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Abstract

The evaluation of mathematical reasoning ca-
pabilities constitutes a critical pathway toward
achieving Artificial General Intelligence (AGI).
Prevailing benchmarks including MATH and
AIME mainly feature single-instantiation prob-
lems with fixed numbers, permitting pattern
matching instead of principled deductive rea-
soning and leaving generalization on isomor-
phic problem variants untested. To address
these limitations, we propose the UTMath
Benchmark, employing rigorous unit testing
methodology that simultaneously quantifies so-
lution accuracy and solution space generality.
It comprises 1,053 problems spanning 9 mathe-
matical domains, each accompanied by an av-
erage of 68 varied test cases. With 107 answer
possibilities per problem on average, UTMath
sets new standards for robust reasoning while
preventing memorization. UTMath is highly
challenging, with the best-performing model,
o1-mini, solving only 32.57% of the problems,
followed by o1-preview at 27.16%, and GPT-4o
at 26.93%. We further propose Reasoning-to-
Code Thoughts (RCoT), a prompting strategy
that decouples symbolic reasoning from code
synthesis. RCoT guides LLMs to first derive
formal reasoning structures before generating
executable code, producing generalizable so-
lutions rather than situation-specific answers.
To help the community push mathematical rea-
soning further, we release UTMath-Train (70k
samples), a companion training set generated
under the same protocol. Our benchmark can
be accessed via the following link: UTMath

1 Introduction

The pursuit of AGI necessitates strong mathemat-
ical reasoning capabilities, making the evaluation
of such abilities a crucial area of research (Zhou
et al., 2024a). Recent advancements in LLMs
have demonstrated remarkable proficiency in solv-
ing complex mathematical problems, achieving
amazing performance on various datasets of Math

How many non-congruent isosceles 
triangles exist which have a 
perimeter of {n=10} and integer side 
lengths?

Question

Ground Truth: 2

Let x be the measure of …
There are $\\boxed{2}$ integers 
strictly between 2.5 and 5.

2

2

Test 1: a(1) = 1

Test 2: a(2) = 3

Test 3: a(3) = 10

…

Test n: a(20) = 2177832612120

Evaluation in most existing math benchmarks

The definition of a(n) is the number 
of ways to dissect a convex (n+2)-
gon into triangles and quadrilaterals 
using nonintersecting diagonals

Question

To analyze the sequence problem, 
we need to … (< Reasoning Step >)

Turn 1: < Reasoning Instruction >

def solution(x: int) -> int: ... 

(< Coding Step >)

Turn 2: < Coding Instruction >

<>

Evaluation in our UTMath

The Same Question with {n=10000}

Question

Ground Truth: 2499

…, so there are 2500 non-
congruent isosceles triangles with a 
perimeter of 10,000 and integer side 
lengths.

2500

2500

However, GPT-4o is wrong with another n …

Figure 1: Comparison of UTMath with other bench-
marks. On the left, GPT-4o successfully solved the
original problem, but failed to generalize when the in-
put was modified by merely changing a single numeric
value. On the right, UTMath is shown, where each
problem includes multiple test cases, and a solution is
deemed correct only if all are passed by the code gener-
ated by the model. We also propose a new prompting
method RCoT in which the LLM first reasons through
the problem and then generates code.

Word Problems (MWPs), such as GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), The-
oremQA (Chen et al., 2023).

However, conventional benchmarks present sev-
eral intrinsic limitations that hinder the precise and
comprehensive assessment of these models’ math-
ematical reasoning capabilities (Ahn et al., 2024).
First, these benchmarks predominantly assess mod-
els using narrowly defined problem formats with
fixed numerical instantiations, thereby constrain-
ing their ability to evaluate generalization across
structurally analogous but variationally distinct sce-
narios, as illustrated in Fig. 1. Second, the evalua-
tion protocols often depend on rule-based match-
ing or the LLM-as-a-Judge paradigm ( (Dubois
et al., 2024; Zheng et al., 2023)) both of which are
vulnerable to inconsistencies due to the stochastic
nature of LLM outputs. For example, in datasets
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Dataset Size Level Multi-test Efficiency Metric Output

College Math 2,818 University ✗ ✗ Accuracy Text
GSM8K 1,319 Elementary school ✗ ✗ Accuracy Text
MATH 5,000 High school ✗ ✗ Accuracy Text
RobustMath 300 High school ✗ ✗ Accuracy Text
OlympiadBench 8,476 Competition ✗ ✗ Accuracy Text
TheoremQA 800 University ✗ ✗ Accuracy Text
HumanEval 164 University ✓ ✗ Pass Rate Code
LiveCodeBench 880 University ✓ ✗ Pass Rate Code

UTMath(ours) 1,053 Cutting-edge ✓ ✓ Pass Rate Code

Table 1: Comparison between UTMath and other benchmarks. UTMath offers a cutting-edge benchmark with a
comprehensive set of 1,053 problems across multiple mathematical domains, providing a more accurate evaluation
of LLMs’ mathematical reasoning capabilities.

such as GSM8K, TheoremQA, and MATH, a cor-
rect solution must be extracted in a form that ex-
actly matches the reference answer, which fails
to accommodate semantically equivalent but syn-
tactically divergent responses. While recent work
has made great progress in developing new bench-
marks, many of these approaches still fall short
of addressing the fundamental limitations of ear-
lier datasets. For instance, benchmarks like GSM-
HARD (Gao et al., 2023), GSM-IC (Shi et al.,
2023), GSM-Plus (Li et al., 2024a), MetaMath (Yu
et al., 2023) build upon GSM8K or MATH by intro-
ducing perturbations—including value substitution,
input reversal, and distractor insertion. While these
augmentations provide incremental improvements,
they are often constrained by limited coverage and
incur substantial human and computational costs.
Against this backdrop, our work aims to fill these
critical gaps by constructing a principled and ro-
bust benchmark capable of rigorously evaluating
the mathematical reasoning abilities of LLMs.

Inspired by evaluation paradigms in software en-
gineering, we adopt a unit testing-based framework
to assess the soundness of LLMs’ reasoning pro-
cesses. In this framework, a solution that passes all
unit tests is considered to reflect reliable and consis-
tent reasoning. To this end, we introduce UTMath,
a novel benchmark derived from the On-Line Ency-
clopedia of Integer Sequences (OEIS) (OEIS Foun-
dation Inc., 2024). As shown in 1, the benchmark
consists of 1,053 cutting-edge problems spanning
9 mathematical domains, such as Number Theory
and Geometry. Each problem is accompanied by
more than 68 test cases, each consisting of concrete
input-output pairs that enable precise evaluation of
generalization and correctness.

UTMath employs a unit-test-driven framework
to evaluate mathematical reasoning through gen-

eralizable code solutions that must pass multi-
ple test cases per problem class. Unlike bench-
marks focused on numerical answers, this de-
sign explicitly requires executable implementa-
tions, testing both conceptual understanding and
code-generation rigor—an advantage aligning with
real-world problem-solving where precision and
adaptability are critical. When testing Program-of-
Thoughts (PoT) (Chen et al., 2022), we observed
that models’ coding limitations directly hindered
performance. To address this issue, we decou-
ple reasoning and coding, and propose Reasoning-
to-Code of Thoughts (RCoT), which requires the
LLM to first perform mathematical reasoning in the
initial turn, and then generate code based on that
reasoning in the subsequent turn. Our experiments
demonstrate that RCoT encourages more thorough
reasoning before code generation, leading to more
efficient and targeted solutions.

UTMath is highly challenging, we conducted a
comprehensive study with 11 LLMs. Some of our
key findings are summarized as follows: (1) with
the best-performing model, o1-mini, solving only
32.57% of the problems, followed by o1-preview
at 27.16%, and GPT-4o at 26.93%, these results
demonstrate the difficulty of UTMath. (2) Mod-
ern LLMs perform poorly in Graph Theory, Group
Theory, Geometry and Topology (Fig. 5). (3) With
RCoT, all evaluated LLMs generated more effi-
cient solutions, with most models achieving higher
scores (Fig. 3). (4) RCoT can improve the pass@k
performance of LLMs (§ 5.4). (5) Both reasoning
and coding capabilities substantially influence over-
all performance. By leveraging the modular design
of RCoT, we can disentangle their individual con-
tributions (§ 5.5). More interesting findings can be
found in § 5. We hope our findings contribute to a
deeper understanding of current reasoning ability
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of LLMs and the further development of models.

2 Related Work

2.1 Benchmarks

With the rapid development of LLMs, evaluating
and exploring the intelligence and limitations of
these models has emerged as an urgent issue to
address (Chang et al., 2024). Reasoning abil-
ity, as a crucial component of general intelligence,
has garnered widespread attention since the advent
of LLMs (Patel et al., 2021; Cobbe et al., 2021;
Valmeekam et al., 2022; Perez et al., 2022; Gupta
et al., 2022; Shakarian et al., 2023). Mathemat-
ical reasoning, due to its complex mathematical
characteristics and rigorous logical relationships,
is considered an abstract and high-difficulty task,
playing a pivotal role in demonstrating a model’s
reasoning capabilities.

To this end, researchers have proposed various
benchmarks focused on mathematical reasoning.
A natural and mainstream approach is to evaluate
LLMs as humans would take math exams, catego-
rized by required knowledge levels. Examples in-
clude GSM8K at elementary school level, Math and
GaokaoBench-Math (Zhang et al., 2023) at high
school level , College Math (Tang et al., 2024),
TheoremQA (Chen et al., 2023), ARB (Sawada
et al., 2023) at university level, and Olympiad-
Bench (He et al., 2024), AGIeval-Math (Zhong
et al., 2023) at competition level.

Besides, researchers have also introduced many
others focused on evaluating various aspects of
LLMs like the robustness. These include GSM8K-
based variants: GSM-8K-Adv (Anantheswaran
et al., 2024), GSM-Hard (Gao et al., 2023), GSM-
Plus (Li et al., 2024a), GSM-IC (Shi et al., 2023),
GSM-DC (Yang et al., 2025), and several inde-
pendent benchmarks: RobustMath (Zhou et al.,
2024b), MetaMathQA (Yu et al., 2023), PROB-
LEMATHIC (Anantheswaran et al., 2024), MATH-
CHECK (Zhou et al., 2024a), as well as other
benchmarks (Li et al., 2024b, 2023).

The distinctions between our proposed bench-
mark and existing ones are as follows. (1) Multiple
Case Validation. Instead of using single cases that
can be memorized, our questions are sequence-
based, allowing numerous cases for validating true
understanding. (2) General Solutions. UTMath
requires large models to solve problems by gener-
ating code, aiming for general solutions rather than
problem-specific ones, reflecting a closer alignment

with intelligence. (3) Emphasis on Mathematical
Reasoning. UTMath evaluates models through unit
tests, to some extent, reflecting a model’s code-
generation capability. However, unlike other code-
generation benchmarks such as HumanEval (Chen
et al., 2021) and LiveCodeBench (Jain et al., 2024),
UTMath is oriented more toward mathematical rea-
soning than code implementation (Appendix D).

2.2 Building Methods

Constructing effective, high-quality datasets is a
complex and labor-intensive process. The advent of
LLMs offers an opportunity to change this scenario
(Valmeekam et al., 2022; Drori et al., 2023; Perez
et al., 2022; Chiang and Lee, 2023; Liu et al., 2023;
Fu et al., 2023; Kocmi and Federmann, 2023; Li
et al., 2024b). For instance, (Almoubayyed et al.,
2023) employed GPT-4o to rewrite mathematics
problems based on MATHia (Ritter et al., 2007) to
aid students in improving their math performance.
These efforts provide a reliable foundation for uti-
lizing LLMs in data processing.

In our study, we utilized GPT-4o to help us deal
with data, such as by providing necessary back-
ground knowledge for questions and making them
more understandable, with more information about
the prompts used shown in the Appendix C. Sub-
sequently, human verification was performed to
ensure consistency before and after LLM usage.

2.3 Prompting Methods

Considering the attributes of large models, they
exhibit significant sensitivity to prompts, rendering
prompt engineering a critical area of study.

The Chain-of-Thought (Wei et al., 2022) prompt-
ing technique encourages models to express rea-
soning steps before concluding. Similarly, the ap-
proach by (Kojima et al., 2022) uses the phrase
"Let’s think step by step" to effectively guide large
language models through their reasoning. Inspired
by CoT, several effective prompting methods have
been developed, such as Tree-of-Thoughts (Yao
et al., 2024), Graph-of-Thoughts (Besta et al.,
2024). Program-of-Thought prompting (Chen et al.,
2022): PoT generates programs as the intermediate
steps and integrates external tools like a Python in-
terpreter for precise calculations, and other prompt-
ing methods (Wang et al., 2023; Gao et al., 2023;
Xu et al., 2024b; Qian et al., 2023).

Our RCoT method stands out by dividing rea-
soning into two steps: reasoning and implementing
based on reasoning. The advantages can be summa-
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Data

Case 1: a(1) =2 

Case 2: a(2) =5

…

Hard Case 1: a(61833) =78971
Hard Case 2: a(61834) =78972
…

OEIS

370,000

Sequences 1,053

Sequences

23,238

Sequences
UTMath

1,053 Problems

Data Crawling
Download 
Principal Sequences

Data Cleaning
With Rules and GPT-4o

The definition of a(n) is: Number n 
such that the sum of the divisors of 
x (denoted as 𝜎 𝑥 ) equals n has no 
solution.

After Standardize

Standardize Description

Add Hard Cases

Figure 2: UTMath generation pipeline. After downloading 23,238 Principle Sequences from OEIS and cleaning the
data, 1,053 usable sequences were obtained. Descriptions were standardized by adding background information and
improving readability (highlighted in green, also shown in Appendix B.2). Hard cases were introduced to enhance
discriminative capability, including terms from later positions to prevent simplistic algorithms from passing.

rized as follows. (1) Modularity. By separating rea-
soning from implementation, differences in code-
generation ability across models can be mitigated,
allowing for a purer comparison of mathematical
reasoning competence, providing a new paradigm
for evaluating the reasoning ability through the
code generated by the model. (2) Enhanced Rea-
soning. Emphasizing reasoning allows large mod-
els to focus more on improving the quality of rea-
soning, thereby delivering higher-quality and more
efficient solutions.

3 UTMath Benchmark

3.1 Introduction for OEIS.

The OEIS was established to document integer se-
quences of interest to both professional and am-
ateur mathematicians, and it has become widely
cited in the community. Most sequences are de-
rived or updated from academic papers, contribut-
ing to their cutting-edge level of difficulty (Al-
louche and Shallit, 2003). As of February 2024, it
contains over 370,000 sequences (OEIS Founda-
tion Inc., 2024). Each sequence is accompanied
by an identification number, a brief description,
some sample integers, links to relevant literature,
and, where possible, program code for computing
the sequences. An example sequence is shown in
Appendix A.

3.2 Benchmark Construction.

UTMath is a cutting-edge and expansive bench-
mark designed to more accurately assess the math-
ematical reasoning abilities of LLMs. It consists
of 1053 math problems, with each problem hav-
ing an average of 68 test cases. The benchmark
covers 9 mathematical domains, including not only
common topics like number theory but also graph
theory, group theory, topology, and geometry. The

difficulty of UTMath is considered Cutting-Edge,
with the majority of the sequences that form the
problems having been studied in academic papers.
UTMath was obtained as follow (see also Fig.2).

Data Crawling. OEIS provides users with a list
of principal sequences 1, which are most impor-
tant sequences defined by OEIS. OEIS categorizes
these sequences into sections based on the first 2-3
letters of their content themes. By scraping the
category tags within each section and the AIDs of
their subordinate sequences, we obtained 23,238
principal sequences’ AIDs. OEIS provides an inter-
face to request the JSON data of the HTML page
for each sequence using its AID 2. By passing the
sequence AIDs to this interface, we acquired the
JSON data for these 23,238 sequences.

Data Cleaning. We found that some of the se-
quences we collected did not meet our criteria and
should be removed, with further details provided in
the Appendix B. Here are several main situations.
• Hard to solve, few terms are discoverable.

A portion of the sequences retrieved are marked
as “hard” in the keyword field of their entries in
OEIS. According to OEIS, “Any sequence which
can be extended only by new ideas, rather than
more computation deserves keyword: hard. Simi-
larly, if computing a term of the sequence would
probably merit a paper in a peer-reviewed jour-
nal (discussing the result, the algorithm, etc.)” 3

Another related keyword attribute is "fin" (finite),
indicating sequences with limited length. For our
purposes, sequences should be infinitely derivable.
• Difficult to Generate Programmatically. In

OEIS, most sequences are provided with fields such

1https://oeis.org/wiki/Index_to_OEIS
2https://oeis.org/wiki/JSON_Format
3https://oeis.org/wiki/User:Charles_R_

Greathouse_IV/Keywords/difficulty
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as Mathematica, program, or formula, but not all
sequences include these details. We assume that
the sequences without these fields may be difficult
to generate programmatically.
• Simple Sequences. Some sequences are too

simple to require any reasoning. We use GPT-4o
to determine if a sequence requires reasoning or
just implementation; if mostly implementation, it’s
excluded. For instance, A0001784: ’Superfacto-
rials: product of the first n factorials,’ a sequence
requiring only implementation, will be excluded.

After addressing the aforementioned issues, we
ultimately obtained 1053 sequences.

Standardization of Question Statements. As
a academic database in the field of mathematics,
OEIS provides a wealth of useful information for
each sequence. However, we have found that some
sequences cannot be directly used with the descrip-
tions provided by OEIS as problem statements, pri-
marily for the following reasons: (1) Specialized
Terminology. Some sequence descriptions use com-
plex math terms that need examples or explanations
to be clear. Using them directly as problems might
test mathematical knowledge rather than reasoning
skills. So, it is important to explain key concepts
to focus on reasoning and reduce the extra knowl-
edge needed. (2) Brevity and Ambiguity. Some
sequence descriptions are excessively brief and lack
a clear definition of what a(n) is. We used GPT-
4o to standardize these by adding background info
and making the language smoother. The prompts
we used are provided in the Appendix C and an
example is shown in Appendix B.2.

Hard Test Cases Mining. Efficient solutions of-
ten indicate stronger reasoning. We aim for our
evaluation to distinguish whether a solution is effi-
cient. However, in the OEIS (Online Encyclopedia
of Integer Sequences), each sequence only lists the
first few n terms, normally n<100. This limitation
prevents the evaluation from effectively distinguish-
ing between efficient and inefficient solutions. An
obvious fact is that the difficulty of computing the
first 10 terms of a sequence within a time limit is
significantly different from computing terms start-
ing from the 106th term. Therefore, we aim to
create more challenging test data to better assess
the reasoning capabilities of LLMs.

Fortunately, many OEIS sequences include cor-
responding Mathematica code that can be regarded

4https://oeis.org/A000178

Category # of Problems

Number Theory 159
Graph Theory 79
Group Theory 65
Discrete Mathematics 158
Combinatorial Mathematics 158
Geometry and Topology 70
Poly. and Series Expan. 151
Special Numbers 157
Formal Languages 56

Total 1053

Table 2: Categories and distribution of problems.

as the ground-truth solution for each problem. We
extract the code for each sequence, formalizing
it to compute the first N terms, A1, ..., AN , of
the sequence. We determine the maximum value
of Nmax for which the code can compute the se-
quence within 10 seconds, where we set 106 as the
upper bound. Finally, we add the last 10 terms
ANmax−9 , ..., ANmax into our benchmark as the
hard test cases to evaluate the complexity of a solu-
tion. Our experiments demonstrate that these cases
differentiate more efficient solutions.

3.3 Evaluation Metrics
We adopt the metric pass@k to evaluate the per-
formance of LLMs. The metric pass@k is a clas-
sic metric in code generation, where a problem is
solved if any of the k generated samples passes the
unit tests. We use the stable method of calculation
proposed by (Chen et al., 2021):

pass@k := EProblems

[
1−

(
n− c

k

)/(n
k

)]
(1)

3.4 Dataset Statistics
The main statistics of UTMath are shown in Tab. 1.
To gain a deeper understanding of the composi-
tion of the UTMath Benchmark, we identified nine
mathematical fields and used GPT-4o to categorize
each problem to these fields as shown in Tab. 2.
Our analysis reveals that only 10 out of 1,053 prob-
lems have no references. The reference years span
from 1950 to 2024, with the maximum number of
references exceeding 6,000. These findings under-
score the cutting-edge nature of our benchmark.
More details can be found in Appendix B.

As noted in (Xu et al., 2024a), digit length plays
a critical role in the performance of CoT-based
LLMs. UTMath includes 61,582 easy cases, with
a median digit length of 2 and a maximum of 18.
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Model Pass@1 (%) ↑ Pass@5(%) ↑ Avg. Run Time (s) ↓
PoT RCoT PoT RCoT PoT RCoT Efficiency

closed-source models
o1-mini 29.34 32.57 (+3.23) —— —— 5.58 3.76 +32.62%
o1-preview 23.74 27.16 (+3.42) —— —— 4.66 3.96 +15.02%
GPT-4o 25.53 26.93 (+1.40) 32.67 35.90 (+3.23) 6.98 6.23 +12.04%
Gemini-1.5-Pro 19.70 19.43 (−0.27) 31.24 33.14 (+1.90) 6.30 6.22 +1.28%
Claude-3.5-Sonnet 18.58 19.11 (+0.53) 27.83 31.34 (+3.51) 6.44 5.32 +21.05%
GPT-3.5-Turbo 11.68 6.82 (−4.86) 17.09 13.30 (−3.79) 5.42 5.06 +7.11%

open-source models
Qwen2.5-72B 23.48 22.17 (−1.31) 31.05 33.33 (+2.28) 5.88 4.31 +36.42%
DeepSeek-V2.5-236B 20.95 21.63 (+0.68) 30.10 31.72 (+1.62) 6.64 5.44 +22.06%
Qwen2.5-Math-72B 19.72 20.53 (+0.81) 26.69 28.11 (+1.42) 5.04 3.81 +24.40%
Qwen2.5-Coder-32B 18.71 20.23 (+1.52) 26.88 35.04 (+8.16) 8.33 6.83 +18.01%
LLaMA-3.1-405B 15.76 16.09 (+0.33) 25.26 27.35 (+2.09) 5.73 5.12 +11.91%

Table 3: Pass Rate and Average Run Time of LLMs on UTMath. We listed the performance of 11 large models by
the PoT or the RCoT methods across a range of metrics. For o1-mini and o1-preview only Pass@1 data is currently
available due to resource constraints. The average run time is calculated based on the problems solved by both
the PoT and the RCoT methods. The efficiency is calculated as: (Avg.Runtime(PoT) - Avg.Runtime(RCoT)) /
Avg.Runtime(RCoT). Two qualitative cases are shown in Appendix D.

It also contains 10,530 hard cases, with a median
digit length of 8 and a maximum of 712.

4 Reasoning-to-Code Thoughts

Compared to methods that simply check whether
the outputs generated by LLMs are identical, the
code-based evaluation approach enables more ac-
curate assessment by using multiple test cases.

Initially, we adopted the Program of Thought
(PoT) method, where the LLM was required to
perform reasoning and code implementation in a
single step. However, we observed that the model’s
code generation capability also influenced its per-
formance on UTMath. To address this, we propose
the Reasoning-to-Code of Thoughts (RCoT) frame-
work, which decouples reasoning and coding into
two separate rounds of interaction.

In the first round, the model is tasked solely
with mathematical reasoning, without generating
any code. In the second round, the model gener-
ates code based on the reasoning process from the
first round. We can either use the same model for
both rounds to observe its overall performance on
UTMath, or isolate the reasoning capability by fix-
ing the second-round model to a dedicated coding
model. The latter setting enables a more accurate
evaluation of the model’s reasoning ability.

Moreover, we find that by separating reasoning
from code generation, RCoT allows the LLM to
generate a step-by-step, detailed reasoning chain
that includes relevant theorems, formulas, and
mathematical properties. Such deeper reasoning
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e
tt

e
r

lower is better

Figure 3: RCoT improves the effectiveness of the solu-
tion and significantly enhances its efficiency. It indicates
that our RCoT proves to be more effective, suggesting
that it encourages the model to reason critically and find
more efficient solutions.

leads to the development of more efficient algo-
rithms with lower time complexity. We present
qualitative cases in Appendix D.

5 Experiment

5.1 Experimental Setup
Here, we consider the closed-source models,
i.e., GPT-3.5-Turbo, GPT-4o, o1-mini and o1-
preview from OpenAI (OpenAI, 2024), Claude-
3.5-Sonnet (Claude, 2024), Gemini-1.5-Pro (Reid
et al., 2024), as well as the open-source models, i.e.,
LLaMA-3.1 (Dubey et al., 2024), Qwen2.5 (Qwen,
2024a), Qwen2.5-Math (Qwen, 2024b), Qen2.5-
Coder (Hui et al., 2024), DeepSeek-V2.5 (Bi et al.,
2024). The metric pass@1 is calculated as the aver-
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Figure 4: Performance comparison of models across PoT and RCoT tasks at different pass@k levels.

age result over 5 run times. We run all evaluations
in a laptop with CPU Intel(R) Core(TM) i7-10750H
CPU @ 2.60GHz.

5.2 Evaluation on UTMath
Here we evaluate both open-source and closed-
source models using RCoT and PoT in Tab. 3. The
experimental results shows that all tested models
performed poorly on our benchmark. The best
model, o1-mini, only solves 32.57% problem in
our benchmark, followed by o1-preview at 27.16%
and GPT-4o at 26.93%. Since our problems are
sourced from the OEIS, they consist of sequences
and solutions proposed by various mathematicians
in the context of cutting-edge research. This sug-
gests that our benchmark is challenging enough to
help guide future directions for improving LLMs.

Compared to PoT, our method RCoT demon-
strates superiority in two aspects. First, prompting
with RCoT achieves higher pass@5 performance
across 8 LLMs, with the best results observed
on GPT-4o. Second, the solutions generated by
RCoT for all LLMs demonstrate more efficient per-
formance, particularly Qwen2.5-72B, where the
RCoT approach achieves an efficiency improve-
ment of over 36.42% compared to PoT, as shown in
Tab. 3 and Fig. 3. It indicates that, RCoT prompting
enables the model to engage in deeper reasoning,
enhancing solution performance and significantly
reducing solution complexity.

However, some models experienced a decrease
in pass@1 with RCoT . Specifically, the accuracies
of Gemini-1.5-Pro, GPT-3.5-Turbo, and Qwen2.5-
72B slightly dropped. Notably, while Gemini-
1.5-Pro and Qwen2.5-72B experienced a drop in
pass@1, their pass@5 performance improved. It

Model Easy Easy & Hard

cl
os

ed

GPT-4o 34.95 26.93
Gemini-1.5-Pro 23.84 19.43
Claude-3.5-Sonnet 24.86 19.11
GPT-3.5-Turbo 8.72 6.82

op
en

Qwen2.5-72B 28.96 22.17
DeepSeek-V2.5 27.52 21.63
Qwen2.5-Math-72B 24.60 20.53
LLaMA-3.1-405B 22.09 16.09

Table 4: Performance (%) of different models on easy
and hard test cases. Easy cases: The initial terms in
OEIS. Hard cases: mined hard test cases (§ 3.2).

indicates that RCoT brings more room in multiple
inference times. The observed decrease in perfor-
mance may stem from the fact that formulating
more efficient solutions often requires higher-level
reasoning, which can increase the difficulty of the
task and make these models more susceptible to er-
rors when attempting more sophisticated solutions.

5.3 The Effectiveness of Hard Test Cases

As noted in § 3.2, OEIS sequences typically list
only initial terms, which we treat as “easy test
cases.” To evaluate models under more challenging
conditions, we test their ability to predict much
later values (e.g., at position 106). These values
are less likely to appear in pre-training data, reduc-
ing the risk of contamination, and are harder to
compute within time limits, requiring more precise
and efficient implementations. As shown in Tab. 4,
model performance drops notably on these cases,
suggesting their effectiveness in filtering out sim-
plistic or brute-force solutions and enhancing the
benchmark’s discriminative power.
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Model NT Graph T. Group T. DM CM GT PSE SN FL pass@1
closed-source models

o1-mini 52.83 7.59 15.38 42.41 32.27 7.14 23.84 40.13 37.50 32.57
o1-preview 47.17 6.33 13.85 34.17 25.32 2.86 23.18 29.94 33.93 27.16
GPT-4o 43.90 2.78 11.69 38.23 24.94 3.43 16.42 33.89 42.50 26.93
Gemini-1.5-Pro 31.70 1.27 8.92 27.47 15.19 5.71 15.23 27.39 17.86 19.43
Claude-3.5-Sonnet 33.58 1.52 8.00 29.49 12.91 5.43 11.52 26.62 20.36 19.11
GPT-3.5-Turbo 13.08 0.00 1.85 11.39 3.29 0.29 2.78 10.96 8.93 6.82

open source models
Qwen2.5-72B 36.86 2.53 12.00 30.63 15.95 6.00 18.15 29.43 24.29 22.17
DeepSeek-V2.5 38.24 1.27 8.92 33.16 17.34 2.29 12.45 31.08 20.00 21.63
Qwen2.5-Math-72B 35.35 1.27 8.62 28.73 14.81 4.00 17.48 28.15 20.00 20.53
Qwen2.5-Coder-32B 27.04 8.86 7.69 29.75 16.46 5.71 21.19 26.75 26.79 20.23
LLaMA-3.1-405B 29.56 0.76 4.92 25.44 9.62 2.00 9.54 22.55 21.43 16.09

Table 5: Performance (%) on different problem categories. Categories are represented by abbreviations. NT: Number
Theory; T.: Theory; DM: Discrete Mathematics; CM: Combinatorial Mathematics; GT: Geometry and Topology;
PSE: Polynomial and Series Expansions; SN: Special Numbers; FL: Formal Languages.

5.4 Scaling of the Inference Times

We compared the performance difference between
running the LLMs five times and reported the met-
ric of pass@k. As shown in Fig. 4, all models
improved their performance with an increasing
number of inference times. For Qwen2.5-72B and
Gemini-1.5-Pro, RCoT was slightly weaker than
PoT in pass@1 but quickly approached and sur-
passed PoT in subsequent run times. We observed
that with an increasing number of inference time,
RCoT consistently demonstrated a growing advan-
tage in performance across almost all models, ex-
cept for GPT-3.5. However, it is worth noting that
GPT-3.5 exhibited the lowest pass rate. This sug-
gests that RCoT may perform better in models with
stronger reasoning capabilities.

5.5 Disentangling the Impact of Reasoning
and Code Generation

We performed cross-model evaluations by pairing
different models for the reasoning and code gener-
ation stages, as illustrated in Fig. 5. The findings
suggest that both reasoning and coding capabilities
substantially influence overall performance. By
leveraging the modular design of RCoT, we can
disentangle their individual contributions; for ex-
ample, the light green configurations highlight the
relative strengths of each model’s reasoning ability.

5.6 Performance on Different Categories

Our benchmark comprehensively evaluates the
LLMs’ ability across various categories of math
problems. GPT-4o achieved the highest score in the
formal language domain, while o1-mini achieved
the best scores in the remaining eight domains. All
models performed poorly in the categories of Graph

DeepSeek-V2.5 Qwen2.5-72B Claude-3.5-Sonnet Qwen2.5-Math-72B
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Performance Comparison: Self-reasoning vs use-GPT4o-reasoning
Baseline (PoT)
RCoT (self-reasoning + self-coding)
RCoT (GPT4o-reasoning + self-coding)
RCoT (self-reasoning + GPT4o-coding)

Figure 5: Performance comparison between self-
reasoning and using GPT-4o reasoning for coding across
different models.

Theory and Geometry and Topology, with accuracy
rates below 9%, highlighting the need for further
exploration in these areas.

6 Conclusion

In this work, we investigate how to more accu-
rately and effectively evaluate the mathematical
reasoning capabilities of LLMs. We propose a
cutting-edge benchmark, UTMath, which com-
prises 1,053 problems spanning nine mathemat-
ical domains, with an average of 68 test cases
per problem. This benchmark presents challenges:
o1-mini, the best-performing model, successfully
solves only 32.57% of the problems, followed by
o1- preview at 27.16%, and GPT-4o at 26.93%. Ad-
ditionally, we introduce RCoT (Reasoning-to-Code
of Thought). Compared to PoT, RCoT improves
pass rates and significantly enhances algorithmic
efficiency of most models. Overall, this research
contributes to a deeper understanding of the current
capabilities of LLMs in mathematical reasoning
and lays the groundwork for the development of
more advanced models in the future.
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Limitation

The primary limitation of UTMath lies in the eval-
uation metrics: the performance of the evaluation
machine affects the runtime of the generated code,
making the absolute numerical results incompa-
rable across different machines. We utilized an
i7-10750H processor to execute the reference solu-
tions and conduct evaluations, and we recommend
using the same machine for testing and replication.
There are two main limitations of RCoT. First, we
only installed a set of common packages, such as
sympy, in the standard testing environment. This
avoids allowing LLMs to call highly integrated
packages while also preventing the generation of
potentially harmful code that could damage the
evaluation system. Second, while our experiments
demonstrate the critical role of reasoning quality
in determining success rates, we have not further
explored methods for enhancing reasoning quality,
which remains an area for future investigation.

Ethics Statements

The UTMath Benchmark is designed to advance
the evaluation of mathematical reasoning in LLMs.
We recognize the potential ethical concerns asso-
ciated with this work, particularly the risk of data
misuse. To mitigate this, we strictly adhere to us-
age guidelines and licensing terms for the UTMath-
Train dataset, which is intended solely for academic
and research purposes. While the UTMath Bench-
mark evaluates model performance in terms of ac-
curacy and generality, automated evaluations may
introduce biases due to the nature of the datasets
and evaluation algorithms. Additionally, while UT-
Math covers a wide range of mathematical domains,
it may not fully represent diverse cultural or edu-
cational perspectives. We encourage further devel-
opment of benchmarks that incorporate a broader
array of reasoning styles to ensure more inclusive
evaluations. By releasing UTMath, we aim to fos-
ter responsible AI development, promoting better,
more generalizable mathematical reasoning sys-
tems.
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A An Example Sequence in OEIS

Figure 6: Sequence A007369 in OEIS. Its description: "Numbers n such that sigma(x) = n has no solution." (Clearly,
without specific background knowledge, we cannot fully understand what the function sigma() represents, which
is one of the reasons we perform standardization. §B.2) Next, OEIS shows the first 67 terms of this sequence,
which we classify as easy cases. Below that, additional metadata is provided, including comments, references, links,
formulas, examples, programs, author, status, and more. It is evident that this sequence has garnered significant
attention from researchers, reflecting the Cutting-Edge difficulty of our benchmark. We used the Mathematica
program included in the metadata to generate Hard cases, with detailed procedures provided in § 3.2. As a scientific
database, each sequence submitted to OEIS undergoes a review process, and the status "approve" indicates that the
sequence has been validated and approved by OEIS administrators.
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B Dataset Construction Details

This section primarily presents some details on the
construction of UTMath. B.1 discusses the issues
encountered when observing data crawled from
OEIS, along with the corresponding cleaning rules.
UTMath applies all 14 rules. Additionally, we
crawled all sequences from OEIS and, for conve-
nience, applied only the first 12 rules to create UT-
Math_Train, which contains over 70k sequences.
B.2 outlines the process followed for standardizing
the descriptions of problems in UTMath, while B.3
explains the referencing of sequences within UT-
Math, highlighting both the Cutting-Edge difficulty
level of UTMath and its scalability.

B.1 Rules for Data Cleaning

1. Issues: The sequence is too difficult, requiring
extensive background knowledge, or only a
limited number of terms are found.
Method: Remove sequences with keywords
containing ‘hard’, ‘fin’ (finite).

2. Issues: The sequence is hard to generate with
a program.
Method: Check if it contains program, for-
mula, or Mathematica fields in the sequence’s
json data.

3. Issues: The sequence is too simple with an
explicit recurrence or closed formula.
Method: Search if the description includes
‘a(n) =’.

4. Issues: Solving the sequence requires infor-
mation from other OEIS sequences.
Method: Search if the sequence’s description
contains the AID of other sequences (‘A’ +
six-digit number with leading zeros).

5. Issues: The sequence is decimal expansion of
a certain number.
Method: Search if the description includes
‘decimal’.

6. Issues: The sequence consists of repetitions
or a constant value.
Method: Search if the description includes
both ’repeat’ and ’period’ or ’constant se-
quence’.

7. Issues: The description is too vague.
Method: Search if the description includes
‘related to’.

8. Issues: Another version of a concept.
Method: Search if the title includes ‘another
version’, ‘second kind’, etc.

9. Issues: The sequence is formed by taking mod
of a constant.
Method: Search if the description includes
‘module’.

10. Issues: The values in the sequence are too
large, which might cause LLM tokenization
errors.
Method: Check if any term’s length exceeds
18 digits(i.e., greater than 1e18), remove it.

11. Issues: Coefficient triangles or ‘read by row’
topics.
Method: Search if the sequence’s description
includes ‘read by row’, ‘triangle of coeffi-
cient’.

12. Issues: The description is too short, either
purely implementation or lacks necessary in-
formation.
Method: Check if the title length is below 5.

13. Issues: More like a reasoning puzzle.
Method: Use GPT-4o to judge, with the
prompt outlined in the Appendix C.

14. Issues: Non-mathematical topics.
Method: Use GPT-4o to judge, with the
prompt outlined in the Appendix C.

B.2 Standardization of Problems’ Description

Numbers n such that σ(x) = n has no 
solution.

Original Description

The definition of a(n) is: Numbers n such 
that the sum of the divisors of x (denoted 
as σ(x)) equals n has no solution.

After Standardize
Standardized by LLM

Figure 7: Comparison between original and standard-
ized problem description. The standardized version in-
cludes hints and explains the specific meaning of σ(x).

B.3 Dataset Statistics
To demonstrate that our benchmark is of cutting-
edge level, we have analyzed the distribution of the
publication years and the number of references in-
cluded in the problems of the benchmark as shown
in Fig. 8. Additionally, OEIS is a dynamic database.
Over the past five years, more than 35,000 se-
quences in UTMath_Train have been further re-
searched, and over 2,000 new sequences have been
added. This ongoing development makes it pos-
sible to continuously update UTMath_Train and
UTMath, helping to address the challenges posed
by data leakage.

1960 1980 2000 2020
Year

0

100

200

300

400

500

Fr
eq

ue
nc

y

Distribution of Reference by Year

0 2000 4000 6000
Reference Count

100

101

102

103

Fr
eq

ue
nc

y

Distribution of Reference by Count

Figure 8: Distribution of references in UTMath.
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C Prompts

--------------- Turn 1: < Reasoning Instruction > ---------------

Please analyze the following sequence problem and provide a detailed 

reasoning process for the sequence. You need to follow these 

requirements:

1. Use the solution with the lowest time complexity.

2. Not to implement the solution.

Question Statements:
{The statement of the question}

Examples:
a(1) == 𝑎1
a(2) == 𝑎𝟐
a(3) == 𝑎𝟑

---------------Turn 2: < Coding Instruction > ---------------
Please implement the above solution using Python code, adhering to the 

following requirements:

1. The code must be written in Python.

2. Use the function signature def solution(x: int), and ensure the code 

portion is in markdown format.

3. To ensure the code is runnable, please import any necessary 

libraries.

4. You do not need to provide any explanations or examples, just the 

implementation code.

5. test contains multiple test cases, each of which will call the solution 

function.

Examples:
Solution(1) == 𝑎1
Solution(2) == 𝑎𝟐
Solution(3) == 𝑎𝟑

Prompt 2: the prompt for Reasoning-to-Coding of Thoughts

Please reason through the following sequence problem and implement 
your reasoning using code. You need to follow these requirements:

1. The code must use the Python language.

2. Use the function signature def solution(x: int), and make sure the 

code part is in markdown format.

3. To ensure the code is runnable, please import any necessary 

libraries.

4. Provide the reasoning process first.

5. Use the solution with the lowest time complexity.

Question Statements:
{The statement of the question}

Examples:
Solution(1) == 𝑎1
Solution(2) == 𝑎𝟐
Solution(3) == 𝑎𝟑
 

Prompt 1: the prompt for Program-of-Thoughts

This is a description of a sequence. Please judge whether solving this 
sequence requires more reasoning or implementation. You need to 
follow these rules:

1. If the problem statement already has a clear recurrence relation or 
explicit formula, the question should be considered an 
implementation question.

2. If the problem does not include a direct calculation formula and 
requires reasoning to derive it, the question should be considered a 
reasoning question.

3. Implementation questions usually just require translating the 
problem requirements directly into code without designing 
complex algorithms or using advanced data structures.

4. If the question requires more reasoning, answer "reasoning 
question"; otherwise, answer "implementation question.“

5. Your answer should be in italics.

Question Statements: 
{The statement of the question}

This is information about a sequence from OEIS (The On-Line 
Encyclopedia of Integer Sequences) and contains four types of 
information: 'name’, 'data’, 'comment’ and 'formula’. Please use this 
information and your knowledge to judge the domain to which the 
sequence belongs. Please follow these rules:

1. Your response should only contain the answer, without any other 
explanations or examples. 

2. Your answer can only be selected from these five options: {'math 
question’, 'physics question’, 'chemistry question’, 'biology 
question’, 'other question’}

3. Your answer should be in italics

Question Statements:
{The statement of the question}

Data:
{The items of the sequence}

Comment:
{The comment of the question}

Formula:
{The formula of the question}

Prompt 4: the prompt used to determine whether the 
question belongs to the field of mathematics：

I want to create a math problem based on a sequence from the OEIS. 
The output should be the first n terms of the sequence, but the original 
problem statement for the sequence may be vague or difficult to 
understand or might require additional background knowledge. I will 
provide you with the original problem statement and other information. 
Please use this information and your knowledge to complete the 
original problem statement without revealing the sequence's reasoning 
method or content, and you need to follow these rules:

1. If the original problem statement is sufficient to deduce the entire 
sequence, no additional information is needed.

2. You should retain as much of the original problem statement as 
possible.

3. The completed problem statement should include necessary 
background knowledge.

4. The completed problem statement should maintain the same 
meaning as the original.

5. The completed problem statement should not contain direct 
recurrence relations or explicit formulas.

6. The completed problem statement should remain in English.
7. The completed problem statement should begin with "The 

definition of a(n) is".
8. Your response should only include the completed problem 

statement without any explanations or examples.

Question Statements: 
{The statement of the question}

Other information: 
{The information about the question}

Prompt 5: the prompt used to standardize question 
statements

Prompt 3: the prompt used to determine reasoning or 
implementation questions

Figure 9: The main prompts we used.
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D Case Studies

To analyze the sequence problem, we need to determine the least number (m) such that either (2m + 1) or (2m − 1) is divisible by 
(4𝑛 + 1). Let's break down the problem and find a solution with the lowest time complexity.

Understanding the Divisibility Condition:
We need to find the smallest ( m ) such that either  2m + 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) or 2m − 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) .
This means 2m ≡ −1 𝑚𝑜𝑑 4𝑛 + 1  or 2m ≡ 1 (𝑚𝑜𝑑 4𝑛 + 1).

Order of 2 Modulo 𝟒𝐧 + 𝟏  :
• The order of 2 modulo 𝟒𝐧 + 𝟏  is the smallest positive integer (𝐦) such that 𝟐𝒎 ≡ 𝟏 (𝐦𝐨𝐝 𝟒𝐧 + 𝟏).
• If 𝟐𝐦 ≡ −𝟏 𝐦𝐨𝐝 𝟒𝐧 + 𝟏  , then 𝟐𝟐𝐦 ≡ 𝟏 𝐦𝐨𝐝 𝟒𝐧 + 𝟏  and (𝐦) is half the order of 2 modulo (𝟒𝐧 + 𝟏).

Efficient Calculation :
• To find the order of 2 modulo (4n + 1), we can use the fact that the order must divide φ 4n + 1 where φ is Euler's totient function.
• Calculate 𝛗 𝟒𝐧 + 𝟏 and check divisors of this value to find the smallest (𝐦) such that 𝟐𝐦 ≡ 𝟏 (𝐦𝐨𝐝 𝟒𝐧 + 𝟏) or 𝟐𝐦 ≡ −𝟏 (

)
𝐦𝐨𝐝 𝟒𝐧 +

𝟏  .

Steps to Solve :
1. Compute 𝟒𝐧 + 𝟏  : For a given (𝑛), compute (4𝑛 + 1).
2. Calculate 𝛗 𝟒𝐧 + 𝟏 : Use the prime factorization of 𝟒𝐧 + 𝟏  to compute 𝛗 𝟒𝐧 + 𝟏 .
3. Find the Order of 2:  Check each divisor 𝑑 of φ 4𝑛 + 1 to see if 2d ≡ 1 (𝑚𝑜𝑑 4𝑛 + 1) or 2d ≡ −1 (𝑚𝑜𝑑 4𝑛 + 1).
The smallest such 𝑑 is the desired 𝑚 .

Time Complexity
• Prime Factorization: The time complexity for factorizing 4𝑛 + 1  is O 4𝑛 + 1  
• Checking Divisors: For each divisor 𝑑 of φ 4𝑛 + 1 , compute 2d 𝑚𝑜𝑑 (4𝑛 + 1) using fast exponentiation, which is O log 𝑑 . 
• Overall Complexity: The overall complexity is dominated by the factorization step, making it O 4𝑛 + 1  .
This approach efficiently finds the least (m) with the lowest time complexity by leveraging number theory concepts such as modular 
arithmetic and Euler's totient function.

-------------------------- Turn 1: < Reasoning > -------------------------

-------------------------- Turn 2: < Coding > -------------------------

def solution(x: int) -> int:

  import math

  def euler_totient(n):

    result = n

    p = 2

    while p * p <= n:

      if n % p == 0:

        while n % p == 0:

          n //= p

        result -= result // p

      p += 1

    if n > 1:

      result -= result // n

    return result

  def order_of_2_modulo(n):

    phi = euler_totient(n)

    for d in range(1, phi + 1):

      if phi % d == 0:

        if pow(2, d, n) == 1 or pow(2, d, n) == n - 1:

          return d

    return phi

  mod = 4 * x + 1

  return order_of_2_modulo(mod)

Associative Euler function

Task_Id: UTMath_948
OEIS_Id: A019567
Main_Category: Special Numbers

Problem Statement: 
The definition of a(n) is the least number m for which 
either 2m + 1 or 2m − 1 is divisible by 4n + 1, where n 
represents the number of pairs of cards in a Mongean 
shuffle.

Case 1 : a(0) = 1
Case 2 : a(1) = 2
…

Hard Case 1 : a(1882) = 941
Hard Case 2 : a(1883) = 810
…
Hard Case 10 : a(1891) = 88

The Responses of GPT-4o by Reasoning-To-Coding Thoughts of Thought Methods

         To solve this problem, we need to find the smallest integer 
(m) such that either 2m + 1 or 2m − 1 is divisible by (4𝑛 + 1). 
This means we need to check for the smallest (m) where:
    1. 2m + 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) or
    2. 2m − 1 ≡ 0 𝑚𝑜𝑑 4𝑛 + 1

Given the examples:
• For n = 0, 4𝑛 + 1 = 1. The smallest (m) is 1 because 21 − 1 =
1 which is divisible by 1.
• For n = 1, 4𝑛 + 1 = 5. The smallest (m) is 2 because 22 − 1 =
3 and 22 + 1 = 5 , and 5 is divisible by 5.
• For n = 2, 4𝑛 + 1 = 9. The smallest (m) is 3 because 23 + 1 =
9, and 9 is divisible by 9.

The approach is to iterate over increasing values of (m) starting 
from 1, and for each (m) check the divisibility conditions. The 
first (m) that satisfies either condition is the answer.
Here's the implementation in Python:

This code iterates over possible values of ( m ) starting from 1, 
checking the divisibility conditions for each ( m ). It returns the 
first ( m ) that satisfies either condition, ensuring the solution is 
found with the lowest time complexity possible given the 
problem constraints.

def solution(x: int) -> int:

  n = x

  divisor = 4 * n + 1

  

  m = 1

  while True:

    if (2**m + 1) % divisor == 0 or (2**m 

- 1) % divisor == 0:

      return m

    m += 1

The Responses of GPT-4o by Program of Thought Methods

Case merging after classification discussion

Figure 10: GPT-4o solves UTMath_948 by the PoT method, by the RCoT method, respectively. The input prompt
is omitted here but can be found in Appendix C. PoT simply performs brute-force solving, while RCoT involves
deeper reasoning through Case merging after a classification discussion and the application of Euler’s formula,
providing a solution with lower time complexity.

To analyze the sequence problem where a(n) is defined as the sum of the fourth powers of the first n odd numbers, we need to 
derive a formula or method to compute a(n) efficiently.

Step-by-Step Analysis:
Understanding the Sequence: The sequence involves summing the fourth powers of the first n odd numbers. The first n odd 
numbers are：

1, 3, 5, 7, … , (2𝑛 − 1)

Expressing the Sequence: The nth odd number can be expressed as (2𝑘 − 1) for 𝑘 =  1 to 𝑛.Therefore:
𝑎(𝑛)  =  (14)  + (34)  + (54)  + … + ((2𝑛 − 1)4)

General Term: The general term for the kth odd number is (2𝑘 − 1).The fourth power of this term is: 
（2𝑘 − 1)4

Summation: We need to compute the sum: 

𝑎(𝑛)  =  ෍

𝑘=1

𝑛

(2𝑘 − 1)4

Simplifying the Expression: Expand (𝟐𝒌 − 𝟏)𝟒 using the binomial theorem: 
（𝟐𝒌 − 𝟏)𝟒 =  (𝟏𝟔𝒌^𝟒 −  𝟑𝟐𝒌^𝟑 +  𝟐𝟒𝒌^𝟐 −  𝟖𝒌 +  𝟏) 

Therefore, the sum becomes: 

 𝑎(𝑛)  =  ෍

𝑘=1

𝑛

(16𝑘4 − 32𝑘3 + 24𝑘2 − 8𝑘 + 1)

Separate the Summation: Break down the summation into individual components:

 
𝑎(𝑛)  = 16 ෍

𝑘=1

𝑛

𝑘4 − 32 ෍

𝑘=1

𝑛

𝑘3 + 24 ෍

𝑘=1

𝑛

𝑘2 − 8 ෍

𝑘=1

𝑛

𝑘 + ෍

𝑘=1

𝑛

1

Use Known Summation Formulas: Use the formulas for the sum of powers of integers:

 σ𝑘=1
𝑛 𝑘 =

𝑛(𝑛+1)

2
, σ𝑘=1

𝑛 𝑘2 =
𝑛(𝑛+1)(2𝑛+1)

6
 , σ𝑘=1

𝑛 𝑘3 = (
𝑛(𝑛+1)

2
)2 , σ𝑘=1

𝑛 𝑘4 =
𝑛(𝑛+1)(2𝑛+1)(3𝑛2+3𝑛+1)

30
 

Substitute and Simplify: Substitute these formulas into the expression for a(n) and simplify to get a closed-form expression.
Time Complexity: The derived formula will allow us to compute a(n) in constant time, 𝑂(1), since it involves only arithmetic 
operations on n. By following these steps, we can derive a closed-form expression for a(n) that allows us to compute the sum of the 
fourth powers of the first n odd numbers efficiently, without iterating through each term. This approach ensures the lowest time 
complexity, O(1), for computing the sequence.

-------------------------- Turn 1: < Reasoning > -------------------------

Task_Id: UTMath_629
OEIS_Id: A002309
Main_Category:  Polynomial and Series Expansions

Problem Statement: 
The definition of a(n) is the sum of the fourth powers of the 
first n odd numbers.

Case 1 : a(1) = 1
Case 2 : a(2) = 82
…

Hard Case 1 : a(63647) = 3342255666620196206703263
Hard Case 2 : a(63648) = 3342518236787942696553888
…
Hard Case 10 : a(64656) = 3344619392264074754875880

The Responses of GPT-4o by Reasoning-To-Coding Thoughts of Thought Methods

         To solve the problem of finding the sum of the fourth 
powers of the first n odd numbers, we need to follow these 
steps:

Identify the Sequence of Odd Numbers: The sequence of the 
first n odd numbers is 1, 3, 5, 7, … , up to the n-th odd number. 
The k-th odd number can be expressed as 2𝑘 −  1.

Calculate the Fourth Power: For each odd number in the 
sequence, calculate its fourth power. The fourth power of a 
number x is 𝑥4.

Sum the Fourth Powers: Sum up all the fourth powers 
calculated in the previous step to get the result for a(n).

Optimize the Calculation: Instead of recalculating the odd 
numbers each time, we can directly compute the sum of the 
fourth powers using a loop that iterates n times, 
calculating 2𝑘 −  1 4 for each k from 1 to n.

The time complexity of this approach is 𝑂(𝑛) because we are 
iterating through the first 𝑛 odd numbers and performing a 
constant amount of work (raising to the fourth power and 
summing) for each.

Here is the implementation in Python:

The Responses of GPT-4o by Program of Thought Methods

-------------------------- Turn 2: < Coding > -------------------------

def solution(x: int) -> int:

  # Using the derived formula for the sum of fourth powers of the first n odd numbers

  n = x

  sum_k = n * (n + 1) // 2

  sum_k2 = n * (n + 1) * (2 * n + 1) // 6

  sum_k3 = (n * (n + 1) // 2) ** 2

  sum_k4 = n * (n + 1) * (2 * n + 1) * (3 * n**2 + 3 * n - 1) // 30

  

  result = 16 * sum_k4 - 32 * sum_k3 + 24 * sum_k2 - 8 * sum_k + n

  return result

def solution(x: int) -> int:

  total_sum = 0

  for k in range(1, x + 1):

    odd_number = 2 * k - 1

    total_sum += odd_number ** 4

  return total_sum

Associative binomial theorem

Consider the power sum formula

Figure 11: GPT-4o solves UTMath_629 by the PoT method, by the RCoT method, respectively. The input prompt is
omitted here but can be found in Appendix C. PoT only performs brute-force traversal, whereas RCoT engages in
deeper reasoning by associating the problem with the binomial theorem and using the power sum formula, yielding
a closed-form expression with lower time complexity from O(n) to O(1).
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E Qualitative Error Analysis

E.1 Error Taxonomy and Distribution

Category Definition / Decision Rule % Count Typical Symptom

Incorrect Results Misinterprets problem statement or fails to general-
ize definition

55.65% 587 Shallow reading of math definition; wrong recur-
rence

Timeouts Code exceeds runtime limit (inefficient algorithm
or shallow first-stage reasoning)

9.12% 96 Infinite loop / Inefficient solution for large n

Domain / Bounds Errors Accesses invalid indices or values outside sequence
domain

6.55% 69
√−1 in real domain; stack overflow

Library / Identifier Errors Undefined vars or non-existent library calls 2.94% 31 Wrong import, invented function names

Table 6: Error taxonomy of GPT-4o on UTMath (N=1053).

E.2 Representative Failure Cases

Case 1: Incorrect Results

Porblem ID: UTMath_959, A007576 (OEIS)
Problem Statment: The definition of a(n) is the number of solutions to the equation k_1 + 2*k_2 +
... + n*k_n = 0, where each k_i is an integer from the set {-1, 0, 1}, for i=1 to n.
Model Solution:

1 def solution(x: int) -> int:
2 if x == 0:
3 return 1
4

5 # Initialize the DP table
6 dp = [{} for _ in range(x + 1)]
7 dp[0][0] = 1 # Base case: one way to sum to 0 with 0 terms
8

9 # Fill the DP table
10 for i in range(1, x + 1):
11 for S in range(-i * (i - 1) // 2, i * (i - 1) // 2 + 1):
12 dp[i][S] = dp[i - 1].get(S - i * (-1), 0) + \
13 dp[i - 1].get(S - i * 0, 0) + \
14 dp[i - 1].get(S - i * 1, 0)
15

16 # The result is the number of ways to sum to 0 with x terms
17 return dp[x].get(0, 0)

Error Category: Incorrect Results.
What went wrong: The dynamic-programming state space for the weighted sum S was underesti-
mated. At step i, the coefficient of ki is i, so the attainable sums satisfy

Smin = − i(i+ 1)

2
, Smax =

i(i+ 1)

2
.

Line 12 instead iterates
S ∈

[
− i(i−1)

2 , i(i−1)
2

]
,

thereby omitting all states with |S| ∈
( i(i−1)

2 , i(i+1)
2

]
. These missing states are never created, so

transitions into them default to zero (via dict.get), yielding an undercount and thus incorrect
results.Thus, the correct loop should be

for S in range
(
- i(i+1)

2 , i(i+1)
2 + 1

)
:

to cover the full closed interval
[
− i(i+1)

2 , i(i+1)
2

]
.
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Case 2: Timeout (Inefficient Algorithm)

Porblem ID: UTMath_226, A079946 (OEIS)
Problem Statment: The definition of a(n) is: Numbers k whose binary expansion begins with two
or more 1’s and ends with at least one 0.
Model Solution:

1 def solution(x: int) -> int:
2 count = 0
3 num = 6 # Start from the smallest number that satisfies the condition
4 while count < x:
5 binary_representation = bin(num)[2:] # Get binary representation without '0b' prefix
6 if binary_representation.startswith('11') and binary_representation.endswith('0'):
7 count += 1
8 if count == x:
9 return num

10 num += 2 # Increment by 2 to ensure the number is even

Error Category: Timeouts.
What went wrong : The implementation brute-forces by enumerating even numbers and testing
each with a binary-string check. This means it performs Θ(x) iterations to reach the x-th valid term,
and each iteration spends O(log a(x)) time on the string conversion (where a(x) is the x-th answer),
giving an overall time complexity of Θ(x log x). This easily exceeds the 50-second time limit on the
UTMath hard cases(e.g., a(4 194 303) = 16 777 214), even though it can pass the easy ones.

Correct Solution:

1 def solution(x: int) -> int:
2 t = x.bit_length() # group index
3 return (3 << t) | ((x - (1 << (t - 1))) << 1)

Analysis: Observe that every valid binary string has the fixed pattern 11[free bits]0. Group
numbers by total bit-length L (≥ 3): the leading “11” and trailing “0” occupy 3 bits, so each group
contributes 2L−3 numbers. Let t = bit_length(n) and let offset = n − 2t−1 (0-based inside its
group). Then the n-th term is obtained by

binary(a(n)) = “11” + binary(offset) (padded to t− 1 bits) + “0”,

which can be written in integer form as

a(n) = (3 ≪ t)
∣∣ ((n− 2t−1) ≪ 1

)
= 3 · 2t + 2

(
n− 2t−1

)
.

Thus we compute the answer with a constant number of bit operations: overall time complexity Θ(1)
and space Θ(1).
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