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Abstract

Large language models (LLMs) based Agents
are increasingly pivotal in simulating and un-
derstanding complex human systems and in-
teractions. We propose the Al-Agent School
(AAS) system, built around a self-evolving
mechanism that leverages agents for simulat-
ing complex educational dynamics. Address-
ing the fragmented issues in teaching process
modeling and the limitations of agents perfor-
mance in simulating diverse educational partic-
ipants, AAS constructs the Zero-Exp strategy,
employs a continuous "experience-reflection-
optimization" cycle, grounded in a dual mem-
ory base comprising experience and knowl-
edge bases and incorporating short-term and
long-term memory components. Through this
mechanism, agents autonomously evolve via
situated interactions within diverse simulated
school scenarios. This evolution enables agents
to more accurately model the nuanced, multi-
faceted teacher-student engagements and un-
derlying learning processes found in physical
schools. Experiment confirms that AAS can
effectively simulate intricate educational dy-
namics and is effective in fostering advanced
agent cognitive abilities, providing a founda-
tional stepping stone from the "Era of Experi-
ence" to the "Era of Simulation" by generating
high-fidelity behavioral and interaction data.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional performance across a variety
of tasks (Jing et al., 2024; Zhu et al., 2024), such
as code instruction, information retrieval, and com-
plex problem-solving. As the capabilities of LLM-
based agents continue to advance, researchers have
begun exploring the simulation of human behav-
iors to construct complex systems based on real-
world scenarios (Li et al., 2024; Park et al., 2023).

* These authors contributed equally to this work.
% Corresponding authors.

Such simulations are instrumental in understand-
ing human decision-making processes, developing
novel human-computer interaction systems, and
driving societal model transformations (Wang et al.,
2024a).

Among these domains, education is particularly
eager to leverage agents to achieve adaptive learn-
ing and optimize teaching models (Jing et al., 2023;
Wang et al., 2024b). Existing research has al-
ready developed educational agents for tasks such
as mathematical formula conversion (Swan et al.,
2023) and classroom interaction simulation (Jinxin
et al., 2023; Jing et al., 2024). However, some
scholars have pointed out the limitations of current
agents in the education field: first, there is a lack of
systematic modeling of the teaching process, and
second, LLM agents struggle to accurately simu-
late the behaviors and interactions of diverse partic-
ipants in educational settings. In view of this, our
goal is to enhance the realism and research value
of agent simulations within educational settings by
facilitating complex, multi-participant interactions.

We propose the Al-Agent School (AAS), a
multi-agent system capable of simulating multidi-
mensional dynamic educational scenarios. Cen-
tral to AAS is our proposed Zero-Exp strategy,
which establishes a dual memory base for storing
experience and knowledge. This strategy effec-
tively divides both the experience and knowledge
repositories into short-term and long-term parts.
Within the AAS environment, multi-role agents
iteratively update these memory bases through
preset behaviors and interaction data, achieving
autonomous evolution via the core "experience-
reflection-optimization" mechanism. Experimental
results demonstrate that AAS successfully simu-
lates multidimensional dynamic learning scenarios,
the autonomous evolution of multi-agents within
AAS enables the high-fidelity simulation of the
complex performance and interactions of diverse
roles in realistic educational scenarios. Our frame-
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work provides a verifiable technical model and
theoretical pathway for the development of educa-
tional digital twins and the production of valuable
educational interaction data.

The contributions of our work are as follows:

First, we proposed AAS, a Multi-Agent Educa-
tional Scenario Simulation System. It is capable of
capturing teacher-student relationships, peer inter-
actions, and environmental influences, enabling the
simulation of real teaching processes. Compared to
existing methods, AAS demonstrates advantages in
handling multiple roles, multi-variable dynamics,
and temporal evolution.

Second, we designed the Zero-Exp mechanism
to address the challenges of data scarcity and role
behavior consistency in educational simulations.
This mechanism guides agents to evolve from a
zero-experience state to expert-level behavior us-
ing a small set of initialization parameters. Ex-
periments show that Zero-Exp enables agents to
generate interaction patterns consistent with real
educational scenarios.

Third, this research pioneers a new paradigm
of "Computational Education Science", deeply in-
tegrating traditional educational research with Al
technologies. It lays the theoretical and techni-
cal foundation for next-generation educational sys-
tems, teacher training platforms, and educational
policy simulation tools, propelling the education
field from the "Era of Experience" to the "Era of
Simulation".

2 Related Work

The concept of educational intelligent agents
originates from Skinner (1958) principle of pro-
grammed instruction and the programmed teaching
machines he designed. The intelligent tutoring sys-
tems developed in the 1970s were early iterations
of this idea. According to Hayes-Roth (1995), a
pioneer in the field, an educational agent can be
defined as a virtual tutoring role within a learning
system that is responsible for dynamically sensing
the learning environment, analyzing and inferring
learner information, and actively or passively per-
forming assistive actions based on needs.
Although early educational intelligent agents did
not gain widespread attention due to technological
limitations, by the early 21st century, scholars be-
gan to develop educational intelligent agents with
practical value (Kim and Baylor, 2015). Empiri-
cal studies have shown that educational agents can

promote deep learning (Baylor, 1999) and enhance
motivation (Atkinson, 2002; Moreno et al., 2001).
However, at that time, agent systems struggled to
achieve natural, human-like interaction (Cassell,
2001), with a primary focus on promoting cogni-
tive processes.

With the development of Al technologies, re-
search on educational intelligent agents has entered
a new phase. Al agents have given educational
intelligent agents "living souls," enabling them to
participate more vividly in educational practices
(Kommers and Richards, 2005; Moise, 2005). Re-
searchers have also shown great interest in defin-
ing the teaching roles of agents, exploring various
roles such as tutors, assistants, learning partners,
collaborators, competitors, and even troublemak-
ers (Baylor and Kim, 2005; Madni and Madni,
2008; Brusilovsky et al., 2003). Through large-
scale data training, Al agents have become more
embodied and capable of performing interactive
roles such as collaboration, encouragement, and
guidance in complex teaching activities (Pedersen
and Duin, 2022; Dai et al., 2024). At the same
time, Al agents have developed a certain level of
emotional empathy, even alleviating the marginal-
ization experiences of some learners in traditional
classrooms, providing a more engaging learning ex-
perience (Kommers and Richards, 2005; Schroeder
et al., 2013; Kim and Lim, 2013).

In recent years, the rapid development of LLM
has further advanced research on educational Al
agents (Chen et al., 2024). Empirical cases have
already demonstrated the enormous potential of
LLM-supported educational Al agents. For exam-
ple, Lan and Chen constructed a teaching Al agent
based on LLM and applied it to teaching sequence
words (or ordered words), achieving promising re-
sults (Lan and Chen, 2024). Other scholars have
introduced LLM-supported Al agents in areas such
as programming education and foundational Al
knowledge teaching (Jin et al., 2024; Zhang et al.,
2024), creating new learning logic and models in
the classroom. However, the interaction of a sin-
gle Al agent is limited, making it difficult to fully
realize the potential of LLM. The Al agent town
developed by the Stanford team has validated this
point (Park et al., 2023). In light of this, this study
will build upon the logic of the Al agent town and
Agent Hospital (Li et al., 2024) to construct AAS
(Agent-based Learning Simulation) in order to sim-
ulate and predict various teaching and learning pro-
cesses in schools, creating a corresponding knowl-
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Figure 1: Structural diagram of AAS.

edge base of teaching experience. This not only
has numerous benefits for teacher training and iter-
ation in the education field, but it could also have
a profound impact on other industries that require
rapid accumulation of experience.

3 School Simulation

3.1 AAS Environment Construction and
Design

3.1.1 Environment Settings

To achieve the visualization of the teaching pro-
cess, we designed a simulated environment AAS.
Inspired by the research of (Wang et al., 2023), we
used Tiled and Cocos to build this environment.
Tiled allows for the creation of detailed school lay-
outs, while Cocos serves as the interactive frame-
work for managing the movement and interaction
behaviors of the intelligent agents within the school
(Mohd et al., 2023). As shown in Figure 1, the
AAS includes 25 areas, including but not limited
to classrooms, libraries, laboratories, and sports
fields, providing diverse interactive spaces for both
teacher agents and student agents.

3.1.2 Agent Role Settings

In the AAS, we designed two main types of interac-
tive roles: teacher agents and student agents. The
detailed information and characteristics of these
roles were generated using LLM, with QwQ-32B
being employed to create rich and diverse role back-
grounds and personality traits. The prompts to gen-
erate role settings are provided in Appendix A.

3.1.3 Memory Settings

In the AAS, each agent is equipped with a multi-
layered memory system designed to mimic human
cognitive processes and manage information be-
yond the context window of agent. This memory
system is structured into three components: Work-
ing Memory, and a dual memory base further or-
ganized into Short-term and Long-term Memory
(Fan et al., 2024). Working Memory corresponds
to the context window of the agent, holds currently
relevant information that the agent is processing for
decision-making within a short time frame. Infor-
mation that exceeds the working memory is stored
in a dual memory base (Zhao et al., 2024), which
is fundamentally divided into two types:

1. Experience Base: Stores records of past
events, interactions, and specific occurrences
that the agent has encountered within the sim-
ulation. This represents the agent’s "lived ex-
periences."

2. Knowledge Base: Contains structured in-
formation related to the agent’s role (e.g.
academic knowledge for students, teaching
methodologies for teachers), general facts,
and learned principles. This represents the
agent’s acquired "knowledge."

The contents of both the experience and knowl-
edge bases are stored and managed within a vector
database. Both the experience base and the knowl-
edge base are further subdivided into Short-term
and Long-term components:

1. Long-term Memory: Comprises the entirety
of the respective Experience Base or Knowl-
edge Base. It serves as a comprehensive
repository of all accumulated experiences
and knowledge over the agent’s simulation
lifetime (Hochreiter and Schmidhuber, 1997,
Hatalis et al., 2023).

2. Short-term Memory: Contains a subset
of memories from both the Experience and
Knowledge bases that the agent deems par-
ticularly important or salient at a given time.
This selection allows agent to access the most
relevant information for current tasks and re-
flections, mimicking the focus aspect of hu-
man short-term memory and attention (Hou
et al., 2024).
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Figure 2: Zero-Exp mechanism

When retrieving information from the dual memory
base, relevance is determined by calculating the co-
sine similarity between the vector representation of
the current query and the vector representations of
the memories stored in the database. This hierar-
chical and dual memory structure is fundamental to
the Zero-Exp strategy, as it allows agents to retain
vast amounts of information beyond the agent’s
context window, thereby enabling the long-term
learning, reflection, and decision-making neces-
sary for autonomous evolution within the dynamic
AAS environment.

3.1.4 Action Settings

To simulate educational scenarios, the actions per-
formed by agents within the AAS environment are
categorized into distinct sets based on their role:
Teacher Agents and Student Agents. These actions
allow agents to interact with the environment and
other agents, thereby driving the simulation and
generating behavioral data (Hu et al., 2025; Guo
et al., 2024). Agents’ action categories and statis-
tics are provided in Appendix D.2

Teacher Agent Actions: Teachers primarily per-
form actions related to teaching, reflection, and
managing classroom dynamics (Hu et al., 2024).
These include Teaching Practice, such as conduct-
ing lessons, providing guidance; Teaching Reflec-
tion, involving self-reflection or discussions with
other teachers; and Guidance, like mediating stu-
dent disputes and providing social interaction guid-

ance.

Student Agent Actions: Student agents engage
in a variety of learning, campus life, and interper-
sonal activities (Zheng et al., 2025). Key actions
include Classroom Learning , Laboratory Work,
Peer Learning/Interaction, Self-Directed Learning ,
and Extracurricular Activities.

This categorization of actions for each agent role,
encompassing both positive and negative interac-
tions, facilitates the simulation of realistic educa-
tional dynamics, providing structured behavioral
data for analysis and agent evolution.

3.2 Zero-Exp: A Mechanism for Multi-Agent
Evolution in AAS

The Zero-Exp mechanism is central to the self-
evolving nature of AAS. It provides a structured
process for agents to improve their behaviors based
on their simulated experiences and accumulated
knowledge (Yurtsever et al., 2020).

As Figure 2 described, at each step of the sim-
ulation, the current state of the AAS environment
and the agents’ roles are processed. The agent’s
role settings are defined in the system prompt, en-
suring role-consistent behavior. The specifics of
the current situation (e.g. location and interaction
information) are provided in the final user prompt
(Xia et al., 2024).

To enhance role-playing fidelity (Gao et al.,
2024), the retrieval process of the Zero-Exp mech-
anism is designed to prioritize accessing relevant
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information from the agent’s short-term memory.
The mechanism subsequently retrieves relevant in-
formation from the long-term memory.

The retrieved memories are then integrated into
the final user prompt. The agent’s context win-
dow is first populated with the final user prompt
containing the current situation and retrieved mem-
ories, followed by the working memory, which is
the previous interaction history.

Crucially, the agent’s response and the subse-
quent outcomes of its action trigger a process of
memory update(Appendix B) and self-reflection:

1. Memory Update: Specific details of the inter-
action and its results are processed and used to
update the agent’s Experience Memory Base
(Sreedhar et al., 2025). New insights, facts,
or optimized strategies derived from the in-
teraction or internal reasoning are added to
the Knowledge Memory Base. Based on the
agent’s autonomous selection, selected new
memories are also added to the agent’s Short-
term Memory, ensuring quick access in future
relevant situations.

2. State Update: Agent’s reflection or changes
in understanding resulting from the interaction
and memory updates are also used to dynam-
ically update aspects of their internal Role
Setting (e.g., teaching methods, study habits).
In some cases, the agent’s actions also influ-
ence and update the state of the Environment
Setting (e.g., moving from a classroom to a
teacher’s office).

4 Experiment

4.1 Datasets

The dataset driving the AAS simulation was con-
structed through a multi-step process involving
LLM generation and expert refinement. This pro-
cess aimed to create realistic initial conditions
and high-fidelity interaction sequences.The over-
all structure of this dataset generation process is
illustrated in Figure 3.

Initial role settings for 10 teacher and 40 stu-
dent agents were generated using the QwQ-32B
model (Baker and Azher, 2024). Experts actively
discussed and modified the generated roles while
the map(Section 3.1.1) and schedule were devel-
oped in parallel, ensuring consistency across these
foundational elements. Subsequently, the Gemini-
2.5-Pro model generated an initial 5-day sequence

QwQ-32B Model
Generate Role Settings
F
5-Day Course Schedule Refined Role Settings

Gemini-2.5-Pro Model
Generate Initial 5-day
Sequence of Agent Actions

_Huma" Experts
Modify, Reorganize,
Reorder Initial Actions
Modify, Reorganize,
Reorder Initial Actions

Figure 3: Data building process

AAS Environment Map

Real Classroom
Action Data

of agent actions and interactions based on the re-
fined roles, schedule, and map. This initial data
included movements, dialogues, and activity per-
formance (Yue et al., 2024). Specially, classroom
teaching action data came from real classrooms.

Finally, this generated data underwent rigorous
expert modification, reorganization, and reordering
by educational experts to produce the complete and
final interaction dataset, serving as the ground truth
for evaluation and iteration. This resulting dataset,
designated as ID 0: Standard Group, represents
plausible and educationally valuable real-world in-
teractions. Specific details of Standard Group are
provided in Appendix D.A QA pair in standard
group data is as follows:

A QA pair

[

"role": "system", "content": "Agent’s role settings",
// Subsequent turns

"role": "user", "content": "Time + Environment +
Other agent interactions",

neon non

"role": "assistant", "content": "Agent action",
// ... more turns ...

// Current turn’s QA
"role": "user", "content": "Time + Environment +
Other agent interactions",

n,on non

"role": "assistant", "content": "Agent action",

]

\

4.2 Experiment Settings

To evaluate the effectiveness of the proposed AAS
Zero-Exp mechanism and the contributions of its
specific memory components, we used GPT-4o,
Qwen3-235B-A22B, Qwen3-8B to act as agents,
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designed a series of comparative experiments us-
ing nine distinct configurations, serving as base-
lines (Giircan, 2024). These configurations vary
the presence and structure of the external mem-
ory base, allowing us to analyze the impact of the
dual Experience/Knowledge division and the Short-
term/Long-term hierarchy.

The nine experimental configurations are de-
tailed in Table 1. Each configuration represents
a specific setup regarding the agent’s access to and
organization of external memory, defined by the
following parameters:

EB (Experience Base) indicates whether the
agent’s Experience Memory Base is enabled or dis-
abled. KB (Knowledge Base) indicates whether
the agent’s Knowledge Memory Base is enabled or
disabled. MB(Memory Base) describes the struc-
ture of the external memory base when enabled:
"Dual" signifies separate Experience and Knowl-
edge bases, "Unified" means a single combined
base for both, and "None" indicates no external
memory base is used. ST/LT (Short-term/Long-
term Hierarchy) indicates whether the Short-term
and Long-term memory division and prioritized
retrieval mechanism are enabled or disabled within
the accessible memory bases.

Table 1: Experimental settings (Baselines)

ID EB KB MB ST/LT

1 Enabled  Enabled Dual Enabled
2 Enabled  Enabled Unified Enabled
3 Enabled  Enabled Dual Disabled
4 Enabled  Enabled Unified Disabled
5 Disabled  Enabled Dual Enabled
6 Enabled  Disabled Dual Enabled
7 Disabled  Enabled Dual Disabled
8 Enabled Disabled Dual Disabled
9 Disabled None Disabled

We conducted simulations for each of these nine
configurations using the standard group dataset
described in Section 4.1. The simulation pro-
ceeds chronologically, step-by-step, with agent ac-
tions and interactions recorded. To ensure that the
agent’s environment, experience, role setting, and
knowledge are appropriately matched with each
evaluation point, evaluation is performed periodi-
cally during the iterative process.

We employed two primary evaluation methods:
an automated metric based on text similarity and
a human evaluation based on expert judgment
(Zhuge et al., 2024).

For automated evaluation, we compared the
agent’s generated response to a reference ground
truth answer using the average ROUGE-L (Lin,
2004) scores by every 5% interval of the total sim-
ulation data, reflecting fluency and content over-
lap. This approach allows us to observe how dif-
ferent memory configurations impact agent perfor-
mance as they accumulate experience and knowl-
edge throughout the simulated period.

For human evaluation, we selected three configu-
rations from the nine tested: the Full Model (ID 1),
the RAG Only (ID 4), and the Context Only (ID 9),
along with the original standard group dataset (ID
0). Evaluation was performed at every 10% data
increments throughout the five-day simulation data.
At each checkpoint, we extracted one QA pair for
every agent (10 teachers and 40 students), resulting
in 50 QA pairs per checkpoint and a total of 500 QA
pairs for each of the four groups. We recruited nine
educational experts to evaluate these QA pairs. For
each question, the experts were presented with the
four corresponding answers in a blind, randomized
order. Without knowing which configuration gener-
ated which answer, the experts were asked to vote
for the answer they believed best reflected a realis-
tic response in the given educational context. The
voting results were then statistically summarized to
compare the preference distribution across the four
groups. This blind, head-to-head comparison based
on expert opinion provides a valuable qualitative
assessment of the simulation fidelity achieved by
different memory configurations.

5 Result

5.1 Automated Evaluation Results

We first analyzed the results of the automated eval-
uation. Table 2, 3, 4 and Figure 4, 5, 6 presents the
average ROUGE-L scores for each configuration at
different simulation progress checkpoints.

06
05
0.4
03

0.2

0.1

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

D=1 D=2 D=3 D=4 —— ID=5 D=6 —— ID=7 —— ID=8 —— ID=9

Figure 4: GPT-40 Automated Evaluation Result

Overall, most configurations show an initial in-
crease in ROUGE-L scores as the agents accumu-
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Table 2: GPT-40 Automated Evaluation Result

ID 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
1 0.11 016 021 025 029 032 036 040 044 047
2 012 017 021 025 029 032 035 038 040 042
3 011 016 020 024 028 032 036 040 043 0.44
4 010 015 019 022 025 029 034 035 039 041
5 011 016 023 026 030 033 036 039 037 0.37
6 010 013 015 0.17 022 026 030 034 032 034
7 010 016 020 024 027 029 031 032 032 033
§ 011 018 022 026 028 026 027 028 029 0.29
9 010 017 022 025 026 025 025 024 026 024

ID 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
1 049 051 052 051 052 053 054 053 055 0.53
2 043 044 045 044 043 044 044 043 043 0.44
3 045 044 046 048 047 048 048 050 049 049
4 040 038 040 039 041 041 040 040 0.38 0.39
5 036 038 038 035 039 039 037 038 038 0.38
6 034 033 033 034 033 032 033 034 034 034
7 032 033 032 032 032 033 034 033 033 0.33
8§ 027 029 028 029 029 029 029 028 0.28 0.29
9 023 025 024 025 025 025 025 024 025 0.25

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

——ID=1 D=2 D=3 ID=4 —— ID=5 —— ID=6 —— ID=7 —— ID=8 —— D=9

Figure 5: Qwen3-235B Automated Evaluation Result

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

——ID=1 D=2 D=3 ID=4 —— D=5 —— ID=6 —— ID=7 —— ID=8 —— D=9

Figure 6: Qwen3-8B Automated Evaluation Result

late experience and knowledge within the simula-
tion, indicating a learning or adaptation process.
The performance tends to stabilize or fluctuate in
the later stages of the simulation (Wei et al., 2024;
Liu et al., 2023).

The full model (ID 1), incorporating both the
dual KB/EB structure and the ST/LT hierarchy,
achieves the highest ROUGE-L scores, reaching
peaks around 0.51-0.55 in the later stages. Com-

paring ID 1 with configurations that ablate specific
memory components allows us to isolate their con-
tributions:

* Contribution of External Memory: Com-
paring ID 9 with any configuration using an
external memory base (IDs 1-8) shows a sub-
stantial performance gap, demonstrating the
fundamental benefit of external memory.

Contribution of Dual KB/EB Structure:
Comparing configurations with similar ST/LT
structures but different base organizations re-
veals the advantage of the dual structure. ID 1
consistently outperforms ID 2. Similarly, ID 3
generally performs better than ID 4, although
the gap is smaller in some phases. This sug-
gests that maintaining separate repositories
for experience and knowledge is beneficial for
more effective retrieval and utilization.

Contribution of ST/LT Hierarchy: Compar-
ing configurations with similar base structures
but different ST/LT organizations shows the
benefit of the short-term memory mechanism.
ID 1 outperforms ID 3. ID 2 outperforms ID
4. Furthermore, comparing single-base con-
figurations like ID 5 vs. ID 7 and ID 6 vs. ID
8 consistently shows the advantage of incor-
porating the ST/LT hierarchy. This indicates
that prioritizing recently salient memories in
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Table 3: Qwen3-235B-A22B Automated Evaluation Result

ID 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
1 0.12 0.18 023 026 031 034 037 043 047 0.5
2 012 02 0.2 027 029 034 035 037 042 044
3 011 016 023 026 029 031 037 039 045 0.44
4 012 017 022 025 025 029 033 037 041 0.4
5 013 015 022 028 031 033 037 038 039 0.4
6 012 0.14 018 021 024 029 029 037 032 035
7 0.1 0.17 022 026 027 031 034 034 031 0.33
8§ 011 019 024 029 031 027 0.3 027 031 0.31
9 013 019 021 026 026 027 024 026 029 024

ID 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
1 052 054 055 056 056 056 057 056 058 0.56
2 045 044 046 046 045 044 047 046 042 044
3 047 045 048 051 05 047 053 052 051 0.47
4 042 04 039 038 0.4 04 043 039 041 0.39
5 037 04 04 036 039 038 04 037 041 0.4
6 035 034 032 034 032 031 032 033 035 0.34
7 035 036 033 035 035 033 036 032 034 035
8 0.3 0.3 031 031 0.28 0.3 028 027 029 029
9 023 027 025 027 024 026 024 026 0.27 0.28

Short-term memory significantly enhances the
agent’s ability to generate relevant responses.

In summary, the automated evaluation results
strongly support the effectiveness of the proposed
Zero-Exp mechanism’s memory structure. The
full model (ID 1) achieves the highest ROUGE-
L scores, demonstrating that the combination of a
dual experience/knowledge base and a hierarchical
Short-term/Long-term memory organization signif-
icantly enhances agent performance in generating
responses aligned with the reference data through-
out the simulation.

5.2 Human Evaluation Results

We also conducted a human evaluation involving
educational experts to assess the perceived realism
and quality of agent(acted by GPT-40) interactions
(Samuel et al., 2024). Table 5 and Figure 7 presents
the percentage of QA pairs (out of 50 per check-
point) for which each group’s answer was voted as
the most realistic by the experts at different simula-
tion progress checkpoints.

The results show significant differences in per-
ceived realism. The baselines without the full mem-
ory structure, like Context Only (ID 9) and Unified
Memory (LT Only) (ID 4), received low preference
votes throughout the simulation, highlighting the
necessity of a comprehensive memory system for
generating realistic interactions.

®[D=0 =ID=1 «[D=4 =ID=9

30 50 70 80 90

Figure 7: Human Evaluation Result

In contrast, the full model (ID 1) demonstrates
a strong learning curve. Starting with low prefer-
ence in the early stages, its performance rapidly
increases as the simulation progresses. Notably,
the full model’s perceived realism approaches and
stabilizes near that of the standard group (ID 0)
in the later stages (from 60%). While the stan-
dard group represents the expert-curated ground
truth and shows high preference initially, the evolv-
ing agents in the full model configuration generate
interactions that experts perceive as comparably
realistic over time.

In conclusion, the human evaluation results cor-
roborate the findings from the automated evalua-
tion. The full model (ID 1) significantly outper-
forms the baselines (ID 4 and ID 9) in generat-
ing interactions deemed realistic by experts. The
convergence of ID 1’s performance with the Ref-
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Table 4: Qwen3-8B Automated Evaluation Result

ID 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
1 0.07 014 0.17 0.2 029 028 035 038 043 0.47
2 008 016 018 023 028 031 035 036 036 0.38
3 006 012 019 023 023 027 036 039 038 0.44
4 007 014 017 017 023 025 0.3 0.3 0.35 0.37
5 008 016 019 021 0.3 031 032 037 035 0.35
6 006 012 013 017 017 023 027 029 0.28 0.33
7 006 011 015 022 023 027 026 027 031 0.3
8 008 018 018 021 026 026 023 023 026 0.24
9 006 014 0.16 0.2 022 022 0.2 024 0.26 0.23
ID 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
1 047 048 0.5 0.5 0.5 048  0.49 0.5 0.5 0.48
2 039 041 042 0.4 038 042 039 038 041 0.41
3 0.4 044 046 048 046 045 045 046 046 0.46
4 037 036 039 039 039 035 035 036 034 0.35
5 035 034 035 031 034 037 035 034 036 0.36
6 032 031 029 0.3 0.3 031 0.29 0.3 0.3 0.31
7 031 0.3 029 027 0.29 0.3 0.29 0.3 0.29 0.3
8 022 025 028 029 026 029 027 027 027 0.28
9 0.19 0.2 0.22 0.2 021 023 024 023 022 0.23
Table 5: Human Evaluation Result knowledge, organized hierarchically into Short-
term and Long-term components. This architec-
ID 10% 20% 30% 40% 50% - . . .
ture facilitates a continuous "experience-reflection-
0 2% T6% 62% 52%  48% e e ey .
) v 8% 16%  36%  40% optimization" cycle, enab.hr.lg agen.ts to e\folye au-
4 b 8% 1% 6% 6% t(?nomously based on their interactions within the
9 1% 8% 10% 6% 6% simulated school environment.
ID 60% 70% 80% 90% 100% Our comprehensive experimental evaluation, in-
0 46% 46% 44% 48%  46% volving nine different memory configurations, vali-
1 2% 46% 44% 46%  44% dates the effectiveness of the Zero-Exp mechanism.
4 8% 4% 8% 2% 6% Both automated ROUGE-L scores and expert hu-
9 4% 4% 4% 4% 4%

erence Group (ID 0) in the later stages provides
strong qualitative evidence that the Zero-Exp mech-
anism, powered by the proposed memory system,
enables multi-agent evolution towards generating
high-fidelity educational simulations.

6 Conclusion

We introduces the AAS, a multi-agent simulation
environment designed to model and accelerate
the evolution of educational cognitive processes
through situated interactions. Addressing lack of
systematic teaching process modeling and chal-
lenges in simulating diverse participant behaviors,
we proposed the Zero-Exp mechanism. Central
to Zero-Exp is a dual memory base, distinguish-
ing between episodic experience and structured

man evaluation demonstrate that the full memory
model (ID 1) significantly outperforms baselines
lacking the dual structure or the ST/LT hierarchy.
The results indicate that the proposed memory sys-
tem is crucial for enabling agents to generate more
realistic appropriate behaviors, progressively align-
ing with expert-curated ground truth data over time.

The AAS environment and Zero-Exp mechanism
represent a significant step towards creating high-
fidelity digital twins of educational settings and
generating valuable behavioral data (Sturm et al.,
2024). This work provides a verifiable technical
model and theoretical pathway for future research
in educational Al, agent-based simulation, and the
broader pursuit of experience-driven artificial in-
telligence, contributing foundational elements to-
wards realizing the potential of the "Era of Experi-
ence” in educational and potentially other complex
human-centric domains.
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7 Limitations

Despite the promising results, our work has several
limitations. Firstly, the current simulation scale
is relatively limited, involving only 50 agents (10
teachers and 40 students) over a 5-day period. Scal-
ing to a full school environment with hundreds or
thousands of agents and longer durations presents
significant computational and design challenges.
Secondly, the agents’ cognitive abilities are primar-
ily based on LLMs. While powerful for text-based
reasoning and interaction, the absence of Vision-
Language Models (VLMs) means agents lack the
ability to visually perceive and interpret their en-
vironment or the non-verbal cues of other agents,
limiting the realism of situated interactions that
rely on visual context. Thirdly, the fidelity of the
simulation is also dependent on the quality and di-
versity of the initial expert-curated dataset used for
evaluation and guiding the initial evolution. While
refined, it represents a specific set of scenarios. Fur-
thermore, the vast complexity of human cognition,
social interaction, and the full spectrum of teaching
and learning processes in real educational settings
are difficult to fully capture, and while AAS makes
significant strides, there are still nuances that may
not be perfectly replicated. Finally, the reliance on
LLMs means the agents’ behaviors are inherently
constrained by the capabilities and potential biases
of the underlying models.

Future work should focus on scaling the AAS
environment to accommodate larger numbers of
agents and more complex scenarios. Incorporating
VLMs or other multimodal models could enhance
agents’ perception and interaction capabilities by
allowing them to process visual information. Ex-
ploring alternative or hybrid LLM architectures
could further enhance agent reasoning and interac-
tion capabilities. Developing more sophisticated
reflection and optimization mechanisms within the
Zero-Exp framework could accelerate and refine
agent evolution. Applying the generated high-
fidelity data to specific educational applications,
such as personalized learning pathway design or
automated feedback systems, is a crucial next step.
Finally, extending the Zero-Exp mechanism and
the AAS framework to other domains requiring
the accumulation and utilization of complex expe-
rience could demonstrate the broader applicability
of this approach.

8 [Ethical Considerations

This study was conducted with full consideration
of ethical principles and adherence to research stan-
dards. We recruited participants from higher ed-
ucation institutions in China, specifically target-
ing university teachers as our primary participants
as educational experts. All participants were pro-
vided with comprehensive written informed con-
sent forms that detailed the purpose and scope of
the research, data collection and usage protocols,
potential risks and benefits of participation, their
right to withdraw from the study at any time, and
contact information for the research team. Partic-
ipants were compensated fairly for their time and
contribution, with payment rates determined based
on standard academic research compensation in
China. The compensation was deemed appropri-
ate considering the participants’ professional status
and local economic conditions. The research pro-
tocol, including all data collection methods and
informed consent procedures, was reviewed and
approved by Ethics Review Board. All participants
were informed about how their input would con-
tribute to the development and refinement of the
Al-Agent School system.
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Appendix A Role Settings Generation

This section provides prompts used to generate
the initial role settings for the teacher and student
agents using the QwQ-32B model. The prompt
guided the model to create diverse and detailed
profiles, including personality traits, backgrounds,
and specific characteristics relevant to their roles
within the AI-Agent School simulation.

Teacher Agent

You are a creative writer tasked with generating a
detailed profile for an agent in an educational simu-
lation. Create a unique and realistic profile based on
the specified role.

Generate a profile for a middle school Chinese/Math-
/Physics/Chemistry/History teacher. Include:

- Full Name

- Gender

- Age

- Years of teaching experience

- Teaching Philosophy/Style (e.g., strict, supportive,
innovative, traditional)

- Personality Traits (e.g., patient, enthusiastic, strict,
humorous, introverted, extroverted)

- Strengths as a teacher

- Weaknesses as a teacher

- Interests or hobbies outside of teaching

- Any specific quirks or habits

Ensure the generated profile is internally consistent
and provides enough detail to inform realistic behav-
ior within a school simulation environment.

\.

Stduent Agent

You are a creative writer tasked with generating a
detailed profile for an agent in an educational simu-
lation. Create a unique and realistic profile based on
the specified role.

Generate a profile for a middle school student. In-
clude:

- Full Name

- Academic Performance (e.g., excellent, average,
struggling)

- Learning Style (e.g., visual, auditory, kinesthetic,
independent, collaborative)

- Personality Traits (e.g., shy, outgoing, curious, dili-
gent, easily distracted, rebellious)

- Brief Background Story (e.g., family background,
significant life events, motivation for learning)

- Academic Strengths

- Academic Weaknesses

- Interests or hobbies outside of school - Social Ten-
dencies (e.g., popular, quiet, leader, follower)

- Any specific quirks or habits

Ensure the generated profile is internally consistent
and provides enough detail to inform realistic behav-
ior within a school simulation environment.

\

Appendix B Memory Update

This section provides prompt to updating experi-
ence base and knowledge base with long-term and
short-term memory.

Memory Update

You are an Al agent in a school simulation. Your task
is to process recent events to update and refine your
four memory components: Long-term Experience,
Short-term Experience, Long-term Knowledge, and
Short-term Knowledge.

Current Situation: [Current environment, ongoing
activity, and recent interaction details]

Recent Experience: [Detailed log of the agent’s ac-
tions, observations, and interactions in the immediate
past]

Based on the Current Situation, Recent Experience,
perform the following steps to update your memory:
1. Analyze the Recent Experience: Identify the key
events, interactions, and observations that occurred
in the immediate past.

2. Integrate with Retrieved Memories: Compare and
contrast the Recent Experience with the Current Situ-
ation.

3. Identify New Information and Refinements: Ex-
tract any new facts, insights, specific event details,
or observations from the Recent Experience and its
integration with past memories. Also, identify any ex-
isting entries in your Long-term Memory Bases that
should be updated, corrected, or reinforced based on
this new information.

4. Formulate Updates for Long-term Experience
Memory: Based on the analysis in steps 1-3, gen-
erate the specific content to be added to or update
your Long-term Experience Memory Base.

5. Formulate Updates for Long-term Knowledge
Memory: Based on the analysis in steps 1-3, generate
the specific content to be added to or update your
Long-term Knowledge Memory Base.

6. Select Salient Information for Short-term Memory:
From the combination of the Recent Experience and
the updates formulated for your Long-term Memory
Bases (steps 4 and 5), identify the most currently im-
portant or salient pieces of information. These are
items that are highly relevant to the current context
and potential near-future situations, and should be
prioritized for quick access in your Short-term Mem-
ory.

7. Formulate Content for Short-term Experience
Memory: Based on step 6, generate the specific con-
tent related to experiences to be added to your Short-
term Experience Memory.

8. Formulate Content for Short-term Knowledge
Memory: Based on step 6, generate the specific con-
tent related to knowledge to be added to your Short-
term Knowledge Memory.

Output the results as a JSON object with the follow-
ing structure:

{

long_term_experience_updates: [string],
long_term_knowledge_updates: [string],
short_term_experience_content: [string],
short_term_knowledge_content: [string]

}

Appendix C Role Settings Update

This section provides prompt to update Agent Role
Setting based on accumulated experience and re-
flection.
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Role Settings Update Appendix D Standard Group Data

You are an Al agent reflecting on your recent expe- Appendix D.1  Class Timetables
riences and learning. Your task is to update in your . o e .
current role setting within the school simulation. Appendix D.2  Statistics by Action Category
Current Role Setting: []
Reflection Insights Summary: [Key learnings, in- Table 8: Statistics by Action Category
sights, and salient information derived from the re-
cent Memory Summary process. ] T
Based on your Current Role Setting and the Reflec- Role Action Counts
tion Insights Summary, identify which aspects of your Teacher Teaching Practice 12873
profile should be updated within the simulated envi- Teacher Teaching Reflection 795
ronment. Consider areas like: )
- Personality Traits (e.g., becoming more patient, less Teacher Other Guidance 412
easily distracted, more proactive) Student Classroom Learning 681
- Behavmral Tenden01es (e.g., more hkely. to ask ques- Student Laboratory Work 2476
tions, more likely to collaborate, changing reaction . .
patterns to certain stimuli) Student Peer Learning/Interaction 9499
- Strate(gjiels1 (E.g., adjgs;ing teaching methods, c}lllang— Student Self-Directed Learning 1708
ing study habits, modifying interaction approaches) . ..
- Beliefs or Understandings related to your role and Student Extracurricular Activities 8532
the simulation environment
- Specific Quirks or Habits
Describe the proposed updates to your role setting
based on your analysis. If no significant updates are
deemed necessary based on the recent reflections,
state that the role setting remains largely unchanged.
Table 6: Class 1 Timetable
Time Slot Monday  Tuesday Wednesday Thursday  Friday
Period 1 (8:00-8:40) Chinese Math Physics Chemistry  History
Break 1 - - - - -
Period 2 (9:00-9:40) Math History Chemistry Chinese Physics
Break 2 - - - - -
Period 3 (10:00-10:40) Physics Chinese Math History  Chemistry
Lunch Break - - - - -
Period 4 (13:30-14:10) | Chemistry  Physics History Math Chinese
Break 3 - - - - -
Period 5 (14:30-15:10) History  Chemistry Chinese Physics Math
Extracurricular Activity - - - - -
Table 7: Class 2 Timetable
Time Slot Monday  Tuesday Wednesday Thursday  Friday
Period 1 (8:00-8:40) Math Chemistry Chinese History Physics
Break 1 - - - - -
Period 2 (9:00-9:40) Physics Math Physics Chemistry  Chinese
Break 2 - - - - -
Period 3 (10:00-10:40) | Chemistry  History History Chinese Math
Lunch Break - - - - -
Period 4 (13:30-14:10) History Chinese Chemistry Physics ~ Chemistry
Break 3 - - - - -
Period 5 (14:30-15:10) Chinese Physics Math Math History
Extracurricular Activity - - - - -
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