
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 5759–5776
November 4-9, 2025 ©2025 Association for Computational Linguistics

E-Verify: A Paradigm Shift to Scalable Embedding-based Factuality
Verification

Zeyang Liu, Jingfeng Xue, Xiuqi Yang, Wenbiao Du,
Jiarun Fu, Junbao Chen, Wenjie Guo, Yong Wang

Beijing Institute of Technology
liuzeyang@bit.edu.cn

Abstract

Large language models (LLMs) exhibit re-
markable text-generation capabilities, yet strug-
gle with factual consistency, motivating grow-
ing interest in factuality verification. Exist-
ing factuality verification methods typically
follow a Decompose-Then-Verify paradigm,
which improves granularity but suffers from
poor scalability and efficiency. We propose a
novel Decompose-Embed-Interact paradigm
that shifts factuality verification from costly
text-level reasoning to efficient alignment in
embedding space, effectively mitigating the
scalability bottlenecks and computational inef-
ficiencies inherent to prior approaches. While
the proposed paradigm promises scalable verifi-
cation, its implementation faces three practical
challenges: efficient decomposition, factually
faithful embedding, and accurate verification
in embedding space. To address these chal-
lenges, we introduce E-Verify, a lightweight
framework that resolves them through three
specially designed modules, each aligned with
a specific stage of the paradigm and designed
to preserve scalability and efficiency. Experi-
ments demonstrate that E-Verify significantly
improves both decomposition and verification
efficiency while maintaining competitive accu-
racy. These results confirm that the proposed
paradigm enables scalable and fine-grained fac-
tuality verification with minimal performance
trade-offs. 1

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in text generation tasks
(Mann et al., 2020; Li et al., 2024; Iqbal et al.,
2024; Fu et al., 2025). Nonetheless, LLMs often
generate content with hallucinations, including in-
correct dates, numerical errors, and fabricated rela-
tionships, which can mislead decision-making and

1Data and code are available at https://github.com/
lzy248/e-verify

NLI model

Hypothesis+[SEP]+Premise

G
en

er
at

ed

C
on

te
nt

Decompose-Then-Verify

Decompose-Embed-Interact

Atomic Fact

Reference Chunk

R
ef

er
en

ce

C
on

te
nt

Atomic Reference

Atomic Fact

D

D

V

E I
Embedding Space

D Decompose

V Verify

E Embed

I Interact

Embeddings

Decompose Verify

Embed Interact

Figure 1: The top half shows the traditional Decompose-
Then-Verify approach with costly pairwise NLI in-
ference. The bottom half presents our proposed
Decompose-Embed-Interact paradigm, which performs
efficient verification via alignment in embedding space.

exacerbate misinformation spread (Ji et al., 2023;
Bang et al., 2023; Sadasivan et al., 2023). This
raises an urgent need for factuality verification sys-
tems that can evaluate the factual consistency of
LLM-generated content, especially in knowledge-
intensive scenarios (Panchendrarajan and Zubiaga,
2024; Si et al., 2024; Atanasova, 2024).

A dominant line of research in factuality verifica-
tion 2 adopts the Decompose-Then-Verify paradigm,
shown in Figure 1 (top half), which decomposes
generated text into atomic facts and verifies them
against reference sources using LLMs or natu-
ral language inference (NLI) models (Zhang and
Bansal, 2021; Chern et al., 2023; Zhao et al., 2023;
Tang et al., 2024). While this paradigm enhances
granularity and interpretability, the inherent pair-
wise verification—where each fact must be individ-
ually compared to all reference segments—leads to
quadratic computational overhead, which quickly
becomes prohibitively expensive for long genera-
tions, posing a critical obstacle to scalability.

We begin with the observation that atomic facts
2Factuality verification is generally understood as a two-

stage process comprising evidence retrieval and evidence veri-
fication. In this work, we primarily focus on the verification
stage under the assumption that relevant evidence has already
been provided.

5759

https://github.com/lzy248/e-verify
https://github.com/lzy248/e-verify

are typically short and structurally simple, making
them well-suited for semantic embedding. This
insight motivates a shift in verification strategy:
instead of performing pairwise reasoning at the
text level, we shift verification to alignment in
embedding space. To this end, we propose the
Decompose-Embed-Interact paradigm, shown in
Figure 1 (bottom half), which reframes factuality
verification as a modular process of atomic decom-
position, independent embedding, and lightweight
interaction. By encoding facts into dense vectors
and verifying them efficiently in embedding space,
this paradigm eliminates the need for costly LLM
or NLI-based cross-encoding, enabling scalable
and fine-grained consistency assessment.

While the proposed paradigm theoretically en-
ables scalable factuality verification, its practical
implementation poses several concrete challenges:
how to decompose long-form text efficiently, how
to preserve factual precision in embeddings, and
how to conduct accurate verification in embedding
space. To address these issues, we introduce E-
Verify—an Efficient and Embedding-based Factu-
ality Verification framework for LLMs. E-Verify
operationalizes the proposed paradigm through
three carefully designed modules: (1) A sentence-
level atomic decomposer based on a fine-tuned
small language model (SLM) improves decom-
position efficiency for long-form text; (2) A Bi-
Encoder embedder augmented with Pooling-based
Multi-Head Attention enhances the factual fidelity
of atomic fact embeddings beyond simple pooling;
(3) A lightweight Multi-Feature Interaction Module
verifies consistency through efficient embedding-
level alignment, capturing both surface-level match-
ing and directional factual discrepancy.

Experimental results confirm the effectiveness
of our framework, demonstrating substantial gains
in decomposition and verification efficiency while
maintaining competitive accuracy. Importantly, our
study reveals a key insight: embedding models,
when paired with structured atomic decomposition
and lightweight interaction modules, can deliver
fine-grained factual verification performance pre-
viously thought to require deep cross-encoding—
highlighting the potential of E-Verify as a scalable
alternative to traditional NLI-based pipelines.

Our contributions can be summarized as:

• We introduce a novel Decompose-Embed-
Interact paradigm that reframes factuality ver-
ification as an embedding-native task, trans-

forming costly pairwise verification into effi-
cient embedding-space alignment.

• We instantiate this paradigm in E-Verify, a
lightweight and scalable framework that oper-
ationalizes embedding-native verification and
overcomes key practical challenges, enabling
efficient process.

• Experiments demonstrate that E-Verify sub-
stantially improves verification efficiency
while maintaining strong accuracy, validating
the paradigm’s practical value.

2 Related Works

2.1 Hallucinations in LLMs
Hallucinations in LLMs, where models generate
non-factual content such as temporal inconsisten-
cies, numerical errors, or fabricated relationships,
pose significant challenges to their reliability, par-
ticularly in knowledge-intensive tasks (Huang et al.,
2023). Current strategies to mitigate hallucinations
include training-phase interventions (e.g., knowl-
edge distillation) (Gekhman et al., 2024; Abbas
et al., 2023; McDonald et al., 2024; Huang et al.,
2022), retrieval-augmented generation (RAG) ap-
proaches that integrate external knowledge dur-
ing inference (Ram et al., 2023; Gao et al., 2022;
Lewis et al., 2020), and post-hoc verification meth-
ods to assess factual consistency after text gen-
eration (Manakul et al., 2023; Dhuliawala et al.,
2023; Maynez et al., 2020). While these meth-
ods aim to reduce hallucinations from various per-
spectives, another direction centers on factuality
verification through explicit consistency checking
against trusted reference sources.

2.2 Factuality Verification
Factuality verification, also referred to as fact-
checking, typically involves comparing generated
content with a trusted reference source. FactScore
(Min et al., 2023) proposed a two-stage method
that was later abstracted into the widely adopted
Decompose-Then-Verify paradigm: first decompos-
ing the generated text into atomic facts and then
verifying each fact against references. An atomic
fact refers to a minimal, self-contained unit that
expresses a single verifiable proposition. Recent
methods have extended this paradigm in various di-
rections. FGLR (Stacey et al., 2024) enhances NLI-
based reasoning by generating auxiliary premise
facts, while FineSumFact (Oh et al., 2025) uses

5760

fine-grained LLM feedback to supervise factuality
in summarization. While this paradigm improves
granularity, it suffers from poor scalability due to
reliance on costly LLM APIs and quadratic com-
plexity in pairwise verification between facts and
references. MiniCheck (Tang et al., 2024) explores
a more efficient solution by training a small NLI
verifier on synthetic data, significantly reducing
inference cost. While it eliminates dependency on
LLM APIs, it still performs pairwise verification
between each generated fact and all reference seg-
ments via transformer-based NLI models, resulting
in non-trivial computation cost—especially as the
number of facts and reference chunks grows.

3 Decompose-Embed-Interact Paradigm

We begin with a central observation: atomic facts
are structurally simple and semantically compact,
typically taking the form of short declarative sen-
tences expressing a single verifiable proposition
(see Figure 2, Stage 1). This localized, context-
independent structure aligns well with modern sen-
tence embedding models, which are designed to
encode bounded propositions into fixed-length vec-
tors. Such simplicity allows atomic facts to be
faithfully compressed into embeddings with min-
imal semantic loss, making factuality verification
possible through lightweight embedding-level inter-
actions. Crucially, this enables scalable verification
by avoiding the quadratic cost of cross-encoding
each reference-fact pair.

Motivated by this observation, we propose
the Decompose-Embed-Interact paradigm, which
reframes factuality verification as a modular,
embedding-native process. Given generated con-
tent G and reference material R, the process un-
folds in three stages:
Decompose: Decompose G and R into atomic fact
sets,

FG = {fG
1 , . . . , fG

KG
} = Decompose(G),

FR = {fR
1 , . . . , fR

KR
} = Decompose(R),

where fG
i and fR

j denote the i-th and j-th atomic
fact extracted from G and R, respectively, and KG,
KR are the total number of facts from each source.
Embed: Independently encode each atomic fact
into a dense semantic embedding,

hG
i = Embed(fG

i), hR
j = Embed(fR

j),

where hG
i ∈ Rd and hR

j ∈ Rd represent the d-
dimensional embeddings of the i-th generated fact

and the j-th reference fact, respectively.
Interact: Predict a binary label indicating factual
consistency through operations in the embedding
space,

yj,i = Interact(hR
j ,h

G
i),

where yj,i ∈ {0, 1} denotes whether the generated
fact fG

i is supported or not supported by the refer-
ence fact fR

j .

4 E-Verify

While the proposed paradigm provides a concep-
tual blueprint for efficient verification in embed-
ding space, its practical implementation poses three
key challenges: (1) achieving efficient decompo-
sition of long-form text, (2) preserving factual fi-
delity during embedding, and (3) verifying factual
consistency via accurate embedding-level interac-
tions. We present E-Verify, addressing these chal-
lenges through three carefully designed modules,
as illustrated in Figure 2. We provide detailed de-
scriptions of each component below, with imple-
mentation settings provided in Appendix A.

4.1 Decomposer: Sentence-Level Atomic Fact
Extraction

The use of SLMs to replace LLMs has become a
common practice across many NLP tasks to im-
prove efficiency. However, we find that applying
SLMs directly to factual decomposition, especially
on long-form text, often leads to incomplete ex-
traction or hallucinated facts. To mitigate this,
we adopt a sentence-level decomposition strategy
that reduces contextual hallucination and improves
atomic fact fidelity.

We segment the input text (generated content
and reference material) into sentences using Stanza
(Qi et al., 2020), denoted as S = {s1, s2, ..., sn},
where n is the total number of sentences. Each
sentence sj ∈ S is individually processed by the
SLM to extract atomic facts Fj , and these are ag-
gregated into a unified fact set F =

⋃n
j=1 Fj =

{f1, f2, . . . , fK}, where K is the total number of
atomic facts.

4.2 Embedder: Context Encoding with
Token-Level Attention Pooling

The Embedder encodes atomic facts into dense
vector representations to enable efficient factuality
verification. Traditional BERT-based sentence em-
bedding methods, such as using the [CLS] token

5761

James Blair (September 26,
1786 - April 1, 1834) was a
United States Representative
from South Carolina......Wiki

James Blair (September 26,
1786 - April 1, 1835) was a U.S.
Representative from South
Carolina, born in theLLM

SLM
Decomposer

He served as a sheriff....
James Blair was a U.S. Repre...

James Blair was born on Sept....
James Blair died on April 1, 1835.

His parents Were Sarah Dou...
James Blair was a United States.

James Blair was born on Sept.......
James Blair died on April 1, 1834.

Stage 1: Decompose
B

i-E
nc

od
er

Stage 2: Embed

Diff Embedding

Direct Embedding

Embedder

M
LP

fu
si

on

M
LP

P

Diff Embedding

Direct Embedding M
LP

D

+

Pairwise Feature

Discrepancy Feature

Stage 3: Interact

Multi-Feature Interaction Module

0.8342
0.0048

FactScores
Diff Embedding

Direct Embedding

M
ul

ti-
H

ea
d

A
tte

nt
io

n

Token Embeddings

Ja
m

es
Bl

ai
r

di
ed

on

...

Figure 2: Overview of the E-Verify framework for factuality verification. The system follows a three-stage process:
Decompose, Embed, and Interact. In the Decompose stage, the LLM-generated text and the corresponding
reference text from Wikipedia are processed using a SLM decomposer. In the Embed stage, these atomic facts are
encoded using a Bi-Encoder, with the use of PMA to capture different embedding features. In the Interact stage,
the embeddings undergo multi-feature interactions through feature-based processing, producing fact scores to assess
the factuality of the content.

or mean pooling (Reimers, 2019), often fail to cap-
ture fine-grained semantic nuances that are crucial
for distinguishing subtle factual differences. To
address this, we adopt a Pooling-based Multi-Head
Attention (PMA) mechanism (Liao et al., 2024;
Lee et al., 2019) built on top of the BERT encoder
to enhance factuality-oriented embeddings.

Given an atomic fact set F = {f1, f2, . . . , fK},
K is the total number of atomic facts, each fact
fi ∈ F is tokenized and encoded by BERT into
token embeddings Ti = {t1, t2, . . . , tl}, where l is
the number of tokens in fi. Each token tk ∈ Ti

is a d-dimensional vector. The PMA module then
aggregates Ti to produce a multi-view sentence
embedding:

h = LN(MHA(q, Ti, Ti) + q),

Hi = LN(h+ FFN(h)),

where LN denotes Layer Normalization, MHA is
Multi-Head Attention, and q is a learnable query
vector dynamically aggregating token-level infor-
mation. We use two learnable queries within
PMA to produce multi-view embeddings, denoted
as Hi[0] and Hi[1], that preserve richer contex-
tual information. These embeddings are later as-
signed distinct roles during factuality verification,
enabling fine-grained modeling of factual align-

ment and discrepancy signals.

4.3 MFIM: Embedding-Space Interaction for
Factuality Verification

Traditional sentence similarity models often rely
on cosine similarity between embeddings. How-
ever, cosine similarity is symmetric and fails to
capture the directional nature of factual entailment,
which is essential for distinguishing support and
non-support in factuality verification. To address
this, we design the Multi-Feature Interaction Mod-
ule (MFIM) as a lightweight verifier that produces a
scalar fact score directly from embedding represen-
tations. This design aligns with our paradigm-level
goal of replacing expensive pairwise verification
with scalable vector operations.

We observe two major error types in factual con-
sistency: (1) surface-level mismatches (e.g., entity
names, numbers, dates), and (2) subtle factual addi-
tions or omissions requiring directional reasoning
to determine whether generated content is suffi-
ciently supported by the reference. While simple
pairwise alignment in embedding space (e.g., con-
catenation) effectively addresses type (1), it fails to
capture the strong directional factual entailment be-
havior observed in NLI tasks. To close this gap, we
draw inspiration from difference-based signal pro-

5762

cessing, where subtractive operations emphasize
residual discrepancies by eliminating shared com-
ponents. Accordingly, we explicitly introduce a dis-
crepancy feature to model directional differences
between reference and generated embeddings.

Thus, we define two features: the Pairwise Fea-
ture P and the Discrepancy Feature D:

P = MLPP (Concat(Hr[0], Hg[0])),

D = MLPD(Hr[1]−Hg[1]),

where Hr and Hg are multi-view embeddings of
the reference and generated atomic fact.

The final fact score is computed by first concate-
nating these features and then passing the fused
vector through a lightweight linear layer with Sig-
moid activation:

FactScore = Sigmoid(Linear([P ;D])) ∈ (0, 1).

Our ablation studies (Section 5.5) further confirm
that both features offer complementary signals and
are critical to optimal verification performance.

4.4 Computational Complexity Analysis

In this section, we theoretically analyze the com-
putational efficiency of the E-Verify framework.
We divide the analysis into two main components:
the Decomposer, which is responsible for atomic
fact extraction, and the Checker, which handles
embedding and interaction.

4.4.1 Decomposer Complexity Analysis

E-Verify utilizes a supervised fine-tuned SLM to
perform atomic fact decomposition at the sentence
level. The primary computational cost lies in apply-
ing the decomposer to each sentence, as sentence
segmentation itself is negligible.

Given that the input sequence of T tokens is
partitioned into N sentences, language models em-
ploying self-attention mechanisms (Vaswani, 2017)
incur quadratic computational complexity O(T 2).
E-Verify addresses this challenge through sentence-
level decomposition. By constraining attention
computations to individual sentences with aver-
age length t̄ = T

N ≪ T , the overall complexity
reduces to O(Nt̄2). This design drastically re-
duces global attention costs by restricting atten-
tion computations to shorter text segments, making
E-Verify substantially more efficient than conven-
tional passage-level LLM processing.

4.4.2 Checker Complexity Analysis

The Checker module consists of the Embedder and
the MFIM, and its computational complexity is
determined by two main components: embedding
computation and factuality verification computa-
tion. We denote Kg and Kr as the numbers of
atomic facts extracted from the generated content
and the reference material, respectively.

Embedding Computation. Embedder employs
a Bi-Encoder structure, enabling independent en-
coding of atomic facts before interaction. Assum-
ing the BERT encoder has a computational com-
plexity of O(B) per atomic fact, the total embed-
ding complexity is O((Kg +Kr)B).

Factuality Verification Computation. The
MFIM performs lightweight pairwise interactions
between atomic fact embeddings in the embedding
space. Each generated atomic fact is compared
against all reference atomic facts, with verification
complexity of O(KgKrM), where M denotes the
computational complexity of the MLP.

Thus, the overall computational complexity of
the Checker module is O((Kg+Kr)B+KgKrM).
For a standard NLI-based model, each generated
atomic fact is compared against reference material
using cross-encoding. Assuming the computational
complexity per cross-encoding is O(B), the total
complexity becomes O(KgKrB).

Key Insight. While NLI models incur quadratic
complexity at the transformer computation level,
E-Verify shifts the costly inferences to lightweight
MLP operations. Since MLPs are substantially
more efficient than transformer encoders, E-Verify
significantly reduces computational overhead.

5 Experiments

To evaluate the effectiveness of the E-Verify frame-
work, we conduct experiments across four key di-
mensions: Decomposition Quality: Compare var-
ious models to identify the most effective atomic
fact decomposer. Factuality Verification: Assess
the Checker module and the end-to-end E-Verify
framework against strong baselines. Efficiency:
Analyze runtime and memory efficiency across all
stages of the E-Verify pipeline. Ablation Study:
Examine the contributions of core components
such as PMA and MFIM. The detailed experiment
settings are provided in Appendix B.

5763

5.1 Datasets

wiki-en-sentences: A sentence-level factuality de-
tection dataset containing pairs of independent
Wikipedia sentences.
wiki-bio-hallu (Manakul et al., 2023): A halluci-
nation detection dataset for biography generation,
consisting of a generated biography and its corre-
sponding Wikipedia source. The dataset includes
a simple subset, which contains controlled factual
errors in numbers, time, entities, or events; and
a hard subset, in which errors naturally occur in
LLM-generated biographies.
CNN (Tang et al., 2024): A fact verification dataset
based on CNN news articles. Each instance in-
cludes a reference article and a generated summary
that may contain factual errors.
Reveal (Tang et al., 2024): A dataset adapted from
REVEAL (Jacovi et al., 2024), originally designed
for evaluating reasoning chains in open-domain
QA, which we use in our setting as (passage, fact)
pairs with binary factuality labels.

5.2 Decomposition Capability Evaluation

We evaluate the decomposition performance of
GPT-4o with several open-source models, Qwen2-
7B (Bai et al., 2023), Qwen2.5-0.5B (Yang et al.,
2024) and Flan-T5 (Chung et al., 2022), on the
wiki-bio-hallu dataset. The evaluation metrics in-
clude Precision, Recall, and F1 Score. Precision
measures the factual correctness of the extracted
facts. Specifically, for each fact output by the de-
composer, we check whether it is semantically sup-
ported by the original content. Recall measures
the completeness of the decomposition. For each
ground-truth fact, we check whether it is semanti-
cally entailed by any of the extracted facts. This
reflects how much of the original factual content is
successfully recovered. F1 Score is computed as
the harmonic mean of Precision and Recall.

Model Granularity F1 Precision Recall

GPT-4o* Passage 0.9910 0.9830 0.9991
Qwen2-7B Sentence 0.9797 0.9799 0.9795
Qwen2-7B Passage 0.9703 0.9875 0.9536
Qwen2.5-0.5B Sentence 0.9676 0.9628 0.9725
Flan-T5 Sentence 0.9486 0.9512 0.9460
Qwen2.5-0.5B Passage 0.8837 0.8920 0.8754

Table 1: Performance comparison of different de-
composers under different decomposition granularities.
*GPT-4o was evaluated using few-shot prompting, while
other open-source models were supervised fine-tuned
using synthetic data generated by GPT-4o.

As shown in Table 1, GPT-4o achieves near-
perfect results under few-shot prompting, serving
as an upper bound for accuracy. Among fine-tuned
open-source models, sentence-level decomposition
consistently yields higher recall than passage-level
variants, highlighting its advantage in recovering
comprehensive factual content. Notably, Qwen2-
7B exhibits strong performance but suffers a recall
drop on longer inputs, indicating potential limi-
tations in long-context handling. Qwen2.5-0.5B
achieves a favorable balance between quality and
efficiency at the sentence level, making it the most
suitable choice for E-Verify’s decomposition mod-
ule in large-scale scenarios.

5.3 Factuality Verification Performance
Assessment

In this section, we validate the factuality verifica-
tion ability of E-Verify through two experiments.
The first experiment focuses on assessing the effec-
tiveness of the Checker. The second experiment
evaluates the full E-Verify framework, incorporat-
ing both the Decomposer and Checker. A detailed
case study is provided in Appendix D.

5.3.1 Experiment on Checker
To evaluate the performance of the Checker mod-
ule, we compare E-Verify against several non-LLM
baselines, including NLI-based and Bi-Encoder
models. We conduct experiments on three in-
domain datasets (wiki-en-sentences, wiki-bio-
hallu (simple), and wiki-bio-hallu (hard)) and
two out-of-domain (OOD) datasets (CNN and Re-
veal). E-Verify is trained on a Wikipedia-style
dataset, making the former the primary benchmark
for in-domain evaluation, while the latter assesses
generalization under OOD cases.

As shown in Table 2, E-Verify achieves the
strongest performance among all non-LLM base-
lines on the in-domain datasets, attaining the high-
est accuracy and Macro-F1, particularly on the sim-
pler factuality sets. On more challenging datasets,
such as wiki-bio-hallu (hard) and the OOD cases,
E-Verify remains competitive—slightly trailing
MiniCheck in overall accuracy but outperforming
traditional NLI and Bi-Encoder models in Macro-
F1, indicating stronger handling of class imbalance
and fine-grained distinctions. Notably, Bi-Encoder
models exhibit acceptable accuracy but consistently
lower Macro-F1, suggesting difficulty in capturing
subtle factual discrepancies. While LLMs such as
GPT-4o maintain consistently high performance

5764

Types Models Para.
wiki-en-sentences wiki-bio-hallu

(simple)
wiki-bio-hallu

(hard) CNN* Reveal*

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

Random - 0.4956 0.4929 0.5101 0.4997 0.5011 0.5011 0.5107 0.4769 0.5483 0.5197

L

GPT-4o - 0.9772 0.9768 0.9974 0.9972 0.9480 0.9480 0.9240 0.9010 0.8889 0.8705
Qwen2-7B 7B 0.9866 0.9862 0.9257 0.9143 0.7974 0.7920 0.8551 0.7871 0.8527 0.8425
Llama3.2-3B 3.2B 0.9056 0.9039 0.8590 0.8399 0.7006 0.6848 0.7648 0.6765 0.7754 0.7640
MiniCheck-Flan-T5 750M 0.9518 0.9511 0.8814 0.8618 0.8291 0.8283 0.8599 0.8098 0.8647 0.8519

X

MiniCheck-DeBERTa 434M 0.9160 0.9155 0.7697 0.7678 0.7289 0.7151 0.7743 0.7435 0.8937 0.8809
roberta-large-snli 355M 0.9208 0.9169 0.6798 0.4821 0.5157 0.3917 0.7221 0.4354 0.5314 0.5305
DeBERTa-mnli-fever-anli 184M 0.9028 0.8962 0.7787 0.6985 0.5959 0.5375 0.7340 0.4841 0.6280 0.6271
nli-deberta-v3-base 184M 0.9324 0.9289 0.8199 0.7846 0.6939 0.6877 0.7197 0.4699 0.7705 0.7604
nli-roberta-base 125M 0.9422 0.9400 0.7967 0.7871 0.6436 0.6436 0.6746 0.5327 0.7657 0.7482

B

BERTScore 355M 0.5776 0.3661 0.6519 0.3946 0.4904 0.3291 0.7173 0.4177 0.3068 0.2348
BGE-en-base-v1.5 109M 0.6562 0.5422 0.6519 0.3946 0.4934 0.3354 0.7173 0.4177 0.3092 0.2387

Ours 114M 0.9706 0.9697 0.8655 0.8480 0.6631 0.6581 0.7197 0.6945 0.8188 0.8007

Table 2: Performance comparison of various models across different datasets. The table presents Accuracy,
Macro-F1 for different models, including random, LLM-based models, Cross-Encoders, Bi-Encoders, and our
proposed method. The best results are marked in bold, and the next best results are underlined. L stands for LLM,
X stands for Cross-Encoder, and B stands for Bi-Encoder. Para. denotes parameters. Datasets marked with * are
considered out-of-distribution with respect to our method. Details of baseline models are provided in Appendix B.2.

across all datasets, they incur substantial compu-
tational overhead (e.g., GPT-4o consumed 5.03M
tokens, costing $18.86 USD), making them less
suitable for scalable or cost-sensitive verification
scenarios.

5.3.2 Experiment on E-Verify

Decomposer Checker Pearson ↑ MAE ↓

GPT-4o

GPT-4o 0.9650 0.0783
Qwen2-7B 0.9524 0.1040
MiniCheck-Flan-T5-L 0.9005 0.1548

MiniCheck-DeBERTa 0.8100 0.2132
DeBERTa-mnli-fever-anli 0.6528 0.3498
nli-deberta-v3-base 0.7394 0.1692
BGE-en-base-v1.5 0.1739 0.6220
Ours 0.7452 0.1792

Ours
Qwen2-7B 0.9171 0.1319
Ours 0.7386 0.1646

Table 3: Performance of different decomposers and
checkers on the wiki-bio-hallu (hard) dataset. Pearson
Correlation and Mean Absolute Error (MAE) serve
as evaluation metrics. Bold indicates the best results,
and underlined indicates the next best results.

In this section, we assess the end-to-end relia-
bility of E-Verify in factuality scoring, using the
wiki-bio-hallu (hard) dataset comprising LLM-
generated biographies with human-annotated factu-
ality scores. We evaluate various combinations of
decomposers and checkers, and compute alignment
with ground-truth using Pearson Correlation and
Mean Absolute Error (MAE).

As shown in Table 3, LLM-based pipelines (e.g.,
GPT-4o and Qwen2-7B) unsurprisingly achieve the
strongest overall performance, but at substantial
computational cost—serving primarily as upper
bounds in efficiency-constrained scenarios.

Among non-LLM models, MiniCheck-
DeBERTa obtains the highest Pearson score,
while our E-Verify checker achieves the lowest
MAE across all non-LLM settings, demonstrating
higher precision in capturing factual consistency.
Importantly, E-Verify maintains stable perfor-
mance regardless of whether it is paired with a
high-resource decomposer (GPT-4o) or its own
lightweight decomposer, demonstrating both
robustness and modular adaptability. Compared to
traditional NLI models and embedding-based base-
lines (e.g., BGE), E-Verify consistently achieves
better correlation and lower error, confirming its
stronger sensitivity to subtle factual discrepancies
and more reliable factuality assessment—serving
as a scalable alternative to NLI-based pipelines.

5.4 Computational Efficiency Analysis

In this section, we analyze the computational ef-
ficiency of E-Verify on the wiki-bio-hallu (hard)
dataset. To ensure fair comparison, we evaluate
decomposition and verification latency separately.
Decomposition time (Figure 3, left) is measured
as the total time each decomposer takes to pro-
cess the same set of documents. Verification time
(Figure 3, right) is measured using the same set of

5765

1 1 5 0 0 . 8 6

6 1 7 . 3 8

1 9 2 . 0 4

5 6 6 8 0 . 4 8

2 1 0 1 . 4 8

1 2 5 3 . 6 1

7 2 4 . 0 1
3 4 6 . 7 2 1 7 . 6 5

1 5 . 8
G P T - 4 o (A P I)

Q w e n 2 - 7 B
O u r s

0
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0

1 1 4 0 0
De

com
po

se
Tim

e (
sec

on
ds)

G P T - 4 o (A P I)
Q w e n 2 - 7 B

M i n i C h e c k - F l a n - T 5 - L

M i n i C h e c k - D e B E R T a

n l i - d e b e r t a - v 3 - b a s e

n l i - r o b e r t a
O u r s

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

5 6 5 0 0

Ve
rifi

cat
ion

 Tim
e (

sec
on

ds)

Figure 3: Computational efficiency comparison. The
left plot shows the total decomposition time, while the
right plot presents the total factuality verification time.
All times reflect GPU wall-clock inference time, except
GPT-4o which reflects external API latency. Our method
achieves the lowest computation time in both stages.

decomposed atomic facts (produced by GPT-4o)
across all baseline checkers. For all models, we ex-
clude decomposition time from this stage to isolate
checker efficiency.

Efficient Atomic Fact Extraction in Sentence-
Level. As shown in Figure 3 (left), E-Verify
achieves a significant 60× speedup over GPT-4o
API calls and a 3.21× speedup over Qwen2-7B in
total decomposition time. This gain is not solely
attributable to model downsizing, but of the finer-
grained decomposition strategy. By performing
sentence-level atomic decomposition with a fine-
tuned SLM, E-Verify avoids the need for global
attention over long-form text and enables parallel,
lightweight processing of individual sentences.

Lightweight Verification in Embedding Space.
As shown in Figure 3 (right), E-Verify completes
factuality verification in just 15.8 seconds—a 22×
speedup over nli-deberta and 46× over MiniCheck-
DeBERTa. Unlike previous methods that rely
on cross-encoding every reference-fact pair, our
framework performs lightweight, embedding-space
inference with fixed-size vector inputs and fully
reusable reference representations. Notably, 98.4%
of the verification time stems from embedding com-
putation, which is amenable to precomputation and
caching. The actual interaction takes only 0.25 sec-
onds, illustrating how our decoupled design trans-
forms factuality verification from a high-cost infer-
ence into an efficient embedding interaction.

Scalability Advantage under Real-World Verifi-
cation Scenarios. We further evaluate E-Verify
under a realistic verification workload, where a
static reference document is used to verify a grow-
ing number of generated documents. This setup

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ov
era

ll T
im

e (
Se

co
nd

s)

N u m b e r o f G e n e r a t e d A r t i c l e s t o V e r i f y (R e f e r e n c e = 1)

 D e c o m p o s e r + C h e c k e r
 Q w e n 2 - 7 B + Q w e n 2 - 7 B
 Q w e n 2 - 7 B + M i n i C h e c k
 Q w e n 2 - 7 B + n l i - d e b e r t a
 O u r s + n l i - d e b e r t a
 O u r s + O u r s

Figure 4: Overall time as the number of generated doc-
uments to verify increases, assuming a fixed reference
document. E-Verify yields the lowest overall cost af-
ter amortizing the initial reference encoding cost, even
prior to completing the first verification.

wiki-en-sentences wiki-bio-hallu
(simple)

Acc Macro-F1 Acc Macro-F1

E-Verify 0.9706 0.9697 0.8655 0.8480

-PMA+Pool 0.9058 0.9004 0.7783 0.7149
-MFIM+Cosine 0.8190 0.8119 0.7482 0.6503
-PMA-MFIM 0.6562 0.5422 0.6519 0.3946
MFIM(only P) 0.9520 0.9504 0.8492 0.8309
MFIM(only D) 0.9546 0.9530 0.8642 0.8463

Table 4: Ablation study results comparing different con-
figurations for factuality verification across two datasets.

reflects real-world scenarios where the reference
source is typically static and trusted, while LLM-
generated content varies dynamically. As shown
in Figure 4, our method exhibits the lowest growth
rate in total computation time, growing only 20%
as fast as Qwen2-7B+nli-deberta. Although our
method incurs a small initial cost from reference
processing, this cost is quickly amortized; E-Verify
becomes the most efficient system even before com-
pleting the first document and maintains this advan-
tage as the number of verifications grows. These
results demonstrate that E-Verify is practically ef-
ficient and deployable in time-sensitive applica-
tions. A detailed cost breakdown is provided in
Appendix C.

5.5 Ablation Studies

We conduct ablation studies on the Checker module
to evaluate the effect of the Pooling-based Multi-
Head Attention (PMA) and the Multi-Feature Inter-
action Module (MFIM).

As shown in Table 4, replacing PMA with global
pooling methods results in a significant drop in ac-
curacy and Macro-F1, indicating the critical role
of attention-based token aggregation in preserv-
ing fine-grained semantic information. Replacing

5766

the MFIM with cosine similarity causes a notable
decline in performance, particularly in Macro-F1,
which reflects degraded ability to handle nuanced
factual inconsistencies. This suggests that sim-
ple similarity metrics are insufficient for modeling
entailment-style relations. Eliminating both PMA
and MFIM yields the weakest overall performance,
confirming that their combination is essential for
robust factuality verification. We further evaluate
the impact of the MFIM’s internal features: the
pairwise feature P and the discrepancy feature D.
While D alone performs closest to the full model,
the best results are achieved when both P and D are
used together, highlighting their complementary
roles in factuality verification. This underscores
the importance of explicit discrepancy modeling in
capturing subtle fact-level mismatches that may be
missed by direct embedding alignment alone.

6 Conclusion

We propose E-Verify, a lightweight framework that
redefines factuality verification through a novel
Decompose-Embed-Interact paradigm. By decou-
pling decomposition, embedding, and interaction,
E-Verify replaces costly cross-encoding with ef-
ficient embedding-space alignment. Experiments
show that E-Verify significantly improves computa-
tional efficiency while maintaining competitive ac-
curacy. These results validate the paradigm’s practi-
cal value and highlight the potential of embedding-
native verification as a scalable solution for real-
world factuality verification tasks.

Limitations

Despite the strong empirical performance of the
E-Verify framework on factuality verification tasks,
several limitations remain:

Inference Limitation: E-Verify employs a Bi-
Encoder-based design that prioritizes efficiency
by independently encoding the generated content
and reference materials. While this architecture
greatly accelerates verification, it inevitably intro-
duces semantic compression, where subtle factual
nuances may be lost during fixed-length embed-
ding. E-Verify may struggle with complex rea-
soning tasks such as causal inference, temporal
reasoning, or conditional relationships, where cap-
turing rich token-level interactions is critical. Such
deep reasoning capabilities are better modeled by
Cross-Encoder architectures, which allow joint rep-
resentation learning.

Granularity Limitation: E-Verify verifies fac-
tual consistency at the atomic fact level by de-
composing text into discrete factual units. While
atomic-level verification ensures interpretability,
it inherently abstracts away broader discourse de-
pendencies. These include implicit relationships
among multiple facts, or factual consistency that
depends on paragraph-level context. Handling such
inter-fact dependencies or hierarchical factual struc-
tures remains an open challenge for future work.

Acknowledgments

This work was supported by the National Sci-
ence and Technology Major Project under Grant
2022ZD0120204.

References
Amro Abbas, Kushal Tirumala, Dániel Simig, Surya

Ganguli, and Ari S Morcos. 2023. Semdedup: Data-
efficient learning at web-scale through semantic dedu-
plication. arXiv:2303.09540.

Pepa Atanasova. 2024. Generating fact checking expla-
nations. Accountable and Explainable Methods for
Complex Reasoning over Text.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, et al. 2023. Qwen technical report.
arXiv:2309.16609.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Zi-
wei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A
multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity.
arXiv:2302.04023.

I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Ke-
hua Feng, Chunting Zhou, Junxian He, Graham
Neubig, Pengfei Liu, et al. 2023. Factool: Factu-
ality detection in generative ai–a tool augmented
framework for multi-task and multi-domain scenar-
ios. arXiv:2307.13528.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz,

5767

https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416

and Jason Weston. 2023. Chain-of-verification
reduces hallucination in large language models.
arXiv:abs/2309.11495.

Jiarun Fu, Lizhong Ding, Hao Li, Pengqi Li, Qiuning
Wei, and Xu Chen. 2025. Unveiling and causal-
izing cot: A causal pespective. arXiv preprint
arXiv:2502.18239.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vin-
cent Y Zhao, Ni Lao, Hongrae Lee, Da-Cheng
Juan, et al. 2022. Rarr: Researching and revising
what language models say, using language models.
arXiv:2210.08726.

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal,
Amir Feder, Roi Reichart, and Jonathan Herzig. 2024.
Does fine-tuning llms on new knowledge encourage
hallucinations? arXiv:2405.05904.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv:2311.05232.

Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang
Xu. 2022. Knowledge distillation from a stronger
teacher. Neurips, 35:33716–33727.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al.
2024. Gpt-4o system card. arXiv:2410.21276.

Hasan Iqbal, Yuxia Wang, Minghan Wang, Georgi
Georgiev, Jiahui Geng, Iryna Gurevych, and Preslav
Nakov. 2024. Openfactcheck: A unified framework
for factuality evaluation of llms. arXiv:2408.11832.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan
Herzig, Michael Tseng, Michael Collins, Roee Aha-
roni, and Mor Geva Pipek. 2024. A chain-of-thought
is as strong as its weakest link: A benchmark for
verifiers of reasoning chains. In ACL.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2019.
Set transformer: A framework for attention-based
permutation-invariant neural networks. In ICML.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Neurips, 33.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2024. Pre-trained language mod-
els for text generation: A survey. ACM Computing
Surveys, 56.

Zihan Liao, Hang Yu, Jianguo Li, Jun Wang, and
Wei Zhang. 2024. D2llm: Decomposed and dis-
tilled large language models for semantic search.
arXiv:2406.17262.

Potsawee Manakul, Adian Liusie, and Mark JF Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. arXiv:2303.08896.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhari-
wal, A Neelakantan, P Shyam, G Sastry, A Askell,
S Agarwal, et al. 2020. Language models are few-
shot learners. arXiv:2005.14165, 1.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factual-
ity in abstractive summarization. arXiv:2005.00661.

Daniel McDonald, Rachael Papadopoulos, and Leslie
Benningfield. 2024. Reducing llm hallucination us-
ing knowledge distillation: A case study with mistral
large and mmlu benchmark. Authorea Preprints.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit
Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi.
2023. Factscore: Fine-grained atomic evaluation
of factual precision in long form text generation.
arXiv:2305.14251.

Jihwan Oh, Jeonghwan Choi, Nicole Hee-Yoen Kim,
Taewon Yun, and Hwanjun Song. 2025. Learning to
verify summary facts with fine-grained llm feedback.
In Proceedings of the 31st International Conference
on Computational Linguistics.

Rrubaa Panchendrarajan and Arkaitz Zubiaga. 2024.
Claim detection for automated fact-checking: A sur-
vey on monolingual, multilingual and cross-lingual
research. Natural Language Processing Journal, 7.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. arXiv:2003.07082.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. ACL, 11.

N Reimers. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv:1908.10084.

5768

https://api.semanticscholar.org/CorpusID:262062565
https://api.semanticscholar.org/CorpusID:262062565

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bal-
asubramanian, Wenxiao Wang, and Soheil Feizi.
2023. Can ai-generated text be reliably detected?
arXiv:2303.11156.

Jiasheng Si, Yibo Zhao, Yingjie Zhu, Haiyang Zhu,
Wenpeng Lu, and Deyu Zhou. 2024. Check-
why: Causal fact verification via argument structure.
arXiv:2408.10918.

Joe Stacey, Pasquale Minervini, Haim Dubossarsky,
Oana-Maria Camburu, and Marek Rei. 2024. Atomic
inference for nli with generated facts as atoms. In
EMNLP.

Liyan Tang, Philippe Laban, and Greg Durrett. 2024.
Minicheck: Efficient fact-checking of llms on ground-
ing documents. In EMNLP.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv:2307.09288.

A Vaswani. 2017. Attention is all you need. Neurips.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv:2412.15115.

Shiyue Zhang and Mohit Bansal. 2021. Finding a bal-
anced degree of automation for summary evaluation.
arXiv:2109.11503.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. arXiv:1904.09675.

Yiran Zhao, Jinghan Zhang, I Chern, Siyang Gao,
Pengfei Liu, Junxian He, et al. 2023. Felm: Bench-
marking factuality evaluation of large language mod-
els. Neurips.

5769

Appendix

A Framework Implementation Details

A.1 Decomposer Training Settings
The decomposer training data is sourced from
michaelauli/wiki_bio3, from which 5,000 samples
are randomly selected as the foundational dataset.
The Wiki paragraphs are first split into sentences us-
ing Stanza, and each sentence is then decomposed
by GPT-4o in a few-shot prompting setting (see
Figure 6) to generate the training set. To ensure
quality, all outputs are further filtered by a local
model for factual consistency.

Each training instance follows an instruction for-
mat. Below is an example:

Input: Decompose the following sen-
tence into atomic facts: Carl Demonte
Crawford, born on August 5, 1981,
and nicknamed “The Perfect Storm,” is
an American professional baseball left
fielder who plays for the Los Ange-
les Dodgers in Major League Baseball
(MLB).

Output: Carl Demonte Crawford was
born on August 5, 1981. Carl De-
monte Crawford is nicknamed “The Per-
fect Storm.” Carl Demonte Crawford is
an American professional baseball left
fielder. Carl Demonte Crawford plays
for the Los Angeles Dodgers in Major
League Baseball (MLB).

Our decomposer is based on Qwen/Qwen2.5-
0.5B-Instruct4. The base model undergoes super-
vised fine-tuning on all model parameters using the
llama-factory framework5, with a learning rate of
2.0e-5, batch size of 4, and trained for 3 epochs us-
ing the AdamW optimizer. We use standard token-
level cross-entropy loss.

A.2 Checker Training Settings
The checker training dataset is wiki-en-sentences
(see Appendix B.1). We first collect natural sen-
tences from Wikipedia and use GPT-4o to syn-
thesize positive and negative factual variants via
prompts(see Figure 7, 8). Specifically, for each

3https://huggingface.co/datasets/michaelauli/
wiki_bio

4https://huggingface.co/Qwen/Qwen2.5-0.
5B-Instruct

5https://github.com/hiyouga/LLaMA-Factory

anchor sentence, GPT-4o generates: (1) a semanti-
cally equivalent sentence (positive) and (2) a mini-
mally edited variant containing factual errors (neg-
ative), including entity, date, or numerical halluci-
nations. To ensure quality, all outputs are further
filtered by a local model.

Each training instance follows a triplet format.
Below is an example:

Anchor: This species, Anasimyia con-
tracta, is a European inhabitant within
the hoverfly family.

Positive: Anasimyia contracta is a Euro-
pean species of hoverfly.

Negative: Anasimyia contracta is an
African species of hoverfly.

We conduct end-to-end joint training of the
Embedder and Multi-Feature Interaction Module
(MFIM). The Embedder is responsible for gener-
ating high-quality sentence embeddings using the
BERT model bge-base-en-v1.56. The MFIM then
computes fact scores based on these embeddings.

We employ two loss functions: Triplet Loss
and Binary Cross-Entropy Loss. The objective
of Triplet Loss is to optimize fact scores through
supervised learning of triplets, ensuring that the
factual score of the anchor sentence is higher when
paired with a highly factual positive sentence while
being lower when paired with a negative sample.

Ltriplet = max(0, α+ FactScore(Hanc, Hneg)

−FactScore(Hanc, Hpos))

where α denotes the margin, set to 0.5. Hanc,
Hpos, and Hneg represent the embeddings of the
anchor, positive, and negative samples, respectively,
with fact scores computed via the MFIM.

Simultaneously, BCE Loss is employed for su-
pervised training. The FactScore output by the
MFIM is a value in the range (0, 1), indicating the
degree of alignment between the generated content
G and the reference content R. The objective is
to minimize the difference between the predicted
score and the ground-truth label y ∈ {0, 1}:

Lbce = − 1

N

N∑

i=1

[yi · log(FactScorei)+

(1− yi) · log(1− FactScorei)]
6https://huggingface.co/BAAI/bge-base-en-v1.5

5770

https://huggingface.co/datasets/michaelauli/wiki_bio
https://huggingface.co/datasets/michaelauli/wiki_bio
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://github.com/hiyouga/LLaMA-Factory
https://huggingface.co/BAAI/bge-base-en-v1.5

The overall joint training objective function is
formulated as the sum of Triplet Loss and BCE
Loss:

L = Ltriplet + Lbce

The training process is conducted in two phases.
In the first phase, the parameters of the BERT
model are frozen, and only the PMA module within
the Embedder and the MFIM are updated. During
this phase, the learning rate is set to 5e-5, the batch
size is 32, and the model is trained for 8 epochs.
In the second phase, we unfreeze the BERT model
and apply LoRA to train the final two layers of
BERT jointly with the PMA and MFIM modules.
The learning rate remains at 5e-5, and the batch
size stays at 32. This phase further fine-tunes the
model to improve performance.

B Experiment Settings

Our experiments are conducted on a system run-
ning Ubuntu 22.04, equipped with an NVIDIA
RTX 4090 GPU, an AMD Ryzen 9 9950X CPU,
128GB RAM, and software dependencies, includ-
ing CUDA 12.4, pytorch 2.4.1, transformers 4.49.0
and vllm 0.6.6.post1.

B.1 Datasets

wiki-en-sentences: A large-scale factuality detec-
tion dataset constructed from 500,000 Wikipedia
sentences selected from wikipedia-en-sentences7.
We employ Qwen2-7B to generate both positive
and negative samples via prompting. The final
training set consists of 2,749,030 triplets, with
50,000 sentence pairs used for validation and 5,000
for testing. We train our E-Verify model on this
dataset.
wiki-bio-hallu (Manakul et al., 2023): A dataset
for evaluating hallucinations in LLM-generated bi-
ographies, containing 238 Wikipedia biography ar-
ticles. We expanded this dataset with both sim-
ple and hard subset to enhance its applicability
in factuality verification. The simple subset con-
sists of controlled factual hallucinations generated
by GPT-4o (Hurst et al., 2024), with errors pri-
marily focused on four categories: numbers, time,
entities, or events. These controlled errors allow
for targeted testing of factuality verification mod-
els. In contrast, the hard subset is sourced from
real-world LLM-generated biographies, which are

7https://huggingface.co/datasets/
sentence-transformers/wikipedia-en-sentences

more diverse and naturally prone to factual incon-
sistencies. This dataset includes biographies pro-
duced by a mix of closed-source models, such as
GPT-3.5-Turbo, GPT-4o, Claude-3.5-Haiku, and
Claude-3.5-Sonnet, as well as open-source mod-
els, including Llama-2-7b, Llama-2-13b (Touvron
et al., 2023), Qwen2-7B (Bai et al., 2023), and
Qwen2.5-0.5B (Yang et al., 2024). The inclusion
of diverse sources in the hard subset makes it more
challenging and reflective of real-world factual dis-
crepancies, compared to the simple subset. Each
biography is also decomposed into atomic facts us-
ing GPT-4o, with each fact being manually labeled
for factual accuracy based on the corresponding
Wikipedia biography of the individual.
CNN (Tang et al., 2024): A fact verification dataset
based on CNN news articles. It consists of 116
CNN news articles, each paired with a correspond-
ing summary that may contain factual errors. We
prompt GPT-4o to perform atomic fact decomposi-
tion on them, breaking down each fact into smaller,
verifiable facts. Each atomic fact is then manually
annotated to determine its factual accuracy.
Reveal(Tang et al., 2024): A dataset adapted from
REVEAL (Jacovi et al., 2024), originally designed
for evaluating reasoning chains in open-domain
QA, and used in our setting as (passage, fact) pairs
with binary factuality labels. The dataset consists
of 300 pairs of passages and corresponding facts.
We decompose each fact and passage into atomic
facts using GPT-4o, and each atomic fact is manu-
ally labeled for factual accuracy.

B.2 Baseline Models
GPT-4o: A proprietary instruction-tuned large
language model developed by OpenAI, designed
for general-purpose reasoning, generation, and
factuality-sensitive tasks. It is accessed via the
OpenAI API.
Qwen2-7B8: A 7B-parameter open-source LLM
developed by Alibaba’s Qwen team. It is
instruction-tuned for general-purpose alignment.
Llama3.2-3B9: A 3B-parameter open-source LLM
released by Meta. It is instruction-tuned for
general-purpose alignment.
MiniCheck Series (Tang et al., 2024): A family
of factuality checkers fine-tuned on hallucination-
annotated datasets for long-form generation. It

8https://huggingface.co/Qwen/
Qwen2-7B-Instruct

9https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct

5771

https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences
https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct

supports both DeBERTa and Flan-T5 backbones,
where the former provides a parameter-efficient
cross-encoder baseline, and the latter leverages
instruction-tuned LLMs for stronger performance.
We include both variants in our experiments to com-
pare task-specific cross-encoders and LLM-based
factuality verifiers.

DeBERTa-mnli-fever-anli10: A cross-encoder
model fine-tuned from Microsoft’s DeBERTa-v3-
base on multiple datasets including MNLI, FEVER,
and ANLI. It is optimized for NLI and fact verifica-
tion tasks, serving as a strong baseline for sentence-
level factuality checking.

nli-deberta-v3-base11: A cross-encoder model
fine-tuned for NLI using datasets such as MNLI,
SNLI, and ANLI. It is used as a strong NLI-based
factuality checker baseline in our experiments.

nli-roberta-base12: A RoBERTa-base cross-
encoder model fine-tuned on NLI datasets includ-
ing SNLI and MNLI. It provides a compact yet
strong baseline for textual entailment tasks and
is widely used for sentence-pair reasoning evalua-
tions.

roberta-large-snli13: A RoBERTa-large model
jointly fine-tuned on multiple NLI datasets includ-
ing SNLI, MNLI, FEVER, and ANLI, incorpo-
rating multi-round R1-R3 training. It serves as
a robust high-capacity cross-encoder for general-
purpose NLI-based factuality assessments.

BGE-en-base-v1.514: A Bi-Encoder embedding
model from BAAI, pre-trained for text retrieval and
sentence similarity tasks. We use it as a semantic
similarity baseline to compute vector-based scores
between facts and references.

BERTScore(Zhang et al., 2019): A reference-
based evaluation metric that computes token-level
semantic similarity between candidate and ref-
erence texts using contextual embeddings from
BERT. It is widely used in generation evaluation. In
our setting, it serves as a lightweight, embedding-
based factuality checker baseline.

10https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-anli

11https://huggingface.co/cross-encoder/
nli-deberta-v3-base

12https://huggingface.co/cross-encoder/
nli-roberta-base

13https://huggingface.co/ynie/
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

14https://huggingface.co/BAAI/bge-base-en-v1.5

B.3 Decomposition Capability Evaluation
Settings

For ground-truth decomposition, we use GPT-4o to
produce atomic facts, which are then manually veri-
fied for factual accuracy. We further use Qwen2-7B
to assist in factuality judgment via prompted en-
tailment classification. GPT-4o’s decomposition
is done via few-shot prompting through API calls,
while other open-source models are fine-tuned us-
ing supervised fine-tuning (SFT).

Both sentence-level and passage-level training
datasets are generated by prompting GPT-4o. The
sentence-level training set contains 10,986 in-
stances, while the passage-level training set con-
tains 986 instances.

Due to context length limitations (512 tokens),
Flan-T5 is only trained for sentence-level decom-
position tasks. Qwen2.5-0.5B and Flan-T5 are fine-
tuned with full parameters, while Qwen2-7B is fine-
tuned using LoRA. The training uses a learning rate
of 2.0e-5 and runs for 3 epochs by llama-factory.

B.4 Factuality Verification Performance
Assessment Settings

For long-context factuality verification, LLM-
based approaches are provided with the entire ref-
erence content as the premise input, using a unified
prompt to assess factual support (see Figure 9).
Cross-Encoder models process the reference in
overlapping chunks of 500 characters with a 100-
character stride to handle length constraints. In con-
trast, Bi-Encoder-based methods, including ours,
use atomic facts extracted from the reference as
premise inputs. In all setups, the hypothesis input
consists of atomic facts extracted from the gener-
ated content, ensuring a consistent and fact-level
comparison across all model types.

B.5 Computational Efficiency Analysis
Settings

For the decomposition efficiency experiments,
GPT-4o is accessed via API calls, while both
Qwen2-7B and our decomposer model are exe-
cuted using vLLM (Kwon et al., 2023) for infer-
ence acceleration, configured with a GPU memory
utilization ratio of 0.9.

In the checker efficiency experiments, GPT-4o
is also evaluated through API access. Qwen2-7B
is accelerated using vLLM, while the other base-
lines, MiniCheck-DeBERTa, nli-deberta, and our
checker, are run using the transformers and pytorch
for inference.

5772

https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/cross-encoder/nli-deberta-v3-base
https://huggingface.co/cross-encoder/nli-deberta-v3-base
https://huggingface.co/cross-encoder/nli-roberta-base
https://huggingface.co/cross-encoder/nli-roberta-base
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/BAAI/bge-base-en-v1.5

C Efficiency Analysis

We begin by analyzing the decomposition and veri-
fication time per document or document pair based
on experimental measurements from the wiki-bio-
hallu (hard) dataset. The decomposition time per
document is 0.2882 seconds for Qwen2-7B and
0.0897 seconds for Qwen2.5-0.5B (Ours). For
our method, embedding takes 0.0073 seconds per
document, and interaction requires only 0.00013
seconds per document pair. In contrast, the verifi-
cation time per document pair is 1.1037 seconds
for Qwen2-7B, 0.3803 seconds for MiniCheck-
DeBERTa, and 0.1821 seconds for nli-deberta.

Assuming a fixed reference document and x
newly generated documents, the overall verification
time for different Decomposer+Checker combina-
tions is provided in Table 5. For our framework
that requires decomposing and embedding the ref-
erence content, the total time includes a one-time
cost associated with the single reference document,
reflected as an additional +1 term in the formulas.

Compared to Qwen2-7B+NLI, our method
Ours+Ours achieves a 4.84× reduction in per-
document verification cost. Even when paired with
a standard NLI verifier (Ours+NLI), our decomposi-
tion and embedding pipeline still provides a 2.80×
cost reduction.

It is important to note that our method introduces
a small initialization cost due to the need to decom-
pose and embed the reference material. However,
in most real-world factuality verification scenar-
ios, the reference corpus is typically static, consist-
ing of a fixed collection of trusted sources such as
Wikipedia documents, curated news reports, scien-
tific papers, or legal documents. These reference
materials are stable and do not change with each
generation request. As a result, both the decom-
position outputs and embeddings for the reference
content can be precomputed and cached offline, sig-
nificantly reducing the online computational cost
to only processing the newly generated content.

Furthermore, under the wiki-bio-hallu dataset
setup, the factuality verification task involves fixed
one-to-one document comparisons. In NLI-based
verification methods, the generated content is de-
composed into atomic facts, while the reference
content is segmented into overlapping chunks
(approximately 500 characters each with a 100-
character overlap). Each atomic fact is then indi-
vidually matched against all reference chunks to
assess factual consistency. On average, each gener-

ated biography contains 26 atomic facts, and each
reference biography consists of around 4 chunks,
resulting in approximately 108 fact-chunk pairs per
document pair. This controlled setting maintains a
moderate and fixed number of reference-fact pairs,
and thus does not fully expose the quadratic com-
plexity growth typically associated with NLI-based
verification under large-scale or dense-generation
scenarios.

Nevertheless, even in this relatively mild verifi-
cation setting, our lightweight decoupled architec-
ture demonstrates substantial computational advan-
tages, achieving significant efficiency gains over
traditional NLI-based baselines. This highlights
the scalability and robustness of E-Verify, suggest-
ing even greater benefits when applied to larger,
more complex fact-checking tasks where tradi-
tional methods would suffer from severe pairwise
verification explosion.

D Case Study: Fact-to-Fact Alignment and
Interpretability

To further illustrate the interpretability of E-Verify,
we present a case study using an example from the
wiki-bio-hallu dataset. Figure 5 shows the atomic
facts extracted from the generated content (left)
and the reference content (right). Each line rep-
resents the highest-scoring fact-to-fact alignment
between a generated fact and a reference fact, with
the predicted FactScore shown alongside. We use
color-coding to visualize the verification outcomes:

• Green lines indicate correctly verified facts
with high FactScore values (e.g., Bill Quinn
was born on May 6, 1912. with a score of
0.9889).

• Red lines connect hallucinated or factually in-
correct statements to unrelated reference facts
with FactScore values close to 0 (e.g., Bill
Quinn concluded his career on ’All in the Fam-
ily’ in 1990 matched against Bill Quinn’s last
acting role was in 1989 in ’All in the Family’,
score = 4.30× 10−7).

• Yellow lines highlight an incorrect high-
confidence prediction (false positive). In this
example, Bill Quinn appeared in ’Star Trek.’
was mistakenly linked to Bill Quinn was an
American actor with a relatively high score of
0.5278, despite lacking supporting evidence.

The yellow case (Bill Quinn appeared in ’Star
Trek.’ matched to Bill Quinn was an American ac-

5773

Decomposer+Check Decompose Time (s) Verification Time (s) Total Time (s)

Qwen2-7B + Qwen2-7B 0.2882x 1.1037x 1.3919x

Qwen2-7B + MiniCheck-DeBERTa 0.2882x 0.3803x 0.6685x

Qwen2-7B + nli-deberta 0.2882x 0.1821x 0.4703x

Ours + nli-deberta 0.0897x 0.1821x 0.2718x

Ours + Ours 0.0897(x+ 1) 0.0073(x+ 1) + 0.00013x 0.0970x+ 0.0969

Table 5: Verification time formulas for different Decomposer + Checker combinations under a fixed reference
setting. Here, x denotes the number of newly generated documents to be verified, and the reference document is
fixed to a single document. The table decomposes the total time into decomposition and verification components for
each method.

Bill Quinn was born on May 6, 1912.
Bill Quinn died on April 29, 1994.
Bill Quinn was an American actor.
Bill Quinn appeared in more than 150 acting roles.
Bill Quinn's acting career spanned over seven decades.
Bill Quinn started acting in the 1920s in silent films.
Bill Quinn's last acting role was in 1989 in 'All in the Family'.
Bill Quinn is best remembered as Mr. Van Ranseleer in 'All in the Family'.
Bill Quinn was a regular in 'Archie Bunker's Place'.
Bill Quinn played Dr. Melnitz in 'The Odd Couple'.
Bill Quinn played Sweeney, the bartender, in 'The Rifleman'.
Bill Quinn appeared in 'Mchale's Navy'.
Bill Quinn played Mary's father in 'The Mary Tyler Moore Show'.
In 1971, Bill Quinn was featured in the Universal Pictures movie 'How to Frame a Figg'.
'How to Frame a Figg' starred Don Knotts.
Bill Quinn was the father-in-law of Bob Newhart.
Bill Quinn was the father of Virginia Quinn Newhart.
Bill Quinn died at the age of 81.
Bill Quinn died in Camarillo, California.
Bill Quinn died of natural causes.

Bill Quinn was born on May 6, 1912.
Bill Quinn died on April 29, 1994.
Bill Quinn was an accomplished American actor.
Bill Quinn had over 150 roles.
Bill Quinn started his acting career in the 1930s with silent films.
Bill Quinn concluded his career on 'All in the Family' in 1990.
Bill Quinn was known for his role as Mr. Van Ranseleer.
Bill Quinn appeared in 'Star Trek.'
Bill Quinn was the father-in-law of comedian Don Knotts.

0.9889
0.8674

0.9968
0.9990

4.30e-7
3.26e-5

0.9956
0.5278

3.21e-5

Atomic Generated Content Atomic Reference Content

Figure 5: Fact-to-fact alignment case study. Green = correct matches; Red = unsupported/hallucinated facts; Yellow
= false positive error.

tor, score = 0.5278) illustrates a known challenge
in embedding-based verification systems. We at-
tribute this misalignment to multiple factors: (1)
representation bias, where pre-trained embedding
models tend to map semantically or contextually
related entities (e.g., Star Trek and actor) to nearby
regions in the embedding space, even when they are
factually unrelated; (2) insufficient hard negative
examples in the training data, limiting the model’s
ability to disambiguate rare or long-tail facts. This
case highlights a potential limitation of our current
framework and points to promising future research
directions such as hard negative mining.

Overall, this example demonstrates that our
framework provides an interpretable and structured
reasoning path by explicitly aligning generated
atomic facts to reference facts. The low scores as-
signed to unsupported or incorrect facts showcase
the system’s ability to filter factual inconsistencies,
while the incorrect prediction offers insight into
current limitations and highlights potential direc-
tions for future improvement.

5774

Figure 6: Few-shot prompt used for sentence-level atomic fact decomposition.

Sentence-level Atomic Fact Decomposition Prompt

Decompose the following sentences into atom facts if possible, response only the decomposition.
Rely solely on the provided text.
Do not infer or assume additional information.
Do not include any additional information.
Just be faithful to the text.
Examples:

Input: Elisha Brown (25 May 1717 - 20 April 1802) served as Deputy Governor of Rhode Island
from 1770 to 1772.
Output: Elisha Brown was born on 25 May 1717. Elisha Brown died on 20 April 1802. Elisha
Brown served as Deputy Governor of Rhode Island from 1770 to 1772.

Input: George Bovell is currently a professional swimmer and intends to compete in a record fifth
Olympiad. Bovell is also respected for his voluntary giving back initiatives such as "The World
Swim Against Malaria and Drowning" in Uganda, 2013, with his friend, Ugandan swimmer Max
Kanyarezi.
Output: George Bovell is currently a professional swimmer. George Bovell intends to compete in
a record fifth Olympiad. George Bovell is respected for his voluntary giving back initiatives such
as "The World Swim Against Malaria and Drowning" in Uganda, 2013. George Bovell did this
with his friend, Ugandan swimmer Max Kanyarezi.

Input: He now hosts the breakfast slot on 98FM.
Output: He now hosts the breakfast slot on 98FM.

Now expand this biographical statement with the same accuracy and style, ensuring the facts
remain unchanged and no additional information is inferred.

Input: {sentence}
Output:

5775

Figure 7: Zero-shot prompt used for non-factual sentence.

Non-factual Sentence Generation Prompt

type: type_info
type_dict = {

"time": "Time content: Covers time, dates, periods, etc., related to when events occur.",
"number": "Number content: Includes data, ratios, percentages, etc.",
"entity": "Entity content: Involves specific entities such as names of people, places, organiza-

tions, etc.",
"event": "Event content: Describes specific events, activities, actions, etc.",

}

Modify the input sentence by changing only the {type} content to make the sentence factually
incorrect.
{type_info}
Ensure that the sentence structure and meaning remain consistent, but the facts related to the
{type} content should be altered.
Just replace the original {type} content with a different, incorrect value.
And provide only the modified sentence as a response.
The sentence is: {sentence}
Your answer:

Figure 8: Zero-shot prompt used for positive sentence.

Similar Sentence Generation Prompt

Please take the following sentence and rewrite it using various of expressions, but keep the factual
information the same.
Do not add any additional information that is not already mentioned in the original sentence.
And provide only the modified sentence as a response.
The sentence is: {sentence}
Your answer:

Figure 9: Prompt used for factuality verification.

Factuality Verification Prompt

Giving a fact and a paragraph, determine if the fact is supported by the paragraph:

Paragraph: {paragraph}

fact: {fact}

Answer (just yes or no):

5776

