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Abstract

This paper focuses on the task of generating
concept sememe trees to study whether Large
Language Models (LLMs) can understand and
generate domain conceptual knowledge. Con-
cept sememe tree is a hierarchical structure that
represents lexical meaning by combining se-
memes and their relationships. To this end,
we introduce the Neighbor Semantic Structure
(NSS) and Chain-of-Thought (CoT) prompting
method to evaluate the effectiveness of vari-
ous LLMs in generating accurate and compre-
hensive sememe trees across different domains.
The NSS, guided by conceptual metaphors,
identifies terms that exhibit significant external
systematicity within a hierarchical relational
network and incorporates them as examples in
the learning process of LLMs. Meanwhile, the
CoT prompting method guides LLMs through
a systematic analysis of a term’s intrinsic core
concepts, essential attributes, and semantic re-
lationships, enabling the generation of concept
sememe trees. We conduct experiments using
datasets drawn from four authoritative termi-
nology manuals and evaluate different LLMs.
The experimental results indicate that LLMs
possess the capability to capture and represent
the conceptual knowledge aspects of domain-
specific terms. Moreover, the integration of
NSS examples with a structured CoT process
allows LLMs to explore domain conceptual
knowledge more profoundly, leading to the
generation of highly accurate concept sememe
trees.

1 Introduction

Large Language Models (LLMs) are regarded as
versatile tools for various tasks, such as recommen-
dations, language learning, and writing (Moskvoret-
skii et al., 2024; Kasneci et al., 2023). Previous
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LLMs

What is the semantics of 
"suspended material"?

Figure 1: The conceptual knowledge of the term "sus-
pended material".

works propose that LLMs are capable of encod-
ing a significant amount of knowledge (Petroni
et al., 2019). This has led researchers to deter-
mine to explore the kinds of knowledge within
LLMs. Existing probing works mainly focus on
factual knowledge(Safavi and Koutra, 2021), on-
tology knowledge (Wu et al., 2023) , lexical se-
mantics knowledge (Moskvoretskii et al., 2024),
and terminology knowledge(Jhirad et al., 2023a).
Although existing research investigates terminolog-
ical knowledge through generating term definitions
in specialized domains like finance, current liter-
ature systematically neglects domain conceptual
knowledge.

Domain conceptual knowledge refers to a col-
lection of core concepts, terms, and their interre-
lationships within a specific field, typically con-
veyed through terminology (Liu and Wang, 2019).
Terms facilitate the transmission of domain knowl-
edge, encompassing their definitions, relationships,
and practical significance. For instance, the con-
ceptual knowledge of the term "suspended mate-
rial" (as shown in Figure 1) can be deconstructed
into a three-dimensional semantic framework: its
foundational definition ("burn" as material prop-
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erty), functional characterization ("float" as modi-
fier), and domain-specific context ("industrial" ap-
plication). This tree structure demonstrates how
domain concepts integrate core attributes, opera-
tional characteristics, and disciplinary embeddings.
Domain conceptual knowledge plays a vital role
in many natural language processing tasks such
as machine translation (ElFqih and Monti, 2024;
Ailem et al., 2021), text understanding (Piskorski
and Stefanovitch.etc, 2023), and disease diagno-
sis normalization (Fan et al., 2024). Therefore, it
is essential to explore whether LLMs can under-
stand domain conceptual knowledge and possess
a semantic understanding of it, rather than merely
memorizing its superficial form.

In this paper, we systematically investigate
whether LLMs possess domain conceptual knowl-
edge and can understand the terminology. Specif-
ically, we focus on generating concept sememe
trees, defined as hierarchical structures that encode
lexical semantics through systematic combinations
of sememes (the smallest semantic units) and their
relational mappings. To achieve this, we designed
prompts for LLMs that include task introductions,
output format requirements, examples of NSS, CoT
(Zhang et al., 2022) guidance, and input terms.
Based on terminological metaphor theory, we pro-
pose an NSS method to identify terms with similar
sememe trees to the input terms, using these as ex-
amples. The CoT approach encourages LLMs to
generate sememe trees through a structured process:
generating the first sememe, producing additional
sememes, establishing relationships, and forming
the final output.

A comprehensive evaluation of 3 state-of-the-
art LLMs, including GPT4o, LLAMA3-8B, and
DeepSeek-V3, is conducted using benchmark
datasets derived from four authoritative terminol-
ogy manuals. The results of our experiments indi-
cate that LLMs exhibit a measurable ability to gen-
erate semantic concepts associated with terms. By
integrating NSS exemplars and guiding the mod-
els through step-by-step CoT reasoning, we devel-
oped a systematic framework. This framework en-
ables LLMs to perform multi-perspective analyses
that encompass intrinsic conceptual cores, defin-
ing attributes, and semantic relationships inherent
in terminological structures. This methodological
approach enabled the models to penetrate deeper
into the foundational conceptual knowledge of the
domain and accurately construct concept sememe
trees. Our contributions are highlighted as follows.

• We leverage the task of concept sememe tree
generation to evaluate the ability of LLMs to
memorize domain concept knowledge.

• We demonstrate that LLMs possess a certain
level of domain conceptual knowledge and
are capable of understanding the meanings of
terminology.

• Based on the theory of terminological
metaphor, this study introduces examples
of adjacent semantic structures to illustrate
the hierarchical relationships between terms,
thereby facilitating the model’s understand-
ing of metaphorical and semantic connections
among terms and enhancing the effectiveness
of sememe tree generation.

2 Method

Our method is divided into six stages, as shown
in Figure 2. Firstly, prepare the data, terms and
term definitions; Secondly, three datastores are con-
structed to obtain the key-value pairs with the high-
est cosine similarity. By summarizing the terms
and counting their frequencies, we identify and se-
lect the top five terms with the highest occurrence
times, and used these terms as NSS. Thirdly, CoT
is added to provide a thinking process for LLMs.
Finally, post-processing is carried out to obtain the
sememe tree.

1. Prepare the data 2. Build Datastore

sintering
A method of heating powder or 
compacts below the melting 
point of the main components 
to create connections between 
particles, thereby improving 
product performance.

First 
Sememe 

Datastore

Other
Sememe 

Datastore

Relation 
Datastore

3. NSS

N
SS

Term

Term

Term

4. COT
First, generate the head sememe.
Next, create all the sememes.
Then, establish all the dynamic
role relationships. Finally,
construct the quintuple structure
by filling in the generated
sememes and dynamic role
relationships into the quintuple.

5. Post Processing 6. Sememe Tree

Format compliance

Sememe consistency

<0,fasten|拴连,none,-1,root>、
<1,WarmUp|加
热,means,0,fasten|拴连>

fasten|拴连 WarmUp|加热

means

Figure 2: Our method flowchart.
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2.1 Sememe Trees

To probe LLM’s memorization of domain concept
knowledge, we leverage the task of concept se-
meme tree generation. A sememe tree is a hier-
archical structure that represents lexical meaning
by amalgamating sememes (the smallest semantic
units) with relations. This is the knowledge rep-
resentation approach employed in HowNet (Dong
et al., 2010). Concept sememe tree generation aim
to automatically generate a sememe tree t for a
given term e. For example, the sememe tree for
the term "main combustion zone" is illustrated in
Figure 3. "place|地方" serves as the first sememe,
representing the core concept of the "main combus-
tion zone" as a specific location, while "burn|焚
烧" and "primary|主" are sememes that specify the
main function and attribute of the "main combus-
tion zone", respectively. "RelateTo" and "modifier"
are the relations that reveal the correlation and mod-
ification between attributes and the core concept.

Sememe Tree

KDML

{place|地方:RelateTo={burn|焚烧},modifier={primary|主}}

List

["place|地方", ["RelateTo", "burn|焚烧"], ["modifier", "prim
ary|主"]]

JSON

{"sememe": "place|地方", "children": [{"role": "RelateTo", 
"sememe": "burn|焚烧"},{"role": "modifier", "sememe": 
"primary|主"}]}]}

Quintuple

<0,place|地方,none,-1,root>、<1,burn|焚烧,RelateTo,0,place|
地方>、<1,primary|主,modifier,0,place|地方>

Figure 3: The concept sememe tree of the term "main
combustion zone" and the four data formats of the con-
cept sememe tree.

2.2 Data Format of Sememe Tree

This paper employs four distinct ways of repre-
senting the sememe tree: KDML, List, JSON, and
Quintuple. These four representations serve as con-
straints (r) on the output format of the LLM. The
four data formats of the concept sememe tree for

the term "main combustion zone" are illustrated in
Figure 3.

• KDML: The Knowledge Database Markup
Language is used by HowNet to represent the
concept sememe tree. The format of KDML
is "{sf : r1 = {t1}, r2 = {t2}}", where sf is
the first sememe, r1 and r2 are the relations,
t1 and t2 are the sub-trees which comply with
KDML format.

• List: The concept sememe tree is represented
as a nested Python list. The elements in the
list are enclosed in square brackets. The first
element in the list is the first sememe. For
the subtrees, the first element represents the
relationship, followed by the subsequent se-
memes.

• JSON: The JSON structure of the concept
sememe tree represents a hierarchical object
with a top-level key named "sememe" that
holds the first sememe. It also includes a
nested array under the key "children", where
each element is an object containing two keys:
"role" and "sememe". "sememe" represents
the child sememe of the first sememe in the
sememe tree. "role" represents the relation be-
tween the first sememe and the child sememe.

• Quintuple: The format of quintuple is "<
d1, s1, r, d2, s2 >", where d1 and d2 are the
depths of the sememes s1 and s2 in the con-
cept sememe tree, respectively. And r is the
relation between s1 and s2.

2.3 Prompt
Prompt is an intuitive method. We define the ap-
propriate prompt pd to leverage LLM to generate
the concept sememe tree t of a given term e. This
process is illustrated in Equation 1.

t = LLM (pd (i, r, c, s(e), x(e))) (1)

where i is the task instruction that describes the
task requirements. r is the rule that constrains the
output format of LLMs. c refers to the CoT, which
encourages LLMs to generate a sememe tree. This
is accomplished through a series of steps: gener-
ating the first sememe, producing other sememes,
establishing relations, and forming the final output.
s(e) are the few-shot examples, which include a
few terms and sememe trees that may have a simi-
lar conceptual structure to the input term. s(e) are
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obtained through the NSS method based on termi-
nological metaphor theory. x(e) is the input term
and its definition.

The prompt incorporates placeholders for var-
ious components required for selection parsing.
Specifically, the symbols "[Rule]", "[CoT]", "[Ex-
ample]", and "[Input]" are utilized as placeholders,
representing the output format rule r, CoT c, few-
shot examples s(e), and the input term along with
its definition x(e), respectively. A prompt template
example is shown in Figure 4.

2.4 Neighbor Semantic Structure
Many terms are not isolated, instead, they are in-
terconnected within a hierarchical relational net-
work, displaying distinct external systemic proper-
ties. During the term-mapping process, some terms
retain the semantic characteristics of the source
domain and evolve through hierarchical relation-
ships based on terminological metaphors (Liu and
Liu, 2024; Kasneci et al., 2019). This process
transcends traditional systematicity, enabling cross-
domain semantic expansion.

Based on this phenomenon, we propose that
terms are structured not only through systematic hi-
erarchical relationships but also through metaphor-
ical associations. We introduce the concept of a
"Neighbor Semantic Structure" to describe terms
that share these relationships. A Neighbor Seman-
tic Structure is a collection of terms from various
domains that possess similar semantic connota-
tions, achieved through retaining core meanings
and using metaphorical expansion. For instance,
the terms "wings" (biology), "airfoils" (aerospace
engineering), and "cicada forewings" (entomology)
originate from distinct disciplines yet share the core
concept of a "wing"— an extended appendage that
enables flight, gliding, or balance maintenance, as
shown in Figure 5. This metaphorical mapping
mechanism not only enriches the semantic dimen-
sions of terminologies but also establishes critical
cognitive pathways for cross-domain knowledge
transfer.

We use NNP-TDGM (Sijia et al., 2024) to de-
rive the NSS of a term. Given a term e, NNP-
TDGM generates an initial sememe representation
vector vf , other sememe representation vectors Vs,
and the relation representation vectors Vf of the
sememe tree. These vectors are subsequently em-
ployed to query three distinct datastores: First Se-
meme Datastore, Other Sememe Datastore, and
Relation Datastore. Each datastore consists of key-

value pairs (k, s), where k represents the vector
derived from NNP-TDGM, and s corresponds to
the associated term. The (k, s) pairs with the high-
est cosine similarity to vf , Vs, and Vf are obtained.
Through a process of summarization and frequency
counting for the term s, we identify and select the 5
terms with the most occurrences, using these terms
as examples s (e) of the NSS for the given term e.

2.5 Post Processing
Despite the constraints imposed on the output for-
mat within the prompt, the outputs from LLMs oc-
casionally fail to fully adhere to the specified rules.
To address this issue, we employ post-processing
techniques to reformat the concept sememe trees
generated by LLMs. This involves two key steps:
format compliance processing to ensure adherence
to the required structure, and sememe consistency
processing to maintain the integrity and coherence
of the semantic information.

• Format compliance. The generated concept
sememe tree must adhere to the prescribed
output form. Any sublists, subtrees, or quintu-
ples that do not comply with the rules will be
excluded.

• Sememe consistency. The sememe’s Chi-
nese and English words must correspond to
the HowNet sememe set. If either the Chi-
nese or English word is incorrect, we replace
it with the corresponding correct sememe in
HowNet. However, if both are incorrect and
the corresponding correct sememe cannot be
found, they remain unprocessed.

3 Experiment

3.1 Experimental Environment
The experiments are conducted on a Linux system
running Ubuntu 16.04.7 LTS, utilizing NVIDIA
A800 80G PCIe GPUs for acceleration.

3.2 Dataset
The experimental dataset is derived from four termi-
nology manuals: Scientific Terms of Atmospheric
Science, Terms in Mechanical Engineering (2nd
Edition), Terms in Computer Science and Technol-
ogy (Third Edition), and Terms in Electric Power
(Third Edition). The dataset covers four core areas:
atmospheric science, mechanical engineering, com-
puter science and technology, and electric power
engineering. Based on these, this study creates
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Prompt

The quintuple structure is a set of "<odeep, osememe, role, fdeep, fsememe>". The structure must consist of five elements. odeep is an integer type and 
represents the depth of the head sememe in the conceptual semantic structure. osememe is a string type and represents the tail sememe. role denotes the dynamic 
role relationship. fdeep is an integer type and represents the depth of the tail sememe in the conceptual semantic structure. fsememe is a string type and 
represents the head sememe.

Rule

COT

### You are a concept semantics generator. Given a term and its definition, you generate a quintuple representation of the concept represented by the term. [Rule]
### You need to follow the steps outlined below to ultimately generate the quintuple representation of the concept represented by the term. [CoT]
### Example demonstration：[Example]
### Requirement: Given an input term and definition, please provide only the quintuple structure representing the concept of the term. [Input]

First, generate the head sememe. Next, create all the sememes. Then, establish all the dynamic role relationships. Finally, construct the quintuple structure by filling 
in the generated sememes and dynamic role relationships into the quintuple.

Example
Term: Blade Row
Definition: A series of blades arranged at equal intervals and with consistent installation angles.
Thinking steps: First, generate the first sememe: [’part|部件’];Next, generate all sememes: [’root’, ’part|部件’, ’machine|机器’, ’part|部件’];Then, generate all 
relationships: [’none’, ’whole’, ’whole’];Finally, the quintuple structure: <0, part|部件, none, -1, root>, <1, part|部件, whole, 0, part|部件>, <2, machine|机器, 
whole, 1, part|部件>

Input
Term: Blade
Definition: A blade-shaped component that is formed by spatial stacking of the blade profile according to certain rules, or by directly modeling the aerodynamic 
design to create a spatial surface. It exchanges and converts energy with the airflow through this structure.

Output

<0,part|部件,none,-1,root>,<1,machine|机器,content,0,part|部件>

Figure 4: An example of prompt.

aircraft|飞行器

PartPosition whole

part|部件

wing|翅

InsectWorm|虫

PartPosition whole

part|部件

wing|翅

bird|禽

PartPosition whole

part|部件

wing|翅

w
ings

airfoils
cicada forew

ings

Figure 5: Sememe tree of wings, airfoils, and cicada
forewings.

a bilingual dataset in Chinese and English to test
the model’s cross-language adaptability, ensuring
a comprehensive and robust experimental evalu-
ation. A total of 800 terms are evenly extracted
from four datasets, with 200 terms selected from
each dataset. These terms are then divided into a
test set and a retrieval set in a 1:1 ratio. Table 1
presents the English dataset statistics, while its Chi-
nese counterpart is omitted here due to complete
consistency.

Sememe Relation Triple
Mechanical 558 311 311
Computer 632 347 347
Electric 621 349 349

Atmospheric 537 294 294
Term
length

Definition
length

Depth

Mechanical 2.60 29.46 2.34
Computer 2.99 38.14 2.75
Electric 2.92 38.10 2.75

Atmospheric 2.64 28.50 2.47

Table 1: Dataset information.

3.3 LLMs and Evaluation Metrics

We select three LLMs : LLAMA3-8B1, GPT-
4o(Hurst et al., 2024) and DeepSeek-V32. Ad-
ditionally, NNP-TDGM(Sijia et al., 2024) is se-
lected as baseline. We use the F1 scores of triple
(sememe-relation-sememe), relation, sememe, and
first sememe as metrics. A higher F1 score indi-
cates better recognition performance.

3.4 Results on Multi-Domain

Table 2, Table 3 and Table 4 show the evaluation
results of multi-domain concept smeme tree gen-

1https://github.com/meta-llama/llama3
2https://github.com/deepseek-ai/DeepSeek-V3

5971

https://github.com/meta-llama/llama3
https://github.com/deepseek-ai/DeepSeek-V3


eration on Chinese, English and Chinese-English
Mixed datasets, respectively.

Dom Model Tri Seme Rela First

NNP-TDGM 20.91 35.68 45.45 36.00
LLAMA3-8B 15.10 22.96 41.99 31.30
GPT4o 28.12 36.83 61.78 47.00

A

DeepSeek-V3 30.06 35.99 58.63 52.00

NNP-TDGM 9.88 26.19 40.30 35.82
LLAMA3-8B 10.82 15.20 43.57 24.22
GPT4o 15.97 22.14 51.54 33.00

M

DeepSeek-V3 21.04 25.04 54.42 44.00

NNP-TDGM 6.84 15.29 19.77 19.90
LLAMA3-8B 6.78 12.99 35.59 17.94
GPT4o 10.02 16.58 46.29 25.00

C

DeepSeek-V3 12.52 18.62 43.98 34.00

NNP-TDGM 7.74 21.17 24.51 23.00
LLAMA3-8B 8.76 14.34 38.25 19.72
GPT4o 14.81 20.93 50.56 30.00

E

DeepSeek-V3 14.93 23.28 48.66 29.00

Table 2: Performance evaluation of multi-domain con-
cept sememe tree generation experiment on chinese
dataset (%). The domain, Atmospheric, Mechanical,
Computer, Electric, Triple F1, Sememe F1, Relation F1,
and First Sememe F1 are abbreviated as Dom, A, M, C,
E, Tri, Seme, Rela, and First, respectively.

The experimental results show that LLMs exhibit
remarkable effectiveness in various domains. The
experimental results confirm that LLMs possess
domain conceptual knowledge and can understand
the meanings of terms. Based on term metaphor
theory, by introducing NSS and guiding the model
step by step to consider the intrinsic core concepts,
key attributes, and relationship types of terms, us-
ing the CoT method, the model can explore the
fundamental conceptual knowledge of the domain
more deeply, thus accurately and systematically
describing the definitions of the terms.

In addition, under the mixed data of Chinese
and English, the effect of the model in generating
sememe trees is relatively good.

3.5 Results on Ablation Experiment
To assess the impact of NSS and CoT on model per-
formance, we performed ablation experiments. The
results are presented in Table 5. The symbol "−"
indicates that the module is absent, while the sym-
bol "✓" shows that the module is included. This
experiment employed a quintuple prompt format
and used the Qwen2.5-32B-Instruct model3.

3https://github.com/QwenLM/Qwen2.5

Dom Model Tri Seme Rela First

LLAMA3-8B 15.48 23.06 45.14 30.54
GPT4o 32.84 42.53 65.26 49.00A
DeepSeek-V3 28.19 36.95 60.57 52.00

LLAMA3-8B 10.35 12.72 44.38 23.88
GPT4o 19.01 21.94 58.87 31.00M
DeepSeek-V3 18.49 23.19 53.78 34.00

LLAMA3-8B 6.42 10.60 34.31 20.00
GPT4o 10.47 17.33 46.57 25.00C
DeepSeek-V3 9.82 15.03 41.72 27.00

LLAMA3-8B 7.97 15.66 39.83 21.21
GPT4o 13.52 19.06 51.99 28.85E
DeepSeek-V3 13.83 18.65 48.12 28.00

Table 3: Performance evaluation of multi-domain con-
cept sememe tree generation experiment on english
dataset (%). Abbreviations are consistent with table
2.

Dom Model Tri Seme Rela First

LLAMA3-8B 17.63 24.36 43.59 32.73
GPT4o 32.77 42.44 62.18 50.00A
DeepSeek-V3 31.37 42.74 61.57 56.00

LLAMA3-8B 12.65 16.97 47.53 26.01
GPT4o 18.62 22.72 57.35 35.00M
DeepSeek-V3 19.67 25.00 54.00 44.00

LLAMA3-8B 6.51 12.71 37.52 16.35
GPT4o 11.25 18.15 47.55 26.00C
DeepSeek-V3 11.74 18.79 43.96 31.00

LLAMA3-8B 10.55 16.67 41.11 18.92
GPT4o 14.36 20.32 51.84 27.00E
DeepSeek-V3 15.97 23.32 50.48 29.00

Table 4: Performance evaluation of multi-domain con-
cept sememe tree generation experiment on chinese-
english mixed dataset (%).

Table 5 presents the experimental results show-
ing that integrating NSS and CoT methods into the
prompt significantly improves the model’s under-
standing of terms concepts. Specifically, incorpo-
rating CoT method improved the F1 scores across
multiple categories. The improvements were 4.4%
for triples, 5.16% for sememes, 5.63% for relations,
and 1.00% for first sememes. These results show
that the CoT method guides models through a step-
by-step process.This approach enables the model
to explore the domain’s fundamental conceptual
knowledge more deeply.
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NSS CoT Tri Seme Rela First
✓ ✓ 28.21 37.86 53.57 52.00
✓ − 23.81 32.70 47.94 51.00
− ✓ 0.00 0.00 0.00 0.00

Table 5: Ablation experiment (%).

The influence of NSS on the model is highly
significant. In experiments without this structure,
the four evaluation metrics dropped to zero. This
phenomenon is primarily due to the lack of suffi-
cient examples. Some large models have not been
specifically trained to understand and generate defi-
nitions of specific terms or concepts. In such cases,
incorporating the CoT method as a prompt makes it
challenging for the model to establish a connection
between the input terms and the output definitions,
resulting in a sharp decline in performance. To
more effectively demonstrate the advantages of the
NSS, we compared NSS with fixed templates (FT).
The experimental results are as shown in Table 6.

NSS FT Tri Seme Rela First
✓ − 23.81 32.70 47.94 51.00
− ✓ 2.63 7.42 30.66 11.00

Table 6: Experiment on the impact of FT and NSS (%).

Compared to the fixed template, the model’s per-
formance improved significantly. The F1 scores in-
creased to 21.18% for triples, 25.28% for sememes,
17.28% for relations, and 40.00% for first sememes.
These improvements were observed when the NSS
was incorporated. The experimental results fur-
ther show that providing examples enhances the
model’s performance. The NSS template, guided
by conceptual metaphors, identifies terms with dis-
tinct external systematicity. These terms are lo-
cated within a hierarchical relational network. In-
corporating these terms as examples into the LLM’s
context learning enhances the model’s ability to un-
derstand terms and generate conceptual definitions.
This approach outperforms the fixed template.

3.6 Results on Different Output Format
To investigate the ability of LLMs to accept differ-
ent output formats, we designed a output format
study experiment.

The quintuple format achieves the highest val-
ues across all four metrics, indicating that it ex-
hibits higher acceptance when LLMs perform tasks
involving understanding and generating term con-
cepts. This can be attributed to its straightforward,

Format Tri Seme Rela First
JSON 0.10 2.98 5.70 4.04
List 0.03 2.62 5.88 4.02

KDML 0.00 3.51 9.90 6.00
Quintuple 2.63 7.42 30.66 11.00

Table 7: Results on different format (%).

structured decomposition and the use of clear de-
limiters. The F1 values for the dictionary, list, and
sememe tree formats are all below one percent. The
reasons for this are twofold: firstly, the dictionary,
list, and sememe tree formats are relatively com-
plex, making it difficult for the model to grasp their
internal structural logic. Secondly, this complexity
hinders the model’s ability to follow the predefined
format during the generation process. In contrast,
the absence of clear delimiters and structured guid-
ance weakens the LLM’s ability to adhere to the
required structure during the generation process.

3.7 Case Analysis

As shown in Table 8, when using the fixed template
to generate the quintuple, the format "<3,motion|运
动,patient,1,operate|操作>" contains a structural er-
ror. Based on the hierarchical structure of concept
definitions, the subnode of the first-level node "op-
erate|操作" cannot be directly located at the third
level. If the error "<4, solid|固态, toState, 2, ma-
terial|物质>" is excluded, the generated structure
comprises three layers, which is inconsistent with
the single-layer architecture of the correct answer.

Correct <0,manual|非自动,none,-1,root>
FT <0,action|动

作,none,-1,root>、<1,operate|操
作,content,0,action|动
作>、<2,human|人
类,agent,1,operate|操
作>、<3,motion|运
动,patient,1,operate|操作>

NS <0,manual|非自
动,none,-1,root>、<1,human|人
力,agent,0,manual|非自动>

Ours <0,manual|非自动,none,-1,root>

Table 8: Case analysis.

After incorporating the NSS, as presented in Ta-
ble 9, the model successfully learns the quintu-
ple forms of neighboring terms, such as "intercon-
nection," "braking," "sliding," "starting," and "mo-
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tion." The accurate generation of the structure"<0,
manual |非自动, none, -1, root>" demonstrates the
effectiveness of the NSS.

Input
Terms

Correct quintuple

Manual <0,manual|非自动,none,-1,root>
Neighbor
term

The quintuple corresponding to the
neighboring terms

Interconn
ection

<0,respond|回
应,none,-1,root>、<1,EachOther|相
互,manner,0,respond|回应>

Braking <0,TurnOff|止
动,none,-1,root>、<1,vehicle|交通
工具,patient,0,TurnOff|止动>

Sliding <0,slide|滑,none,-1,root>
Starting <0,start|开始,none,-1,root>
Motion <0,cease|停做,none,-1,root>

Table 9: Retrieval results of NSS.

3.8 Impact of Term Popularity

To assess the popularity of terms, we input them
as search queries into the Google search engine
and used the number of returned search results as a
metric.

Table 10 presents the correspondence between
term popularity percentiles and F1 scores of differ-
ent evaluation metrics. The horizontal dimension
of the table displays popularity percentile segments
at 10% intervals, while the vertical dimension ar-
ranges four evaluation metrics with their F1 scores:
Triple (Tri), Sememe (Seme), Relation (Rela), and
First Sememe (First).

0-10 10-20 20-30 30-40 40-50
Tri 10.62 14.87 17.22 16.24 13.66
Seme 15.93 21.10 22.01 20.42 18.51
Rela 43.36 47.48 49.44 48.26 47.62
First 27.50 32.05 35.04 32.70 29.08

50-60 60-70 70-80 80-90 90-100
Tri 14.54 14.31 16.21 15.87 15.79
Seme 19.44 19.71 21.70 21.47 21.44
Rela 48.96 49.22 50.71 49.98 49.47
First 30.51 30.91 32.59 31.44 32.14

Table 10: Relationship between term popularity and
model performance.

Table 10 reveals that terms in the high-popularity
range (top) and the mid-to-low popularity range
(40th−50th percentile) exhibit relatively low F1

scores. This phenomenon may be attributed to the
higher ambiguity of terms in these ranges.

4 Related Work

A sememe tree represents a hierarchical structure
designed to express lexical meaning through the
combination of semantic primitives (the smallest
semantic units) and the relationships among them.
HowNet has been widely applied to various tasks,
including word embeddings, word sense disam-
biguation, language modeling, and reverse dictio-
nary construction. In recent years, research has in-
creasingly focused on the automatic generation of
semantic primitive trees for specific terms. (Zhang
et al., 2014) developed a semantic primitive knowl-
edge base for aviation-related terms using man-
ual and semi-automatic methods. (Ye et al., 2022)
proposed a Transformer-based model for generat-
ing sememe trees. While this method can deter-
mine whether a relationship exists between seman-
tic primitives, it does not specify the type of rela-
tionship. (Sijia et al., 2024) introduced a term DEF
generation model based on NNP-TDGM to address
two key challenges: insufficient decoder training
on low-frequency samples and limited encoding
capacity. However, existing methods still have lim-
itations. For instance, they rely heavily on labeled
data and face challenges in leveraging large vol-
umes of unlabeled data. Additionally, they exhibit
substantial domain specificity. In contrast, large
models offer improvements in these areas through
large-scale pretraining and enhanced semantic un-
derstanding.

LLMs capabilities in lexical semantics and on-
tology construction have attracted significant schol-
arly interest. (Jain and Anke, 2022) proposed a
zero-shot classification-based induction method to
extract hypernym relations from LLMs, demon-
strating that prompt-based guidance can effectively
capture hierarchical relationships. This demon-
strates that LLMs possess the ability to infer onto-
logical knowledge, thereby facilitating term struc-
turing. (Jhirad et al., 2023b) assessed the perfor-
mance of LLMs in understanding financial termi-
nology. Using definition modeling, they demon-
strated the models’ ability to generate precise
domain-specific definitions through zero-shot and
few-shot learning. (Moskvoretskii et al., 2024)
analyzed the performance of LLaMA-2 and Mis-
tral in classification learning tasks, revealing their
capacity to acquire hierarchical knowledge and in-
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fer conceptual relationships. Although existing
research predominantly examines word semantics
and ontology tasks, term definition modeling re-
mains underexplored. This paper explores whether
LLMs can comprehend terms and articulate their
underlying conceptual semantics, offering valuable
insights for term definition modeling.

5 Conclusion

In this study, we comprehensively investigate
whether LLMs can effectively acquire domain-
specific conceptual knowledge, moving beyond
mere surface-level recognition to attain a deeper
semantic understanding. Our experiments demon-
strate that LLMs possess a measurable ability to
generate semantic concepts associated with terms.
Grounded in the theory of term metaphor, we intro-
duce examples of semantically related structures
and employ a chain-of-thought approach. This
method guides the model to systematically ana-
lyze the core concepts, attributes, and relationships
of terms in a sequential manner, thereby enhancing
its ability to uncover underlying meanings.

Limitation

This approach facilitates meticulous extraction of
domain-specific conceptual knowledge and me-
thodical derivation of term definitions. However, it
is important to note that both the understanding and
reasoning about the semantics of term concepts by
LLMs are imperfect, and the challenges they face
when processing terms over the long term are evi-
dent. These observations indicate that their under-
standing of term concepts remains limited. There-
fore, enhancing LLMs’ understanding of term con-
cept semantics represents a significant direction for
future research.
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