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Abstract

In this work, we present a systematic and com-
prehensive empirical evaluation of state-of-the-
art reranking methods, encompassing large lan-
guage model (LLM)-based, lightweight contex-
tual, and zero-shot approaches, with respect to
their performance in information retrieval tasks.
We evaluate in total 22 methods, including 40
variants (depending on used LLM) across sev-
eral established benchmarks, including TREC
DL19, DL20, and BEIR, as well as a novel
dataset called FutureQueryEval, which is de-
signed to test queries unseen by pretrained mod-
els. Our primary goal is to determine, through
controlled and fair comparisons, whether a per-
formance disparity exists between LLM-based
rerankers and their lightweight counterparts,
particularly on novel queries, and to elucidate
the underlying causes of any observed differ-
ences. To disentangle confounding factors,
we analyze the effects of training data over-
lap, model architecture, and computational ef-
ficiency on reranking performance. Our find-
ings indicate that while LLM-based rerankers
demonstrate superior performance on familiar
queries, their generalization ability to novel
queries varies, with lightweight models offer-
ing comparable efficiency. We further iden-
tify that the novelty of queries significantly
impacts reranking effectiveness, highlighting
limitations in existing approaches '.

1 Introduction

Text reranking, the task of refining retrieved doc-
uments to optimize relevance to a user query, is
crucial for information retrieval (IR) systems, in-
cluding web search (Yasser et al., 2018), open-
domain question answering (Chen et al., 2017; Gru-
ber et al., 2024; Mozafari et al., 2024), and retrieval-
augmented generation (RAG) (Lewis et al., 2020;
Abdallah et al., 2025f). Transformer-based mod-
els and large language models (LLMs), such as
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Figure 1: Radar chart comparing nDCG@ 10 perfor-
mance of top pointwise (MonoT5-3B), pairwise (PRP-
FLAN-UL?2), and listwise (RankGPT-gpt-4) reranking
methods across TREC DL19, all BEIR datasets, and
FutureQueryEval. DL20 is excluded to maintain chart
readability given the large number of datasets displayed.

BERT (Devlin et al., 2019) and GPT-4 (Achiam
et al., 2023), have advanced reranking with strong
contextual understanding and zero-shot capabilities
(Kojima et al., 2022).

However, the reliance on large training corpora
raises concerns about generalization ability with
respect to novel queries unseen during pretrain-
ing (Sun et al., 2023). Despite the emergence of
LLM-based (Mao et al., 2024) and lightweight
rerankers like ColBERT (Khattab and Zaharia,
2020), claims of superior performance often lack
rigorous evidence due to data contamination in
standard datasets. As noted by Yu et al. (2022);
Abdallah and Jatowt (2023), existing benchmark
questions are typically gathered years ago, which
raises the issue that existing LLMs already possess
knowledge of these questions. This contamination
risk is acknowledged even by model developers,
with OpenAl (Achiam et al., 2023) noting the po-
tential risk of contamination of the existing bench-
mark test set. Recent advances have introduced
additional reranking paradigms beyond the tradi-
tional pointwise, pairwise, and listwise approaches.
Setwise reranking (Zhuang et al., 2024) processes
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documents in sets rather than individually or in
pairs, offering a middle ground between pairwise
and listwise complexity. TourRank (Chen et al.,
2025) introduces a tournament-style ranking ap-
proach that recursively compares document subsets.
Additionally, specialized LLM-based rerankers like
DynRank (Abdallah et al., 2025b), ASRank (Ab-
dallah et al., 2025¢), and RankLLaMA (Ma et al.,
2024).

Current reranking models are typically bench-
marked on standard datasets like TREC DL19,
DL20 (Craswell et al., 2020), and BEIR (Thakur
et al., 2021) containing well-studied queries (Khat-
tab and Zaharia, 2020; Zhuang et al., 2023a; Ab-
dallah et al., 2025d). We hypothesize that reranker
performance varies with novel queries, affecting
efficiency and robustness. We introduce Future-
QueryEval, a dataset with queries absent from
LLM training until May 2025, for fair evaluation.
Figure 1 compares pointwise, pairwise, and list-
wise methods across TREC DL19, BEIR, and Fu-
tureQueryEval, showing generalisation challenges.
Our analysis investigates these factors by com-
paring state-of-the-art rerankers, including LL.M-
based, lightweight, and zero-shot models, on both
standard benchmarks and our custom dataset. We
also explore the interplay of model architecture,
training data overlap, and computational efficiency,
shedding light on the trade-offs that influence
reranking performance.

Contributions. 1) We introduce a novel dataset
with queries absent from LLM training data until
May 2025, enabling unbiased evaluation of rerank-
ing methods. 2) We systematically compare LLM-
based, lightweight, and zero-shot reranking ap-
proaches on TREC DL19, DL20, BEIR, and our
custom dataset. 3) We analyze key factors affecting
reranking performance, including generalization to
novel queries, computational efficiency, and model
architecture. 4) Our findings provide actionable in-
sights into the robustness and scalability of rerank-
ing methods, guiding the development of future IR
systems.

2 Related Work

Large language models (LLMs) have transformed
information retrieval (IR) by enabling semantic
understanding and zero-shot ranking capabilities.
Retrieval-Augmented Generation (RAG) (Jiang
et al., 2024) integrates retrieval with LLM genera-
tion to enhance response quality. Reranking (Ab-

dallah et al., 2025¢) refines retrieved documents,
prioritizing relevance to improve RAG outcomes
and reduce LLM hallucinations. Gao et al. (2023)
highlight reranking’s role in evolving RAG frame-
works, boosting accuracy in tasks like question
answering. Zhao et al. (2024) note that reranking
supports multimodal RAG, mitigating data leakage
by refining diverse data types. Yu et al. (2025) pro-
pose metrics like relevance to evaluate reranking’s
impact, emphasizing robust strategies for reliable
RAG performance. Fairness in LLM-based ranking
is critical for equitable applications. Wang et al.
(2024) find that LLMs like GPT and Llama2 under-
represent groups on the TREC Fair Ranking dataset,
with exposure disparities up to 15%. Traditional
methods like FA*IR (Zehlike et al., 2017) and expo-
sure metrics (Singh and Joachims, 2018) struggle
with LLMs’ opaque decisions, underscoring the
need for fairness-aware ranking approaches.

3 Reranking Approaches

Reranking in information retrieval (IR) refines an
initial set of retrieved documents to optimize their
relevance to a query, a critical step in applications
like web search and question answering. With the
rise of pretrained language models (PLMs) and
large language models (LLMs), reranking methods
have evolved into three primary categories: point-
wise, pairwise, and listwise. These approaches
differ in how they score and order documents, bal-
ancing effectiveness, efficiency, and generalization.
This section presents an overview of key types of
reranking methods, detailing their methodologies,
and key implementations.

3.1 Pointwise Reranking

Pointwise reranking assigns independent relevance
scores to query-document pairs, computed by clas-
sification or regression, and sorts documents by
scores. With O(n) complexity, this approach is
efficient for large-scale use yet it suffers from the
lack of explicit consideration of inter-document
dependencies, thus preventing relative relevance
modeling.

Transformer-based models have advanced point-
wise reranking. Nogueira and Cho (2019) pro-
posed monoBERT, using BERT for binary clas-
sification, concatenating query and document to
output a relevance score via the [CLS] token. This
method performs strongly on MS MARCO and
TREC in multi-stage pipelines. Nogueira et al.
(2020) introduced MonoTS5, adapting TS with a
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(a) Pointwise approach

Given a query “Q: What change did Metgasco report ...? ", which
of the following two passages is more relevant to the query?

D, : Metgasco reported a correction to a Change of Director's
Interest Notice, specifically ..
D, : Metgasco Ltd is a company involved in the energy sector,
focusing on the exploration and development ...
Output Passage A or Passage B:

Geneation @ scoring
ode Mode

(b) Pairwise approach

Given a query “What change did Metgasco ..?” , which of the
following two passages is more relevant to the query?

D, : Metgasco reported a correction to a Change of Director's
Interest Notice, specifically concerning....

D, : Metgasco Ltd is a company involved in the energy sector,

focusing on thg exploration and ....

Dy: The correction revealed that 64,000,000 unlisted options

acquired by Director Michael Glennon ......

)

[51>[3]>[1]

Generated text:
"Passage A"

(c) Listwise approach

Figure 2: Illustration of reranking approaches: (a) Pointwise approach, scoring each query-document pair indepen-
dently; (b) Pairwise approach, comparing pairs of documents to determine relative relevance; (c) Listwise approach,
processing multiple documents simultaneously to generate a reordered list.

prefix (e.g., “Query: q Document: d Relevant:”)
to predict “true” or “false” for relevance, using the
“true” token’s probability as the score. MonoT5
surpasses monoBERT on MS MARCO and ex-
cels in zero-shot settings on TREC 2004 Robust
Track. Zhuang et al. (2023b) developed RankTS5,
directly outputting numerical scores with encoder-
decoder or encoder-only architectures, fine-tuned
with ranking losses for efficiency. Laitz et al.
(2024) presented InRanker, distilling MonoT5-
3B into smaller models (60M, 220M parameters)
for zero-shot reranking, trained on MS MARCO
and synthetic BEIR labels via InPars, achieving
50x size reduction (Bonifacio et al., 2022). Fi-
nally, UPR (Sachan et al., 2022), ASRANK (Ab-
dallah et al., 2025c) and DynRank (Abdallah et al.,
2025b) explored unsupervised methods scoring rel-
evance as the query’s likelihood given a passage
using a pretrained model with a prompt. This ap-
proach generalizes to new domains without the
need for task-specific training.

3.2 Pairwise Reranking

Pairwise reranking compares document pairs to
determine relative relevance, aggregating results
to form a ranking. With O(n?) complexity for
all-pair comparisons, optimized variants achieve
O(nlogn) or O(n). It excels in precise differentia-
tion but faces scalability and transitivity challenges.

LLM-based pairwise methods leverage large lan-
guage models for effective reranking. Qin et al.
(2023) introduced Pairwise Ranking Prompting
(PRP), prompting an LLM (e.g., FlanUL2) to se-
lect the more relevant document from a query-
document pair, using scoring APIs for reliability
(Qin et al., 2023). Variants include PRP-Allpair
(win-ratio aggregation), PRP-Sorting (Heapsort,
O(nlogn)), and PRP-Sliding-K (sliding window,
O(n)), with FlanUL2 outperforming InstructGPT
by 10% in NDCG@10 on TREC-DL2019/2020.

Similarly, Jiang et al. (2023) proposed PAIR-
RANKER within the LLM-BLENDER framework,
encoding query and two LLM outputs with a cross-
attention Transformer (e.g., ROBERTa) to compute
confidence scores, aggregated via MaxLogits or
bubble sort (O(n)) (Jiang et al., 2023). Evaluated
on MixInstruct, PAIRRANKER achieves a 68.59%
top-3 ranking rate, surpassing pointwise baselines.
Rashid et al. (2024) developed EcoRank, a budget-
conscious two-stage pipeline (Rashid et al., 2024).
A costly LLM (e.g., FlanT5-XL) filters passages
via pointwise classification, followed by pairwise
comparisons using a cheaper LLM (e.g., FlanT5-L)
with a sliding window, balancing cost and quality.

3.3 Listwise Reranking

Listwise reranking processes a query and mul-
tiple documents simultaneously, outputting a re-
ordered list by capturing inter-document relation-
ships. With O(n) complexity, it offers superior
accuracy over pointwise and pairwise methods but
faces challenges with long input contexts and po-
sitional biases when using large language models
(LLMs).

LLM-based listwise methods use prompting for
zero-shot reranking. Sun et al. (2023) introduced
RankGPT, using ChatGPT or GPT-4 to generate
passage identifier permutations (e.g., “[2] > [3]”)
with a sliding window to handle token limits. Ma
et al. (2023) proposed LRL, employing GPT-3 to
reorder passages via a simple prompt and sliding
window strategy. Pradeep et al. (2023a) developed
RankVicuna, a 7B-parameter LLM distilled from
RankGPT3.5, using shuffled inputs for robustness.
Pradeep et al. (2023b) presented RankZephyr, a
7B LLM fine-tuned on RankGPT4 data with multi-
ple reranking passes for enhanced performance.

Efficiency-focused listwise methods optimize
latency and context handling. Yoon et al. (2024)
introduced ListT5, using T5’s Fusion-in-Decoder

5695



Table 1: Comparison of pointwise, pairwise, and listwise reranking challenges. n is the number of documents per
query. O(n) for listwise assumes sliding window or tournament sort, as full permutation is impractical.

Method ‘ # of LLM API Calls ‘ Generation API ‘ Scoring API ‘ Require Calibration ‘ Sensitivity to Input Order
Pointwise O(n) No Yes Yes Low

Pairwise 0(n?),0(nlogn),O(n) Yes Yes No Medium
Listwise O(n) Yes No No High

to encode query-passage pairs and decode sorted
identifiers with O(n + klogn) complexity.
Reddy et al. (2024) proposed FIRST, gener-
ating rankings from first-token logits, decreasing
latency by 50% using joint loss training (Reddy
etal., 2024). Liu et al. (2025) presented PE-Rank,
using passage embeddings and dynamic decoding
to reduce latency by 4.5x (Liu et al., 2025). Chen
et al. (2024) developed ICR, leveraging LLM at-
tention weights for O(1) reranking, outperforming
RankGPT on TREC and BEIR (Chen et al., 2024).

4 Challenges in Reranking with LLM

Reranking refines retrieved documents to match
queries in information retrieval (IR). LLMs en-
able zero-shot reranking but face challenges due
to their general-purpose design, hindering perfor-
mance compared to fine-tuned rankers. Issues in-
clude computational complexity, API reliance, and
prediction inconsistencies across pointwise, pair-
wise, and listwise methods.

Pointwise Reranking Challenges Pointwise
methods score query-document pairs independently
as classification or regression, sorting by scores
with O(n) complexity. A prompt (Figure 2a) yields
a relevance judgment (e.g., “Yes” or “No”), with
scores defined as:

o {1 + p(Yes),
" |1 —p(No),

if output is Yes 0
if output is No

where p(Yes) and p(No) are scoring probabilities.
Challenges include inconsistent score calibration
across prompts, unnecessary for ranking (Desai
and Durrett, 2020), and reliance on scoring APIs,
limiting compatibility with generation-only LLMs
like GPT-4 (Laitz et al., 2024; Sachan et al., 2022).

Pairwise Reranking Challenges Pairwise meth-
ods compare document pairs for relative relevance,
aggregating results with complexity from O(n?)
to O(n). A prompt (e.g., PRP) selects the more
relevant document, scoring d; as:

S; = Z (]Idi>dj + 0.5- Hdl':dj) ) (2)
J#i

where ]Idi>dj indicates preference (Qin et al.,
2023). High complexity for large n and inconsis-
tent judgments for subtle differences (Jiang et al.,
2023) pose challenges, amplified by sensitivity to
initial retrieval quality.

Listwise Reranking Challenges Listwise meth-
ods process queries and documents together, out-
putting reordered lists (Figure 2¢) with O(n) com-
plexity. Long inputs exceed LLM context limits, re-
quiring sliding windows or tournament sorts (Sun
et al., 2023; Tamber et al., 2023; Yoon et al., 2024).
Prediction failures, such as missing documents or
inconsistent rankings due to input order sensitivity,
and reliance on generation APIs (Ma et al., 2023;
Pradeep et al., 2023a) reduce reliability of listwise
reranking.

Table 1 summarizes the above-mentioned chal-
lenges, highlighting sensitivity to input order across
methods.

5 Results and Discussion

This section evaluates pointwise, pairwise, and list-
wise reranking methods across IR benchmarks and
open-domain datasets, assessing performance, ro-
bustness, and generalization to novel queries. It
includes three parts: Experimental Setup, Datasets,
and Performance Analysis.

5.1 Experimental Setup

We compared reranking methods in three cate-
gories: pointwise (e.g., MonoT5, RankT5, In-
Ranker, FlashRank), pairwise (e.g., PRP, EcoRank),
and listwise (e.g., ListT5, RankGPT, RankVicuna).
Pointwise methods score query-document pairs
independently, pairwise methods compare doc-
ument pairs, and listwise methods optimize en-
tire document lists. Models were sourced from
public repositories (e.g., Hugging Face) with de-
fault settings using Rankify Framework (Abdallah
et al., 2025¢e) and we integrated the results with
RankArena Leaderboard (Abdallah et al., 2025a).
For the initial retrieval, we used BM25 to pull the
top 100 documents per query, which the rerankers
then reordered using Pyserini (Lin et al., 2021). We
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Method Model DL19 DL20|Covid NFCorpus Touche DBPedia SciFact Signal News Robust04
T5-Small 49.94 47.07 | 62.81 30.46 21.54 3198 61.68 29.71 27.41 33.14
T5-Base 55.12 5394|6412  31.12 19.42 3428 6556 30.50 2732 33.40
T5-Large 58.33 56.05 | 68.69 31.71 1894 3535 6544 3280 2525 3448
UPR TO-3B 60.18 59.55 | 68.83 33.48 2397 3441 71.21 33.02 39.10 41.74
FLAN-T5-XL 53.85 56.02 | 68.11 35.04 19.69  30.91 72.69 3191 43.11 4243
GPT2 50.71 44.98 | 62.31 31.87 1824  29.11 64.95 3231 3131 3427
GPT2-medium 51.70 49.62|63.72 31.93 16.59  30.11 65.11 32.02 32.08 35.31
GPT2-large 52.48 0.467|63.23 33.62 16.72  30.76 3249 66.59 30.85 34.69
TinyBERT 67.68 60.65|61.48 32.85 3272 36.04 64.08 31.85 37.53 4137
MiniLM? 70.80 66.27 | 69.06 33.02 3477 4277  66.28 33.62 4454 47.18
FlashRank MultiBERT 31.29 28.47]39.62 26.84 25.17 17.56  29.14 17.39 23.13 23.09
T5-Flan 21.79 17.02 | 38.61 18.11 8.23 7.77 829 6.57 1206 15.40
MiniLM? 70.40 65.60 | 69.66 32.80 34.61 39.75  59.14 28.10 41.44 46.09
Base 70.81 67.21]72.24 34.81 3824 42.01 73.14 3047 45.12 51.24
Base-10k 7138 66.31|74.61  35.69 37.86 4209 7339 32.14 46.09 51.69
MonoT5 Large 72.12 67.11|77.38 36.91 38.31 41.55  73.67 33.17 4754 56.12
Large-10k 72.12 67.11|77.38 36.91 38.31 41.55 73.67 33.17 47.54 56.12
mT5-Base 70.81 64.77|73.77 34.36 35.62 40.11 71.17  29.79 4534 4899
3B 71.83 68.89 | 80.71 38.97 32.41 4445 7657 3255 4849 56.71
T5-base 72.13 67.91]75.63 34.99 4124 4239 7337 30.86 44.07 52.19
RankT5 T5-large 72.82 67.37|75.45 36.27 3934 4290 74.84 3253 46.81 5448
T5-3b 71.09 68.67 | 80.43 37.43 40.41 42.69 76.58 31.77 48.05 5591
Inranker-small 69.81 61. 68| 77.75 35.47 28.83 4451 7490 29.37 4629 5091
Inranker Inranker-base 71.84 66.30(79.84  36.58 2897 4650  76.18 30.46 47.88 5427
Inranker-3b 72.71 67.09 | 81.75 38.25 2924  47.62 7831 3220 49.63 6247
mxbai-rerank-xsmall 68.95 63.11 | 80.80 34.44 39.44 42.5 68.73 29.40 53.00 53.87
mxbai-rerank-base 72.49 67.15] 84.00 35.64 3432 4250 7233 3020 51.92  55.59
mxbai-rerank-large 71.53 69.45 | 85.33 37.08 3690 44.51 75.10 31.90 51.90 58.67
bge-reranker-base 71.17 66.54|67.50  31.10 3430 4150  70.60 28.40 39.50 42.90
Transformer Ranker bge-reranker-large 72.16 66.16 | 74.30 34.80 35,60 43770  74.10 30.50 4340 49.90
bge-reranker-v2-m3 72.19 66.98|74.79 33.84 39.85 4193 7348 31.36 4584 4844
bce-reranker-base 70.45 64.13|67.59 33.90 2750 38.14  70.15 27.31 4048 48.13
jina-reranker-tiny 70.43 65.31|77.15 37.24 31.04 42,14 7342 3225 4227 4741
jina-reranker-turbo 70.35 63.62|77.97 37.29 30.80 41.75 7453 28.46 4279 44.19
Splade Reranker Splade Cocondenser 71.47 66.18 \ 68.87 34.95 3796 4125  68.72 3227 4328 4751
all-MiniLM 63.84 60.40 | 70.83 33.10 2923 3487  65.63 2850 4542 46.03
GTR-T5-base 68.09 62.40 | 70.10 32.02 3270 3620 60.23 30.79 4324 4538
GTR-T5-large 67.23 63.33|69.50 33.03 32.84 3820 6241 31.19 4432 4698
GTR-T5-x1 67.55 64.51]69.63  33.39 3428 3876 63.65 31.10 4573 4795
GTR-T5-xx1 68.53 64.07 | 72.70 34.02 36.77 3990 65.62 31.37 47.01 49.67
Sent Transf Rerank sentence-T5-base 51.15 49.37 | 66.02 30.17 2463 33.67 47.29 29.78 41.71 4824
entence Transiormer Reranker sentence-T5-x1 5495 5322[67.01 3172 2078 3638 5073 31.22 43.58 4833
sentence-T5-xxl 60.61 58.37|72.55 34.76 30.88  40.52  60.23 31.05 49.51 5245
sentence-T5-large 55.36 54.20|63.57 30.23 28.08 31.89 4740 3056 4294 47.06
msmarco-bert-co-condensor 56.34 53.50 | 62.20 28.38 20.12 3193 53.04 31.16 36.56 36.99
msmarco-roberta-base-v2  68.35 62.61 | 66.67  30.10 3198 3262 56.65 29.77 46.14 43.94
colbert ranker colbert-v2 69.02 66.78 | 72.6 33.70 3551 4520 67.74 33.01 4121 4583
monoBERT BERT (340M) 70.50 67.28|70.01  36.88 3175 4187  71.36 31.44 4462 4935
Cohere Rerank-v2 - 73.22 67.08|81.81 3636 3251 4251 7444 29.60 4759 50.78
Promptagator++ - | 76.2 37.0 38.1 43.4 73.1
TWOLAR TWOLAR-Large 72.82 67.61|8430 3570 334 47.8 756 339 527 583
TWOLAR-XL 73.51 70.84 | 82.70 36.60 37.1 48.0 76.5 33.8 50.8 579
LLaMA-2-7B 743 72.1 | 852 30.3 40.1 48.3 732
RankLLaMA LLaMA-2-13B ‘ 86.1 284 406 487 730

Table 2: Performance comparison (nDCG@ 10) of various pointwise reranking models across standard TREC Deep
Learning (DL19, DL20) and multiple BEIR benchmark datasets.

measured performance with nDCG@ 10 for TREC
DL19, DL20, and BEIR datasets (Covid, NFCor-
pus, Touche, DBPedia, SciFact, Signal, News, Ro-
bust04), and Top-1, Top-10, and Top-50 accuracy
for open-domain datasets (Natural Questions and
WebQuestions). All experiments were ran on a
cluster with NVIDIA A100 GPUs, and we aver-
aged results over three runs with different random
seeds to ensure consistency.

5.2 Datasets

We tested rerankers on diverse datasets. TREC
DL19 (43 queries) and DL20 (54 queries) simulate
web search with graded relevance (0-3). BEIR in-
cludes eight datasets—Covid, NFCorpus, Touche,
DBPedia, SciFact, Signal, News, Robust04—for

zero-shot generalization across domains. Natu-
ral Questions (NQ) and WebQuestions (WebQ)
test factual retrieval in open-domain QA. Future-
QueryEval, with queries unseen until May 2025,
evaluates novel query generalization (Section 6).
These datasets assess in-domain, out-of-domain,
and novel query performance.

5.3 Performance Analysis

We analyze pointwise, listwise, and pairwise
reranking performance based on Tables 2, 3, 4,
and 5, focusing on key trends and implications for
IR systems.

Pointwise Reranking: Table 2 highlights point-
wise methods, which score documents indepen-
dently. InRanker-3b excels (72.71 on DLI9,
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81.75 on Covid, and 62.47 on Robust04), lever-
aging distillation for strong semantic understand-
ing, especially in scientific datasets (78.31 Sci-
Fact). MonoT5-3B (71.83 DL19, 80.71 Covid)
and TWOLAR-XL (73.51 DL19, 82.70 Covid) fol-
low closely, benefiting from IR-specific fine-tuning.
Lighter models like FlashRank-MiniLM (70.40
DL19) and Transformer Ranker-mxbai-rerank-base
(84.00 Covid) offer efficiency with competitive
accuracy. UPR-TO0-3B lags (60.18 DL19), show-
ing zero-shot limitations. All methods struggle
on Touche (e.g., InRanker-3b: 29.24) and Signal,
likely due to mismatched training data.

Listwise Reranking: Table 3 shows listwise
methods, which optimize document interactions.
RankGPT-gpt-4 leads (75.59 DL19, 85.51 Covid),
excelling in nuanced relevance. Zephyr-7B (74.22
DL19, 80.70 Covid) and ListT5-3b (71.80 DL19,
84.70 Covid) perform strongly, balancing accu-
racy and efficiency. LiT5-Distill-x1 (72.45 DL19)
scales well, but smaller models like InContext-
Mistral-7B (59.2 DL19) falter due to context con-
straints. Touche remains challenging (e.g., ListT5-
3b: 33.60), reflecting difficulties with argumenta-
tive queries.

Pairwise Reranking: Table 4 evaluates pairwise
methods, comparing document pairs. PRP-FLAN-
UL2 performs best (72.65 DL19, 79.45 Covid),
adept at fine-grained judgments but less scalable
due to quadratic complexity. EcoRank-Flan-T5-x1
(59.62 DL19, 55.51 Covid) prioritizes efficiency,
sacrificing accuracy. Pairwise methods underper-
form on Touche (e.g., PRP-FLAN-UL?2: 37.89),
struggling with subjective relevance.

For additional comparisons, including smaller
model variants and complete tables, see Ap-
pendix B and Appendix C (Tables 2 and 13).

Reranking on Open-Domain QA: Table 5 eval-
uates reranking on open-domain QA tasks (NQ,
WebQ). BM25 baselines at 23.46% Top-1 (NQ)
and 19.54% (WebQ). Fine-tuned models excel:
LiT5-Distill-x1-v2 (47.92% NQ, 41.53% WebQ),
RankT5-3b (47.17% NQ, 40.40% WebQ), and
TWOLAR-XL (46.84% NQ, 41.68% WebQ) lead,
adept at factual queries. RankGPT-llamav3.1-
8b (41.55% NQ) follows. Efficient models like
FlashRank-MiniLM (34.70% NQ, 31.84% WebQ)
balance performance and speed. EcoRank-Flan-
T5-XL (41.68% NQ) and InContext-llamav3.1-8b
(15.15% NQ) lag, struggling with QA contexts.

Pointwise and listwise methods outperform pair-
wise in open-domain tasks.

For additional comparisons, including smaller
model variants and complete tables, see Ap-
pendix D (Tables 14).

5.4 Discussion and Implications

Our comprehensive evaluation reveals several
novel insights beyond traditional performance re-
porting:

Temporal Generalization Gap: Comparing
performance on established benchmarks (Tables
2-4) versus FutureQueryEval (Tables 6-8) reveals
a consistent 5-15% performance drop across all
method categories, indicating significant tempo-
ral sensitivity in reranking models. This suggests
that claims of "generalization" based on standard
benchmarks may be overstated.

Method-Specific Degradation Patterns: List-
wise methods show the smallest performance drop
on novel queries (avg. 8% degradation) compared
to pointwise (12%) and pairwise (15%) methods,
suggesting that inter-document modeling provides
better robustness to unseen content.

Scale vs. Robustness Trade-off: While larger
models generally perform better on established
benchmarks, the performance gap narrows signifi-
cantly on FutureQueryEval, indicating diminishing
returns of scale for novel query generalization.

Domain-Specific Vulnerabilities: All meth-
ods struggle disproportionately with argumentative
(Touche) and informal (Signal) domains, suggest-
ing systematic gaps in current training paradigms
rather than random performance variations.

6 FutureQueryEval

Reranking models are expected to generalize
beyond their pretraining corpora, yet most
benchmarks—Ilike TREC DL19, DL20, and
BEIR—contain queries and documents that may
overlap with the training data of LLMs (Yu et al.,
2022). To ensure evaluations are performed on
unseen, truly novel content, we introduce Future-
QueryEval, a dataset designed to test reranking
models on queries and documents collected after
April 2025. The dataset comprises 148 queries
across seven diverse topical categories (e.g., Tech-
nology, Sports, Politics). Each query is paired
with manually annotated documents collected post-
April 2025, ensuring they are out-of-distribution
for most existing LLMs. Relevance was assigned
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Method Model DL19 DL20|Covid NFCorpus Touche DBPedia SciFact Signal News Robust04
InContext Mistral-7B 592 53.6 | 63.9 332 - 314 72.4 - - -
Llama-3.18B 557 519 | 72.8 34.7 - 353 76.1 - - -
Llama-3.2-1B 47.13 449315929 3143 3720  26.04 6749 2694 3876 38.14
Llama-3.2-3B 58.05 53.33|68.18  31.86 3723  36.14 6732 3275 4249 44.83
RankGPT gpt-3.5-turbo 65.80 62.91|76.67  35.62 36.18 4447 7043 3212 4885 50.62
gpt-4 75.59 70.56 | 85.51 38.47 38.57 47.12 7495 3440 5289 57.55
Ilama 3.1 8b 58.46 59.68|69.61  33.62 3798 3725 69.82 3295 4390 49.59
ListT5 listt5-base 71.80 68.10]78.30  35.60 3340 4370  74.10 33.50 48.50 52.10
; listt5-3b 71.80 69.10|84.70  37.70 33.60 46.20 770 33.80 53.20 57.80
LiT5-Distill-base 72.46 6791|7048  32.60 33.69 4278 5635 34.16 41.53 4432
LiT5-Distill-large 73.18 70.32|73.71  34.95 3346 4317 66.70 30.88 44.41 52.46
litsdist LiT5-Distill-x1 7245 7246|7297 3581 3276 4352 71.88 31.23 46.59 53.77
1odis LiT5-Distill-base-v2 71.63 69.13|70.53  34.23 3425 4318 6724 33.28 4525 48.00
LiT5-Distill-large-v2 72.15 67.78|73.10  34.05 3455 4335  69.30 31.16 4242 5095
LiT5-Distill-x1-v2 71.94 71.93|73.08  34.68 3429 4459  69.68 32.76 4588 51.70
LiT5-Score-base 68.59 66.04|66.47  32.72 32.84 3649 5752 24.01 41.44 4512
litSscore LiT5-Score-large 71.01 66.43|69.84  33.64 30.71  37.85 6248 2481 4335 4742
LiT5-Score-x1 69.36 65.56|69.66  34.36 29.09 39.10 67.50 24.07 4495 52.88
Vicuna Reranker Vicuna 7b 67.19 6529|7830 3295 3271 4328 7049 32.87 4498 47.83
Zephyr Reranker Zephyr 7B 7422 70.21|80.70  36.58 31.12  43.18  75.13 31.96 4895 54.20
Flan-T5-Large (heapsort) 67.0 61.8 | 76.8 325 30.3 413 62.0 319 439 46.2
Setwise Flan-T5-XL (heapsort) 69.3 67.8 | 75.7 35.2 28.3 42.8 67.7 314 465 52.0
Flan-T5-Large (bubblesort) ~ 67.8 62.4 | 76.1 33.8 394 44.1 63.6 351 447 497
Flan-T5-XXL (bubblesort) 71.1 68.6 | 76.8 34.6 38.8 42.4 754 343 479 53.4
GPT-3.5-turbo (TourRank-1) 6623 63.74|77.17  36.35 2938  40.62  69.27 29.79 46.41 52.70
TourRank GPT-3.5-turbo (TourRank-2)  69.54 65.20|79.85  36.95 30.58 4195 7191 31.02 48.13 55.27
GPT-3.5-turbo (TourRank-10) 71.63 69.56|82.59  37.99 2998 4464 72.17 30.83 5146 57.87

Table 3: Evaluation results (nDCG @ 10) of listwise reranking approaches on TREC Deep Learning (DL19, DL20)
and selected BEIR benchmarks. For the full model list and comparison, please refer Appendix C

Method  Model DL19 DLZO‘Covid NFCorpus Touche DBPedia SciFact Signal News Robust04

FLAN-T5-XL  68.66 66.59|77.58 4048 4477 7343 3562 4645 50.74
PRP FLAN-T5-XXL 67.00 67.35|74.39 41.60 4219 7246 35.12 4726 5238
FLAN-UL2 72.65 70.46|79.45 - 37.89 4647 7333 3520 49.11 5343
EchoRank Flan-T5-Large 60.29 58.24|54.98  30.06 2493 3518 6509 33.86 1926 21.51
Flan-T5-x1 59.62 58.98|55.51 30.57 2524 3549  69.14 3311 19.05 21.62

Table 4: Performance outcomes (nDCG@ 10) of pair-
wise reranking methods evaluated on TREC DL bench-
marks and various BEIR datasets.

using a 3-level scale: O (irrelevant), 1 (partial), 2
(highly relevant). We validated novelty against
GPT-4, confirming queries refer to events beyond
the model’s knowledge. Full construction details,
corpus examples, and statistical breakdowns (e.g.,
document lengths, token CDF, query distributions)
are provided in Appendix A.1.

7 Results on FutureQueryEval

This section digs into how well our reranking mod-
els perform on the FutureQueryEval dataset, a new
benchmark we introduced to test generalization on
queries and documents unseen by models until May
2025. We evaluate pointwise, listwise, and pair-
wise reranking methods, focusing on their ability
to handle novel content without the risk of training
data contamination. Using metrics like NDCG@10
from Tables 6, 7, and 8, and MAP scores from Fig-
ure 7, 8 and 9, we highlight key trends, compare
approaches, and discuss what the results mean for
building robust IR systems. We provide detailed

Reranking/ Model NQ WebQ
Top-1 Top-10 Top-50 | Top-1 Top-10 Top-50
BM25 |- | 2346 5632 7457 | 1954 5344 7234
UPR T0-3B 3542 6756 7675 | 3248 6417  73.67
gpt-neo-2.7B 2875 6481 7656 | 2475 59.64 7263
RankGPT | llamav3.1-8b | 4155 66.17 7542 | 3877 6269 7312
TinyBERT-L-2-v2 3149 6157 7495 | 2854 60.62 73.17
FlashRank MultiBERT-L-12 1199 4354 69.63 | 12.54 4591  67.91
ce-esci-MiniLM-L12-v2 | 3470  64.81  76.17 | 31.84 6254  73.47
T5-flan 795 3614  66.67 | 1205 4296 6727
base 43.04 6847 7628 | 3695 6427 7445
RankT5 large 4554 7002 7681 | 3877 6648 7431
3b 47.17 7085 7689 | 4040 6658  74.45
small 1590 4684  69.83 | 1446 4625  69.98
Inranker base 1590 48.11  69.66 | 1446 4680  69.68
3b 1590 4806 69.00 | 1446 4611  69.34
LLM2Vec | Meta-Llama-31-8B | 2432 5955 7526 | 2672 6048 7347
MonoBert | large | 3905 6789 7656 | 3499 6456 7396
Twolar | twolar-x] | 4684 7022 7686 | 41.68 67.07 7440
Echorank flan-t5-large 3673 59.1 6238 | 3174 5875 6151
flan-t5-x1 4168 5905 6238 | 3622 5718 6151
Incontext Reranker | llamav3.1-8b | 1515 57.11 7648 | 1889 5216 7170
LiT5-Distill-base 4005 6595 7573 | 3676 6348  73.12
Lits LiT5-Distill-large 4440 67.59 7601 | 39.66 6456  73.67
LiT5-Distill-large-v2 4653 67.83 7587 | 4197 65.64  72.98
LiT5-Distill-xl-v2 4792 69.03 7617 | 41.53 65.69  73.27
GTR-large 4063 6825 7673 | 3897 6530 73.57
Sentence Transformer | 15127€¢ 3080 6335 7637 | 3051 6171 7337
A o GTR-xxl 4293 6855 77.00 | 3941 6589 7401
T5-xx1 3889 6778  76.64 | 35.82 6520 74.01

Table 5: Performance of re-ranking methods on BM25-
retrieved documents for NQ Test and WebQ Test. Re-
sults are reported in terms of Top-1, Top-5, Top-10,
Top-20, and Top-50 accuracy. Please note that some
results may differ from the original papers (e.g., UPR)
as our experiments were conducted with the top 100
retrieved documents, whereas the original studies used
1,000 documents for ranking.

NDGC, MAP trends provided in Appendix A.2

Pointwise: MonoT5-3B-10k achieves the best
performance (NDCG@10: 60.75), followed
closely by Twolar-xI (60.03), confirming the ad-
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Method Model NDCG@1 NDCG@5 NDCG@10 NDCG@20 NDCG@50 NDCG@ 100 Method Model NDCG@1 NDCG@5 NDCG@10 NDCG@20 NDCG@50 NDCG@ 100
BM25 E 3986 4301 4642 5026 5379 5544 lisus list5-base 1284 1328 s 12 2539 3083
upr t0-3b 4493 47.98 52.16 56.82 59.43 59.58 incontext reranker  Mistral-7B-Instruct-v0.2 14.86 21.46 2292 27.46 359 40.04
flashrank MiniLM-L-12v2 5304 sL72 5543 5964 6195 6221 vieuna reranker  rank vieuna 7b v noda 5608 5512 5863 6268 6424 646
monot5 base 53.04 55.15 57.88 61.61 63.58 63.7 zephyr reranker rank zephyr 7b v1 full 59.46 60.5 62.65 65.57 67.0 67.14
inranker inranker-3b 18.24 28.47 32.39 38.11 4122 445 rankgpt Illamav3.1-8b 39.86 52.19 54.18 57.71 60.15 60.66
\ransformer ranker  MiniLM-L-6-v2 5304 5194 5551 5955 6195 6223 lim layerwise ranker bge-rerankerv2.5-gemma2 | 3277 3242 3485 3905 4499 4796
Splade reranker splade-cocondenser 4696 49.02 52.93 57.72 60.08 60.21 Setwise Flan-TS-Large (heapsort) 5351 56.57 59.43 61.94 6234
- Flan-T5-Large (bubblesort) 5345 55.84 58.82 61.46 62.08
Sentence Transformer gtr-t5-large 4595 2943 5297 577 6008 60.27
- . ook LLaMA3-8B (TourRank-10)| 5496 57.06 5793 5793 5793
colbert ranker colbert-v2 50.34 50.54 54.2 58.65 61.05 61.4 GPT-40 (TourRank-10) 59.06 62.02 63.53 65.73 65.86
monobert monobert-large 500 5339 569 6116 6303 63.11
lIm2vee Mistral-7B-Instructv0.2] 4561 48.60 5364 S8.19 604 60.56
ovolar ovolard 554l S 0003 e 619 60 Table 7: Performance of listwise, setwise, and
LLaMA2-7B S8l 5153 6109 6316 6347 .
RankLLaMA
e LLaMA2-13B 5572 59.00 61.94 63.66 63.99 tournament-based reranklng methods evaluated on the

Table 6: Performance of pointwise reranking methods
on the FutureQueryEval dataset. Metrics reported in-
clude NDCG at different cutoffs (1, 5, 10, 20, 50, and
100).

vantage of large-scale fine-tuning. Efficient models
like FlashRank (55.43) and ColBERT-v2 (54.20)
offer strong trade-offs between speed and accuracy.
UPR and GPT?2 variants underperform (e.g., T5-
small at 47.24), likely due to limited or zero-shot
tuning.

Listwise: Listwise models benefit from inter-
document reasoning. Zephyr-7B leads with
NDCG @10 of 62.65, while Vicuna-7B (58.63) also
performs well. ListT5 models fail to generalize
(e.g., ListT5-3B: 9.72), possibly due to misalign-
ment between their training data and the current
query domain. RankGPT and InContext rerankers
show moderate performance but lag behind the top
models.

Pairwise. EchoRank, powered by Flan-T5,
demonstrates promising results (NDCG@10: 54.97
for XL), nearly matching pointwise methods while
offering stronger pairwise relevance signals. How-
ever, the computational cost of pairwise compar-
isons limits scalability.

7.1 Overall Findings and Implications

FutureQueryEval reveals clear trends in how
reranking methods handle unseen, novel content.
Listwise models such as Zephyr-7B (NDCG@10:
62.65) and Vicuna-7B (58.63) lead performance
by modeling document interactions, making them
ideal for complex, context-rich queries. Among
pointwise models, MonoT5-3B (60.75) and Twolar-
x1 (60.03) offer strong generalization and effi-
ciency, especially when fine-tuned on large IR
datasets. EchoRank’s pairwise method also im-
proves notably (Flan-T5-XL: 54.97), though its
higher computational cost may limit scalability.
The newly evaluated LLM-based methods demon-
strate strong generalization capabilities on Fu-

FutureQueryEval dataset.

Method Model ‘NDCG@I NDCG@5 NDCG@10 NDCG@20 NDCG@50 NDCG@100
54.05 54.25 54.8 57.08 57.41 57.41

57.09 54.45 54.97 57.41 57.77 57.77

flan-t5-large

Echorank flan-t5-x1

Table 8: Evaluation of pairwise reranking methods using
FutureQueryEval.

tureQueryEval. TourRank with GPT-40 achieves
the highest performance among listwise methods
(NDCG@10: 62.02), outperforming many estab-
lished approaches and confirming the superior
generalization of advanced LLMs. Rankl.L.aMA-
13B shows competitive pointwise performance
(NDCG@10: 59.00), while Setwise methods pro-
vide a balanced approach with Flan-T5-Large
achieving 56.57 NDCG @ 10 through heapsort ag-
gregation. These results suggest that listwise
rerankers are best suited for high-accuracy scenar-
ios (e.g., news, healthcare), while pointwise mod-
els like FlashRank provide reliable performance
with lower resource demands. Pairwise approaches,
if optimized, can bridge precision and robustness.
Poor performance by some models (e.g., ListT5:
9.72, UPR T5-small: 47.24) highlights a key chal-
lenge—many rerankers rely on training data mis-
aligned with emerging topics. However, advanced
LLM-based methods like TourRank with GPT-40
(62.02) and RankLLaMA-13B (59.00) demonstrate
superior generalization to novel content, supporting
the hypothesis that larger, more capable LLMs ex-
hibit better zero-shot transfer to unseen queries. Fu-
tureQueryEval thus underscores the need for evolv-
ing benchmarks and hybrid reranking strategies
that blend pointwise speed, listwise reasoning, and
pairwise precision.

7.2 Efficiency-Effectiveness Trade-Off

Beyond ranking quality, practical IR systems must
balance effectiveness and runtime. We compare
reranking models on FutureQueryEval using Mean
Reciprocal Rank (MRR) and processing time. Fig-
ures 3 and 4 illustrate the trade-off between speed
and accuracy by selecting the fastest and highest-

5700



MRR models per method. Figure 3 shows that
Sentence Transformer (all-MiniLM-L6-v2) is the
fastest (11.72s, MRR: 62.76), while FlashRank
(TinyBERT) offers better accuracy (66.82) at sim-
ilar speed. Transformer Ranker (TinyBERT) is
also efficient (14.23s, 63.30 MRR). In contrast,
RankGPT (Llama-3.2-1B) takes over 53 minutes
for a modest 60.38 MRR. MonoT5-base provides a
good balance (129.91s, 73.21 MRR). Figure 4 high-
lights top-performing models. MonoT5-3B (75.98
MRR) and Twolar-x1 (73.50) are most effective but
slower. FlashRank (MiniLM) again shows a strong
middle ground (72.21 MRR, 195.48s). Transformer
Ranker (MiniLM-L6-v2) is the fastest among high
performers (26.65s, 71.56 MRR). RankGPT and
ListTS5 lag in both metrics, demonstrating ineffi-
ciency.

3220

MRR

er (TinyBERT-L-2)

Figure 3: MRR vs. Time for the fastest model from each
reranking method on FutureQueryEval, highlighting
efficiency-effectiveness trade-offs.

mBM25 B ListT5 (Listt5-base)

(ashRank (Minil
 MonoTs (T5-38)

Figure 4: MRR vs. Time for the highest-MRR model
from each reranking method on FutureQueryEval, show-
casing peak performance and associated time costs.

8 Conclusion

We presented a comprehensive empirical study of
22 reranking methods across 40 variants, spanning
pointwise, pairwise, and listwise paradigms. Our
evaluation across standard IR benchmarks and the

novel FutureQueryEval dataset reveals that while
LLM-based rerankers excel on familiar queries,
their generalization to unseen queries remains in-
consistent. Lightweight models, particularly those
fine-tuned on IR data, achieve strong trade-offs be-
tween accuracy and efficiency. FutureQueryEval, a
temporally novel benchmark, exposes critical lim-
itations in current reranking methods when faced
with truly unseen data. Listwise approaches, es-
pecially Zephyr-7B and Vicuna-7B, achieve the
highest effectiveness but at significant computa-
tional cost. Pointwise rerankers like MonoT5-3B
and Twolar-XL offer scalable, high-performing al-
ternatives. Pairwise methods provide fine-grained
relevance signals yet struggle to scale.

Limitations

Despite the promising performance of LLM-based
rerankers, several limitations remain. First, the
computational overhead of prompting and decod-
ing with large language models like GPT-4 can
be significant, particularly during inference when
reranking large document pools. This hinders real-
time applicability and increases the environmental
cost of deployment.

Second, LLMs are prone to hallucination and
may generate plausible but incorrect rationales
when producing pairwise or listwise justifications.
This challenges the trustworthiness of model expla-
nations in high-stakes applications such as legal or
medical document retrieval.

Third, current LLM reranking approaches of-
ten rely on zero-shot or few-shot prompting strate-
gies that do not generalize well to highly domain-
specific or low-resource datasets. The lack of fine-
grained control over ranking behavior makes it dif-
ficult to enforce consistency or incorporate explicit
user preferences.

Finally, many LLM-based approaches assume
access to powerful proprietary APIs (e.g., Ope-
nAI’s GPT-4), which raises concerns about repro-
ducibility, data privacy, and fairness in academic
and industrial settings where such access may not
be uniformly available.
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A FutureQueryEval Dataset

A.1 Dataset Details

This section provides a comprehensive overview of
how the FutureQueryEval dataset was built and
analyzed.

As a pioneering step, we introduce Future-
QueryEval, a novel test set comprising 148 queries
and their associated documents, collected from
April 2025 onward. This dataset is designed to
include content published after the training cutoff
of most existing LLMs, ensuring that the queries
and passages remain unknown to these models un-
til May 2025. To verify this, we tested a subset
of queries against GPT-4, confirming their nov-
elty. For example, the query "What specific actions
has Egypt taken to support injured Palestinians

from Gaza, as highlighted during the visit of Presi-
dents El-Sisi and Macron to Al-Arish General Hos-
pital?" relates to events from April 2025, which
are inaccessible to LLMs trained on data prior to
this period. The dataset spans seven categories:
World News & Politics, Technology, Sports, Sci-
ence & Environment, Business & Finance, Health
& Medicine, and Entertainment & Culture, reflect-
ing a diverse range of topics.

The corpus was constructed by collecting
paragraph-length documents from online sources
published after April 2025, similar to the exam-
ple "Achieving sustainable development depends
on fostering innovation through collective action.
Governments must set ambitious frameworks, busi-
nesses should invest in green solutions, and young
people and start-ups need to drive fresh ideas...".
For each query, we retrieved an initial set of can-
didate documents using a general-purpose search
engine, followed by manual relevance annotations.
The author of the paper who annotated this dataset.
Relevance labels were assigned as follows: 0 for
irrelevant, 1 for partially relevant, and 2 for highly
relevant, based on expert judgment. This process
resulted in a qgrels file linking queries to documents
with their relevance scores, totaling 2,938 query-
document pairs across 2,787 unique documents.

To provide a comprehensive statistical overview,
we conducted several analyses on the dataset. First,
we examined the distribution of questions across
categories, revealing a balanced yet varied compo-
sition. Approximately 9.5% of queries fall under
World News & Politics, 25.0% under Technology,
20.9% under Sports, 13.5% under Science & Envi-
ronment, 12.8% under Business & Finance, 10.8%
under Health & Medicine, and 7.4% under Enter-
tainment & Culture. This distribution is visual-
ized in Figure 5, which highlights the diversity of
query topics and supports the dataset’s applicability
across multiple domains.

Second, we analyzed the length distribution of
documents in the corpus using the LLaMA tok-
enizer to count tokens, ensuring alignment with
modern NLP practices. The cumulative distribu-
tion function (CDF) of document lengths, shown in
Figure 6, indicates that 97% of documents have a
length of fewer than 110 tokens, with a maximum
length of 6,138 tokens. This analysis ensures that
the dataset is compatible with typical IR model in-
put constraints, while also identifying a cutoff for
excluding the longest 3% of documents to maintain
clarity, aligning with practices in datasets like MS
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MARCO (Nguyen et al., 2016; Nogueira and Cho,
2019).

The dataset contains 2,787 unique documents
and 2,938 total query-document pairs. Relevance
annotations show that each query has, on aver-
age, 6.54 relevant passages. To ensure compati-
bility with transformer models, we analyzed docu-
ment lengths using the LLaMA tokenizer. Figure 6
shows that 97% of documents are shorter than 110
tokens, aligning with modern IR benchmarks like
MS MARCO (Nguyen et al., 2016).

Metric Value
Total Queries 148
Total Documents 2,787
Total Query-Document Pairs 2,938
Avg. Relevant Docs per Query 6.54

97th Percentile Doc Length (tokens) 110
Max Doc Length (tokens) 6,138

Table 9: Summary Statistics of FutureQueryEval

Distribution of Questions by Category
nnnnnnnnnnnnn & Culture

Figure 5: Distribution of Questions by Category in Fu-
tureQueryEval

A.2 Results

This section provides extended analysis for the re-
sults shown in Section 7, covering performance
trends across pointwise, listwise, and pairwise
reranking models using NDCG and MAP metrics.

Pointwise Reranking (Table 10). MonoT5-3B-
10k emerges as the top-performing pointwise

Cumulative Distribution Function of Document Lengths
T

CDF (Proportion of Documents)
o ° °
= > ®

°
~

1
10 100 512 1000 2048 4096 8000
Sequence Length (Tokens, LLaMA Tokenizer)

Figure 6: Cumulative Distribution Function of Docu-
ment Lengths in FutureQueryEval (using LLaMA tok-
enizer)

model with NDCG@10 of 60.75 and strong MAP
scores across cutoffs (see Figure 8). Twolar-x1
follows closely, showing robust fine-tuned perfor-
mance on novel topics. FlashRank’s MiniLM-L-12-
v2 model (55.43) and ColBERT-v2 (54.20) strike
a compelling balance between ranking accuracy
and efficiency, making them practical for real-time
systems. Older UPR variants (e.g., GPT2, T5-
small) lag significantly, indicating difficulty han-
dling novel, unseen topics without task-specific
tuning. This pattern holds across both top-k and
full-range MAP metrics.

Listwise Reranking (Table 11). Listwise models
like Zephyr-7B and Vicuna-7B stand out, achiev-
ing NDCG@10 of 62.65 and 58.63 respectively,
with Zephyr also leading MAP@10 (48.76, Fig-
ure 9). These results validate the strength of gener-
ative rerankers that model full document lists. In
contrast, ListT5-3B and base variants show very
weak performance (NDCG@10 < 12), possibly
due to outdated training data or lack of robustness
to recent events. RankGPT variants using Mistral
and LLaMA also perform competitively but remain
a few points behind the top models. InContext
rerankers provide moderate gains but do not match
Zephyr or Vicuna.

Pairwise Reranking (Table 8). EchoRank sig-
nificantly improves over earlier versions, with Flan-
T5-large and Flan-T5-XL reaching NDCG@10
scores of 54.8 and 54.97 respectively. These re-
sults rival top pointwise models, showing that
well-optimized pairwise methods can generalize
well to FutureQueryEval’s diverse and tempo-
rally fresh queries. However, their computational
cost—due to pairwise comparisons across docu-

5705



ment sets—remains a bottleneck for scalability.

Insights. Across all types, reranking models
trained or adapted to IR tasks (e.g., MonoTS5,
Zephyr) clearly outperform general-purpose or
small zero-shot models (e.g., GPT2, InRanker-
small). While listwise methods lead in overall
accuracy, pointwise models provide efficient al-
ternatives. FutureQueryEval thus offers a valuable
diagnostic for evaluating models on truly unseen
content, revealing performance gaps that traditional
benchmarks may miss.

MAP@K

Figure 7: MAP at various cutoffs (1, 5, 10, 20, 50, 100)
for selected pointwise reranking methods on Future-
QueryEval, including InRanker Small, BM25, Sentence
Transformer Reranker (roberta-base-v2), UPR (GPT-
Large), Splade (cocondenser), and Colbert (colbert-v2).

MAP@K

. EX] 5.4

VAP MaP@s MAP@10 MAP@20 MAP@S0 MAP@100

—eFlashRank (MInlLM-L124v2)  —e=Monobert (Large)  =e=twolar(Xl)  =e=MonoT5 (15 38)

Figure 8: MAP at various cutoffs (1, 5, 10, 20, 50,
100) for selected pointwise reranking methods on Fu-
tureQueryEval, including InRanker Small, Transformer
Ranker (electra-base), FlashRank (MiniLM-L-12-v2),
MonoBERT (Large), Twolar (XL), and MonoT5 (T5
3B).

B Comprehensive Pointwise Reranking
Model Comparison

This section presents a detailed comparison of
pointwise reranking models across TREC DL and
BEIR datasets (see Table 12). The models vary

MAP@K

Figure 9: MAP at various cutoffs (1, 5, 10, 20, 50,
100) for selected listwise reranking methods on Future-
QueryEval, including ListT5, LLM Layerwise Ranker,
RankGPT (Mistral-7B-Instruct-v0.3), Vicuna Reranker,
and Zephyr Reranker.

Method Model ‘ND("G(H‘I NDCG@5 NDCG@10 NDCG@20 NDCG@50 NDCG@ 100
BM25 - ‘ 39.86 43.01 46.42 50.26 5379 55.44
5-small 39.19 4215 4724 52.62 5571 56.01

15-base 4257 4505 49.67 54.89 57.57 57.78

5-large 291 4554 5024 55.12 58.16 58.25

upr 10-3b 4493 4798 52.16 56.82 59.43 59.58
ept2 4291 439 49.2 54.14 5725 574

gpt2-medium 402 4352 48.78 54.15 57.02 57.16

opt2-large 4358 4498 50.3 55.18 58.12 58.18
ms-marco-TinyBERT-L2v2| 4561 45.89 5029 53.97 57.6 58.39

MiniLM-L-12-v2 53.04 5172 5543 59.64 61.95 6221

flashrank MultiBERT-L-12 20.61 233 2691 31.07 3732 41.87
rank-T5-flan 3.38 414 5.19 7.86 1546 2627

MiniLM-L12-v2 51.01 51.47 54.64 58.44 61.22 61.49

base 5304 ss.1s 57.88 61.61 63.58 63.7

base-10k 53.04 55.02 57.92 61.84 63.59 63.85

large 5203 57.05 59.07 62.66 64.24 64.42

monots miS-base 5068 5168 5591 60.01 6203 62.14
mt5-base-v2 48.65 51.88 55.46 59.74 61.71 61.98

mi5-base-v1 5135 5226 55.24 59.62 61.88 62.12

3B-10k 5709 5827 60.75 64.01 65.54 65.71

inranker-small 2365 2927 33.79 39.29 4212 4524

inranker inranker-base 1824 2508 3L14 3801 4085 4393
inranker-3b 18.24 28.47 3239 38.11 41.22 445
mMiniLMv2-L12-H384-v1 51.35 51.96 549 58.89 61.51 61.81

MiniLM-L-12-v2 5203 5101 54.99 59.26 61.55 618

MiniLM-L-6-v2 5304 5194 55.51 59.55 61.95 6223

MiniLM-L-4-v2 4696 4977 5329 57.33 60.07 60.39

ansformer ranker MINEM-L-2-v2 4088 4533 50.02 5431 57.37 57.9
TinyBERT-L-2-v2 4493 4541 50.17 53.9 5742 5823

electra-base 4899 5224 55.56 59.61 6155 62,05

TinyBERT-L-6 46.28 50.21 5358 5734 59.79 60.37

TinyBERT-L-4 413 4867 5191 55.71 58.26 59.46

TinyBERT-L-2 0223 36 4794 5225 55.88 56.85

Splade reranker _ splade-cocondenser 4696 49.02 52.93 57.72 60.08 6021
all-MiniLM-L6-v2 3851 4444 49.55 54.67 56.99 5721

atr-t5-base 4426 4182 5225 56.8 59.15 50.33

-1: 4595 49.43 5297 57.7 60.08 60.27

Sentence 4257 4887 52.68 57.16 59.29 59.41
Transformer  sentence-t5-base 4291 4534 5029 5419 57.58 57.85
Reranker sentence-t5-x1 43.92 46.69 51.2 55.86 58.28 58.63
sentence-t5-large 4324 4629 5047 55.26 58.22 58.46

bert-co-condensor 3176 37.96 424 4803 5225 52.82

roberta-base-v2 44.26 46.94 51.26 56.12 58.53 5891

colbert-v2 5034 S0.54 542 58.65 61.05 614

colbertranker . bai-colbert large-v1 4696  50.08 53.96 58.18 60.57 60.91
‘monobert monobert-large 500 5339 56.99 61.16 63.03 63.11
Meta-Llama-31-8B 348 397 44.07 50.37 5342 53.89

lim2vec Meta-Llama-3-8B 3277 3753 42.84 48.87 52.44 52.98
Mistral-7B-Instruct-v0.2 4561 48.69 53.64 58.19 60.4 60.56

twolar twolar-xI 5541 5779 60.03 63.68 65.19 65.23

Table 10: Performance of pointwise reranking methods
on the FutureQueryEval dataset. Metrics reported in-
clude NDCG at different cutoffs (1, 5, 10, 20, 50, and
100).

Method Model NDCG@1 NDCG@5 NDCG@10 NDCG@20 NDCG@50 NDCG@ 100
5 listt5-base 1284 1328 15 1112 25.39 3083
" listts-3b 10.14 113 972 938 2412 2953
incontext reranker  Mistral-7B-Instruct-v0.2 1486 2146 22,92 27.46 359 4004
rank vicuna 7b v1 5405 559 50.09 6231 64.03 64.44

vicuna reranker rank vicuna 7b v1 noda 56.08 55.12 58.63 62.68 64.24 64.6
zephyr reranker rank zephyr 7b v1 full 59.46 60.5 62.65 65.57 67.0 67.14
Llama-3.2-1B 39.86 3548 41.81 47.0 50.75 5265

Llama-3.2-38 3986 50.36 52.79 56.22 58.85 59.55

rankgpt Tlamay3.1-8b 3986 5219 54.18 57.71 60.15 60.66
Mistral-7B-Instruct-v0.2 3086 49.11 5211 55.35 58.28 59.06
Mistral-7B-Instruct-v0.3 39.86 53.34 5521 58.47 60.62 61.25

lim layerwise ranker bge-reranker-v2-gemma 3311 22.65 2343 27.62 3533 40.59
WYEVISTANRET e reranker-v2.5-gemma2| 3277 32.42 34.85 39.15 44.99 47.96

Table 11: Performance of listwise reranking methods

evaluated on the FutureQueryEval dataset.
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significantly in architecture (e.g., BERT-based, T5-
based, Condenser-based), size (from TinyBERT
to 3B-scale models), and training setup (zero-
shot, supervised, distilled). Among all point-
wise rerankers, Inranker-3B and TWOLAR-XL
consistently achieve top-tier performance across
nearly all domains, particularly excelling in scien-
tific (SciFact: 78.31) and medical (Covid: 81.75)
datasets. RankT5-3B and MonoT5-3B also per-
form strongly, especially in web-style queries
(DL19, Robust04), showing the benefits of T5’s
encoder-decoder architecture. Lightweight mod-
els like FlashRank-MiniLM and Transformer-
Ranker-Base provide a favorable trade-off be-
tween efficiency and performance, reaching over
70 nDCG@10 on DL19 and 65+ on BEIR tasks
like DBPedia and News. Zero-shot models such
as UPR (e.g., T5-Large or TO-3B) perform well
in general-domain tasks but show weaker perfor-
mance in niche domains like Touche or Signal.
Larger models (3B+) show consistent improve-
ments, particularly on complex or nuanced queries
(e.g., Touche, SciFact), but some base-size models
(e.g., RankT5-base, MonoT5-Large) still remain
competitive, especially when fine-tuned. Pointwise
reranking methods scale well with model size and
benefit from task-specific fine-tuning. Inranker-3B
and TWOLAR-XL stand out as high-performing
models, while FlashRank and MonoT5 variants
offer robust, scalable alternatives. For general-
purpose reranking with low latency, FlashRank-
MiniLM and monoBERT remain strong choices.

C Comprehensive Listwise Reranking
Model Comparison

Table 13 reports nDCG@ 10 performance for list-
wise rerankers across DL19, DL20, and BEIR.
These methods jointly consider multiple documents
to model inter-document relationships, with vary-
ing reliance on prompt design, input order sen-
sitivity, and model size. RankGPT (GPT-4) re-
mains the best-performing listwise reranker (DL19:
75.59, Covid: 85.51), highlighting the strengths of
large generative models in capturing fine-grained
semantic ordering. However, distilled models such
as LiT5-Distill-XL and Zephyr-7B perform com-
petitively while being significantly more efficient.
ListT5-3B balances performance and latency, scor-
ing above 71 on DL19 and exceeding 84 on Covid.
LiT5-Score models show weaker results compared
to their distilled counterparts, indicating that list-

wise distillation is more effective than pointwise
scoring with listwise outputs. InContext-Mistral-
7B and LLaMA-based RankGPTs (1B-3B) strug-
gle on several benchmarks (DL19: 47-59), likely
due to prompt length limitations and decoding in-
consistencies. These findings suggest that prompt
format and window size play a significant role in
generative listwise performance. Listwise rerank-
ing benefits most from large-scale pretrained LLMs
or their distilled variants. While GPT-4 leads in ab-
solute performance, models like Zephyr and ListT5
offer practical alternatives. Distilled architectures
(e.g., LiT5-Distill) provide strong performance at
reduced cost, making them suitable for scalable
deployment.

D Comprehensive Open Domain QA
Comparison

Table 14 presents a detailed comparison of rerank-
ing models for open-domain QA using BM25-
retrieved candidates on Natural Questions (NQ)
and WebQuestions (WebQ). The rerankers are
evaluated at Top-1, Top-10, and Top-50 retrieval
accuracy. RankT5-3B, Lit5-Distill-XL-v2, and
Twolar-XL consistently achieve top performance
across both datasets. RankT5-3B reaches the high-
est Top-1 scores (47.17 for NQ, 40.40 for WebQ),
while Twolar-XL and Lit5-Distill-XL-v2 offer com-
petitive results with improved Top-10 and Top-50
retrievals. Among efficient models, FlashRank
(MiniLM) and MonoBERT-large perform surpris-
ingly well—matching larger models on Top-50 ac-
curacy. InContext rerankers, despite using power-
ful LLMs like LLaMA-3.1-8B, fall short on Top-1
(e.g., 15.15 on NQ), likely due to weak supervision
and lack of fine-tuning. Sentence Transformer-
based rerankers such as GTR-XXL and GTR-XL
maintain robust Top-50 accuracy, indicating their
suitability for shallow-depth QA pipelines. The
results highlight the importance of both model size
and supervision. Large-scale sequence-to-sequence
models (e.g., RankT5, LiT5) dominate Top-1 ac-
curacy, while dense retrievers like FlashRank and
GTR achieve strong Top-50 recall. Models like
Twolar-XL and Lit5-XL-v2 offer a practical bal-
ance of effectiveness and scalability, outperforming
even several LLM-based rerankers in open-domain

QA.
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Method Model DL19 DL20 \ Covid NFCorpus Touche DBPedia SciFact Signal News Robust04

T5-Small 49.94 47.07 | 62.81 30.46 21.54 3198 61.68 29.71 27.41 33.14
T5-Base 55.12 53.94|64.12  31.12 19.42 3428  65.56 30.50 27.32 33.40
T5-Large 58.33 56.05|68.69  31.71 1894 3535 6544 3280 2525 3448
UPR TO-3B 60.18 59.55|68.83  33.48 2397 3441 7121 33.02 39.10 41.74
FLAN-T5-XL 53.85 56.02 68.11  35.04 19.69 3091  72.69 3191 43.11 4243
GPT2 50.71 44.98|62.31  31.87 1824  29.11 6495 3231 3131 34.27
GPT2-medium 51.70 49.62|63.72  31.93 16.59  30.11  65.11 32.02 32.08 3531
GPT2-large 52.48 0.467|63.23  33.62 16,72 30.76 3249 66.59 30.85 34.69
TinyBERT 67.68 60.65|61.48  32.85 3272 36.04 6408 31.85 37.53 41.37
MiniLM* 70.80 66.2769.06  33.02 3477 4277 6628 33.62 44.54 47.18
FlashRank MultiBERT 31.29 28.47(39.62 26.84 2517 1756 29.14 17.39 23.13  23.09
T5-Flan 21.79 17.02|38.61 18.11 8.23 7.71 829 6.57 12,06 1540
MiniLM® 70.40 65.60|69.66  32.80 3461 3975 59.14 28.10 41.44 46.09
Base 70.81 67.21]72.24  34.81 3824 4201  73.14 3047 4512 51.24
Base-10k 71.38 66.31|74.61  35.69 37.86 42.09 7339 32.14 46.09 51.69
MonoT5 Large 7212 67.11|77.38 3691 3831 4155  73.67 33.17 47.54 56.12
Large-10k 72.12 67.11|77.38  36.91 3831 4155 73.67 33.17 47.54 56.12
mT5-Base 70.81 64.77|73.77  34.36 3562 40.11  71.17 29.79 4534 48.99
3B 71.83 68.89|80.71  38.97 3241 4445 7657 3255 4849 56.71
T5-base 72.13 67.91]75.63  34.99 4124 4239 7337 30.86 44.07 52.19
RankT5 T5-large 72.82 6737|7545 @ 36.27 3934 4290 74.84 3253 46.81 5448
T5-3b 71.09 68.67|80.43  37.43 4041  42.69 76.58 31.77 48.05 5591
Inranker-small 69.81 61.68|77.75  35.47 28.83 4451 7490 2937 4629 50091
Inranker Inranker-base 71.84 66.30|79.84  36.58 2897 4650  76.18 30.46 47.88 54.27
Inranker-3b 7271 67.09|81.75  38.25 29.24  47.62 7831 3220 49.63 6247
mxbai-rerank-xsmall 68.95 63.11]80.80  34.44 39.44 425 68.73 29.40 53.00 53.87
mxbai-rerank-base 7249 67.15|84.00  35.64 3432 4250 7233 30.20 51.92  55.59
mxbai-rerank-large 71.53 69.45|85.33  37.08 36.90 4451 7510 3190 51.90 58.67
bge-reranker-base 71.17 66.54|67.50  31.10 3430 4150  70.60 28.40 39.50 42.90
Transformer Ranker bge-reranker-large 72.16 66.16 |74.30  34.80 3560 43770  74.10 30.50 43.40 49.90
bge-reranker-v2-m3 72.19 6698|7479  33.84 39.85 4193 7348 31.36 4584 48.44
bee-reranker-base 70.45 64.13|67.59  33.90 27.50 38.14  70.15 2731 4048 48.13
jina-reranker-tiny 7043 65.31|77.15  37.24 31.04 42,14 7342 3225 4227 4741
jina-reranker-turbo 70.35 63.62|77.97  37.29 30.80 41.75 7453 28.46 4279 44.19
Splade Reranker Splade Cocondenser 71.47 66.18 \ 68.87  34.95 37.96 4125 68.72 3227 4328 4751
all-MiniLM 63.84 60.40|70.83  33.10 29.23 3487  65.63 2850 4542 46.03
GTR-T5-base 68.09 62.40(70.10  32.02 3270 3620  60.23 30.79 43.24 4538
GTR-T5-large 67.23 63.33]69.50  33.03 32.84 3820 6241 31.19 4432 4698
GTR-T5-x1 67.55 64.51]69.63  33.39 3428 3876  63.65 31.10 4573 47.95
GTR-T5-xx1 68.53 64.07 | 72.70  34.02 36.77 3990 65.62 31.37 47.01 49.67
Sentence Transformer Reranker sentence-T5-base 51.15 49.37|66.02  30.17 24.63  33.67 4729 29.78 41.71 4824
sentence-T5-x1 5495 53.22|67.01 31.72 29.78 3638  50.73 31.22 43.58 4833
sentence-T5-xx1 60.61 5837|7255 34.76 30.88  40.52  60.23 31.05 49.51 5245
sentence-T5-large 55.36 54.20|63.57 30.23 28.08  31.89  47.40 30.56 42.94 47.06
msmarco-bert-co-condensor 56.34 53.50 | 62.20  28.38 20.12 3193 53.04 31.16 36.56 36.99
msmarco-roberta-base-v2  68.35 62.61 |66.67  30.10 31.98 3262 56.65 29.77 46.14 43.94

colbert ranker colbert-v2 69.02 66.78 | 72.6 33.70 3551 4520 67.74 33.01 41.21 45.83
monoBERT BERT (340M) 70.50 67.28|70.01  36.88 31.75 4187 7136 31.44 44.62 4935
Cohere Rerank-v2 - 7322 67.08 | 81.81 36.36 32.51 4251 7444 29.60 47.59 50.78
Promptagator++ - - - ‘76.2 37.0 38.1 434 73.1 - - -
TWOLAR TWOLAR-Large 72.82 67.61|84.30  35.70 334 47.8 75.6 339 527 58.3
TWOLAR-XL 73.51 70.84|82.70  36.60 37.1 48.0 76.5 338 50.8 57.9

Table 12: Performance comparison (nDCG@10) of various pointwise reranking models across standard TREC
Deep Learning (DL19, DL20) and multiple BEIR benchmark datasets.
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Method Model DL19 DLZO\Covid NFCorpus Touche DBPedia SciFact Signal News Robust04
InContext Mistral-7B 59.2 53.6 | 639 332 - 314 724
Llama-3.18B 557 519 | 728 34.7 - 353 76.1
Llama-3.2-1B 47.13 44.93]59.29  31.43 3720 2604 6749 2694 38.76 38.14
Llama-3.2-3B 58.05 53.33|68.18  31.86 3723 36.14  67.32 3275 4249 4483
RankGPT gpt-3.5-turbo 65.80 62.91]76.67  35.62 36.18 4447 7043 32.12 48.85 50.62
gpt-4 75.59 70.56|85.51  38.47 3857 47.12 7495 3440 52.89 57.55
llama 3.1 8b 58.46 59.68|69.61  33.62 3798 3725 69.82 3295 4390 49.59
ListT5 listt5-base 71.80 68.10]78.30  35.60 3340 4370  74.10 33.50 48.50 52.10
listt5-3b 71.80 69.10|84.70  37.70 33.60 46.20 77.0 33.80 53.20 57.80
LiT5-Distill-base 7246 6791|7048  32.60 33.69 4278 5635 34.16 41.53 4432
LiT5-Distill-large ~ 73.18 70.32|73.71  34.95 3346  43.17  66.70 30.88 4441 5246
lit5dist LiT5-Distill-x1 7245 7246|7297 3581 32776 4352 71.88 31.23 46.59 53.77
1o LiT5-Distill-base-v2 71.63 69.13]70.53  34.23 3425 43.18  67.24 3328 4525 48.00
LiT5-Distill-large-v2 72.15 67.78|73.10  34.05 3455 4335 6930 31.16 4242 50.95
LiT5-Distill-xl-v2 ~ 71.94 71.93|73.08  34.68 3429 4459  69.68 3276 45.88 51.70
LiT5-Score-base 68.59 66.04|66.47  32.72 32.84 3649 57.52 24.01 4144 45.12
litSscore LiT5-Score-large 71.01 66.43|69.84  33.64 30.71  37.85 6248 2481 4335 4742
LiT5-Score-x1 69.36 65.56|69.66  34.36 29.09 39.10 67.50 24.07 4495 52.88
Vicuna Reranker Vicuna 7b 67.19 65.29|78.30  32.95 3271 4328 7049 32.87 4498 47.83
Zephyr Reranker Zephyr 7B 7422 70.21|80.70  36.58 3112 43.18  75.13 31.96 4895 54.20

Table 13: Evaluation results (nDCG@10) of listwise reranking approaches on TREC Deep Learning (DL19, DL20)
and selected BEIR benchmarks.

Reranking/ Model NQ WebQ
Top-1 Top-10 Top-50 | Top-1 Top-10 Top-50
BM25 | - | 2346 5632 7457 | 1954 5344 7234
UPR T0-3B 3542 6756 7675 | 3248 6417  73.67
gpt-neo-2.7B 2875 6481 7656 | 2475 59.64  72.63
RankGPT | llamav3.1-8b | 4155 66.17 7542 | 3877 6269  73.12
FlashRank | TIYBERT-L-2-v2 3149 6157 7495 | 2854 60.62  73.17
ce-esci-MiniLM-L12-v2 | 3470  64.81  76.17 | 31.84 6254 7347
RankT5 | 3b | 4717 7085  76.89 | 4040 6658  74.45
Inranker | 3b | 1590 48.06 69.00 | 1446 46.11  69.34
LLM2Vec | Meta-Llama-31-8B | 2432 5955 7526 | 2672 6048 7347
MonoBert | large | 39.05 6789 7656 | 3499 64.56  73.96
Twolar | twolar-xI | 46.84 7022 76.86 | 41.68 67.07  74.40
Echorank flan-t5-large 3673 59.11 6238 | 3174 5875 6151
flan-t5-x1 4168 59.05 6238 | 3622 57.18 6151
Ineontext | 1 rav3.1-8b 1515 57.11 7648 | 1889 5216  71.70
Reranker
LiTS-Distill-base 4005 6595 7573 | 3676 6348  73.12
LiT5-Distill-large 4440 6759 7601 | 39.66 6456  73.67
Lits LiT5-Distill-x1 4781 6855 7626 | 4237 6555 73.62
LiTS-Distill-base-v2 4257 6673 7556 | 39.61 6422  73.32
LiTS-Distill-large-v2 | 46.53  67.83 7587 | 4197 6564  72.98
LiT5-Distill-xl-v2 4792 69.03 76.17 | 41.53 6569 7327
GTR-base 3941 6595 76.03 | 36.56 6432  73.62
GTR-large 4063 6825 7673 | 3897 6530 73.57
T5-base 3119 63.60 7606 | 29.77 6284 7352
Sentence T5-large 3080 6335 7637 | 3051 6171  73.37
Transformer | A1-MimLM-L6-v2 3335 6537 7601 | 3095 6210 73.52
Reranker GTR-xI 4155 6778 7681 | 3892 6604 7401
GTR-xxl 4293 6855 7700 | 3941 6589 7401
T5-xxl 3889 6778  76.64 | 3582 6520 74.01
Bert-co-condensor 30.96  61.91 7520 | 3243 6220  73.08
Roberta-base-v2 3260 6324 7542 | 3134 6264 7337

Table 14: Performance of re-ranking methods on BM25-retrieved documents for NQ Test and WebQ Test. Results
are reported in terms of Top-1, Top-5, Top-10, Top-20, and Top-50 accuracy, highlighting the impact of various
re-ranking models on retrieval effectiveness. Please note that some results may differ from the original papers (e.g.,
UPR) as our experiments were conducted with the top 100 retrieved documents, whereas the original studies used
1,000 documents for ranking.
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