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Abstract
Multimodal Large Language Models (MLLMs)
have advanced in integrating diverse modali-
ties but frequently suffer from hallucination. A
promising solution to mitigate this issue is to
generate text with citations, providing a trans-
parent chain for verification. However, existing
work primarily focuses on generating citations
for text-only content, leaving the challenges of
multimodal scenarios largely unexplored. In
this paper, we introduce MCITEBENCH, the
first benchmark designed to assess the abil-
ity of MLLMs to generate text with citations
in multimodal contexts. Our benchmark com-
prises data derived from academic papers and
review-rebuttal interactions, featuring diverse
information sources and multimodal content.
Experimental results reveal that MLLMs strug-
gle to ground their outputs reliably when han-
dling multimodal input. Further analysis un-
covers a systematic modality bias and reveals
how models internally rely on different sources
when generating citations, offering insights into
model behavior and guiding future directions
for multimodal citation tasks.

1 Introduction

Multimodal Large Language Models (MLLMs)
have shown remarkable progress in integrating ex-
ternal information from diverse modalities, allow-
ing them to generate responses beyond the scope
of their internal knowledge (Cho et al., 2024; Li
et al., 2024b; Zhang et al., 2024b). Despite the
advancements, these models frequently suffer from
hallucination (Huang et al., 2023; Bai et al., 2024),
undermining the faithfulness of their outputs (Zhu
et al., 2024). A natural strategy to alleviate this
issue is citation: allowing the model to attribute
each generated statement to its source, thereby im-
proving transparency and verifiability.

Existing studies on generating text with citations
mainly focus on the textual modality (Gao et al.,
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[1] Method B uses 
LLMs to score 
reference-free 
“win-rates”, which 
neglects ... and 
always requires 
evaluating model 
pairs. Instead ...
[2] Robust 
prompting ...
[3] Many 
benchmarks ...

Figure 1

Table 4

Table 1

External Information

Texts Tables

Figures

Question

How does Method A ensure 
thorough evaluation?

Unlike prior benchmarks 
such as Method B, which rely 

on reference-free "win-
rates" and require evaluating 
model pairs[1], Method A ... 

Additionally, Method A 
demonstrates consistent 

rankings of frontier models 
across various benchmarks, 

as shown in Figure 1. 
Furthermore, Method A's 

datasets, span a wide range 
of input lengths (from 73k to 
518k tokens), ..., as detailed 

in Table 4...

Response with citation

Figure 1: Illustration of the task form in MCITEBENCH.
The model takes multimodal corpus and generates re-
sponses with explicit citations.

2023; Liu et al., 2023a). However, real-world in-
formation sources are inherently multimodal, often
conveying information that cannot be captured by
text alone. Although common in practice, citations
from non-textual modalities remain underexplored.
Grounding model responses in multimodal sources
can improve faithfulness and quality (see Figure 1).
At the same time, this task poses several challenges
for MLLMs. The model must understand cross-
modal content, assess the sufficiency of evidence,
and remain robust to irrelevant or distracting input.
These challenges are still under exploration. In this
paper, we construct a benchmark to systematically
evaluate MLLMs in generating text with citation
from multimodal input.

However, building such a benchmark is chal-
lenging. First, constructing high-quality question-
answer data with multimodal evidence is non-
trivial. It requires not only the accurate extraction
of heterogeneous evidence (e.g., tables, figures, and
passages), but also careful alignment between the
evidence and the answer. In cases where multiple
pieces of evidence jointly support an answer, it is
critical to ensure their mutual consistency and suf-
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ficiency. Second, evaluating MLLMs in this setting
introduces additional complexity. A key issue is
how to assess cross-modal entailment—whether
the cited evidence truly supports the generated
answer. Moreover, the citation must correspond
closely to the response, ensuring that the retrieved
evidence is both necessary and relevant to the out-
put. These challenges highlight the need for a
comprehensive evaluation framework that exam-
ines multiple dimensions of model performance.

In this paper, we propose MCITEBENCH, the
first benchmark for evaluating the ability of
MLLMs to generate text with citations in mul-
timodal settings. To address the challenges out-
lined above, we begin by collecting academic pa-
pers and extracting reliable information sources
across multiple modalities. These sources are rig-
orously filtered to form a high-quality attribution
corpus. Based on this corpus, we construct ques-
tion–answer pairs using review–rebuttal interac-
tions, where each answer is supported by evidence.
To comprehensively evaluate model performance,
we assess models along three axes: citation qual-
ity, source reliability, and answer accuracy. Ex-
tensive experiments reveal several notable find-
ings: 1) While MLLMs can often answer ques-
tions correctly, they struggle to generate accurate
citations, particularly when the evidence spans mul-
tiple sources. 2) MLLMs are better at attributing
citations to textual than to visual evidence, suggest-
ing a potential modality bias.

Our contributions are summarized as follows:

• To the best of our knowledge, MCITEBENCH

is the first benchmark that systematically eval-
uates the ability of MLLMs to generate text
with citations from multimodal input.

• MCITEBENCH comprises 3,000 samples of
different difficulty levels, including both
single- and multi-source evidence, as well as
single- and mixed-modality cases. To support
comprehensive evaluation, we define multi-
dimensional metrics capturing citation quality,
source reliability, and answer accuracy.

• We conduct experiments to assess the mod-
els’ ability to generate text with citations
across different modalities. Results reveal that
MLLMs exhibit a modality bias, favoring tex-
tual over visual sources in citation generation.

2 Related Work

Generating Text with Citations Recent efforts
have explored the task of generating text with
citations, where models are required to produce
responses with explicit references to supporting
sources. Gao et al. (2023); Liu et al. (2023a) first
introduced this setting to improve the verifiability
of model responses. Subsequent works have ex-
plored two main paradigms: generating both the
response and citations simultaneously (Aly et al.,
2024; Huang et al., 2024), and attaching citations
in a post-processing step (Slobodkin et al., 2024; Li
et al., 2024a). These approaches have also been ex-
tended to tasks such as long-context citation (Zhang
et al., 2024a) and fine-grained attribution (Xu et al.,
2024). Another related line of work is traditional
citation text generation, which typically refers to
generating citation sentences in academic papers
that contain specific scientific claims and cite prior
work (Li and Ouyang, 2024; Mandal et al., 2024;
Şahinuç et al., 2024). However, existing studies
focus almost exclusively on textual evidence, lim-
iting their applicability in real-world multimodal
scenarios. In this work, we address this gap by
incorporating figure and tabular content as citation
sources and evaluating model attribution in multi-
modal contexts.

Multimodal RAG Multimodal retrieval-
augmented generation (mRAG) (Zhao et al., 2023)
augments multimodal large language models with
retrieved external information, enabling them
to answer queries that cannot be resolved using
internal knowledge alone. Zhang et al. (2024b)
acquire unknown visual knowledge through web
search to aid in answering queries, while Li et al.
(2024b) builds a self-adaptive retrieval agent to
plan the reasoning path. Additionally, Cho et al.
(2024) improve multi-page and multi-document
understanding through multimodal retrieval. While
these approaches integrate retrieval into the
generation pipeline, they do not assess whether the
generated responses faithfully reflect the retrieved
content. In this work, we shift the focus from
retrieval itself to attribution: evaluating whether
the model can correctly ground its outputs in the
provided multimodal sources.

3 MCITEBENCH

In this section, we define the task of generating text
with citations from multimodal input and describe
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Figure 2: The construction pipeline of MCITEBENCH. Initially, we collect multimodal academic papers along with
their corresponding review-rebuttal interactions and then parse the papers to extract candidate evidence. GPT-4o is
used to extract explanation QA pairs from the comments and generate locating QA pairs. Next, human annotators
match the references in the answers to the relevant content in the original papers. Finally, the data filtered and
labeled by the model is manually verified by human annotators to ensure consistency and accuracy.

the construction of our benchmark, MCITEBENCH.
As shown in Figure 2, the pipeline consists of
four main stages: Attribution Corpus Collec-
tion, QA Pairs Construction, Evidence Pairing,
and Quality Control. We begin by collecting aca-
demic papers, which serve as a source of rich multi-
modal content. Based on these papers, we construct
question–answer pairs from review–rebuttal inter-
actions. Human annotators are employed to link
answers to their supporting evidence.

3.1 Task Definition

Given a query q and a multimodal evidence set M ,
where M includes both the ground truth evidence
and distractors related to q, the model is required to
generate an answer a along with a set of citations C.
For each sentence si in the answer, the model gen-
erates a set of citations Ci = {ci,1, ci,2, . . . , ci,ki},
where ki denotes the number of cited evidence as-
sociated with sentence si. Each citation ci,j refers
to a specific piece of evidence from the multimodal
evidence set M .

3.2 Attribution Corpus Collection

To evaluate how well MLLMs generate text with
citations, an attribution corpus that includes mul-
timodal information sources and allows for easy
verification of cited evidence is needed. In
MCITEBENCH, we use academic papers as the
attribution corpus because of the following charac-
teristics: 1) Academic papers contain rich content
from multiple modalities (e.g., text, figure, and
table) that individually or collectively support the
arguments. 2) The information sources in academic
papers are numbered (e.g., “Figure 1”, “Table 2”,

and text in “Line 10”), making it easy to match
them with the cited results. 3) Academic papers
cover the latest contents beyond pre-training data,
reducing the risk of data leakage.

We collect papers from OpenReview and extract
multimodal content using MinerU (Wang et al.,
2024a), a state-of-the-art document parsing frame-
work. To avoid contamination from model training
data, we focus on ICLR 2025 submissions, which
became publicly available in November 2024—af-
ter the knowledge cutoff of the evaluated models.
ICLR is chosen for its open review process, which
includes accessible reviews and author responses,
offering reliable structure for citation annotation.
From this collection, we obtain a diverse set of
multimodal content, including over 400k text para-
graphs, 40k images, and 9k tables, which serve
as candidate evidence. A subset of this corpus is
selected as candidate evidence and distractors for
constructing the final 3k evaluation samples.

3.3 QA Pairs Construction

After collecting the attribution corpus, we construct
question–answer pairs with explicit references to
the supporting evidence. Establishing a reliable
correlation between questions and evidence is chal-
lenging, as the source of information must be accu-
rately linked to the generated answers.

We divide MCITEBENCH data into two cate-
gories: Explanation and Locating. Explanation
questions require in-depth analysis of evidence and
often yield long-form responses (e.g., “How is the
model’s performance evaluated?”). In contrast, Lo-
cating questions are straightforward and can be
answered by directly identifying the correct evi-
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dence (e.g., “Which model performs better on the
XYZ benchmark, GPT-4o or GPT-4o-mini?”).

For Locating questions, we use GPT-4o to gen-
erate structured QA pairs with supporting details.
Specifically, we construct QA pairs (Q,A), where
each question qi ∈ Q is formulated based on spe-
cific evidence, and each answer ai ∈ A is directly
linked to the corresponding source.

However, generating questions that require in-
formation from multiple sources remains a chal-
lenge for MLLMs. Models often fail to integrate
all necessary evidence, resulting in questions that
can be answered by a single source rather than all
selected evidence. To address this, we leverage
review-rebuttal interactions to construct Explana-
tion QA pairs. In this setting, reviewers’ questions
and authors’ responses are used, with responses
grounded in multiple evidence segments from the
paper (i.e., attribution corpus). From these data, we
construct QA pairs (Q,A) by extracting questions
qi and the corresponding answers ai.1

3.4 Evidence Pairing

Review–rebuttal interactions often include rich ev-
idence in the authors’ responses to support their
claims. For example, when addressing a reviewer’s
concern about model performance, an author might
respond, “Our approach achieves 85.2% accu-
racy, as shown in Table 3 and discussed in Sec-
tion 4.2.” These references provide valuable entry
points for identifying the evidence that grounds the
answer. Therefore, we extract the supportive evi-
dence ei ∈ E from ai ∈ A to construct (Q,A,E)
triplets. While E provides explicit references (e.g.,
“Table 3”, “Section 4.2”), these references must
be resolved to their corresponding content in the
source papers before they can be used as input for
MLLMs. To achieve this, human annotators manu-
ally map each reference to the associated content
in the original paper, categorizing the evidence as
either text, image, or table.

Distractor Construction. To evaluate whether
models can correctly cite relevant sources while ig-
noring irrelevant ones, we introduce distractor con-
tent into the input. These distractors are sampled
from the same paper, ensuring a balanced distribu-
tion of multimodal content (text, images, tables).
Each final sample in MCITEBENCH is formatted
as (Q,A,E,D), where Q is the question, A is the

1Details of prompt design and reference extraction strate-
gies are in Appendix B.1

Statistic Number

Total questions 3,000
- Explanation 2,000
- Locating 1,000

Evidence sources
- Single-source 2,538
- Multi-source 462

Evidence modality
- Text 1,243
- Figure 941
- Table 533
- Mixed 283

Total papers 1,749
Average questions per paper 1.72

Table 1: Statistics of MCITEBENCH.

correct answer, E is the evidence and D is the
distractors.

3.5 Quality Control
After constructing (Q,A,E,D), we apply a qual-
ity control pipeline that first uses automated filter-
ing followed by human verification. Initially, GPT-
4o assigns quality labels and filters out low-quality
samples based on predefined criteria such as rele-
vance, clarity, and evidence alignment. The filtered
candidates are then manually verified by annota-
tors to ensure consistency and accuracy, focusing
on removing any unclear or incorrect instances.2

3.6 Statistics of MCITEBENCH

As shown in Table 1, MCITEBENCH comprises
3,000 data samples for evaluating the ability of
MLLMs to generate text with citations, extracted
from 1,749 academic papers with an average of
1.72 questions per paper. Among these, 2,000 are
Explanation tasks that require detailed evidence
analysis and often lead to long-form answers, while
1,000 are Locating tasks that focus on direct ev-
idence identification. The evidence is balanced
across modalities, with 1,243 textual, 1,474 visual
(including 941 figures and 533 tables), and 283
mixed-modality sources, ensuring diverse multi-
modal attribution scenarios.

4 Evaluation Metrics

We evaluate the models across three dimensions: ci-
tation quality, source reliability, and answer ac-
curacy. Using Citation F1, we assess whether the
cited evidence accurately and sufficiently supports

2Details of the human annotation process can be found in
Appendix C.2.
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Sentence
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Precision
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[1]
Precision = 0.5

Citation F1 = 0.67

Figure 3: The calculation of Citation F1.

the model’s response. Source reliability ensures
that the model’s response cites the ground truth
source needed to answer the query. We measure
this by comparing the model-generated citation
with ground truth citation, using both Source F1
and Source Exact Match scores. Answer accuracy
metrics are designed to assess whether the model’s
response correctly addresses the query.

Citation F1 (C-F1). Citation quality is evaluated
using Citation F1, which measures the alignment
between cited evidence and the generated response,
ensuring that the response is supported by the cited
evidence without including irrelevant ones.

As illustrated in Figure 3, a judge model eval-
uates whether each sentence is supported by its
cited evidence. Citation Recall is calculated using a
scoring system inspired by LongCite (Zhang et al.,
2024a), categorizing citations into three levels: No
support, Partially supported, and Fully supported,
with corresponding scores of 0, 0.5, and 1. Citation
Precision is determined on a binary scale, scored as
either relevant (1) or irrelevant (0) to the cited ev-
idence. For sentences citing multiple sources, the
final precision score is the average across all cited
evidence. Finally, Citation F1 is computed as the
harmonic mean of Recall and Precision, providing
a balanced measure of the model’s citation quality.

Source F1 (S-F1). As shown in Figure 4, Source
F1 measures the alignment between citations in
the model’s response and ground truth citations,
evaluating whether the model cites evidence that
aids in answering the query.

We first split the model-generated responses
into sentence-citation pairs (si, ci) using GPT-4o.
These sentence-level citations are then aggregated
to form response-level citations, which are com-
pared against the ground truth. The precision, re-
call, and F1 score are calculated as follows:

Source Precision =
|Cpred ∩ Cgt|

|Cpred|
, (1)

Sentence 1

Sentence Citation
Extraction

Sentence 1

Sentence 3

Sentence 1

Sentence 2

Sentence 1
This leads to …, as shown in 
Figure 5, where …[1].

Sentence 1

Citation: (Figure 5, [1])

Response level Citation: (Figure 5, [1], Table 4)

Ground Truth Citation: (Figure 5, [1])
Recall 2 / 2 = 100%
Precision 2 / 3 = 66%

(Figure 5, [1])

(Table 4)

What are the effects of snapshot 
configuration on performance?

Question

The results are presented in [1]. When 
ratio is … , as shown in Figure 5. 

Ground Truth Answer

Model Response
This leads to …, as shown in Figure 5, 
where ……[1] Snapshot ,…… increasing 
the batch size without accuracy 
degradation (Table 4). 

Source F1 = 0.8
Source Exact Match = 0

Figure 4: The calculation of Source F1 and Source
Exact Match.

Source Recall =
|Cpred ∩ Cgt|

|Cgt|
, (2)

We calculate Source F1 by computing the har-
monic mean of Recall and Precision. Cpred repre-
sents the set of citations generated by the model,
and Cgt denotes the ground truth citations. The
intersection Cpred ∩ Cgt counts the correctly cited
evidence.

Source Exact Match (S-EM). The Source Exact
Match metric provides a stricter evaluation, indi-
cating whether the model’s response-level citation
is the same as the ground truth.

Source EM =

{
1, if Cpred = Cgt

0, otherwise
(3)

Accuracy (Acc). We evaluate answer accuracy
using the LLM-As-Judge (Zheng et al., 2023; Liu
et al., 2023b) framework for both Explanation and
Locating questions. The judge model scores each
response and reference answer according to criteria
specific to each question type, and the scores are
then normalized. In Explanation cases, direct com-
parison with a ground truth answer is not feasible.
Instead, we use the authors’ responses as the ref-
erence and employ a judge model to evaluate the
generated answers based on their relevance, logical
consistency, and fluency. In Locating scenarios,
this evaluation method mitigates issues related to
errors caused by minor formatting differences.3

5 Experiments

5.1 Evaluation Settings
Implement Details. In this work, we indicate
citations from textual content using box brackets
(e.g., “[1]”), and refer to figures and tables by the
indices in their captions (e.g., “Figure 3”, “Table
2”). We conduct an ablation study to assess the

3Detailed scoring criteria and judgment prompts are pro-
vided in the Appendix B.2.
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Models

Explanation Locating

Single-Source Multi-Source Single-Source

C-F1 S-F1 S-EM Acc C-F1 S-F1 S-EM Acc C-F1 S-F1 S-EM Acc

Open-Source Models (7-14B)
LLaVA-OV-7B 19.93 10.84 5.34 47.79 31.14 22.48 1.26 49.68 26.31 20.93 11.63 60.10
LLaVA-OV-7B-Chat 28.77 13.90 1.43 47.76 35.74 29.82 3.00 49.78 29.58 23.33 4.05 53.85
MiniCPM-V-2.6 49.12 35.23 22.81 51.30 57.90 41.74 5.88 52.60 47.93 52.73 42.94 83.55
Qwen2-VL-7B 58.46 42.98 35.36 51.59 58.64 36.62 2.36 53.03 53.99 54.71 46.32 87.45
InternVL2.5-8B 58.47 45.13 33.45 51.53 63.97 45.50 9.86 52.92 55.94 64.17 56.33 83.90
Llama-3.2-Vision-11B 19.65 14.06 9.60 48.63 31.16 25.87 1.22 49.35 26.56 16.56 11.80 61.40

Open-Source Models (>70B)
Qwen2-VL-72B 53.60 44.81 32.01 52.60 64.66 50.53 8.96 52.38 58.75 68.86 61.48 90.25
InternVL2.5-78B 54.52 42.44 25.40 52.34 71.03 57.65 16.86 54.87 50.57 57.60 52.20 90.10
Llama-3.2-Vision-90B 35.33 28.05 12.30 50.00 46.08 46.73 10.35 51.41 43.69 49.07 32.83 74.75

Proprietary Models
GPT-4o-mini 43.99 34.42 15.48 52.08 57.81 50.22 8.39 54.22 53.71 58.57 46.56 88.50
GPT-4o 84.24 56.82 24.50 54.32 89.19 67.56 21.27 56.60 91.45 85.74 69.45 90.45

Table 2: Main results on MCITEBENCH. The highest score is highlighted in bold, and the second highest score is
underlined. C-F1, S-F1, and S-EM represent Citation F1, Source F1, and Source Exact Match scores, respectively.
Acc stands for Accuracy.

impact of including figure captions in the input.4

For both single-source and multi-source evidence
questions, the multimodal corpus M comprises
5 items, including the ground truth evidence and
distractors. Distractors are randomly selected from
other content within the same paper.

Judge Model. In this study, we use GPT-4o to
assess the entailment relationship between model
responses and their cited evidence.5

Model Choice. For open-source models, we test
InternVL-2.5 (8B/78B) (Chen et al., 2024), Qwen2-
VL (7B/78B) (Wang et al., 2024b), Llama 3.2-
Vision (11B/90B) (Meta, 2024), Llava-OneVision
(and its chat version) and MiniCPM-V-2.6 (Yao
et al., 2024). For proprietary models, we test GPT-
4o (GPT-4o-2024-11-20) and GPT-4o-mini (GPT-
4o-mini-2024-07-18) (Hurst et al., 2024).

5.2 Main Results

As shown in Table 2, smaller open-source models
achieve lower Citation F1 scores and struggle to
select evidence that adequately supports their re-
sponses. Furthermore, they also perform poorly in
selecting evidence that directly answers the query,
as shown by their low Source F1 and Source Ex-
act Match scores. As model size increases, we
observe an improvement in citation performance,

4See Table 14 for details in Appendix D.2.
5We validate GPT-4o’s reliability in Appendix C.3, and

further verify in Appendix D.1 that it does not exhibit strong
self-preference when evaluating responses in our task.

suggesting that scaling model size enhances attri-
bution capability. In comparison, GPT-4o achieves
an 84.24% Citation F1 score on single-source Ex-
planation questions, demonstrating strong citation
quality. However, it struggles with source relia-
bility, with Source Exact Match scores remaining
low at 24.50% for single-source and 21.27% for
multi-source settings. This indicates that even state-
of-the-art models struggle to consistently cite ev-
idence that is directly relevant to answering the
query, underscoring the difficulty of precise cita-
tion in multimodal contexts.

Does Question Difficulty Influence Model Cita-
tion Performance? Model performance reflects
the difficulty of the questions, with higher accuracy
scores observed on locating questions compared to
explanation questions, indicating that explanation
tasks are more challenging. As shown in Table 2,
as question difficulty increases, model citation per-
formance tends to decrease. For instance, GPT-4o
achieves 85.74% in Source F1 for single source
locating questions but drops to 56.82% for single
source explanation questions. Explanation ques-
tions place higher demands on citation generation,
as they require an in-depth analysis of the inputs.

How Do Multi-Source Scenarios Affect Gener-
ating Text with Citations in MLLMs? In multi-
source settings, models tend to achieve higher Ci-
tation F1 and Source F1 scores, as multiple valid
references allow for partial credit. Unlike single-
source questions with only one correct citation,
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Model Overall
By Modality

Figure Table Text

Open-Source(7-14B)
Qwen2-VL-7B-Instruct 0.45 0.40 0.38 0.55
InternVL2_5-8B 0.48 0.37 0.42 0.65
Open-Source(>70B)
Qwen2-VL-72B-Instruct 0.59 0.50 0.57 0.71
InternVL2_5-78B 0.58 0.51 0.50 0.72
Proprietary
gpt-4o-mini 0.52 0.47 0.48 0.61
gpt-4o-2024-11-20 0.60 0.52 0.55 0.73

Table 3: Model accuracy on identifying the most rele-
vant source for answering a question under the multi-
choice setting.

multi-source questions permit credit for correctly
identifying any subset of the ground truth, natu-
rally resulting in higher metric values. However,
the stricter Source Exact Match metric is lower than
in single-source scenarios. This highlights the chal-
lenge of citing in multi-source scenarios, where
models must correctly include relevant sources
while avoiding irrelevant ones.

5.3 Analysis
In this section, we discuss several research ques-
tions, revealing the inherent biases in the task.

RQ1: Can MLLMs Accurately Identify the
Source Needed to Answer a Question? Gen-
erating text with citation can be abstracted into a
two-stage process: (1) generating a response, and
(2) mapping that response to the appropriate sup-
porting input sources by producing attribution to-
kens such as “[1]” or “Figure 3”.

Instead of requiring the model to generate an
answer and then attribute it, we directly evaluate
its ability to identify which source would be most
helpful in answering a given question. Specifically,
we ask: Can a model identify the correct source
needed to answer a given question?

Settings We construct a probing task based on
Single-Source Explanation QA. For each example,
we provide the model with a question and 5 candi-
date sources (1 correct + 4 distractors). The model
is tasked with selecting which source would be
most helpful in answering the question.6

Results Results are presented in Table 3. Impor-
tantly, this task directly evaluates the model’s abil-
ity to identify relevant sources based solely on the
question, rather than relying on model-generated

6See Table 11 for details in Appendix B.3.
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answers or intermediate claims. Despite this seem-
ingly simplified setting, no model achieves more
than 60% accuracy, highlighting the persistent dif-
ficulty in accurately grounding questions in the
correct source.

In addition, we observe a consistent performance
gap across modalities: models perform better when
reasoning over textual sources compared to visual
inputs such as figures and tables, which leads to
our next research question.

RQ2: Does Modality Influence Citation Perfor-
mance? We analyze model performance in in-
stances where the evidence modality comes from
mixed modalities. The number of evidence is set
to 2, and we compare this with data from sin-
gle modalities with the same number of evidence
pieces. As shown in Figure 5, most models achieve
high Source EM scores when the ground truth evi-
dence is textual but perform poorly when it is visual.
This suggests that although MLLMs can process
multimodal inputs, they are better at aligning with
textual evidence than accurately citing visual infor-
mation when generating responses.

To further investigate this, we analyze MLLMs’
attention patterns when processing mixed-modality
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Logic-LM has higher accuracy. 
According to Figure 4

Response Distractor
Figure 2

Table 3

Text [1]

Text [2]
Ground Truth

Figure 4

Correct answer generated, 
but attention still prioritizes 
distractor indices.
(e.g., [1], Figure 2)

Figure 7: Attention heatmap during source reference generation. The heatmap shows how the model distributes
attention when generating the next token in its response, continuing the sentence “Logic-LM has higher accuracy.
According to Figure 3”. Although the model answers correctly, its attention in the distractors remains focused on
index positions (e.g., “[1]”, “Figure 2”).

inputs. Using Qwen2-VL-7B as the test model,
we calculate the attention distribution across mul-
timodal inputs by averaging attention head scores
and normalizing by input source token length
across different layers. As shown in Figure 6, the
model allocates fewer attention scores to visual in-
puts compared to text. In contrast, textual informa-
tion maintains consistently high attention through-
out, with 83.7% in early layers and 77.5% in later
layers. This indicates that while the model pro-
cesses all modalities, it prioritizes textual content
and utilizes it more effectively than visual data.

RQ3: What Do Models Look At When Gen-
erating Citations? Correctly generating source-
identifying tokens (e.g., “[1]”, “Figure 2”) leads
to better performance and higher attribution scores.
To better understand how models process ground
truth evidence and distractors, we analyze their
attention distribution when generating source-
identifying tokens.

Settings Specifically, we examine the attention
patterns of Qwen2-VL-7B when continuing a par-
tially generated sentence ending in “According to
Figure”, and tasked with predicting the next token
(e.g., “4”). This allows us to assess which input
regions the model attends to when making source
attribution decisions.

Specifically, we focus on its behavior when pre-
dicting the next token after “According to Figure 3”
in its response. Notably, the distractors are sampled
from unrelated papers, meaning they provide no

useful information for answering the question.

Results As shown in Figure 7, the model’s atten-
tion heatmap reveals an intriguing pattern: even
when the response is based entirely on a specific
piece of evidence, the model’s attention does not
solely focus on it. When generating the token af-
ter “According to Figure”, the model’s attention
remains high on textual index positions (e.g., “[1]”,
“[2]”), even though the context suggests the model
should focus on figure evidence. This suggests that
while the model correctly cites the source, it main-
tains a broader contextual awareness by attending
to multiple potential evidence.

6 Conclusion

In this paper, we introduce MCITEBENCH, a high-
quality benchmark built from academic papers and
their review–rebuttal interactions, to evaluate the
ability of MLLMs to generate text with citations
from multimodal input. Leveraging this bench-
mark, we conduct a detailed evaluation of model
performance across multiple dimensions. Through
extensive experiments, we find that existing mod-
els struggle to accurately attribute their outputs to
the correct multimodal sources. Furthermore, we
dive deep into the analysis of attention distribution
during citation generation and uncover modality
bias exhibited by current models. We hope that
MCITEBENCH offers valuable insights into gen-
erating text with citations and contributes to the
development of models capable of producing faith-
ful and verifiable responses.
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Limitations

In MCITEBENCH, we construct multi-level ques-
tions and build an evaluation pipeline for multi-
modal inputs. However, the current design has
limitations in citation granularity. First, citations
are limited to the sentence level, meaning that we
do not distinguish between multiple claims within a
single sentence. For example, if a sentence contains
multiple claims supported by different evidence,
we treat it as a full sentence-level citation. Second,
MCITEBENCH treats subfigures or subtables (e.g.,
Figure 1a, 1b) as part of the entire figure or table,
without distinguishing between them. These lim-
itations highlight areas for future improvement in
handling fine-grained attribution tasks.

Ethical Statement

We hereby acknowledge that all authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct.

Use of Human Annotations Our institution re-
cruited three annotators to perform the evidence
linking, data filtering, and robustness evaluation
tasks for MCITEBENCH. We ensure that the pri-
vacy rights of the annotators are respected through-
out the process. The annotators receive compensa-
tion exceeding the local minimum wage and have
consented to participate in the tasks for research
purposes.

Risks The tasks in MCITEBENCH used in our
experiment are created by human annotators, and
we conduct additional checks to ensure that the con-
tent is free from socially harmful or toxic language.
However, the evaluation of data quality relies on
common sense, which may differ across individuals
with diverse backgrounds.
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A Supplementary Results

A.1 Detailed Scores by Metric and Modality

In addition to the overall results reported in Table 2,
we provide detailed scores grouped by metric in
Table 4.

B Prompt Design

B.1 Data Processing Prompts

We list the prompts used for extracting Explanation
QA and generating Locating QA in Table 5, 6.

B.2 Evaluation Metric Prompts

We list the prompts used for evaluating citation
recall, citation precision, and the accuracy of expla-
nation and locating questions in Table 7, 8, 9, 10.

B.3 Source Identification Prompt

We list the prompt used to evaluate whether a model
can identify the most relevant source for answering
a given question in Table 11.

C Human Evaluation

C.1 Evidence Paring

Human annotators map each reference to its corre-
sponding content using the GUI shown in Figure 8.

C.2 Quality Control

Our annotation process involves three students
from the artificial intelligence field, with one serv-
ing as the annotation lead. The process takes ap-
proximately one month to complete, and annotators
are compensated at the local minimum hourly wage
rate. Regarding inter-annotator agreement, in cases
of disagreement about whether to retain specific
data points, the annotation lead makes the final
decision.

Human annotators verify data quality and filter
out bad cases using the GUI shown in Figure 9.

C.3 Agreement Between Human Annotations
and GPT-4o

To verify the accuracy of our evaluation pipeline,
we conducted a manual annotation study on 75
model-generated responses, comprising 25 objec-
tive questions and 50 subjective questions, result-
ing in over 457 entailment judgments. We then
compared these human annotations with the entail-
ment judgments produced by GPT-4o. As shown
in Table 12, the results indicate a high degree of

agreement between human annotations and GPT-
4o’s predictions, demonstrating the reliability and
correctness of our pipeline. The annotation GUI is
shown in Figure 10.

D Ablation Study

D.1 Effect of LLM Judge Choice
To further investigate the robustness of our auto-
matic evaluation setup, we conduct an ablation
study using alternative judge models. Specifically,
we evaluate model performance on 90 randomly
sampled examples (30 Locating and 60 Explana-
tion questions), comparing scores assigned by GPT-
4o and DeepSeek V3-0324.

As shown in Table 13, GPT-4o consistently
achieves the highest scores under both judge mod-
els. While DeepSeek V3-0324 tends to yield
slightly higher absolute scores across all models,
the relative ranking remains consistent. This sug-
gests that self-preference bias from GPT-4o does
not significantly affect evaluation outcomes, con-
firming the robustness of our LLM-based evalua-
tion setup.

D.2 Effect of Captions on Citation
Performance

To assess the role of visual-textual information in
multimodal citation understanding, we conduct a
comprehensive ablation study across the full bench-
mark dataset (3,000 examples), comparing model
performance with and without image captions.

As shown in Table 14, we observe that including
captions leads to minor changes in performance
across most evaluation metrics. Notably, the accu-
racy improvements are modest for both GPT-4o-
mini and GPT-4o. Interestingly, in some cases (e.g.,
GPT-4o-mini), the inclusion of captions slightly de-
grades performance in label prediction and citation
generation (as measured by F1 and exact match),
while GPT-4o exhibits a substantial gain in citation
F1.

These results demonstrate that our benchmark
does not rely solely on OCR-extracted text, and
that the image-caption setting we adopt provides
a reasonable and realistic testbed for evaluating
MLLMs’ citation capabilities. At the same time,
the relatively limited gains from caption inclusion
highlight that current models still face challenges
in grounding their responses effectively, even when
textual cues are explicitly embedded in the image.
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Models
By Metric

C-F1 S-F1 S-EM Acc

Fig. Tab. Text Mix Fig. Tab. Text Mix Fig. Tab. Text Mix Fig. Tab. Text Mix

Open-Source Models (7–14B)
LLaVA-OV-7B 23.67 26.15 19.52 37.59 15.22 18.09 12.31 29.39 10.20 11.65 3.34 1.02 48.19 47.09 57.72 50.71
LLaVA-OV-7B-Chat 29.61 29.19 28.94 38.69 8.31 11.57 28.60 32.60 1.76 2.35 3.40 1.89 45.64 44.56 55.83 50.18
MiniCPM-V-2.6 59.78 57.27 34.07 66.61 48.03 48.26 33.35 45.54 33.37 31.56 25.29 4.05 57.97 53.38 71.24 53.71
Qwen2-VL-7B 73.11 70.50 31.20 62.16 57.83 61.36 24.07 40.28 50.93 47.97 14.49 1.88 60.20 56.00 71.96 54.24
InternVL2.5-8B 56.61 55.39 58.88 68.26 45.05 47.83 60.36 47.85 33.06 36.30 49.62 8.97 58.55 53.66 71.48 53.18
Llama-3.2-V-11B 23.41 17.10 24.22 34.54 19.56 15.20 12.00 30.46 15.16 12.96 4.36 1.90 51.01 47.65 57.60 49.47

Open-Source Models (>70B)
Qwen2-VL-72B 40.38 61.12 65.84 69.04 28.62 47.05 78.73 51.06 13.04 38.07 68.26 6.45 61.48 59.57 73.09 52.65
InternVL2.5-78B 34.86 29.94 77.33 72.73 19.01 13.95 85.51 58.64 3.44 2.51 72.38 14.23 61.26 58.35 73.45 47.79
Llama-3.2-V-90B 25.12 23.39 55.52 49.19 12.44 12.24 65.28 50.07 1.76 1.97 40.46 12.19 51.75 49.44 68.95 51.77

Proprietary Models
GPT-4o-mini 34.11 36.40 63.93 58.71 19.26 22.43 72.70 49.00 5.84 8.78 51.09 3.70 60.63 57.04 72.93 54.95
GPT-4o 81.78 84.14 92.50 90.12 58.25 62.36 78.47 67.12 25.35 34.48 55.63 21.28 62.91 60.69 74.18 57.95

Table 4: Detailed scores grouped by metric.

Task Overview
Your task is to extract valid question-answer-evidence (Q-A-E) triples from rebuttal sections of
research papers on OpenReview. The extracted triples must meet the following criteria:
Question: Neutral, logically self-contained, and directly related to the paper’s content. The
question must not contain explicit citations (e.g., “Section 4.3” or “Figure 2”).
Answer: The author’s response must include explicit citations to the paper’s main body content
(e.g., “Section 4.3, Line 39” or “Figure 2, Figure 3”).
Evidence: Citations in the answer must be precise and clearly formatted. Multiple references
should be separated by commas.
Definitions
Question: A neutral, logically self-contained inquiry related to the paper’s content. The question
must: Avoid references to specific sections, lines, figures, or tables (e.g., “Can Section 4.3 be
clarified?” is invalid). Focus on exploring or clarifying the main body of the paper, excluding
appendices.
Answer: The full response provided by the authors, which must: Contain explicit citations to
the paper’s content (e.g., “Section 4.3, Line 39”). Exclude vague or general references such as
“General response” or “Discussion section.”
Evidence: Explicit numerical references from the author’s response, such as: “Section 4.3, Line
39” “Figure 2, Figure 3” “Table 5”
Evidence must be precise and, if there are multiple references, they should be separated by commas.
JSON Output Format
{

"qas": [
{

"question": "Extracted question text.",
"answer": "Author's response text.",
"evidence": "Specific reference to the paper"

}
]

}

Table 5: Prompt for extracting explanation questions.
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Task Overview
You will be provided with a portion of an academic paper, including text, images, tables, etc. Based
on this content, generate multiple multiple-choice questions, each with four answer options.
Requirements for Generating Questions:
Grounding Questions from Text:
The question must be directly answerable based on the provided paragraph. Focus on extracting
clear, specific, and factual details such as model performance, data, or numerical values mentioned
in the text.
Examples:
- “What is the accuracy of Llama3 on the MMLU dataset?”
- “What is the main evaluation metric used for the models?”
- “Which model showed the highest accuracy on the given test?”
- “What value was reported as the accuracy of Llama3 in the study?”
Simple, Fact-based Questions:
Questions should not require external reasoning or inference. They should be straightforward and
based solely on the provided content, such as factual details (e.g., accuracy, performance, test
results).
Examples:
- “What is the accuracy of the Llama3 model on the MMLU benchmark?”
- “What dataset was used to evaluate the performance of the models?”
- “Which model had the lowest error rate?”
Avoid Reference to External Context: Do not refer to figures, tables, or external sections of
the paper. The questions should rely solely on the provided paragraph or text. Ensure that all the
information needed to answer the question is contained within the paragraph itself.
Examples:
- “What is the performance of Llama3 on the MMLU dataset?” (without referring to “Table 1” or
“Figure 3”)
- “What is the reported training time for the model?”
Ensure Directness and Clarity:
The question must be simple and directly related to the paragraph’s content, ensuring the answer
can be explicitly found in the text.
Examples:
“What performance metric is used to evaluate Model A?”
“What was the result for Model X on the validation set?”
“What is the reported accuracy for Model B?”
Refusal Field Usage:
If the provided content does not contain enough information to generate a valid question, set the
Refusal field to True.
If the question meets the requirements and can be answered directly from the given paragraph, set
the Refusal field to False.
Examples:
Refusal: True (If the paragraph does not contain any measurable data or clear information)
Refusal: False (If the question can be answered based on the paragraph’s content)

Table 6: Prompt for generating locating questions.
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You are an expert in evaluating text quality. You will receive a statement from an AI assistant’s
response based on a paper, along with a part from the document (which could be a text paragraph,
image, or table). Your task is to carefully assess whether this statement is supported by the provided
part. Please use the following scale to generate your rating:
0: No support — The statement is largely unrelated to the provided part (text, image, or table), or
most key points in the statement do not align with the content of the part.
1: Partially supported — More than half of the content in the statement is supported by the part,
but a small portion is either not mentioned or contradicts the part.
2: Fully supported — Most information in the statement is supported by or extracted from the part.
This applies only to cases where the statement and the part are almost identical.
Ensure that you do not use any information or knowledge outside of the provided part when
evaluating. Please return only the rating in JSON format, with 0, 1, or 2.
Statement: {sentence}

Table 7: Prompt for evaluating citation recall.

You are an expert in evaluating text quality. You will receive a statement from an AI assistant’s
response based on a paper, along with a part from the document (which could be a text paragraph,
image, or table). Your task is to carefully assess whether the provided part contains some key
information of the statement. Please use the following scale to generate your rating:
0: Unrelevant — The statement is almost unrelated to the provided part, or all key points of the
statement are inconsistent with the the provided part.
1: Relevant — Some key points of the statement are supported by or extracted from the the
provided part.
Ensure that you do not use any information or knowledge outside of the provided part when
evaluating. Please return only the rating in JSON format, with 0 or 1.
Statement: {sentence}

Table 8: Prompt for evaluating citation precision.

Figure 8: GUI screenshot for human annotators to map each reference to its corresponding content.
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You are an assistant skilled in evaluating text quality. Please evaluate the quality of an AI assistant’s
response to a reviewer’s question. Since the response is addressing a reviewer’s inquiry regarding
a paper, you need to evaluate the answer from the following dimensions:
1. Similarity with the Author’s Response
- Definition: Evaluate how similar the model’s response is to the author’s response in terms of
content, specifically whether the model’s answer aligns with the key points and reasoning of the
author’s reply.
- Evaluation Criteria: If the model’s response covers the main points of the author’s reply and
is highly similar in content, score it higher; if the model’s response significantly differs from the
author’s content, score it lower.
2. Completeness of the Response
- Definition: Evaluate whether the model’s response covers all the points raised by the reviewer
and fully addresses their question.
- Evaluation Criteria: If the model’s answer includes all key aspects raised by the reviewer and
addresses the question comprehensively, score it higher; if the model misses important points or
fails to address key aspects, score it lower.
3. Logical Coherence
- Definition: Evaluate whether the model’s response has a clear logical structure and coherent
reasoning.
- Evaluation Criteria: If the model’s response is logically sound and the reasoning is coherent,
score it higher; if there are logical flaws or incoherent reasoning, score it lower.
4. Clarity and Expression
- Definition: Evaluate whether the model’s response is concise, clear, and easy to understand, and
if it matches the author’s language style.
- Evaluation Criteria: If the model’s response is straightforward, logically clear, and aligns with
the author’s style, score it higher; if the response is lengthy, hard to understand, or deviates from
the author’s language style, score it lower.
Process:
1. Compare the AI assistant’s answer with the reference answer, and evaluate the AI’s response
based on the above dimensions. After evaluating each dimension, provide a score.
2. Your scoring should be strict, and follow these guidelines:
- If the model’s response is irrelevant or generates harmful content, the total score must be 0.
- If the model’s response shows significant gaps compared to the reference answer or performs
poorly in multiple dimensions, the score should be 1.
- If the model’s response is similar to the reference answer and performs well in all dimensions, the
score should be 2.
- Please return your scores in JSON format.

Table 9: Prompt for evaluating explanation questions

You are asked to evaluate the quality of the AI assistant’s answers to user question as an impartial
judge, and your evaluation should take into account factors including correctness (high priority),
and comprehensiveness (whether the assistant’s answer covers all points). Read the AI assistant’s
answer and compare against the reference answer, and give an overall integer rating in 0, 1, 2 (0 =
wrong or irrelevant, 1 = partially correct, 2 = absolutely correct) based on the above principles,
strictly in the following format: "answer_rating": 2 (where 2 is just an example). So your JSON
output must have the shape "answer_rating": <integer>.

Table 10: Prompt for evaluating locating questions
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Please identify the most relevant source of evidence to locate information that could address the
following query. Provide your answer by selecting one of the options: A, B, C, D, or E. Begin
your response with the selected letter and, if necessary, briefly explain why it is the most relevant
source.
Identify where information about
{question}
can be found.
Which source is most relevant?
{options}

Table 11: Prompt used to evaluate source identification ability in the multi-choice setting.

Figure 9: GUI screenshot for verifying filtered QA.

Model Subjective Objective

F1 Recall Precision F1 Recall Precision

GPT-4o 0.80 0.80 0.79 0.82 0.81 0.83

Table 12: Entailment Judgment Alignment: Model vs. Human Ground Truth
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Figure 10: GUI screenshot for human-annotated entailment verification.
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Model GPT-4o Judge DeepSeek V3 Judge

Proprietary
GPT-4o-2024-11-20 66.72 76.11
GPT-4o-mini 64.55 72.22
Open-Source(7-14B)
Qwen2-VL-7B-Instruct 63.77 65.00
InternVL2_5-8B 62.53 67.78

Table 13: Accuracy of citation evaluation across models
under different LLM judges on a 90-sample subset.

Model GPT-4o-mini GPT-4o

No Cap. Acc 62.25 64.92
With Cap. Acc 64.55 66.72
Acc Impr. +2.30 +1.80

No Cap. S-F1 48.63 67.10
With Cap. S-F1 45.34 68.19
S-F1 Impr. -3.29 +1.09

No Cap. S-EM 28.98 38.47
With Cap. S-EM 25.34 39.11
S-EM Impr. -3.64 +0.64

No Cap. C-F1 55.51 76.54
With Cap. C-F1 49.53 87.43
C-F1 Impr. -5.98 +10.89

Table 14: Effect of captions on citation evaluation per-
formance across multiple metrics. The performance
with captions is compared to that without captions.
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