 observed in the greedy exper-
iment. While the random-merge strategy avoids
convergence to local optima, it demonstrates an
unstable improvement process, which can lead to
unpredictable results.
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Model \ TruthfulQA_mc2 Winogrande GSM8K Average \ Model Kinship

MetaMath-mistral-7B 44.89 75.77 70.51 63.72 /

Mistral-7B-Instruct-v0.2 68.26 77.19 40.03 61.82 /

Open-chat-3.5-1210 52.15 80.74 65.96 66.28 /

child1-1 52.51 76.16 57.85 62.17 0.01
child1-2 58.04 76.32 57.72 64.02 0.01
child1-3 48.96 78.69 72.86 66.84 0.03
child2-1 44.68 74.00 50.80 56.40 0.29
child2-2 49.78 78.93 55.72 61.47 0.41
child2-3 61.01 79.56 63.76 68.11 0.01
child3-1 51.52 78.23 56.71 62.15 0.84
child3-2 43.52 75.22 47.43 55.39 0.59
child3-3 54.32 78.53 72.81 68.55 0.28
child4-1 55.32 78.41 56.23 63.32 0.54
child4-2 50.53 78.42 57.65 62.20 0.86
child4-3 53.45 79.31 72.65 68.47 0.67

Table 12: Evaluation results using the random-merge strategy.

Algorithm 1 Top k Greedy Merging with Model Kinship.

Require: A set M of n foundation models {m;,ma, ..., m;}, Evaluation function f, Similarity metric

function sim(-, -) for model kinship.

: Generate the first generation of merged models G; by merging each pair in set M/, and set generation

t=1

2: Combine the set G into set M.

w

10:
11:

12:
13:
14:
15:

R e A A

Evaluate each model m in set M, and select the top k£ models. Denote this set as S =
{ml,mg, v ,mk}.

Initialize a variable Sprey = () to store the top k models from the previous iteration.

while S # Spy do

i++

Set Sprev = 5.

Select each model pair from S. Denote this set as P = {p1,p2,...,p;}.

Merge every selected pair in set P as merged model set G; = {m1, ma, ..., m;} for generation ,

and add each merged model into set M.
Identify the current best model mypeq; € S.
Identify the model my € S with the lowest model kinship to m.s; from the G; 1 according to the
similarity metric sim(-, -).
Merge m y with my.s to generate a new model meyxp, and add meyp into set G; and set M.
Evaluate each new model m € G; using f and update S.
Evaluate mexp using f and update S.
end while

Note: The blue-highlighted steps are only executed in modified experiments incorporating model
kinship-based exploration. To distinguish between different models in the subsequent experiments, each
model generated in a given generation is named as model-generation-id.
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Algorithm 2 Random Merge Algorithm.

Require: A set M of n foundation models {m1,ma, ..., m,}, Evaluation function f.
Generate the first generation of merged models G; by randomly merging pairs in set M, and set

1:

10:
11:

e RN R RN

generation ¢ = 1.
Combine the set G into set M.
Evaluate each model m in set M.
Initialize a variable Sprey = () to store the top & models from the previous iteration.
while S # Spy do
i++
Set Sprev = 5.
Randomly select pairs of models from ). Denote this set as P = {p1,pa2,...,p;j}.
Merge each selected pair in set P to form the merged model set G; = {mq, ma,
generation ¢, and add each merged model into set M.
Evaluate each new model m € G; using f and update S.
end while

...,m;} for

618



D Additional Analysis for Community
Model Evolution

D.1 Analysis of Model Kinship Change across
Merging Stages

To determine whether the discovery of increas-
ing model kinship in model evolution paths can
be generalized to the entire model evolution pro-
cess, we perform an analysis of the merging stages.
Given the community’s predominant use of the
performance-prior strategy, we calculate model
kinship among models with similar performance,
simulating the selection of models at each stage.
For this analysis, we randomly select 5 models
from each merging stage, as delineated by bound-
aries identified in prior analysis - Saturation Stage
(= 0.75), Improving Stage (<0.75 and >0.73), and
Initial Merges (fine-tuned models) to form three
foundation model groups, representing potential
merges at different stages of model evolution.

D.2 Details of Model Group Selection

This section presents the exact models included
in each model group, as shown in Table 13. The
selection process is conducted across three distinct
groups: (1) the top 5 models on the leaderboard,
with a performance difference of 0.2, (2) 5 mod-
els with performance scores around 73 and a per-
formance difference of 0.2, and (3) 5 fine-tuned
models. It is important to note that the fine-tuned
models are not selected based on performance, and
may exhibit significant differences in results.

Group | Models
YamshadowExperiment28-7B
Yamshadow-7B
Top Model Group Experiment25-7B

StrangeMerges_24-7B-slerp
MonaTrix-v6

Daredevil-7B
CatMarcoro14-7B
Mayo
Calmesmol-7B-slerp
StrangeMerges_4-7B-slerp

Mid Stage Model Group

Zephyr-beta
MetaMath-Mistral-7B
Mistral-7B-Instruct-v0.2
openchat-3.5-1210
WizardLM-2

Fine-tuned Model Group

Table 13: Model Group in Kinship Matrix Analysis.

Figure 7 illustrates the model kinship between
models within each group. We observe that model
kinship increases with the average task perfor-

mance across models that follow different evolu-
tion paths. Additionally, during the saturation stage,
all potential merges display a strong affinity, with
model kinship values nearing 1.

(a) Fine-Tuned Models (b) Leamning Stage (c) Saturation Stage

pLUNMEEY 1.00 001 0.10 004 . Daredevil JREUUIE 53 0.80 0.80 RCLISTPLE 100 098 099 095 0.82 v
[USBNEY 0.01 1.00 0.02 0.06 0.03 et (L% 083 100 079" 0.93 IRELEIELINE 0.98 1.00 0.98 0.94 081 o8
[OIYIRNE 0.04 0.06 002 100 0.10 [ECUEELTIE 0:80 070" 085 wn. [IPSEYR 005 094 0.5 100 [0.80 o4

003 0.43 010 1.00

02
Stranges [LICES nas. oo [EVSSSIMIS 052 081 081 O
N 3 >

&P P
F & TS
& &£ S
RO o

Figure 7: The Model Kinship Matrices for the three
model groups. Each element represents the model kin-
ship value between the corresponding models. In Group
B and C, the merged models are arranged by average
task performance, ordered from high to low (left to
right).
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E Analysis between Task Relatedness and
Model Kinship

In the formulation of model kinship, we use the
placeholder ~ (-, -) as a similarity metric function
to explore options that can effectively capture task-
related differences. One such metric is cosine simi-
larity, derived from the analysis in the task vector,
which has been validated as effective for represent-
ing differences in single-task models through the
cosine similarity of delta parameters (task vectors).
In addition to cosine similarity, we also investigate
the Pearson correlation coefficient and Euclidean
distance.

However, we have not thoroughly evaluated the
applicability of these metrics in the context of
model evolution, particularly for merged models
with multi-task capabilities. To address this, we ex-
amine the relationship between the similarity met-
rics and task information in subsequent sections.

Our analysis focuses on the LLaMA-2 architec-
ture, as we can find the necessary open-source fine-
tuned checkpoints on various datasets. To measure
differences between models, we currently use a
preliminary evaluation method: the Average Task
Performance Difference (ATPD), which aims to
represent task capability differences based on eval-
uation performance.

The Average Task Performance Difference
(ATPD) between two models, M7 and My, is cal-
culated by averaging the absolute differences in
performance across all tasks. Let 7" denote the set
of tasks, and PZ-(] ) represent the performance of
model M; on task 7. Then, the ATPD is defined as:

1
ATPD(M;, M;) = i Z Pz‘(l) -~ Pi@)‘
€T

* |T'|: the total number of tasks.

. Pi(l) and Pi(Q): performances of models M;
and M5 on task .

Pi(l) — Pi(z) ’: absolute difference in perfor-
mance for task i.

Method
Value

Corr(ed)
0.80

Corr(cs)
-0.77

Corr(pcc)
-0.74

Table 14: Correlation values between ATPD and model
kinship.

For this study, we utilize models from additional
LLaMA-2 experiments (Appendix.B). These mod-
els are merged from three fine-tuned models, al-
lowing us to control the generated models to focus
solely on the corresponding task capabilities. The
following table presents the results, with Wino-
grande, TruthfulQA, and GSMS8K representing the
performance differences across each task.

The results in Table.14 demonstrate strong cor-
relations: Cosine Similarity (-0.77) and Pearson
Correlation Coefficient (-0.74) exhibit negative cor-
relations, while Euclidean Distance (0.80) shows
a positive correlation. This supports that model
kinship is related to task differences. As mentioned
in the limitations, the current metrics are viable but
not optimal. Combining them with task informa-
tion studies could further enhance the value of our
work.

E.1 Additional Results: Analysis of Model
Kinship and Average Task Performance

This section provides supplementary analysis on
the relationship between model kinship and average
task performance. Figure 8 illustrates a compari-
son between average task performance and model
kinship using two additional metrics not included
in the main paper. From an intuitive observation,
model kinship based on the three metrics exhibits a
similar correlation with average task performance.
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Model 1 Model 2 ‘Winogrande Truthful QA GSMSK ATPD Kinship(cs) Kinship(pcc) Kinship(ed)
child-4-1-greedy child-5-3-greedy 0.10 0.00 0.20 0.10 0.99 0.99 2.17
child-2-1-greedy child-4-1-greedy 0.20 0.10 0.00 0.10 0.98 0.99 4.22
child-2-1-greedy child-5-3-greedy 0.10 0.10 0.20 0.13 0.99 0.99 2.19
child-4-exp child-2-1-greedy 1.10 0.90 0.10 0.70 0.80 0.75 25.53
child-2-1-greedy child-3-1-greedy 0.20 1.30 0.70 0.73 0.95 0.98 6.74
child-4-1-greedy child-6-exp 0.10 1.90 1.40 1.13 0.74 0.71 25.54
child-4-1-greedy child-4-2-greedy 0.30 3.00 3.20 2.17 0.97 0.98 6.57
child-2-2-greedy child-3-1-greedy 0.50 3.10 3.10 2.23 0.97 0.98 6.57
child-2-1-greedy child-4-2-greedy 0.50 3.10 3.20 227 0.91 0.96 9.29
child-3-exp child-2-1-greedy 0.70 0.20 6.30 2.40 0.64 0.52 35.52
child-4-exp child-2-1-greedy 1.10 2.50 4.00 253 0.78 0.75 25.53
child-2-1-greedy ~ child1-2-greedy 2.30 4.00 2.40 2.90 0.79 0.89 15.75
child-2-1-greedy child-2-2-greedy 0.70 4.40 3.80 297 0.88 0.95 12.43
child-2-2-greedy child1-2-greedy 3.00 0.40 6.20 3.20 0.89 0.92 11.68
childl-1-greedy GSM8K 1.20 5.90 3.80 3.63 0.39 0.46 36.39
childl-1-greedy child1-2-greedy 6.50 4.90 0.00 3.80 0.19 0.16 38.07
child-2-exp child-2-1-greedy 1.10 2.80 8.10 4.00 0.58 0.77 28.33
child1-2-greedy GSM8K 7.70 1.00 3.80 4.17 0.45 0.38 26.32
child-2-1-greedy child1-3-greedy 7.80 3.10 2.90 4.60 0.58 0.51 45.24
child-3-1-greedy child-2-exp 0.90 4.10 8.80 4.60 0.58 0.63 3245
winogrande Truthful QA 14.70 9.00 3.10 8.93 0.01 0.01 74.49
child1-2-greedy child1-3-greedy 0.60 2.70 32.30 11.87 0.64 0.52 46.06
child1-2-greedy winogrande 4.70 3.50 27.80 12.00 0.01 0.02 55.89
winogrande GSM8K 3.00 4.50 31.60 13.03 0.03 0.11 54.01
child1-1-greedy child1-3-greedy 5.90 2.20 32.30 13.47 0.52 0.64 44.16
GSM8K Truthful QA 17.70 4.50 28.50 16.90 0.01 0.01 61.56
Table 15: Summary of Model Merging Results.
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Figure 8: Illustration of comparison between the correlation of Pearson Correlation Coefficient (PCC), Cosine
Similarity (CS), and Euclidean Distance (ED) with average task performance (Normalized to the same value scale).
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F Optimization Assumption of Model
Evolution

® Merged Model-1
® Merged Model-2

Performance

Weights Similarity

Figure 9: An intuitive illustration of how model evolu-
tion can fall into local optima due to a performance-
prior strategy. It shows that Merged Model 2 may be
overlooked, despite its potential for better multi-task
performance.

Our findings using new strategy offer a new per-
spective on model evolution through multiple merg-
ing. If the merging process can be improved using
a common optimization strategy, it raises the ques-
tion of whether the underlying mechanism mirrors
this optimization problem. Thus, we hypothesize
the following:

Hypothesis: The evolution process may be sim-
plified to a binary search process for most
weight-averaging-based model merging meth-

ods.

Figure 10 illustrates the ideal scenario in our as-
sumption where multiple merges produce a highly
generalized model. For the generalization task ¢,
the y-axis represents the model performance for
task ¢ and the x-axis represents the model’s weight
space. In early merging stages, models fine-tuned
with different tasks exhibit significant weight space
dissimilarity. The merging process averages these
weight spaces, and the experiment conductor se-
lects the better-merged models while discarding the
inferior ones. In stage 2, the search area narrows
and the improvements become stable, eventually
leading to an optimized state in stage 3 when “sat-
uration stage” occurs.

In this context, Model Kinship serves as a metric
to quantify the weight space distance between two
models, with a higher model kinship indicating a
lower weight space distance. Following this as-
sumption, our findings of the optimization problem
in model evolution can be elucidated in Figure 9.

However, we currently lack sufficient evidence
to validate this hypothesis. Future work is needed
to explore this further.
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Figure 10: An intuitive illustration of the optimization process assumption in model evolution, where models
progressively converge towards the optimal model.

Selective Breeding Continual Merging
Breed high-yield plant Merge high-generalization model

(J% Coding + & Coding ++ [ Math ++ Math +

PP

I_'_J
Merge strongest math model
with strongest coding model
BE Math++  EF Math+

(l%cgding ++ (J% Coding + aj(‘uding ++ B Math ++

@ 9990

;1_1

Continue same strategy

Generation 1

— :
Breed tallest plant with
Generation 2

& Coding ++
Math ++

@

Strong Model with both coding
and math capabilities

Generation 3

Figure 11: An intuitive comparison between selective breeding and iterative model merging. The left process
demonstrates breeding a tall and frutful plant by selecting parents with the desired traits in an biological scenario.
The right process shows developing a model with capabilities of coding and math through model evolution.
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G Referenced Concepts in Evolutionary
biology

In this section, we detail the conceptual parallels
between biological processes and model merging,
highlighting our motivation for employing model
kinship.

G.1 Iterative Merging vs. Artificial Selection

We draw inspiration for model evolution from bio-
logical evolution, specifically focusing on the cor-
relation between biological evolution through ar-
tificial selection and model evolution via model
merging. Artificial selection involves retaining de-
sirable traits by manually selecting breeding pairs
in each generation, typically those exhibiting the
most significant features. Similarly, model evo-
lution, as explored in this paper through Iterative
Model Merging, adopts a comparable approach:
users preserve desired task capabilities by strate-
gically selecting merging pairs. Through iterative
merging, they can develop a model that is profi-
cient in all tasks in a given task set. To illustrate
this comparison more effectively, Figure 11 shows
an example of combining two features/task capa-
bilities in evolution.

G.2 Inbreeding Depression vs. Saturation
Stage

As highlighted in the main paper, one of our key
findings is that the late stage of model evolution of-
ten enters a saturation stage, during which models
exhibit minimal differences from one another. This
phenomenon parallels "inbreeding depression” in
artificial selection, where breeding closely related
individuals reduces genetic diversity and fitness.
Although genetic inheritance and model weights
operate differently, merging closely related mod-
els leads to new models with minimal variation,
thereby reducing the effectiveness of merging, par-
ticularly in weight averaging. To address this issue,
we propose quantifying the differences between
models, a concept we term model kinship, to guide
the merging process and mitigate the challenges
associated with the saturation stage in model evo-
lution.

H References to Open Models
See Table 16.
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Model Name

| HuggingFace Reference

Multi_verse_model-7B
Experiment26-7B

M7-7b
StrangeMerges_32-7B-slerp
Ognoexperiment27
YamShadow-7B
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co/automerger/OgnoExperiment27-7B
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co/Gille/StrangeMerges_21-7B-slerp
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co/mlabonne/NeuralBeagle14-7B
co/udkai/Turdus
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co/argilla/distilabeled-Marcoro14-7B-slerp
co/fblgit/UNA-TheBeagle-7b-v1
co/rishiraj/CatPPT-base
co/cookinai/CatMacaroni-Slerp
co/viethq188/LeoScorpius-7B
co/mlabonne/NeuralDaredevil-7B
co/Gille/StrangeMerges_9-7B-dare_ties
co/OpenPipe/mistral-ft-optimized-1218
co/mlabonne/NeuralHermes-2.5-Mistral-7B
co/Intel/neural-chat-7b-v3-2
co/teknium/OpenHermes-2.5-Mistral-7B
co/Gille/StrangeMerges_30-7B-slerp
co/yam-peleg/Experiment24-7B
co/Intel/neural-chat-7b-v3-3
co/allknowingroger/MultiverseEx26-7B-slerp
co/allknowingroger/CalmExperiment-7B-slerp
co/AtAndDev/CapybaraMarcoroni-7B
co/eren23/DistilHermes-2.5-Mistral-7B
co/MaziyarPanahi/Calme-7B-Instruct-v@.9
co/Gille/StrangeMerges_16-7B-slerp
co/raidhon/coven_7b_128k_orpo_alpha
co/SanjiWatsuki/Kunoichi-DP0O-v2-7B
co/mlabonne/AlphaMonarch-7B
co/Gille/StrangeMerges_15-7B-slerp
co/SanjiWatsuki/Kunoichi-7B
co/ignos/Mistral-T5-7B-v1
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co/HyperbeeAI/Tulpar-7b-v2
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Table 16: Model and Hugging Face Reference Links
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