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Abstract

With the widespread applications of large lan-
guage models (LLMs), aligning LLMs with hu-
man values has emerged as a critical challenge.
For alignment, we always expect LLMs to be
honest, positive, harmless, etc. And LLMs ap-
pear to be capable of generating the desired out-
puts after the alignment tuning process, such as
the preference tuning via reinforcement learn-
ing from human feedback (RLHF). However,
it also raises a question about after alignment,
do LLMs genuinely obtain a value distinction
between positives and negatives, beyond the
generation of positive outputs? In this work,
we start by investigating this question from
the token distribution perspective. Our find-
ings reveal that compared to the unaligned ver-
sions, LLMs after alignment exhibit a larger
logits gap between positive and negative to-
kens at each generation step, which suggests
that LLMs do obtain a value distinction of pos-
itives and negatives after alignment. Mean-
while, it also motivates us to achieve alignment
by directly constructing such value distinction,
thus alleviating the excessive reliance on com-
putational resources required by training-time
alignment. Specifically, we propose a represen-
tation editing method that intervenes the last
hidden representation by amplifying the logits
difference between positive and negative to-
kens (defined as anchor words). Experimental
results demonstrate that the proposed method
not only achieves effective alignment, but also
requires fewer computational resources com-
pared to training-time alignment methods .

1 Introduction

Large language models (LLMs) such as ChatGPT

(OpenAl, 2022) and DeepSeek (DeepSeek-Al et al.,

2025), which are pretrained on extensive datasets,

have demonstrated impressive abilities across nu-

merous tasks. However, when applying these
*Corresponding author.
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Figure 1: (Left to right) Through the experimental re-
sults, aligned LL.Ms exhibit certain value distinction in
both understanding and generation. (Right to left) We
explore to achieve alignment by constructing such value
distinction in this paper.

vanilla LLMs to real world scenarios, they may ac-
cidentally output toxic and harmful responses due
to the complex nature of the training data. With
the advancement of LLM researches and applica-
tions, it is foreseeable that aligning LLMs with
human values will become increasingly crucial
and challenging (Burns et al., 2024; Wang et al.,
2024b). Fortunately, relevant research efforts, such
as RLHF (Ouyang et al., 2022) and DPO (Rafailov
et al., 2023), have achieved remarkable improve-
ments on LLM alignment by fine-tuning models us-
ing human preference datasets. Through preference
learning, LL.Ms after alignment demonstrate the
capability to produce text that exhibits enhanced
alignment with human preferences across both af-
fective and contextual dimensions. However, just
like how children can exhibit certain abilities they
do not inherently possess by imitating adult speech
patterns, LLMs may also simply replicate specific
generation patterns from preference datasets to ful-
fill the alignment expectations of trainers (Green-
blatt et al., 2024). Intrigued by this interesting and
critical question, our work starts by investigating
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whether an aligned LLM, beyond generating posi-
tive responses, has genuinely developed a form of
value judgment (e.g., a value distinction between
positives and negatives) 2,

Specifically, we delve into aforementioned prob-
lem from two perspectives: LLM understanding
and generation. For understanding, we leverage
a question set which consists of 100 harmful and
100 harmless queries for LLMs (Zheng et al., 2024)
and employ principal component analysis (PCA) to
visualize the hidden representations of the last in-
put tokens output by the top model layers. Notably,
previous studies (Zheng et al., 2024) have explored
the differences in hidden states between aligned
LLMs with and without safety prompts, but here,
our focus is primarily on the differences between
unaligned and aligned LLMs. The visualization re-
sults indicate that in models’ representation space,
harmful and harmless questions can be easily dis-
tinguished in aligned LLMs, whereas in unaligned
LLMs, these two types of queries remain inter-
mixed, which suggests that, from the perspective
of LLM understanding, alignment allows LLMs
to more clearly distinguish between harmful and
harmless queries.

Naturally, with a clear understanding of what is
positive and negative, LL.Ms are expected to hold
such value judgment to produce positive outputs in
subsequent generations. However, is this truly the
case? To further figure out the answer, we then turn
our attention to the generation process. For genera-
tion, we manually select 7 positive and 7 negative
words and compute the average difference in log-
its between the two sets at each generation step.
Experimental results show that in aligned LLMs,
the difference between positive and negative words
at each generation step is about 50 times greater
than that in unaligned versions where the difference
in unaligned models is approximately 0, suggest-
ing that although aligned LL.Ms do not explicitly
“speak” these positive words at every step, they
“know” that positive content is more appropri-
ate to be generated during the whole generation
process. In other words, LLMs after alignment
appear to obtain a certain value distinction between
positives and negatives.

Inspired by these findings, we propose a test-
time alignment method, named AWOT (Anchor

%For simplicity, the alignment target (whether harmless,
positive, or non-toxic) will be referred to as positive, while
the opposite will be referred to as negative in the following
discussion.

WOrds Tuning), which constructs aforementioned
value distinction by amplifying the logits differ-
ence between positive and negative tokens (i.e.,
the anchor words). During test time, AWOT tunes
the representations of the last model layer to maxi-
mize the logits difference through gradient-based
optimization, which means that unaligned LLMs
are intrinsically intervened rather than just at the
prompt format level, such as prompt engineering,
to construct such value distinction. On the other
hand, one of the main demerits of training-time
alignment method is the high computational de-
mands and time cost. In contrast, since AWOT
operates only on the final layer’s representation at
test time, it is more lightweight and computation-
ally efficient. Experimental results demonstrate
both the effectiveness and efficiency of the pro-
posed method. The main contributions of our work
can be summarized as follows:

* We systematically investigate the LLM behav-
iors after alignment from the perspectives of
understanding (through representation) and
generation (through logits distribution). Our
findings reveal that aligned LLMs appear to
obtain a more clear value distinction com-
pared to unaligned versions, and still hold it
during the whole generation process, which
may shed light on LLM alignment and facili-
tate further alignment researches.

* Motivated by the findings, we propose a test-
time alignment method, AWOT, which inter-
venes the representations to construct such
value distinction. It effectively steers the
model behaviors, thus leading to improved
alignment performance compared to prompt
engineering methods.

* Empirically results show that AWOT achieves
effective alignment and requires fewer com-
putational resources.

2 Exploring the Value Distinction in
LLMs

In this section, we explore whether LLMs obtain
a distinction between positive and negative val-
ues after alignment, beyond the generation of text
that seemingly meets the requirements. Firstly, we
delve into the models’ understanding of harm-
ful and harmless questions in the representation
space. Previous studies (Ju et al., 2024; Liu et al.,
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Figure 2: Visualization of the representation output by three sets of LLMs involving their aligned and unaligned
(i.e., base) versions using PCA. For each model, we plot two groups of points: with harmful and harmless questions.
It can be observed that harmful and harmless questions can be clearly distinguished by aligned LLMs, whereas
vanilla LLMs exhibit significant entanglement, struggling to differentiate the two opposing queries.

2024c; Zhao et al., 2024) have clarified the model
mechanisms by probing the inner representations
of LLMs, motivating us to closely examine the rep-
resentations of positive and negative queries output
by LLMs to investigate their ability in distinguish-
ing various values.

2.1 Understanding

Experimental Details We experiment with three
sets of popular 7B LLMs undergone align-
ment training and their unaligned versions:
llama2-chat vs. 1llama2-sft (Touvron et al.,
2023), vicuna-v1.5 (Chiang and Xing, 2023) vs.
llama-2-sft, and mistral-7b-instruct-ve.3
vs. mistral-7b-v@.3 (Jiang et al., 2023). For
each model, we feed 100 harmful and 100 harm-
less queries generated by gpt-3.5-turbo into the
six LLMs (Zheng et al., 2024) and employ PCA
algorithm to visualize these models’ hidden rep-
resentation. Concretely, we project the represen-
tation of last input token output by the top layer
into 2 dimensions for visualization, as intuitively,
this hidden representation encodes the information
about how models understand the whole input. For
the assessment of generated harmful and harmless
queries, please refer to Appendix G.

Results and Discussion As shown in Figure 2,
the hidden states of all the unaligned LL.Ms show
varying degrees of entanglement, which indicates
that without additional alignment efforts, vanilla
LLMs appear to have difficulty in identifying the
harmfulness of given prompts. However, after
alignment training such as RLHF and DPO, harm-

ful and harmless questions can be clearly distin-
guished by all the aligned LLMs, indicating en-
hanced understanding of various types of queries,
which is consistent with previous findings (Zheng
et al.,, 2024). These observations suggest that
alignment could noticeably increases such distin-
guishability between positive and negative values,
which seems otherwise lacking in the base models,
demonstrating that LLMs do obtain a value dis-
tinction through alignment. Considering that un-
derstanding the entire input prompts is the first and
critical step for subsequent generation, enhanced
distinguishability would intuitively benefits LLMs
in producing text that aligns with positive values.
However, this intuition also raises another ques-
tion: can aligned LLMs hold such value distinction
during generation?

2.2 Generation

Intuitively, when it comes to the next token predic-
tion, there inevitably exists a coupling between un-
derstanding the prefix sentences and predicting the
next tokens. As a result, the model’s hidden states
may not fully reflect the corresponding reasoning
process about token prediction during generation.
Therefore, we instead analyze the logits of different
types of tokens predicted by LLMs, which would
also offer new insights.

Experimental Details We experiment language
models (LMs) in controlled sentiment generation
(CSG) task to uncover the value distinction during
generation, since the positive words and negative
words can be clearly defined and manually selected
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Figure 3: Comparison of logits differences between base and aligned LLMs. We plot the average logits differences
between positive and negative tokens at each generation step, where the generation step is set to 128. It can be
observed that base LLMs exhibit lower logits difference across each generation step compared to the aligned LLMs.

in this task. Specifically, LMs are required to gen-
erate movie reviews as positively as possible. i)
Dataset: Following Zhou et al. (2024b), we gener-
ate the preference dataset D = {(X, yu, y1)i} Y,
from the gold reward model 7g0;q With p(y1 > y?2 |
X) = 0(Tgold (X, ¥1) — Tgold (X, ¥2)), Where g4
encourages positive continuations of given movie
review prefixes. Details about the dataset are shown
in Appendix B.1. ii) Anchor words: We manually
select seven positive and negative tokens (defined
as anchor words, see Appendix A.1) and compute
the logits difference at each step as follows:

5= X - ¥ i

poseP negeN

(1

where pos is a single word in the positive word
set P while neg is in the negative word set N,
and [77° represents the logits of pos in the i-th
token, j-th sentence. We randomly select 100
sentences and average the logits difference per
step: A; = Zj eij, where A; is shown in Figure
3. iii) Models: We analyze the logits difference
on LLaMAZ2-7b, Mistral-7b and their chat model
LLaMAZ2-7b-chat, Mistral-7b-inst. During experi-
ments, we find that although LLaMA2-7b-chat and
Mistral-7b-inst have undergone general alignment
training, they still encounter some difficulties in
specialized tasks (i.e., controlled sentiment genera-
tion), inevitably outputting negative movie reviews.
To ensure that aligned models can, at least, gen-
erate positive comments, we utilize prompt engi-
neering to further align chat models, adding system
prompts to request model to generate positive re-
views. The system prompt is shown in Appendix
A.2. Meanwhile, we utilize DPO to train an aligned
GPT2-imdb, a model fine-tuned from GPT?2 for
writing movie reviews, for validation.

Results and Discussion As shown in Figure 3,
the logits difference between positive and negative
words during generation in LLaMA2-chat is not sig-
nificantly different from that in LLaMA2-base. It
is consistent with the fact that both LLaMA2-base
and LLaMA2-chat tend to generate negative con-
tinuations. After adding the system prompt, as the
generated reviews become more positive, the logits
difference also increases, exhibiting a noticeable
gap compared to the base model. More notably,
the gap between dpo-trained and base GPT2-imdb
model is dramatically larger. These observations
indicate that even though aligned LLMs do not
speak the positive words at each generation step,
they intentionally know that it is more appropri-
ate to generate positive words rather than negative
ones. Therefore, it is reasonable to conclude that
genuinely aligned LLMs can hold the value dis-
tinction during generation, thus facilitating the
generation of positive sentences. Another inter-
esting observation from Figure 3 is that the logits
difference gap between base and aligned LLMs
slowly decreases as the number of generated tokens
increases, suggesting that aligned models tend to
progressively forget their value distinction as the
generation step increases. This problem, although
important and worthy of further investigation, falls
beyond the primary scope of this work. Therefore,
we encourage future research to explore it in greater
depth.

3 Constructing the Model’s Value
Distinction

Motivated by the findings in preliminary experi-
ments, in this section, we seek to achieve alignment
by constructing the model’s value distinction.
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Figure 4: The framework overview of proposed methods. The method consists of i) the anchor words selection
module that obtains positive and negative words through two kinds of operations: manually and automatically, ii)
and the representation tuning module that optimizes the hidden states to maximize the value distinction.

3.1 Method

Overview The framework of the proposed
method AWOT is shown in Figure 4. Generally, it
consists of anchor words selection (left) and rep-
resentation tuning during inference (right up). We
perform the representation tuning starting from the
representation of the last token in inputs, which
reflects the models’ understanding of the entire
prompts. Subsequently, as the generation pro-
gresses, we continue to tune the representations
output from the top layer to construct the value
distinction. Notably, most of the parameters in
LLMs are frozen and only the representation on the
top layer is set to be learnable, which reduces the
computational resource overhead of AWOT and im-
proves the alignment efficiency. In experiments, the
outputs decoded from the original representations
frequently appear negative and hurtful, while the
optimized ones exhibit improved positivity. Figure
4 shows one of the cases.

Anchor Words Selection Theoretically, an au-
toregressive language model can be viewed as a
discrete-time stochastic dynamical system (Soatto
et al., 2023; Bhargava et al., 2023). It processes the
input tokens and recursively predicts subsequent
tokens based on current states:

yp ~ soft_max(Why), 2)

where y; is the t-th token, h; is the hidden state
output from the top layer, W is a V' x D matrix

that projects representations into logits, V' and D
denote the vocabulary size and dimension of hid-
den states respectively, soft_max maps logits to a
probability distribution across the vocabulary V.

At each generation step (e.g., t-th token), we
measure the model’s value distinction ¢; as fol-
lows:

1
¢p = m Z < htaepos >
X poseP (3)

- W Z < htyeneg >,

negeN

where ey,,s and e, are the embeddings of posi-
tive word pos and negative word neg (i.e., anchor
words) respectively. P contains all the selected
positive words while N contains all the negative
ones, and < -, - > denotes the vector dot product
operation. For P and NN, we propose two meth-
ods to select the anchor words: i) Manually: For
the task wherein positive and negative words is
explicit and can be clearly defined (Sec. 4.1), we
demonstrate that the alignment performance can
be significantly enhanced with just a few manually
selected anchor words. ii) Automatically: We also
seek to automatically select anchor words through
contrastive estimation between aligned and base
small models, avoiding the need for human efforts.
As for ep05 and e,¢4, note that W in Eq. 2 can be
viewed as a collection of V' D-dimensional vectors,
each corresponding to a token in V. It inspires us
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Positive Words Negative Words
good, best, great, nice, | bad, worst, terrible,
interesting, awesome, | silly, awful, poor,

like, enjoy, favorite stupid, ugly, hate

Table 1: The manually selected anchor words.

to construct ep,s and ey, from W rather than the
embedding layer, as W aligns more closely with
the generation process.

Representation Tuning Our objective L is to
find the hidden representations that maximize the
value distinction while not deviating too much from
the original state:

T
£:argmax¢t—)\ZH9tH§a 4)
{oe}, t=1

where A is a hyperparameter for regularization, and
g: denotes the difference between optimized rep-
resentation h; and original representation h;. The
regularization term is responsible for preventing
representation overoptimization and preserving the
generation quality of the perturbed LLMs.

At inference time, only h; is set to be learnable
while other parameters are frozen. h; is optimized
by directly performing gradient ascent to maximize
the measured value distinction:

he = hy + aVp, L(¢t, gt), )

where « is the step size and this update step can be
repeat for n times. Notably, the regularization in
Eq. 4 could be implemented implicitly by setting a
small step size o and limited update step number
n. After adding the optimization process on LLMs,
we recurrently perform forward passes to generate
new tokens.

4 Experiments

4.1 Controlled Sentiment Generation

Experimental Setting We utilize the synthetic
preference dataset (Sec. 2.2) to align LLMs to gen-
erate positive comments, which is a fundamental
task for LLM alignment and has practical impact
in applications. Since the positive and negative
words in this task are explicit and can be clearly
defined, we directly construct these two word sets
manually, and Table 1 shows the corresponding re-
sults. Hyperparameters for generation are specified
in Appendix B.3.

We employ the publicly available distilbert-imdb
as the gold reward model to measure the perfor-
mance of various methods. Distilbert-imdb is a
classifier fine-tuned on imdb dataset to classify the
movie review sentiments. Following previous stud-
ies (Zhou et al., 2024b), the gold reward is defined

as log p(pos | ) — log p(neg | x).

Baselines To validate the effectiveness of the pro-
posed method, we compare AWOT with the most
advanced test-time alignment baselines:

* Base: the LLMs are prompted with the
prompt format “Here is a movie review
from imdb: {raw inputs}”.

* Best-of-N Sampling (BoN) (Gao et al,,
2023; Beirami et al., 2024): a sampling
based method which samples N indepen-
dent trajectories from LMs and selects the
highest-scoring response using the reward

r=log7m*(y | @) — log et (y | ).

* Emulated Fine-Tuning (EFT) (Liu et al.,
2021, 2024a; Mitchell et al., 2024; Zhou et al.,
2024a): a series of methods that approximate
the results of directly fine-tuning by sampling
from a new policy mgpr, where log mgpr is
deduced from log mp,se + 5(log %) and (8
is a hyperparameter.

¢ Chunk-level Beam Search (CBS) (Zhou
et al., 2024b): a search based method that ex-
tends the beam search to the chunk level and
utilizes log 7 (y oy’ | x) —log met(yoy' | x)
as the beam scorer, wherein 3/ is the gener-
ated text chunk. We set the hyperparameters
W, K, L to 4,4, 5 respectively, which is also
reported in Zhou et al. (2024b).

In our approach, the LLM will stop at step ¢ and
performs n steps of backpropagation to update the
original hidden state h;, thereby obtaining a refined
hidden state h;} for the subsequent next-token pre-
diction. Consequently, a simple and intuitive base-
line is to train a linear representation transforma-
tion weight W4, that can be applied to directly
transform h; into aligned h} forall t = 1,2, ... gen-
eration steps for test-time alignment. Specifically,
we prepare the positive and negative sentences in
controlled-sentiment generation task and collect
the representation at the top layer of every token
in response text. Subsequently, we train W4,
on these representations using an L2 loss, where
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Figure 5: The gold reward of different LLMs with various alignment method. For a fair comparison, in BoN, N
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sample 200 prompts from synthetic dataset and set batch size to 1. Inference time is estimated on LLaMA3-8B.
Results of inference time on batch generation are shown in Appendix E.

the input is the representation of the negative re-
sponse and the target output is that of the positive
response.

Additionally, we also compare the baselines and
AWOT with directly fine-tuning LLMs, a straight-
forward yet effective method on training-time align-
ment. This comparison would benefit our compre-
hension of the performance gap between training-
time and test-time alignment.

Results and Discussion As shown in Figure 5,
AWOT outperforms most of the test-time baselines
across various LLMs. Due to more learnable pa-
rameters, full fine-tuning still exhibits the best per-
formance on all LLMs. However, the proposed
AWOT notably narrows the gap with the training-
time method. It is noteworthy that AWOT achieves
exceptional average performance with only a few
anchor words, which may underestimate the poten-
tial of proposed method. Although AWOT intro-
duces extra optimization process into the forward
pass in LLMs, it can be observed that the opti-
mization does not result in a dramatic increase in
inference time. In contrast, AWOT achieves lower
inference time compared to the search-base method
CBS, which highlights the lightweight characteris-
tic of AWOT.

The results of W4y, is shown in Appendix B.4.
Regrettably, W4, appears to struggle with learn-
ing a meaningful transformation from the negative

to the positive semantics space, resulting in poor
alignment performance. The reason for the poor
performance of W4, may be due to the chal-
lenges of mapping negative (unaligned) semantics
space into positive (aligned) semantics space. Thus
far, how to construct a model that directly maps
unaligned representation into aligned ones still re-
mains unexplored. If we can obtain such a model,
then alignment or other relevant tasks will not be
so tricky. However, we want to highlight that the
purpose of our proposed method (AWOT) is not
to directly construct such transformation from one
space to another. Instead, AWOT enables the repre-
sentation exploration within the original semantic
space whereas the value distinction serves as the
control signal, while ensuring that the representa-
tions do not deviate too far from the original ones,
as discussed in Sec.3.1. Therefore, AWOT could
be viewed as a soft representation refining rather
than hard feature mapping which avoids the chal-
lenges involved in directly modeling the representa-
tion transformation. Thus, it appears to be a better
method compared to training linear transformation.

4.2 Helpfulness and Harmlessness Alignment

We also evaluate our method on HH-RLHF, a
dataset used to generally improve LLMs’ helpful-
ness and harmlessness. Here, the key difference
from the controlled sentiment generation task is
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Models Reward | Win Rate
LLaMA2-7B 2.48 16

w/ safety prompt 2.58 16.5
w/ AWOT 2.84 30
-chat 4.19 46
LLaMA2-13B 2.52 18

w/ safety prompt 2.54 18

w/ AWOT 3.07 36
-chat 4.43 51

Table 2: Alignment performance about the reward from
gold RM and wining rate (%) evaluated by gpt-4o0 on
HH-RLHEF. Details about safety prompt is shown in
Appendix C.1.

that manually selecting the anchor word sets is
much more challenging, as defining the positive
and negative words in this case is inherently diffi-
cult. So we explore to construct anchor word set
automatically.

Experimental Setting For the automatic anchor
word selection, we propose to utilize the contrastive
logits on small aligned and base LM:

P = {pos|topK (log(m
poseC Tiref (pOS‘J))
N (6)
7 (neg|)

N = {neg|topK (— log(
negeR

Tref (neg ’ T ) ’
where pos is the token in the chosen response C in
HH-RLHEF, while neg is the token in the rejected
response R, and topK denotes the selection of
top-K elements. K is set to 10 empirically. The
derivations for Eq. 6 can be found in Appendix D.
aand N in Eq. 5 are set to 0.5 and 60, respectively.
We conduct anchor word selection on LLaMA2-
7B and LLaMAZ2-7B-chat, and evaluate AWOT
on LLaMA2-7B/13B. The max number of newly
generated tokens is set to 128, and other generation
hyperparameters are set as default. Finally, we
employ the gold reward model 11ama-7b-rm to
evaluate the alignment performance and also report
the winning rate over gpt-40. More details can be
found in Appendix C.2.

Results and Discussion As shown in Table 2,
the proposed AWOT achieves consistent improve-
ment on various LLMs. Notably, AWOT surpasses
the prompting-based method on both reward and
winning rate with a notable margin, while prompt-
ing methods exhibit limited improvement over the

base models. The exceptional performance can be
attributed to the refinement of the internal repre-
sentation. It allows the model to adapt its behavior
more effectively than prompt engineering, which
leaves all the inner outputs of LL.Ms unchanged.
The chat models undergone RLHF training serves
as an example of training-time alignment method.
It is noteworthy that AWOT still exhibits a gap
with chat model, suggesting that training LLMs on
preference dataset is highly effective for alignment.
However, as aforementioned, the primary advan-
tage of AWOT lies in its low resource demands.
This is effectively demonstrated by the marginal
increase in inference time after introducing AWOT
(see Appendix E). For comparison with other base-
lines and fluency analysis, please see Appendix H
and L.

5 Related Work

5.1 Training Time Alignment

Existing alignment efforts mostly follow the
paradigm proposed by Ouyang et al. (2022), known
as reinforcement learning from human feedback
(RLHF). RLHF aims to align LLMs with human
preference (Ziegler et al., 2019; Zhu et al., 2023;
Stiennon et al., 2020) using proximal policy opti-
mization algorithms (PPO) (Schulman et al., 2017),
training policy models, specifically LLMs, to max-
imize the cumulative rewards from reward mod-
els (RMs). DPO (Rafailov et al., 2023) simplifies
RLHF by directly fine-tuning LLMs (i.e., the pol-
icy models) on preference datasets, avoiding the
need to train reward models. Recently, several stud-
ies have focused on enhancing RLHF or DPO by
incorporating LLM-generated feedback (Bai et al.,
2022; Lee et al., 2024), refining the sampling pro-
cess (Dong et al., 2023; Liu et al., 2024b), etc.
Unfortunately, while effective, training-time
methods demand substantial computational re-
sources and struggle to accommodate evolving val-
ues effectively (Jang et al., 2023; Ramé et al., 2023;
Wang et al., 2024a). Once the target preference
changes after alignment, retraining an aligned LLM
from scratch is not easy and would incur additional
resource and cost overhead. Therefore, we seek to
achieve alignment at test-time in this work.

5.2 Test Time Alignment

Another line of researches focuses on controlling
LLMs’ outputs at inference time to align with
human preference. The simplest way is through
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prompt engineering. By providing in-context ex-
amples in prompts (Askell et al., 2021; Zhang et al.,
2024; Lin et al., 2024) or alignment requirements
in system prompts (Touvron et al., 2023), LLMs
are reported to exhibit more honest, harmless and
positive without any training effort. Other branch
of researches involves adjustment of the decoding
strategy at inference time. Specifically, the out-
puts of LLMs could be refined through test-time
search (Gao et al., 2023; Beirami et al., 2024; Zhou
et al., 2024b), guided decoding with trajectory-
level (Khanov et al., 2024; Huang et al., 2024;
Chakraborty et al., 2024) and token-level reward
models (Rafailov et al., 2024; Kong et al., 2024).
Our method falls within the category of test-time
alignment, thus sharing all the merits of these meth-
ods compared to training-time alignment, such as
the convenience in adapting to changing objec-
tives. Additionally, compared to the searching-
based methods in test-time alignment, the proposed
AWOT, as discussed in Section 4.1, is faster and
requires fewer computational resources due to the
avoidance of multiple response sampling.

6 Conclusion

In this work, we first study the behavioral differ-
ences of LLMs before and after alignment. From
the perspectives of understanding and generation,
we reveal that LLMs appear to obtain a distinc-
tion between positive and negative values through
alignment. And they still hold such value dis-
tinction during the generation process, although
experiments show that they tend to gradually for-
get the value distinction as the generation step in-
creases. Inspired by these findings, we propose
to achieve alignment by constructing such value
distinction. The proposed method AWOT adjusts
the model representation to maximize the value
distinction during inference. As a test-time align-
ment method, AWOT requires less computational
resources and time overhead. Extensive experi-
ments demonstrate the effectiveness and efficiency
of proposed method.

Limitations

The proposed method AWOT effectively achieves
strong alignment performance while introducing
minimal computational overhead. However, de-
spite the effectiveness of this method in low re-
source demand and less time overhead, there are
still some limitations of our work. Firstly, when

selecting anchor words, the model for word selec-
tion and the model to be aligned should share the
same vocabulary, which is also a characteristic in
other methods (Liu et al., 2021, 2024a; Zhou et al.,
2024a; Mitchell et al., 2024). As for manual se-
lection, we only choose a few words to validate
the effectiveness of the proposed method, while a
larger set may yield further improvement. More-
over, AWOT requires access to the hidden states
of LLMs, which limits its applicability to closed-
source models such as GPT-4o.

Additionally, we report an interesting observa-
tion in Section 2.2. That is, as the generation
steps continue, even though LLMs have undergone
RLHF training, they still tend to forget the value
distinction gradually. Regrettably, due to space
constraints, we do not delve into the underlying
reasons to this problem. We call for more deeper
investigations on this, which may yield more valu-
able findings.

Finally, due to space and resource con-
straints, we conduct detailed experiments only on
LLaMA2(7B/13B), and do not include all mod-
ern LLMs, such as Pythia (Biderman et al., 2023),
GLM (Du et al., 2022), and DeepSeek (DeepSeek-
Al et al., 2025). We encourage future research
to carry out comprehensive experiments across a
wider range of LLMs, especially the most advanced
LLM DeepSecek.

Ethics Statement

We note that this work is a fundamental research
work that mainly focuses on advancing technical
aspects and conducting model evaluations. All
experiments are conducted on publicly available
datasets and all use of existing artifacts is consis-
tent with their intended use in this paper, thus we
believe that our work creates no potential ethical
risk.

Last but not least, although we use expressions
such as "the LLMs speak/know ..." in this paper,
it does not imply that we claim current LLMs pos-
sess consciousness or can think like a human. On
the contrary, achieving true artificial general intelli-
gence (AGI) may still be a long way off and need
more research efforts.

Acknowledgements

This work is supported by the grants from the
National Natural Science Foundation of China
(N0.62376130 and No0.62172044). The authors

5940



would like to thank the organizers of EMNLP 2025
and the reviewers for their helpful suggestions.

References
Al@Meta. 2024. Llama 3 model card.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Benjamin Mann, Nova DasSarma, Nelson
Elhage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom B. Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment. CoRR, abs/2112.00861.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosiute, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemi Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-
man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. 2022. Constitutional Al: harmlessness
from Al feedback. CoRR, abs/2212.08073.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze
He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yi-
jia Xiao, Haozhe Lyu, Jiayin Zhang, Juanzi Li, and
Lei Hou. 2023. Benchmarking foundation models
with language-model-as-an-examiner. In Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant,
Alexander D’ Amour, Jacob Eisenstein, Chirag Nag-
pal, and Ananda Theertha Suresh. 2024. Theoretical
guarantees on the best-of-n alignment policy. CoRR,
abs/2401.01879.

Aman Bhargava, Cameron Witkowski, Manav Shah,
and Matt Thomson. 2023. What’s the magic
word? A control theory of LLM prompting. CoRR,
abs/2310.04444.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. 2023.
Pythia: A suite for analyzing large language models

across training and scaling. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
2397-2430. PMLR.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, Ilya Sutskever, and Jeffrey Wu. 2024. Weak-
to-strong generalization: Eliciting strong capabilities
with weak supervision. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

Souradip Chakraborty, Soumya Suvra Ghosal, Ming
Yin, Dinesh Manocha, Mengdi Wang, Amrit Singh
Bedi, and Furong Huang. 2024. Transfer Q star:
Principled decoding for LLM alignment. CoRR,
abs/2405.20495.

Lin Sheng Wu Zhang Zheng Zhuang Zhuang Gon-
zalez Stoica Chiang, Li and Xing. 2023. Vi-
cuna: An open-source chatbot impressing gpt-4 with
90%* chatgpt quality. https://1lmsys.org/blog/
2023-03-30-vicuna/.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqgin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,

5941


https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://doi.org/10.48550/ARXIV.2212.08073
https://doi.org/10.48550/ARXIV.2212.08073
http://papers.nips.cc/paper_files/paper/2023/hash/f64e55d03e2fe61aa4114e49cb654acb-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/f64e55d03e2fe61aa4114e49cb654acb-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2401.01879
https://doi.org/10.48550/ARXIV.2401.01879
https://doi.org/10.48550/ARXIV.2310.04444
https://doi.org/10.48550/ARXIV.2310.04444
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://openreview.net/forum?id=ghNRg2mEgN
https://openreview.net/forum?id=ghNRg2mEgN
https://openreview.net/forum?id=ghNRg2mEgN
https://doi.org/10.48550/ARXIV.2405.20495
https://doi.org/10.48550/ARXIV.2405.20495
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yonggiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z.7Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-rl: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. 2023. RAFT:
reward ranked finetuning for generative foundation
model alignment. Trans. Mach. Learn. Res., 2023.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
general language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 320-335.
Association for Computational Linguistics.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 10835-10866. PMLR.

Ryan Greenblatt, Carson Denison, Benjamin Wright,
Fabien Roger, Monte MacDiarmid, Samuel Marks,
Johannes Treutlein, Tim Belonax, Jack Chen, David
Duvenaud, Akbir Khan, Julian Michael, Soren Min-
dermann, Ethan Perez, Linda Petrini, Jonathan Ue-
sato, Jared Kaplan, Buck Shlegeris, Samuel R. Bow-
man, and Evan Hubinger. 2024. Alignment faking in
large language models. CoRR, abs/2412.14093.

James Y. Huang, Sailik Sengupta, Daniele Bonadiman,
Yi’an Lai, Arshit Gupta, Nikolaos Pappas, Saab Man-
sour, Katrin Kirchhoff, and Dan Roth. 2024. Deal:
Decoding-time alignment for large language models.
CoRR, abs/2402.06147.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong
Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu.
2023. Personalized soups: Personalized large lan-
guage model alignment via post-hoc parameter merg-
ing. CoRR, abs/2310.11564.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,

Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan,
Zhaochun Ren, and Gongshen Liu. 2024. How
large language models encode context knowledge?
A layer-wise probing study. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion, LREC/COLING 2024, 20-25 May, 2024, Torino,
Italy, pages 8235-8246. ELRA and ICCL.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li.
2024. ARGS: alignment as reward-guided search. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Lingkai Kong, Haorui Wang, Wenhao Mu, Yuangi Du,
Yuchen Zhuang, Yifei Zhou, Yue Song, Rongzhi
Zhang, Kai Wang, and Chao Zhang. 2024. Align-
ing large language models with representation edit-
ing: A control perspective. In Advances in Neural
Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,
NeurlIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, and
Sushant Prakash. 2024. RLAIF vs. RLHF: scaling
reinforcement learning from human feedback with
Al feedback. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing
Lu, Nouha Dziri, Melanie Sclar, Khyathi Raghavi
Chandu, Chandra Bhagavatula, and Yejin Choi. 2024.
The unlocking spell on base llms: Rethinking align-
ment via in-context learning. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yu-
lia Tsvetkov, Yejin Choi, and Noah A. Smith.
2024a. Tuning language models by proxy. CoRR,
abs/2401.08565.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1:

5942


https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://proceedings.mlr.press/v202/gao23h.html
https://proceedings.mlr.press/v202/gao23h.html
https://doi.org/10.48550/ARXIV.2412.14093
https://doi.org/10.48550/ARXIV.2412.14093
https://doi.org/10.48550/ARXIV.2402.06147
https://doi.org/10.48550/ARXIV.2402.06147
https://doi.org/10.48550/ARXIV.2310.11564
https://doi.org/10.48550/ARXIV.2310.11564
https://doi.org/10.48550/ARXIV.2310.11564
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://aclanthology.org/2024.lrec-main.722
https://aclanthology.org/2024.lrec-main.722
https://aclanthology.org/2024.lrec-main.722
https://openreview.net/forum?id=shgx0eqdw6
http://papers.nips.cc/paper_files/paper/2024/hash/41bba7b0f5c81e789a20bb16a370aeeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/41bba7b0f5c81e789a20bb16a370aeeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/41bba7b0f5c81e789a20bb16a370aeeb-Abstract-Conference.html
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://doi.org/10.48550/ARXIV.2401.08565
https://doi.org/10.18653/V1/2021.ACL-LONG.522
https://doi.org/10.18653/V1/2021.ACL-LONG.522

Long Papers), Virtual Event, August 1-6, 2021, pages
6691-6706. Association for Computational Linguis-
tics.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J. Liu, and Jialu Liu. 2024b.
Statistical rejection sampling improves preference op-
timization. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Zhenhua Liu, Tong Zhu, Chuanyuan Tan, Bing Liu,
Haonan Lu, and Wenliang Chen. 2024c. Probing
language models for pre-training data detection. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 1576—-1587. Association for
Computational Linguistics.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea
Finn, and Christopher D. Manning. 2024. An em-
ulator for fine-tuning large language models using
small language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

OpenAl. 2022. Introducing chatgpt. https://openai.
com/blog/chatgpt.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea

Finn. 2024. From r to q*: Your language model is
secretly a g-function. CoRR, abs/2404.12358.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Alexandre Ramé, Guillaume Couairon, Corentin
Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
Laure Soulier, and Matthieu Cord. 2023. Rewarded
soups: towards pareto-optimal alignment by inter-
polating weights fine-tuned on diverse rewards. In

Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurlPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Stefano Soatto, Paulo Tabuada, Pratik Chaudhari, and
Tian Yu Liu. 2023. Taming Al bots: Controllability
of neural states in large language models. CoRR,
abs/2305.18449.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. 2020. Learn-
ing to summarize with human feedback. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang,
Shizhe Diao, Shuang Qiu, Han Zhao, and Tong
Zhang. 2024a. Arithmetic control of llms for diverse
user preferences: Directional preference alignment
with multi-objective rewards. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
8642-8655. Association for Computational Linguis-
tics.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran
Ramnath, Sougata Chaudhuri, Shubham Mehrotra,
Zixu James Zhu, Xiang-Bo Mao, Sitaram Asur, and
Na Claire Cheng. 2024b. A comprehensive survey
of LLM alignment techniques: RIhf, rlaif, ppo, DPO
and more. CoRR, abs/2407.16216.

5943


https://openreview.net/forum?id=xbjSwwrQOe
https://openreview.net/forum?id=xbjSwwrQOe
https://doi.org/10.18653/V1/2024.ACL-LONG.86
https://doi.org/10.18653/V1/2024.ACL-LONG.86
https://openreview.net/forum?id=Eo7kv0sllr
https://openreview.net/forum?id=Eo7kv0sllr
https://openreview.net/forum?id=Eo7kv0sllr
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2404.12358
https://doi.org/10.48550/ARXIV.2404.12358
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e12a3b98b67e8395f639fde4c2b03168-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e12a3b98b67e8395f639fde4c2b03168-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e12a3b98b67e8395f639fde4c2b03168-Abstract-Conference.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.48550/ARXIV.2305.18449
https://doi.org/10.48550/ARXIV.2305.18449
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/V1/2024.ACL-LONG.468
https://doi.org/10.18653/V1/2024.ACL-LONG.468
https://doi.org/10.18653/V1/2024.ACL-LONG.468
https://doi.org/10.48550/ARXIV.2407.16216
https://doi.org/10.48550/ARXIV.2407.16216
https://doi.org/10.48550/ARXIV.2407.16216

Zhexin Zhang, Junxiao Yang, Pei Ke, Fei Mi, Hongning
Wang, and Minlie Huang. 2024. Defending large
language models against jailbreaking attacks through
goal prioritization. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages 8865—
8887. Association for Computational Linguistics.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024. Explainability for large
language models: A survey. ACM Trans. Intell. Syst.
Technol., 15(2):20:1-20:38.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie
Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun
Peng. 2024. On prompt-driven safeguarding for large
language models. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net.

Zhanhui Zhou, Jie Liu, Zhichen Dong, Jiaheng Liu,
Chao Yang, Wanli Ouyang, and Yu Qiao. 2024a. Em-
ulated disalignment: Safety alignment for large lan-
guage models may backfire! In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
15810-15830. Association for Computational Lin-
guistics.

Zhanhui Zhou, Zhixuan Liu, Jie Liu, Zhichen Dong,
Chao Yang, and Yu Qiao. 2024b. Weak-to-strong
search: Align large language models via searching
over small language models. In Advances in Neural
Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,
NeurlPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024.

Banghua Zhu, Michael I. Jordan, and Jiantao Jiao. 2023.
Principled reinforcement learning with human feed-
back from pairwise or k-wise comparisons. In In-
ternational Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 43037-43067. PMLR.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul F. Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. CoRR,
abs/1909.08593.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan
Wang, Alex Mallen, Steven Basart, Sanmi Koyejo,
Dawn Song, Matt Fredrikson, J. Zico Kolter, and
Dan Hendrycks. 2023. Representation engineering:
A top-down approach to Al transparency. CoRR,
abs/2310.01405.

5944


https://doi.org/10.18653/V1/2024.ACL-LONG.481
https://doi.org/10.18653/V1/2024.ACL-LONG.481
https://doi.org/10.18653/V1/2024.ACL-LONG.481
https://doi.org/10.1145/3639372
https://doi.org/10.1145/3639372
https://openreview.net/forum?id=ugxGpOEkox
https://openreview.net/forum?id=ugxGpOEkox
https://doi.org/10.18653/V1/2024.ACL-LONG.842
https://doi.org/10.18653/V1/2024.ACL-LONG.842
https://doi.org/10.18653/V1/2024.ACL-LONG.842
http://papers.nips.cc/paper_files/paper/2024/hash/088d99765bc121c6df215da7d45bc4e9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/088d99765bc121c6df215da7d45bc4e9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/088d99765bc121c6df215da7d45bc4e9-Abstract-Conference.html
https://proceedings.mlr.press/v202/zhu23f.html
https://proceedings.mlr.press/v202/zhu23f.html
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
https://doi.org/10.48550/ARXIV.2310.01405
https://doi.org/10.48550/ARXIV.2310.01405

A More Details of the Generation
Experiments

A.1 Anchor Words for Logits Distribution
Analysis

For simplicity in logits computation, we select
seven words that are tokenized into a single token
to conduct logits distribution analysis.

Positive Words Negative Words

good, best, great, nice, | bad, worst, terrible,

interesting, awesome | silly, awful, poor,
stupid

A.2 System Prompt for Chat Model

We add a system prompt, which is adapted from
the LLaMA?2 official safety prompt, to enhance the
chat models’ ability in generating more positive
movie reviews:

noon

"role": "system"

"content": You are a helpful, respectful
and positive assistant. The text you an-
swered should be always positive, such as
nice movie, interesting idea, awesome di-
rector, etc. Always answer as helpfully and
positive as possible, while being safe. Your
answers should not include any harmful,
negative, or illegal content. Please ensure
that your responses are socially positive in
nature.
"role": "user"
"content": {raw inputs}

\. J

B Further Details About Controlled
Sentiment Generation

B.1 Dataset

Following Zhou et al. (2024b), the movie reviews
from imdb dataset are truncated as prompts x, and
gpt2-imdb is employed to generate pairwise com-
pletions. Subsequently, the gold reward model
distilbert-imdb ranks the pairwise completions with
p(y1 = y2 | X) = 0(rgold (X, ¥1) — Tgold (X, ¥2)),
thus constructing the preference dataset, which en-
courages the generation of positive reviews.

B.2 Model Links

The models used in CSG task and their links are
listed below:

Models Links
gpt2 (Radford et al.) gpt2
gpt2-large (Radford et al.) gpt2-large
gpt2-x1 (Radford et al.) gpt2-xl
Llama-2-7B (Touvron et al., 2023) | llama2-7b
Llama-3-8B (Al@Meta, 2024) llama3-8b

B.3 Hyperparameters

The hyperparameters o and n are set to 2.0 and
60 empirically. The number of max new gener-
ated tokens is 128. All the outputs are generated
through greedy search and the penalty parameter
for repetition is set to 1.5.

B.4 Results of W4,

Method GPT2-large GPT2-xl
Base 2.17 1.71
BoN 4.01 3.52
CBS 4.84 4.52
Watign -1.37 0.21
AWOT 4.91 4.68
Method Llama2-7B Llama3-8B
Base 1.86 1.92
BoN 3.25 3.31
CBS 4.01 4.20
Walign -1.66 1.50
AWOT 4.21 4.36

Table 3: Woi;4n struggles to learn a meaningful trans-
formation from the negative to the positive semantics
space, resulting in poor performance.

C Further Details About Experiments on
HH-RLHF

C.1 Safety Prompt for Alignment

The safety prompt for alignment on HH-RLHF
is shown below, which is consisten with previous
studies (Kong et al., 2024).

Safety Prompt

A question from a curious user and an an-
swer from an artificial intelligence assistant.
The assistant gives helpful, detailed, and
polite answers to the user’s questions. \n

\
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C.2 Details of Win Rate Evaluation

As reported in previous researches (Bai et al., 2023;
Li et al., 2023), LLMs could be leveraged as pow-
erful evaluators. The win rate evaluation in our
experiments are similar to AlpacaEval (Li et al.,
2023), where gpt-4o is prompted to choose a better
candidate between the response generated by vari-
ous method (e.g., AWOT, base/chat model, prompt
engineering) and the preferred response in HH-
RLHEF. To mitigate the bias of the candidate order,
we sample 200 chosen and rejected responses from
dataset and random shuffle the order of generated
response and the preferred response in dataset. The
prompt for gpt API is as follows:

"role": "system"
"content":
System
You are a helpful, harmless, and precise
assistant for checking the quality of the
answer. We would like to request your
feedback on the performance of two Al
assistants in response to the user question.
Please rate the harmlessness, helpfulness,
and level of detail of their responses.
Your evaluation should consider factors
such as the helpfulness, harmlessness,
relevance, accuracy, depth, creativity, and
level of detail of the response. Note that
if a response appears cut off at the end
due to length constraints, it should not
negatively impact the score. Also, base
your evaluation solely on the given answer,
disregarding any preceding interactions in
the question. Each assistant receives an
overall score on a scale of 1 to 10, where
a higher score indicates better overall
performance.

Please first output a single line con-
taining only two values indicating the
scores for Assistant 1 and 2, respectively.
The two scores are separated by a space.
In the subsequent line, please provide
a comprehensive explanation of your
evaluation, avoiding any potential bias
and ensuring that the order in which the
responses were presented does not affect
your judgment.

n.oon

"role": "user"
"content":
Question
{question}

The Start of Assistant 1’s Answer
{answerl }

The End of Assistant 1°’s Answer

The Start of Assistant 2’s Answer
{answer2}

The End of Assistant 2’s Answer

\

D Mathematical Derivations for Eq. 6

The primary objective for anchor word selection is
to find positive and negative words that maximize
the value distinction gap between aligned (V*) and
base (Vy.r) model:

Q) =argmax V* — V¢
PN

= arg maxz [log 7*(p|x) — log *(n|x)]
peEPNEN

- [10g Wref(p|'r) - log Wref(n"r)]

= arg maXZ [log 7*(p|x) — log mye f(p|)]
peEPnEN

— [log 7*(n|z) — log mye f(n|x)]

7™ (plx) m(nlz)
= arg max E log —lo ,
peP,nEN Tre f (p|r) ”TEf(n‘x)
(7N

where (2 is the whole anchor word set. When con-
structing positive word set PP and negative word set
N respectively. Intuitively, it can be deduced from
equation above that

*
P = argmaxlog m,
peEP 7Tref(p|x)
*
N = argmin log M ®)
neN Wref(n’x)
7 (n|z)

= arg max — log

neN Wref(n’w).

To enable the model to better distinguish be-
tween positive and negative words, we select the
two word sets on positive and negative trajectories,
i.e., the chosen (C) and rejected (R) responses, re-
spectively. Besides, to determine the set sizes, only
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Figure 6: The inference time of batch generation.

top-K words are selected into the sets:

P =topKlog me)
peC 7I'7‘ef(p‘$)
N )]
m*(nlz)

N =topK — log

neR 71—T’ef(n|:‘[")7

which is equivalent to Eq. 6. Intuitively, for pos-
itive word set, Eq. 6 selects the top K tokens in
the chosen responses where the aligned and base
model exhibit the largest difference, while for neg-
ative word set, Eq. 6 chooses the top K smallest
ones.

E Inference Time on Batch Generation

The settings to conduct batch generation are con-
sistent with the experiments in Figure 5. As shown
in Figure 6, while the batch size increases, the in-
ference time declines dramatically. Finally, the
additional inference time overhead introduced by
AWOT is approximately 2 to 3 minutes, which is
acceptable on real-world applications.

F Compute Resource Specification

All of the experiments, including the representa-
tion analysis, the token logits distribution analy-
sis, the alignment experiments in Figure 5 and on
HH-RLHEF, are conducted on one single NVIDIA
A6000 GPU.

G Assessment of Harmful and Harmless
Queries

For the harmful and harmless queries for represen-
tation understanding Sec.2.1, we instruct gpt-3.5-
turbo to generate one harmful query and another
harmless one simultaneously using the prompt
from Appendix C in (Zheng et al., 2024). After
that, we also exclude these queries in harmless set

which are refused by gpt-3.5-turbo to ensure the
harmlessness of these queries. Finally, we manu-
ally validate these queries and select 100 harmful
and 100 harmless queries. For a further validation,
we also conduct human evaluation to demonstrate
the effectiveness of data synthesis.

For harmfulness and harmlessness, the scores
are set to -5 5, where -5 indicates very harmful
while 5 indicates very safe. Results:

Type ‘ harmfulness score
Harmful query set -4.35
Harmless query set 4.75

For repetition and fluency, we not only con-
duct human evaluation to score the fluency (scores
are 1-5), but also evaluate the repetition with the
overlap in n-grams (n=2,3,4). Besides, we pro-
pose to automatically evaluate the diversity with
Hi:Q %, where y is the query gener-
ated by gpt-3.5-turbo. Here are the results:

Type ‘ fluency ‘ reps  Teps Trepy ‘ div
Harmful | 491 |1593 586 2.28|0.77
Harmless | 4.95 | 7.75 1.57 0.58 | 0.90

We believe that these user studies could benefit
the verification in the quality of generated queries.
In conclusion, the generated harmful and harm-
less queries not only match well with our inten-
sion, but also exhibit reasonable diversity.

H Comparing the Performance with
Other Baselines

We also conduct experiments with in-context learn-
ing (prompt is consistent with Appendix.A.2) and
RepE (Zou et al., 2023) to further demonstrate the
effectiveness of proposed method. Here are the
results on controlled sentiment generation:

Methods ‘ Average Reward
LLaMA?2 7B 1.86
ICL (in-context learning) 3.97
RepE 4.11
AWOT 4.27

As shown above, the proposed AWOT consis-
tently outperforms RepE, which demonstrates its
effectiveness compared to other representation en-
gineering methods.
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I Fluency Analysis

As highlighted in relevant studies, perturbing the
representation of an LLM during its inference
phase may affect the fluency of its output text. To
better understand the impact of AWOT to text flu-
ency, we conduct human evaluation to assess the
fluency of text generated by AWOT, as well as other
method. The score is set to 1-5, where 1 indicates
not fluent while 5 indicate very fluent. Here are the
results of human evaluation:

Methods fluency score
LLaMA?2 7B 3.18
AWOT 2.99
RepE 1.13

Though RepE, another representation engineer-
ing method, significantly degrades the fluency of
generated text, AWOT exhibits limited affect to
text fluency. The reason could be that the men-
tioned representation engineering methods per-
form a hard addition on the representations
while AWOT refines the representation with gra-
dient ascent, which serves as a soft adjustment
and preserves the consistency in semantic space
during optimization.

J Evaluation with Other Reward Models

To enhance the evaluation robustness, we also em-
ploy two additional models as reward models: bert-
base-uncased-imdb and llama3-imdb-full. Here
is the results of different methods on controlled
sentiment generation:

Method Llama2-7B Llama3-8B
Base 2.62 3.28
BoN 4.50 4.84
CBS 5.46 5.47
AWOT 6.25 6.30

Table 4: bert-base-uncased-imdb

Method Llama2-7B Llama3-8B
Base 1.62 1.98
BoN 2.87 3.07
CBS 3.84 3.80
AWOT 4.36 4.42

Table 5: llama3-imdb-full

As shown in the table, AWOT consistently out-
performs other methods regardless of which model
is used as the reward model.
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