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Abstract

Large Language Models (LLMs) have trans-
formed listwise document reranking by en-
abling global reasoning over candidate sets,
yet single models often struggle to balance
fine-grained relevance scoring with holis-
tic cross-document analysis. We propose
DeepAgentRank (DEAR), an open-source
framework that decouples these tasks through
a dual-stage approach, achieving superior ac-
curacy and interpretability. In Stage 1, we dis-
till token-level relevance signals from a frozen
13B LLaMA teacher into a compact {3, 8}B
student model using a hybrid of cross-entropy,
RankNet, and KL divergence losses, ensuring
robust pointwise scoring. In Stage 2, we at-
tach a second LoRA adapter and fine-tune on
20K GPT-4o-generated chain-of-thought per-
mutations, enabling listwise reasoning with
natural-language justifications. Evaluated
on TREC-DL19/20, eight BEIR datasets,
and NovelEval-2306, DEAR surpasses open-
source baselines by +5.1 nDCG@5 on DL20
and achieves 90.97 nDCG@10 on NovelE-
val, outperforming GPT-4 by +3.09. Without
fine-tuning on Wikipedia, DeAR also excels in
open-domain QA, achieving 54.29 Top-1 ac-
curacy on Natural Questions, surpassing base-
lines like MonoT5, UPR, and RankGPT. Abla-
tions confirm that dual-loss distillation ensures
stable calibration, making DEAR a highly ef-
fective and interpretable solution for modern
reranking systems.1.

1 Introduction

Document reranking refines top candidate doc-
uments retrieved by a first-stage system to im-
prove relevance to a user query. It plays
a critical role in tasks like web search (Ba-
jaj et al., 2016; Abdallah et al., 2025e), open-
domain QA (Chen et al., 2017; Gruber et al.,
2024), fact verification (Thorne et al., 2018), and

1Dataset and code available at https://github.
com/DataScienceUIBK/DeAR-Reranking.
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Figure 1: Radar chart comparing nDCG@5 per-
formance of top reranking methods, including De-
BERTa, RankZephyr, RankGPT (LLaMA 3.1 8B),
R2R (LLaMA 3.1 8B), and DEAR-L (LLaMA 3.1 8B),
across TREC DL19 and BEIR datasets (Covid, NFCor-
pus, Touche, DBPedia, News, Robust04).

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020), where ranking quality directly im-
pacts downstream results. Transformer-based
models (e.g., BERT (Devlin et al., 2019), T5 (Raf-
fel et al., 2020)) and instruction-tuned LLMs (e.g.,
InstructGPT (Ouyang et al., 2022), LLaMA (Tou-
vron et al., 2023), GPT-4 (Achiam et al., 2023))
have driven reranking progress. While point-
wise (Sachan et al., 2022; Abdallah et al.,
2025b,f) and pairwise (Qin et al., 2023) ap-
proaches dominate earlier work, listwise rerank-
ing with LLMs (Sun et al., 2023; Pradeep et al.,
2023a) offers global ranking benefits. However,
these often rely on expensive proprietary APIs and
suffer from context-length limitations and brit-
tle reasoning. As shown in Figure 1, our pro-
posed DEAR-L achieves superior nDCG@5 per-
formance across diverse datasets, outperforming
baselines like RankZephyr and RankGPT.

To address these challenges, open-source ef-
forts have explored knowledge distillation (KD)
to transfer ranking abilities from large LLMs to
smaller, more efficient student models (Sun et al.,
2023; Pradeep et al., 2023a). However, existing
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Synthetic training sample

System Prompt: You are RankLLM, an intelligent assistant that can rank passages based on their relevancy to the
query.

Instruction: I will provide you with 3 passages, each indicated by a numerical identifier []. Rank the passages based
on their relevance to the search query: what is a shape of art.
[1] In the visual arts, shape is a flat, enclosed area of an artwork created through line, texture, colour or an area enclosed
by other shapes. [...]
[2] A shape in art is a closed line that is limited to two directions: width and length. [...]
[3] Form is a three-dimensional geometrical figure (i.e., sphere, cube, cylinder, etc.), as opposed to a shape, which is
two-dimensional. [...]
Search Query: what is a shape of art
Steps to follow:

1. List the information requirements to answer the query.

2. For each requirement, find the passages that include the relevant information.

3. Rank the passages in descending order of relevance using only the identifiers (e.g., [2] > [1]).

The format of the final output should be ‘ ### Final Reranking: [] > []’, ” ”e.g., ### Final Reranking: [2] > [1].

### Final Reranking: [1] > [2] > [3]

Figure 2: Illustration of RankLLM training components. Synthetic training example with reasoning and final
reranking. Passages and reasoning steps are abbreviated for brevity.

methods commonly depend on synthetic listwise
permutations that risk propagating teacher errors
such as hallucinations or misrankings. This mo-
tivates two key research questions: (1) Can we
balance KL divergence with ranking loss to ef-
fectively distill logit-level signals from the teacher
while mitigating noise? (2) Can we incorporate
synthetic reasoning chains to retain listwise rea-
soning benefits without overloading model context
windows?

We address these questions with a central in-
sight: reranking performance can be enhanced
by guiding the student with reasoning chains of
thought (CoT) derived from synthetic data. We
introduce DEAR, a novel dual-stage reranking
framework that combines pointwise and listwise
learning with reasoning-augmented supervision.
Built on a frozen LLM backbone (e.g., LLaMA-
13B) with lightweight LoRA adapters (Hu et al.,
2022), DEAR trains on 20,000 synthetic reason-
ing examples and achieves performance compara-
ble to GPT-4o, while surpassing RankZephyr in
inference efficiency (see Section 5.3).
Our contributions are as follows:

• We propose DEAR, a dual-stage reranking
framework that integrates pointwise cross-
entropy learning with reasoning-augmented
listwise ranking.

• We introduce a teacher–student pipeline
where a LLM-based teacher transfers rele-

vance signals to a student via logit-level dis-
tillation, combining cross-entropy, RankNet,
and KL divergence losses.

• We construct 20K synthetic ranking exam-
ples with CoT reasoning.

• Extensive experiments on DL19, DL20, and
BEIR-6 show that DEAR matches or out-
performs larger baselines (e.g., GPT-4o,
RankZephyr), improving NDCG@5 by up to
+5.1 on DL20 while remaining lightweight
and fast.

2 Related Work

Reranking methods (Abdallah et al., 2025c) are
typically pointwise, pairwise, or listwise. Point-
wise models like monoBERT (Nogueira et al.,
2020) score each document independently us-
ing pretrained transformers (Devlin et al., 2019),
but ignore inter-document context (Sachan et al.,
2022). Pairwise approaches (e.g., duoBERT,
duoT5 (Pradeep et al., 2021)) compare docu-
ment pairs to infer preferences, at the cost of ef-
ficiency (Qin et al., 2023). Listwise methods,
powered by LLMs like GPT-3.5 and GPT-4, en-
able zero-shot ranking through prompting (Sun
et al., 2023), though reliance on proprietary APIs
limits reproducibility. Open-source variants like
RankVicuna and RankZephyr (Pradeep et al.,
2023b) address this via distilled listwise models,
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Figure 3: Overview of the DEAR dual-stage training pipeline. Top: In the pointwise stage, a frozen teacher LLM
generates relevance logits for positive/negative documents, which are distilled into a student model using cross-
entropy, RankNet, and KL divergence losses. Bottom: In the listwise stage, a reasoning teacher produces step-
by-step chain-of-thought explanations and ranked outputs over candidate sets. The student is trained to generate
coherent reasoning and rankings via generation loss.

but remain sensitive to hallucinations and prompt
ordering.

Knowledge distillation (KD) compresses large
models into smaller ones by transferring logits or
intermediate signals (Hinton et al., 2015). In IR, it
has been used for both retrieval (Guo et al., 2021)
and reranking (Wang and Yoon, 2021). RankGPT
and RankZephyr apply permutation-based KD us-
ing teacher rankings, but such discrete labels may
discard confidence information.

Other work explores reasoning distilla-
tion (Magister et al., 2023; Fu et al., 2023), where
small models benefit from teacher-generated ex-
planations. Our method extends this by combining
logit-level KD (Stage 1) with reasoning-based
listwise training (Stage 2), preserving fine-grained
supervision while improving stability. Reasoning
improves reranking accuracy and interpretability.

R2R (Ji et al., 2024) distills direct and compar-
ative explanations from GPT-4 for MSMARCO
and BEIR. RankGPT also leverages implicit LLM
reasoning via prompt completions.

3 Method

3.1 Preliminaries

Task Definition. Given a query q ∈ Q
and a corpus C = {d1, . . . , dn}, the rerank-
ing task aims to reorder a top-k candidate set
(k ≪ n), initially retrieved by a first-stage bi-
encoder (Karpukhin et al., 2020), to maximize rel-
evance to q. The reranker refines these candidates
using a more expressive model to optimize met-
rics like nDCG (Wang et al., 2013; Järvelin and
Kekäläinen, 2002).

Pointwise vs. Listwise Reranking. Pointwise
rerankers score each (q, d) pair independently
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via f(q, d) (Sachan et al., 2022), offering effi-
ciency but no inter-document reasoning. We im-
prove this via knowledge distillation from LLMs
to LoRA-equipped student models (Hu et al.,
2022). Listwise methods (e.g., ListNet (Cao et al.,
2007), LambdaLoss (Burges, 2010)) model cross-
document interactions (Ma et al., 2023; Pradeep
et al., 2023b), but suffer from input order sensi-
tivity and transformer context limits (Sun et al.,
2023).

3.2 Pointwise Reranking with KL Distillation

The first stage of DEAR employs a pointwise
reranking approach, leveraging KD to transfer the
teacher model’s nuanced relevance judgments to a
compact student model. This stage produces cali-
brated relevance scores for individual documents,
forming the foundation for the subsequent listwise
refinement. For a query qi and document dij from
the candidate set Di = {di1, . . . , dim}, the input
is formatted as:

sij = [query: qi, document: dij ,</s>], (1)

where </s> denotes the end-of-sequence token.
Both the student model fs(·; θs) and teacher model
ft(·; θt), implemented as transformer-based se-
quence classifiers, process sij through L layers
of self-attention and feed-forward networks. Let
Hl ∈ Rl×d represent the hidden states at layer
l for sequence length l and hidden dimension d.
The final hidden state corresponding to </s>, de-
noted hL

</s> ∈ Rd, is projected to a scalar rele-
vance score:

ŷsij = w⊤
s h

L
</s>(sij ; θs) + bs, (2)

ŷtij = w⊤
t h

L
</s>(sij ; θt) + bt, (3)

where ws,wt ∈ Rd and bs, bt ∈ R are learnable
projection parameters. For a batch of B queries,
each associated with m documents, the student
and teacher produce score matrices Ss,St ∈
RB×m, where Ss

bj = ŷsij and St
bj = ŷtij for query

qi (batch index b) and document dij (index j). The
training objective combines a ranking loss with
a KD loss, parameterized by a weighting factor
α ∈ [0, 1].

We support multiple ranking loss functions to
accommodate different supervision signals: Soft-
max Cross-Entropy (PointCE): Treating reranking
as a classification task, we assign binary labels
yi = (yi1, . . . , yim), where yij = 1 for the most

relevant document and yij = 0 otherwise. The
loss is:

LPointCE(yi,S
s
i ) = −

∑

j|yij=1

log(σ(Ss
ij))

−
∑

j|yij=0

log(1− σ(Ss
ij)) (4)

where σ(x) = (1 + e−x)−1 is the logistic func-
tion (Nogueira et al., 2020).

RankNet Loss: To model pairwise preferences,
we use the RankNet loss (Burges et al., 2005).
Given relevance ranks rij derived from yi (lower
rij indicates higher relevance), the loss is:

LRankNet(yi,S
s
i ) =

m∑

j=1

m∑

j′=1

⊮rij<rij′

· log(1 + exp(Ss
ij′ − Ss

ij))

(5)

Knowledge Distillation Loss (KD) aligns the
student’s softened score distribution with the
teacher’s using KL divergence. For query qi,
scores Ss

i ,S
t
i ∈ Rm are normalized with tempera-

ture τ :

Ps
i = softmax(Ss

i/τ), Pt
i = softmax(St

i/τ)
(6)

The KD loss is:

LKD(S
s
i ,S

t
i) = τ2 · KL(Ps

i ||Pt
i)

= τ2
m∑

j=1

Ps
ij log

(
Ps

ij

Pt
ij

)
(7)

The total loss combines the ranking loss and KD
loss:

Ltotal(yi,S
s
i ,S

t
i) = (1− α) · Lrank(yi,S

s
i )

+ α · LKD(S
s
i ,S

t
i) (8)

where Lrank is either LPointCE or LRankNet, and
α ∈ [0, 1] balances the losses. Figure 3 illustrates
the pointwise reranking stage of DEAR, where the
student model learns from the frozen teacher us-
ing a combination of cross-entropy, RankNet, and
KL-divergence losses. We train two student mod-
els: one with LPointCE + LKD and another with
LRankNet +LKD. The teacher provides logits with-
out updates. LoRA ensures efficiency, producing
a top-100 ranked list for the listwise stage.
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Method prev. Top-K DL19 DL20 Covid NFCorpus Touche DBPedia SciFact Signal News Robust04 BEIR (Avg)

BM25 - - 50.58 47.96 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.42

Supervised

monoBERT (340M) BM25 100 70.50 67.28 70.01 36.88 31.75 41.87 71.36 31.44 44.62 49.35 47.16
monoT5 (220M) BM25 100 71.48 66.99 78.34 37.38 30.82 42.42 73.40 31.67 46.83 51.72 49.07
monoT5 (3B) BM25 100 71.83 68.89 80.71 38.97 32.41 44.45 76.57 32.55 48.49 56.71 51.36
Cohere Rerank-v2 BM25 100 73.22 67.08 81.81 36.36 32.51 42.51 74.44 29.60 47.59 50.78 49.45

Unsupervised

UPR (3B) BM25 100 53.85 56.02 68.11 35.04 19.69 30.91 72.69 31.91 43.11 42.43 42.99
InPars (3B) - 100 - 66.12 78.35 - - - - - - - -
Promptagator++ - 100 - - 76.2 37.0 38.1 43.4 73.1 - - - -
RankGPT (llama 3.1 8B) BM25 100 58.46 59.68 69.61 33.62 37.98 37.25 69.82 32.95 43.90
RankGPT-3.5 BM25 100 65.80 62.91 76.67 35.62 36.18 44.47 70.43 32.12 48.85 50.62 49.37
RankGPT-4 RankGPT-3.5 30 75.59 70.56 85.51 38.47 38.57 47.12 74.95 34.40 52.89 57.55 53.68

DEAR-Pointwise (DEAR-P)

Llama3.1-8B (RL)† BM25 100 72.17 68.93 85.21 37.01 34.88 45.56 77.43 30.16 52.05 54.42 52.09
Llama3.1-8B (BC)‡ BM25 100 74.50 68.71 84.14 36.57 37.23 46.27 77.39 29.91 51.71 52.43 51.95
Llama3.1-3B (RL)§ BM25 100 72.94 69.21 83.01 36.30 35.76 45.96 74.45 28.64 50.84 49.78 50.59
Llama3.1-3B (BC)¶ BM25 100 74.49 69.02 82.91 35.78 36.17 45.28 75.48 29.14 48.99 50.93 50.58

DEAR-Listwise (DEAR-L)

GPT-4 † 30 75.74 72.18 86.28 40.56 31.41 46.15 77.58 31.13 50.77 57.91 52.72
GPT-4 ‡ 30 75.68 72.73 86.12 40.42 31.60 45.99 78.36 32.40 52.10 62.18 53.65
GPT-4 § 30 74.72 72.21 85.13 40.30 33.95 46.17 78.04 31.79 53.28 60.25 53.61
GPT-4 ¶ 30 76.29 70.88 85.79 40.34 32.43 45.79 76.71 33.00 52.76 60.39 53.40

Llama3.1-8B † 30 74.86 71.06 86.43 39.08 33.76 46.61 78.08 33.10 53.17 59.55 53.72
Llama3.1-8B ‡ 30 75.54 70.39 86.53 38.48 34.32 46.20 78.47 31.69 53.79 59.43 53.61
Llama3.1-8B § 30 75.29 71.17 88.10 39.05 31.47 46.69 77.77 32.64 53.09 57.93 53.35
Llama3.1-8B ¶ 30 75.33 70.02 88.36 38.80 35.04 46.34 77.34 32.56 52.24 58.63 53.66

Table 1: nDCG@10 performance on TREC Deep Learning Tracks (DL19, DL20) and BEIR datasets (CovidQA,
NFCorpus, Touche, DBPedia, SciFact, Signal, News, Robust04).

3.3 Listwise Reranking with Reasoning
The second stage of DEAR performs listwise
reranking on the top-k candidates (e.g., k = 30)
from the pointwise stage. This stage enhances
the ranking by reasoning over the candidate set,
guided by synthetic reasoning chains generated by
GPT-4o, addressing the limitations of pointwise
methods in capturing inter-document dependen-
cies.

Dataset Construction. From MS MARCO (Ba-
jaj et al., 2016), we sample 40K queries,
as utilized by Pradeep et al. (2023b). For
each query qi, we retrieve the top-20 candi-
date passages {di1, di2, . . . , di20} using GPT-4 via
RankZephyr (Pradeep et al., 2023b; Lin et al.,
2021b). To generate teacher-labeled data, we em-
ploy GPT-4o with a CoT reasoning prompt, pro-
ducing both a ranked list and corresponding rea-
soning for each query-passage set, as illustrated
in Figure 2. This process yields 20K synthetic
reasoning examples, each consisting of a query,
candidate passages, CoT reasoning, and a teacher-
generated ranking, which are used to train the stu-
dent model. The prompt instructs the model to: (1)
extract requirements, (2) match passages to them,

and (3) rank documents using their IDs, as shown
in Figure 7.

Training Objective. We train an instruction-
tuned student model using supervised fine-tuning.
For a query qi and its candidate set Di, the in-
put is the prompt containing qi and Di, and
the target output is the teacher-generated ranked
list (e.g., [1] > [2] > [3]). Let πi =
(πi1, πi2, . . . , πik) denote the target permutation,
where πij ∈ {1, . . . , k} indicates the position of
passage dij in the ranked list (e.g., πi1 = 2 means
di1 is ranked second). The student model gen-
erates a predicted permutation π̂i, which is opti-
mized to align with the teacher’s ranking through
supervised fine-tuning on the synthetic dataset.

4 Experiments

We evaluate DEAR on standard reranking bench-
marks and settings.

4.1 Implementation Details
Datasets and Evaluation Metrics. We evaluate
our approach on TREC-DL (Bajaj et al., 2016),
BEIR (Thakur et al., 2021), and open-domain QA
tasks such as NQ (Kwiatkowski et al., 2019) and
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Method prev. Top-K nDCG@1 nDCG@5 nDCG@10 Avg

BM25 - - 33.33 45.96 55.77 45.02

monoBERT (340M) BM25 100 78.57 70.65 77.27 75.50
monoT5 (220M) BM25 100 83.33 77.46 81.27 80.69
monoT5 (3B) BM25 100 83.33 78.38 84.62 82.11

RankGPT-3.5 BM25 100 76.19 74.15 75.71 75.35
RankGPT-4 RankGPT-3.5 20 85.71 87.49 90.45 87.88

DEAR-Pointwise (DEAR-P)

Llama3.1-8B (RL)† BM25 100 85.71 75.59 82.34 81.21
Llama3.1-8B (BC)‡ BM25 100 88.10 79.48 85.03 84.20
Llama3.1-3B (RL)§ BM25 100 85.71 78.24 82.56 82.17
Llama3.1-3B (BC)¶ BM25 100 85.71 76.94 82.12 81.59

DEAR-Listwise (DEAR-L)

Llama3.1-8B † 30 92.86 88.04 92.01 90.97
Llama3.1-8B ‡ 30 92.86 88.04 90.98 90.63
Llama3.1-8B § 30 90.48 90.32 92.05 90.95
Llama3.1-8B ¶ 30 90.48 88.79 90.62 89.96

Table 2: Reranking results on NovelEval-2306. We
compare BM25, monoT5, GPT baselines, and DEAR
(pointwise and listwise).

WebQA (Berant et al., 2013). For TREC, we use
DL19 and DL20. From BEIR, we select eight di-
verse datasets: Covid, NFCorpus, Signal, News,
Robust04, Touche, DBPedia, and SciFact. Follow-
ing standard reranking pipelines (Nogueira et al.,
2019a; Sun et al., 2023), we retrieve the top-100
candidate documents per query using BM25 via
Pyserini and Rankify (Lin et al., 2021a; Abdallah
et al., 2025d). We use NDCG@1, NDCG@5, and
NDCG@10 to measure reranking performance,
focusing on top-ranked relevance quality. We in-
tegrated our results with RankArena (Abdallah
et al., 2025a) to show effective of our model com-
pare with other reranker model. For open-domain
QA, we also report top-1, top-10, and top-20 ac-
curacy.

Models. We experiment with both Qwen and
LLaMA model families. For the pointwise stage,
we use: (1) Qwen: Student models include Qwen
1.7B, 1.5B, 3B, 4B, and 7B, with Qwen3 14B
as the teacher (Bai et al., 2023). (2) LLaMA:
Student models include LLaMA3.2 3B, 1B, and
LLaMA3.1 8B, trained using LLaMA2 13B as
teacher (Touvron et al., 2023). (3) For the list-
wise stage, we use a single student: LLaMA3.1
8B with reasoning supervision.

Training Infrastructure. All experiments are
conducted on 4×V100 GPUs (32GB). The teacher
models remain frozen during distillation. All mod-
els are fine-tuned using LoRA adapters. For the
pointwise stage, we set lora alpha = 64. For
the listwise stage, we reduce lora alpha to 8 to
reflect reasoning efficiency. We use the Adam op-
timizer (Kingma, 2014) with a batch size of 8, and

a learning rate of 2e-5 with linear decay, weight
decay of 0.1, and train for 3 epochs.

4.2 Superior Performance

We evaluate DEAR ’s dual-stage reranking
on TREC DL19/20 and BEIR datasets, using
nDCG@10. Table 1 presents full results, with key
findings summarized below. Strong Pointwise
Performance. In the pointwise stage, DEAR-P
re-ranks Top-100 BM25 candidates. LLaMA3.1-
8B with RankLoss (RL) achieves a BEIR aver-
age of 52.09, improving +8.67 over BM25 (43.42)
and surpassing monoT5-3B (51.36). Binary
Cross-Entropy (BCE) excels on DL19 (74.50) and
Touche (37.23), while RL outperforms overall
(52.09 vs. 51.95). The compact LLaMA3.1-
3B RL scores 50.59, confirming scalability. En-
hanced with Listwise CoT Reranking. The list-
wise stage refines the Top-20 pointwise outputs
using CoT reasoning. DEAR-L (LLaMA3.1-8B
RL) reaches 53.72 BEIR average, outperforming
RankGPT-4 (53.68) on Covid (88.36 vs. 85.51),
NFCorpus (40.56 vs. 38.47), and Robust04 (62.18
vs. 57.55), leveraging efficient open-source mod-
els. Benefits of CoT Reasoning. CoT enhances
inter-document understanding, with LLaMA3.1-
8B RL (53.72) surpassing GPT-4-BCE (53.65). It
boosts weaker pointwise models, e.g., LLaMA3.1-
3B-BCE improves from 50.58 to 53.61, closing
performance gaps without increasing model size.
Scalability and Efficiency. Both 8B and 3B mod-
els excel in listwise reranking. LLaMA3.1-3B RL
achieves 88.10 on Covid and 53.35 BEIR average,
nearing 8B performance. RL consistently outper-
forms BCE (53.77 vs. 53.67), optimizing permu-
tations effectively.

4.3 NovelEval Reranking Result

NovelEval-2306 tests DEAR on novel queries
to ensure generalisation. In pointwise rerank-
ing, DEAR-P (LLaMA3.1-8B BCE) scores 84.20
average across nDCG@1/5/10, outperforming
monoT5-3B (82.11) and RankGPT-3.5 (75.35),
and closely trailing RankGPT-4 (87.88). The 3B
RL model achieves 82.17, underscoring DEAR ’s
efficiency with smaller models. Listwise rerank-
ing with CoT, applied to the Top-20 pointwise out-
puts, significantly enhances performance: DEAR-
L (LLaMA3.1-8B RL) reaches 90.97 average, sur-
passing RankGPT-4 by +3.09, with nDCG@10 of
92.01. RL aids listwise optimization, as seen in
the consistent gains over BCE (90.97 vs. 89.96).
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Figure 4: nDCG@5 performance of DEAR-Listwise vs. Reason-to-Rank (R2R) on TREC DL19/20 and BEIR
datasets. See Appendix 4.5 and Table 6 for full comparison.

Method @1 @5 @10 Avg

BM25 54.26 52.78 50.58 52.54

RankGPT (text-davinci-003) 70.54 61.90 57.24 63.23
RankGPT (gpt-3.5-turbo) 75.58 66.19 60.89 67.55
RankGPT (gpt-4) 79.46 71.65 65.68 72.26

RankGPT (rerank-english-v2.0) 79.46 71.56 64.78 71.27

RankGPT (claude-2) 66.66 59.33 55.91 60.63
RankGPT (claude-instant-1) 81.01 66.71 62.23 69.98

RankGPT (text-bison-001) 69.77 64.46 58.67 64.30
RankGPT (bard-2023.10.21) 81.01 65.57 60.11 68.90

RankGPT (flan-t5-xxl) 52.71 51.63 50.26 51.53
RankGPT (ChatGLM-6B) 54.26 52.77 50.58 52.54
RankGPT (Vicuna-13B) 54.26 51.55 49.08 51.63

DEAR-Pointwise (DEAR-P)

Llama3.1-8B (RL) 80.23 69.86 64.16 71.42
Llama3.1-8B (BC) 79.46 71.45 65.48 72.13
Llama3.1-3B (RL) 78.68 70.19 64.26 71.04
Llama3.1-3B (BC) 83.33 72.30 65.43 73.69

DEAR-Listwise (DEAR-L)

Llama3.1-8B 77.91 72.32 66.27 72.17
Llama3.1-8B 77.13 71.70 66.05 71.63
Llama3.1-8B 77.13 72.00 65.66 71.60
Llama3.1-8B 81.00 72.98 66.56 73.51

Table 3: Results of NDGC for different LLMs on re-
ranking top-20 passages on DL-19.

Table 2 details these results, confirming DEAR
’s strong generalization on unseen queries using
open-source models, avoiding reliance on propri-
etary APIs.

4.4 Performance on TREC DL-19

On TREC DL-19, a standard IR benchmark,
DEAR competes with proprietary LLM APIs
like GPT-4 and Claude. In the pointwise stage,
DEAR-P (LLaMA3.1-3B BCE) re-ranks Top-
100 BM25 candidates, achieving 73.69 aver-
age (nDCG@1/5/10), outperforming RankGPT-
4 (72.26) and other APIs like Claude-2 (60.63)
and Bard (68.90). LLaMA3.1-8B RL scores
71.42, remaining competitive. The listwise stage,
re-ranking the Top-20 pointwise outputs with
CoT, further improves performance: DEAR-
L (LLaMA3.1-8B) reaches 73.51, exceeding
RankGPT-4 and demonstrating superior refine-
ment. Table 3 presents these results, validating
DEAR ’s state-of-the-art performance with com-
pact, open-source models in real-world IR set-
tings.

4.5 Comparison with Reasoning Methods

We compare DEAR ’s CoT reasoning with
Reason-to-Rank (R2R) (Ji et al., 2024), which
employs direct relevance and comparison rea-
soning, using nDCG@5 on TREC DL19/20 and
BEIR datasets. In the pointwise stage, DEAR-
P (LLaMA3.1-8B RL) provides a strong foun-
dation, e.g., 89.13 on Covid. Listwise rerank-
ing with CoT, applied to the Top-20 point-
wise outputs, significantly outperforms R2R:
DEAR-L (LLaMA3.1-8B BCE) achieves 80.71 on
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Teacher Student dl19 dl20 Avg BEIR

Qwen3-14B Qwen3-1.7B 73.31 68.00 49.58
Qwen3-14B Qwen3-4B 74.04 66.94 50.59
Qwen2.5-14B Qwen2.5-7B 74.06 66.15 51.24
Qwen2.5-14B Qwen1.5-1.5B 73.63 65.85 50.00
Qwen2.5-14B Qwen1.5-3B 73.47 66.42 50.20

LLaMA2-13B LLaMA-3.2-3B 74.49 69.02 50.58
LLaMA2-13B LLaMA-3.2-1B 72.82 68.08 49.72
LLaMA2-13B LLaMA-3.1-8B 74.50 68.71 51.95

Table 4: nDCG@10 performance (in percentage) of
DEAR-Pointwise with different teacher and student
model pairs using binary cross-entropy across TREC
and BEIR datasets. See Appendix C and Table 7 for
full comparison.

DL19, surpassing R2R-GPT-4 (77.7) and R2R-
LLaMA3.1-8B (75.4). On BEIR, DEAR-L scores
91.94 on Covid and 69.49 on Robust04, outpacing
R2R-GPT-4 (85.3 and 58.6). The 3B RL model
reaches 91.94 on Covid, rivaling R2R’s larger
models. On NFCorpus, DEAR ’s 45.76 exceeds
the result by R2R-LLaMA3.1-8B (36.4). Figure 4
visualizes these gains, emphasizing DEAR ’s ro-
bust multi-document reasoning with open-source
efficiency, enhancing pointwise outputs through
CoT-guided global ranking decisions.

5 Additional Analysis

5.1 Impact of Teacher–Student

We assess DEAR-P’s pointwise reranking with
various teacher-student pairs. LLaMA2-13B to
LLaMA3.1-8B yields the highest BEIR aver-
age (51.95), while Qwen2.5-14B to Qwen2.5-7B
scores 51.24. Smaller students, like LLaMA-3.2-
1B (49.72) and Qwen3-1.7B (49.58), remain com-
petitive, showcasing DEAR ’s flexibility. Listwise
reranking, applied to the Top-20 pointwise out-
puts, was not evaluated here but is expected to fur-
ther enhance these results, as seen in prior subsec-
tions. Table 4 details the pointwise performance,
highlighting DEAR ’s adaptability across diverse
model architectures and sizes for efficient knowl-
edge distillation.

5.2 Alpha Selection for KL Divergence

We analyze now the impact of the alpha coeffi-
cient, which balances KL divergence and binary
cross-entropy (BCE) during pointwise reranking
in DEAR, using the LLaMA2-13B → LLaMA-
3.1-8B teacher-student pair. Varying α from 0.1
to 0.5 on MS MARCO, we evaluate nDCG@10
across eight BEIR datasets. Figure 5 shows the
average BEIR score peaking at 52.5 with α = 0.1,
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Figure 5: Average BEIR-8 score (nDCG@10, in
percentage) across alpha values for DEAR-Pointwise
(Teacher: LLaMA2-13B, Student: LLaMA-3.1-8B)
with KL divergence and binary cross-entropy loss.
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time (seconds) Per Query for DEAR-P, DEAR-L,
RankZephyr, RankVicuna, and UPR on TREC DL19.

then declining to 48.5 at α = 0.5. Lower α prior-
itizes the BCE ranking objective, optimizing rel-
evance, while higher α overemphasizes teacher
logit alignment, reducing ranking quality. Thus,
we adopt α = 0.1 for all KL-based distillation in
DEAR.

5.3 Inference Time vs. Performance

We next compare DEAR ’s inference time and
nDCG@10 on TREC DL19 (Figure 6). DEAR-
P (LLaMA3.1-8B) achieves 74.5 nDCG in 2.2s,
outperforming RankZephyr (74.2, 21.58s) and
RankVicuna (66.82, 17.86s), with only UPR faster
(1.27s, 53.85 nDCG). DEAR-L (LLaMA3.1-8B)
reaches 75.54 nDCG in 11.16s, balancing speed
and CoT-enhanced accuracy, surpassing slower
baselines with open-source efficiency.
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Reranking/ Model NQ WebQ
Top-1 Top-10 Top-50 Top-1 Top-10 Top-50

BM25 - 23.46 56.32 74.57 19.54 53.44 72.34

UPR (Sachan et al., 2022) T0-3B 35.42 67.56 76.75 32.48 64.17 73.67
gpt-neo-2.7B 28.75 64.81 76.56 24.75 59.64 72.63

RankGPT (Sun et al., 2023) LLaMAv3.1-8b 41.55 66.17 75.42 38.77 62.69 73.12

RankT5 (Zhuang et al., 2023) 3b 47.17 70.85 76.89 40.40 66.58 74.45

Inranker (Laitz et al., 2024) 3b 15.90 48.06 69.00 14.46 46.11 69.34

MonoBert (Nogueira et al., 2019b) large 39.05 67.89 76.56 34.99 64.56 73.96

Twolar (Baldelli et al., 2024) twolar-xl 46.84 70.22 76.86 41.68 67.07 74.40

Echorank (Rashid et al., 2024) flan-t5-xl 41.68 59.05 62.38 36.22 57.18 61.51

Incontext
Reranker (Chen et al., 2024) LLaMAv3.1-8b 15.15 57.11 76.48 18.89 52.16 71.70

Lit5 (Tamber et al., 2023) LiT5-Distill-xl-v2 47.92 69.03 76.17 41.53 65.69 73.27

Sentence
Transformer

GTR-xxl 42.93 68.55 77.00 39.41 65.89 74.01
T5-xxl 38.89 67.78 76.64 35.82 65.20 74.01

DEAR-P Llama3.1 8B 48.92 73.35 78.78 41.93 67.67 75.05
DEAR-L Llama3.1 8B 54.29 73.07 78.78 46.60 68.11 75.05

Table 5: Performance of re-ranking methods on BM25-retrieved documents for NQ Test and WebQ Test. Results
are reported in terms of Top-1, Top-10, and Top-50 accuracy. Note that some results (e.g., UPR) differ from
original papers due to re-ranking top-100 documents instead of 1,000.

5.4 Open Domain QA

We finally evaluate DEAR ’s generalization to
Natural Questions (NQ) and Web Questions
(WebQ) without Wikipedia fine-tuning, re-ranking
Top-100 BM25 passages (Table 5). DEAR-P
(LLaMA3.1-8B, RankLoss) scores 48.92 Top-1 on
NQ and 41.93 on WebQ, outperforming RankGPT
(41.55, 38.77) and Twolar (46.84, 41.68). DEAR-
L with CoT boosts Top-1 to 54.29 (NQ) and 46.60
(WebQ), surpassing RankT5-3B (47.17, 40.40).
Top-10 (73.07 NQ, 68.11 WebQ) and Top-50
(78.78 NQ, 75.05 WebQ) gains are smaller, but
CoT enhances precision under domain shift, ex-
celling with open-source models trained on MS
MARCO.

6 Conclusion

DeAR introduces a dual-stage reranking frame-
work that decouples pointwise scoring and list-
wise reasoning, achieving high accuracy and inter-
pretability. Stage 1 distills relevance signals from
a 13B LLaMA teacher into 3, 8B students using
hybrid losses, ensuring robust calibration. Stage
2 fine-tunes with GPT-4o-generated CoT permu-
tations for global reasoning. DEAR achieves
90.97 nDCG@10 on NovelEval, surpassing GPT-
4 by +3.09, and 54.29 Top-1 accuracy on Natural
Questions, outperforming MonoT5 and RankGPT.
With an inference time of 2.2s (pointwise) and
11.16s (listwise), DEAR offers an efficient, open-

source solution for advanced reranking.

Limitations

While DEAR achieves state-of-the-art perfor-
mance in document reranking, it has several limi-
tations. First, the dual-stage training pipeline re-
lies on synthetic data generated by GPT-4o for
listwise reasoning, which may introduce biases or
errors from the teacher model, such as hallucina-
tions or misrankings, potentially affecting gener-
alization. Second, the framework’s performance
is evaluated on top-100 candidates retrieved by
BM25, making it dependent on the quality of the
initial retrieval stage. Third, the listwise stage
processes smaller candidate sets (e.g., top-20),
which may limit its ability to handle larger sets
due to context window constraints in LLMs. Fi-
nally, while DEAR is efficient compared to base-
lines like RankZephyr, the two-stage process in-
creases computational complexity compared to
single-stage rerankers, which may pose challenges
for resource-constrained environments.
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A Synthetic Data Generation Prompt

Figure 7 illustrates the prompt used to generate
synthetic chain-of-thought (CoT) reasoning exam-
ples for the listwise reranking stage of DEAR.
This prompt, provided to GPT-4o, instructs the
model to: (1) identify information requirements
for a given query, (2) match candidate passages
to these requirements, and (3) produce a ranked
list of passage identifiers with step-by-step reason-
ing. The resulting 20K synthetic examples, each
comprising a query, candidate passages, CoT rea-
soning, and ranked output, are used to fine-tune
the student model (LLaMA3.1-8B) for listwise
reranking, enhancing its ability to reason glob-
ally over document sets and generate interpretable
rankings.

Reasoning Prompt

Given a set of passages, a specific query, and a predefined reranked output,
generate a reasoning dataset that explains the steps to rerank the passages
based on their relevance, clarity, and diversity in addressing the query, justifying
the provided reranked order. Include reasoning for each step within <think> and
</think> tags. 

<input>
Query: [Specify the query, e.g., "what leadership style that would ask questions"]
Passages:
- [1]: [Content of passage 1]
- [2]: [Content of passage 2]
- ...
</input>
<Reranked>
Output: [e.g., [1] > [3] > [2]]
</Reranked>

Steps:
1. Identify the information requirements to answer the query.
2. Match passages to each requirement based on their content.
3. Rank passages by relevance, clarity, and diversity, assigning scores to justify
the predefined reranked output.

Please provide a reasoning dataset based on the input passages and predefined
reranked output, ensuring the output includes the reranked passages. The
reasoning should be detailed, justify the given ranking.

<think>
Step 1: Query seeks leadership styles
involving questions....

Step 2: Passage relevance:
- Styles description: [3] ....

Step 3: Ranking by query alignment:
- [1] (1st): .....
</think>

Reasoning Model

Figure 7: Prompt used to generate synthetic chains.

B Comparison with Reasoning Models

We compare DEAR ’s chain-of-thought (CoT)
reasoning approach with Reason-to-Rank
(R2R) (Ji et al., 2024), which uses direct rele-
vance and comparative reasoning, alongside other
baselines. Table 6 reports nDCG@5 performance
across TREC DL19/20 and six BEIR datasets
(Covid, Touche, News, NFCorpus, Robust04,
DBPedia). Figure 4 visualizes these results,
highlighting DEAR ’s gains.

In the pointwise stage, DEAR-P (LLaMA3.1-
8B BC) achieves 76.52 on DL19 and 54.65 BEIR
average, outperforming R2R-LLaMA3.1-8B (75.4
and 52.0) and competitive with R2R-GPT-4 (77.7
and 54.4). The 3B RL model scores 53.39 BEIR
average, showcasing scalability. In the listwise
stage, DEAR-L (LLaMA3.1-8B BC with CoT
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GPT) reaches 80.71 on DL19 and 56.92 BEIR
average, surpassing R2R-GPT-4 (77.7 and 54.4)
and R2R-LLaMA3.1-8B (75.4 and 52.0). No-
table gains occur on Covid (90.53 vs. 85.3), Ro-
bust04 (69.02 vs. 58.6), and NFCorpus (45.75 vs.
36.3). DEAR-L with CoT LLaMA achieves 57.78
BEIR average, with strong performance on Covid
(91.44) and Robust04 (65.69), demonstrating ro-
bust multi-document reasoning.

These results, visualized in Figure 4, con-
firm DEAR ’s CoT-guided listwise reranking en-
hances performance over R2R’s reasoning strate-
gies, leveraging open-source efficiency to outper-
form larger proprietary models while maintaining
interpretability.

C Impact of Teacher–Student Pairing

We extend the ablation study from Section 5.1 to
evaluate DEAR-Pointwise’s performance across
various teacher–student pairs using binary cross-
entropy loss, as shown in Table 7. The table re-
ports nDCG@10 across TREC DL19/20 and eight
BEIR datasets (Covid, DBPedia, News, NFCor-
pus, Robust04, Scifact, Signal, Touche). The
LLaMA2-13B to LLaMA3.1-8B pairing achieves
the highest BEIR average (51.95), with strong per-
formance on Covid (84.14) and Robust04 (52.43).
Qwen2.5-14B to Qwen2.5-7B follows closely
with a BEIR average of 51.24, excelling on Sci-
fact (76.52) and DBPedia (46.30). Smaller mod-
els remain competitive: LLaMA-3.2-1B (49.72
BEIR average) and Qwen3-1.7B (49.58) perform
robustly, particularly on Touche (37.18 and 31.91,
respectively). These results, visualized for the
LLaMA2-13B to LLaMA3.1-8B pair in Figure 5
for alpha selection, highlight DEAR ’s flexibility
across diverse model architectures and sizes. List-
wise reranking, applied to the top-20 pointwise
outputs, is expected to further enhance these re-
sults, as demonstrated in Section 4.2.
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Table 6: NDCG@5 performance (in percentage) for student models and baseline comparisons across multiple
datasets.

Models prev. Top-K DL19 DL20 BEIR-6 Avg. Covid Touche News NFCorpus Robust04 DBPedia

Baseline Models

BM25 - - 52.78 50.67 44.04 63.24 48.11 41.28 35.66 43.59 32.36

DeBERTa BM25 100 68.5 64.2 47.3 73.4 32.1 50.2 33.7 49.2 45.4
MonoT5 BM25 100 74.5 70.4 – 80.0 34.1 – – 46.0 35.2
RankVicuna BM25 100 71.1 68.7 - 67.1 48.7 – 38.5 55.7 35.3
RankZephyr BM25 100 72.2 70.5 51.7 85.1 36.5 53.3 38.9 60.7 35.5
APEER BM25 100 74.6 72.3 51.1 83.9 35.3 52.1 33.4 56.0 46.1
R2R (GPT-4) BM25 100 77.7 73.2 54.4 85.3 38.3 58.4 36.3 58.6 49.5
R2R (Claude) BM25 100 72.1 70.0 51.8 84.0 37.3 55.5 36.4 52.7 44.9
R2R (Gemini) BM25 100 71.4 68.6 51.0 83.5 37.0 53.8 36.1 51.8 43.7
R2R (LLaMA3.1 8B) BM25 100 75.4 72.4 52.0 84.6 36.2 53.8 36.4 53.5 47.9

DEAR-Pointwise (DEAR-P)

Llama3.1-8B (RL)† BM25 100 75.86 70.41 54.93 89.13 38.73 52.17 41.19 60.43 47.90
Llama3.1-8B (BC)‡ BM25 100 76.52 71.85 54.65 87.11 39.47 53.40 41.42 57.95 48.53
Llama3.1-3B (RL)§ BM25 100 76.08 72.64 53.39 86.06 37.58 51.33 40.70 56.06 48.58
Llama3.1-3B (BC)¶ BM25 100 78.15 72.87 53.15 86.08 39.63 49.54 40.08 56.61 46.96

DEAR-Listwise (CoT GPT)

GPT-4 † 30 78.88 76.18 56.26 90.29 32.44 51.74 45.52 69.49 48.07
GPT-4 ‡ 30 80.71 76.11 56.92 90.53 34.66 52.89 45.75 69.02 48.69
GPT-4 § 30 78.09 76.77 57.33 89.36 37.67 53.42 45.76 69.43 48.35
GPT-4 ¶ 30 80.09 74.98 56.99 89.53 37.65 52.53 45.54 68.89 47.79

DEAR-Listwise (CoT LLaMA)

Llama3.1-8B † 30 76.93 75.63 56.18 88.49 37.41 52.08 43.31 66.45 49.33
Llama3.1-8B ‡ 30 78.23 74.27 57.12 89.91 38.94 55.10 42.93 66.49 49.36
Llama3.1-8B § 30 76.91 75.40 56.69 91.94 35.73 52.68 43.92 66.26 49.63
Llama3.1-8B ¶ 30 78.40 74.28 57.78 91.44 38.03 51.85 43.81 65.69 49.86

Teacher Student dl19 dl20 covid dbpedia news nfc robust04 scifact signal touche Avg BEIR

Qwen3-14B Qwen3-1.7B 73.31 68.00 83.25 43.69 49.25 35.70 49.96 74.88 28.07 31.91 49.58
Qwen3-14B Qwen3-4B 74.04 66.94 82.41 45.47 50.92 35.56 52.07 76.09 28.57 33.68 50.59
Qwen2.5-14B Qwen2.5-7B 74.06 66.15 83.21 46.30 49.88 35.83 52.86 76.52 29.09 36.29 51.24
Qwen2.5-14B Qwen1.5-1.5B 73.63 65.85 83.78 44.33 50.81 34.83 48.40 73.30 28.33 36.26 50.00
Qwen2.5-14B Qwen1.5-3B 73.47 66.42 83.42 45.08 49.24 35.59 49.49 74.74 27.27 36.81 50.20

LLaMA2-13B LLaMA-3.2-3B 74.49 69.02 82.91 45.28 48.99 36.17 50.93 75.48 29.14 35.78 50.58
LLaMA2-13B LLaMA-3.2-1B 72.82 68.08 79.00 43.60 47.65 35.79 47.46 75.88 31.21 37.18 49.72
LLaMA2-13B LLaMA-3.1-8B 74.50 68.71 84.14 46.27 51.71 36.57 52.43 77.39 29.91 37.23 51.95

Table 7: nDCG@10 performance (in percentage) of DEAR-Pointwise with different teacher and student model
pairs using binary cross-entropy across TREC and BEIR datasets.

5723


