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Abstract

Long-context language models (LCLMs), char-
acterized by their extensive context window, are
becoming popular. However, despite the fact
that they are nearly perfect at standard long-
context retrieval tasks, our evaluations demon-
strate they fail in some basic cases. Later, we
find they can be well addressed with a sufficient
number of reasoning steps, guided by specific
CoT prompts. This result emphasizes the poten-
tial necessity of solving specific long-context
tasks using long-CoT methods, while previous
long-context benchmarks always ignore the ne-
cessity of long reasoning for long-context tasks
and treat them as direct QA tasks. Our code
and datasets are available at https://github.
com/yuyijiong/hard_retrieval_for_llm.

1 Introduction

In the past years, long-context language models
(LCLMs) such as GPT-4o-128k () and Gemini-1.5-
1000k (Team et al., 2023) have surged in popularity,
raising questions about their efficacy in handling ex-
tended context tasks. While various LCLMs have
demonstrated perfect long-context retrieval ability
by passing the “Needle in a Haystack” test (gkam-
radt, 2023) in over 100k context length, bench-
marks like Loogle (Li et al., 2023), Ruler (Hsieh
et al., 2024), and Loong (Wang et al., 2024d) have
highlighted their shortcomings in more complex
tasks.

However, previous long-context benchmarks, de-
spite the variety of task types, typically categorized
tasks based on their intuitive forms rather than their
inherent difficulty or nature, making it hard to rank
their true difficulties or determine which sub-task
is the bottleneck. What is more, they usually ig-
nore the necessity of reasoning, and simply regard
the long-context task as a direct QA task, as they
always set the prompt as “directly give a concise
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answer”. This leads to an unclear ability boundary
of LCLMs and difficulties of long-context tasks.

Some recent works (Li et al., 2024; Wang et al.,
2024b; Fei et al., 2024) have tested models on chal-
lenging long-context reasoning tasks which neces-
sitate CoT, such as multi-query, multi-hop ques-
tions, or questions requiring logic. However, these
tasks only increase the complexity of the question,
in other words, the number of reasoning steps are
just determined by the question itself (so we call
these tasks multi-step-question), but not the context
(a long context task usually consists of a context
and a question). As a result, they still do not find
long-context tasks with a straightforward and short
question may also necessitate long-CoT.

Therefore, in order to more scientifically define
the difficulty of long-context tasks, we conduct a
detailed analysis (detailed in Appendix E.2 and
E.3) of various tasks (especially retrieval-based
tasks) from previous long-context benchmarks. We
summarize 2 basic cases, which exhibit much
higher difficulty and exhibit distinct properties for
LCLMs: multi-matching retrieval and logic-based
retrieval. Multi-matching retrieval involves recall-
ing multiple items simultaneously, and logic-based
retrieval involves logical judgment within retrieval
criteria. Although they are both “basic” retrieval
problems in a straightforward form, our experi-
ments, as shown in Figure 1b, demonstrate they
can exceed the ability boundary of LCLMs as the
context length grows in non-CoT settings, mani-
fested as a rapid drop in accuracy when the context
length exceeds a certain value. In contrast, the per-
formance of traditional ones (direct retrieval and
multi-step-question retrieval, which are previously
researched) is stable. Additionally, we conduct
some analytic experiments on the micro-level be-
haviors of LCLMs to explain why they always fail
in these cases.

Later, we test whether CoT prompting(Wei et al.,
2022) could help in these cases. At first, we try to
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(a) (b)

Figure 1: (a) Examples of direct, multi-step-question, multi-matching and logic-based Key-Value retrieval. (b)
Accuracy of GPT-4o in different KV retrieval tasks, as the context length increases. 5-step means a 5-hop-question
retrieval task. 5-match means a multi-matching retrieval task with 5 matching items for one query. Logical means
logic-base retrieval.

simply asking the model to think step-by-step (Wei
et al., 2022), but find it only makes the model gener-
ate unnecessary steps and hardly improves retrieval
accuracy. But when trying more well-designed
prompts, we identify a sufficient condition of re-
solving these problems: adopting sufficient rea-
soning steps. Specifically, “sufficient” means the
number is at least N+ n2+n

2 , where N signify total
items in the context and n signify the number of
items to retrieve.

Based on the above findings, we categorize long-
context retrieval problems into three basic types:
(1) Simple: they do not need CoT (mainly simple
retrieval) (2) Question-Difficult: they need CoT,
usually with a few steps, the number of steps are
determined by the question itself (mainly multi-
step-question retrieval) (3) Context-Difficult: they
also need CoT, but usually with numerous steps,
and the number of steps are determined by the
context, specifically, the length of the context or
the number of items in the context (such as multi-
matching and logic-based retrieval)

In order to help readers distinguish the difference
between Question-Difficult and Context-Difficult
tasks more clearly, in Figure 1a and Appendix E.1,
we use examples to detail the formal distinctions
between multi-matching retrieval, logic-based re-
trieval and their question-difficult variants (multi-
query and logic-required retrieval).

In conclusion, certain types of tasks are actually
beyond the traditional “long-context capability” of
LCLMs, but rather require a long reasoning pro-
cess with sufficient steps. So, we summarize two
helpful insights for the long-context research: (1)
to solve a wider range of long context problems,

relying solely on a larger context window is not
enough, and long reasoning may also be needed;
(2) for a very long context, long reasoning requires
too many steps, making it inefficient, so it is still
important to find some novel ways to handle long
texts efficiently.

2 LCLMs Perform Poorly in
Multi-matching and Logic-based
Retrieval

In this section, we conduct evaluations on 5 pop-
ular long-context models with context windows
over 128k tokens, including Phi-3.5-mini-instruct
(phi-3.5) (Abdin et al., 2024), Meta-Llama-3.1-
70B-Instruct (llama3.1-70b) (Dubey et al., 2024),
Deepseek-V2.5 (deepseek) (DeepSeek-AI et al.,
2024), Gemini-1.5-flash (gemini) (Team et al.,
2023), and GPT-4o-2024-08-06 (gpt-4o) (OpenAI,
2024). We find that, multi-matching and logic-
based retrieval are really hard, nearly unsolvable
for current LCLMs in long context. In contrast,
multi-step-question retrieval proves to be much eas-
ier.

In the main content we only show the results
of gemini and gpt-4o in multi-matching and logic-
based retrieval. The complete evaluation results
of other models and direct retrieval or multi-step-
question retrieval are in Appendix B.

2.1 Experimental Settings for Evaluation

We create two fully synthetic datasets: Key-Value
Pair Retrieval and Student Resume Retrieval. We
use N to denote the total number of items in the in-
put context, and n to denote the number of items to
be retrieved and outputted in the model’s response.
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Model Num Matches (n)
KV Retrieval Student Resume Retrieval

N=10 N=100 N=1000 N=10 N=100

gemini

1 100 100 94 100 96
5 100 82 66 100 36
10 / 48 18 / 8
20 / 35 2 / 1

gpt-4o

1 100 100 60 100 100
5 100 98 45 100 65
10 / 85 5 / 0
20 / 50 0 / 0

Table 1: Accuracy (%) of two tasks: KV Retrieval and Student Resume Retrieval, requiring retrieving all matches
under varying N .

Model
KV Retrieval Student Resume Retrieval

N=4 N=10 N=100 N=1000 N=4 N=10 N=100

gemini 78 33 6 0 92 80 12
gpt-4o 97 87 38 5 100 92 30

Table 2: The accuracy (%) on logic-based KV retrieval and Student Resume Retrieval.

We must point out that our problems are simplified,
only used to reflect the abilities of LCLMs, but not
real-world tasks, as it would be easy to solve using
code such as SQL query.

In Key-Value pair retrieval, the context is a
JSON-formatted dictionary consisting of N ran-
domly generated Key-Value pairs. The Key is a
10-digit string, and the Value is a positive inte-
ger. The question is appended to the context and
varies based on the task type. For multi-matching,
the model must retrieve all Keys associated with a
given Value. For logic-based retrieval, the model
needs to identify the Key with the Value within a
specified range.

In the Student Resume Retrieval task, all origi-
nal resumes are fictional and generated by GPT-4o.
The context includes N rows, each detailing a fic-
tional college student’s information, such as name,
age, graduation school, interests, GPA, and a short
self-introduction. In multi-matching problems, the
task is to retrieve all students graduating from a
specified university. For logic-based retrieval, the
problem is to identify the student whose GPA falls
within a specified range. All GPAs are rounded to
two decimal places and range from 0 to 5. More-
over, to test more types of logic, we design another
logic-based retrieval task, where the problem is
to identify the student whose interest belongs to a

certain field.
Examples of the prompts of KV retrieval or stu-

dent resume retrieval, and more information on
how we construct samples and why we choose such
formats is shown in the Appendix A.

In all experiments, we set the temperature to 0,
and max generated tokens to 512. We use accuracy
as the metric to ensure strictness. For each setting,
we use 100 test samples.

2.2 Model Performance on Multi-matching
Retrieval

The results presented in Table 1 reveal that when
only 1 matching item is present, larger models,
such as Gemini (Team et al., 2023), demonstrate
superior performance, achieving an accuracy of up
to 94% even in lengthy contexts. However, with
the introduction of multiple matching items, such
as 5 or 10, the accuracy of all language models
rapidly declines to nearly zero, particularly evident
in the more realistic scenario of Student Resume
Retrieval. This trend suggests that the inherent
difficulty of the task is consistently challenging
across models of varying sizes.

We also count different types of errors and detail
the ratio of over-selection, under-selection and mis-
selection. The complete results are in Appendix
B.3.
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2.3 Model Performance on Logic-based
Retrieval

As illustrated in Table 2, in logic-based retrieval,
when the context contains only 4 options, LLMs
successfully select the correct item in most cases,
indicating that these models possess logical judg-
ment capabilities. However, for both datasets, all
tested models struggle with these tasks as the con-
text length increases, consistently retrieving an in-
correct item whose value lies outside the speci-
fied range. The results of other models and the
classification-based logical retrieval shown in Ap-
pendix B exhibit the same trend.

2.4 Explore the Cause of Failure

To better understand why powerful LLMs perform
so badly, we analyze their behaviors on multi-
matching and logic-based retrieval tasks (when
CoT prompt is not used) by more in-depth experi-
ments based on probing (similar to Lu et al. 2024),
and get some interesting findings. Specifically, we
probe whether the model has already obtained the
information of the gold KV in KV retrieval task in
every layer, from the hidden states of the anchor
token (the token right before the retrieval answer).
More details and analysis about this experiment
are shown in Appendix C. These findings further
prove these problems cannot be easily solved only
relying on a large context window.

For multi-matching retrieval, the result is in Fig-
ure 2. The example is 3-matching retrieval, so there
are 3 anchor tokens. The curve of “1st key at 1st”
is high after layer 14, indicating retrieving the first
item is easy. However, the accuracy of probing
the 2nd or 3rd item from the 1st anchor is always
low, which means the model has to retrieve one by
one but not all at once. Moreover, the accuracy of
probing the 1st, 2nd or 3rd item respectively from
the 1st, 2nd or 3rd anchor is greatly decreasing in
sequence, which means the difficulty of retrieving
later items in multi-matching retrieval is gradually
increasing. Similar trends have also been discov-
ered in FACT (Wang et al., 2024a). This may reveal
why LLMs always fail to retrieval all the matching
items.

For logic-based retrieval, the result is in Figure 3.
We use a traditional direct retrieval task, and a sim-
ple arithmetic task as comparisons. We can clearly
see that the point where the curve starts to quickly
rise is similar for logic-based retrieval and the arith-
metic problem, but that of direct retrieval is much

Figure 2: The accuracy of probing from hidden states of
each layer of different anchor tokens when predicting
the first, second, and third Key. For example, “2nd key
at 1st” means we probe from the hidden states of the 1st
anchor token but use the 2nd anchor token (the 2nd gold
Key’s first digit) as the label for training and testing.

Figure 3: Linear probing accuracy of each layer of 3
tasks: direct KV retrieval, logical KV retrieval, and an
arithmetic problem (getting the maximum value among
N numbers).

earlier. This indicates the difficulty of logic-based
retrieval may resemble a math problem involving
many steps of logic judgments or arithmetic cal-
culations, which cannot be performed by LLMs
simultaneously without an explicit CoT process.

3 Using CoT With Sufficient Steps

Since asking LLMs to directly do retrieval within
one step leads to bad performance, it is natural
to wonder if CoT-like prompt might help. Thus,
we design special prompts to guide step-by-step
reasoning, to test if this could help model solve
these retrieval tasks. In experiments, we employ 4
types of prompts:

(1) Standard prompt: the default prompt without
CoT, serves as the baseline.

(2) Step-by-step prompt: this is the traditional
CoT prompt which tells the model to “think step by
step, but do not check each item one by one”. With
this prompt, LLMs usually automatically takes 3
or 4 steps.

(3) One-by-one prompt: this prompt tells the
model “You should first examine every item one by
one to give the judgement (yes/no) on whether it

5618



Prompt
KV Retrieval Student Resume Retrieval

Output Tokens
logic-based multi-matching logic-based multi-matching

standard 38 50 30 0 12
step-by-step 47 52 37 10 340
one-by-one 100 90 100 20 1500
add to list 100 92 100 90 1700

Table 3: Performance and output tokens (reflecting the number of reasoning steps) of GPT-4o with 4 types of
prompts. In all the experiments, N is set to 100. In multi-matching retrieval, n is set to 20 in KV retrieval and 10 in
Student Resume Retrieval. In logic-based retrieval, n is always 1.

meets the requirement”. With this prompt, LLMs
will at least takes N steps to check each item.

(4) One-by-one with adding to list prompt, ex-
amining every item one by one and add the correct
one into the list. Besides N steps for checking each
item, it will take additional n2+n

2 steps to maintain
a gradually growing list.

As shown in Table 3, we find the accuracy on
logic-based retrieval is greatly improved to 100%
with one-by-one prompt, though it costs hundreds
of times more time. In contrast, traditional CoT
prompt with limited output length cannot improve
much. For multi-matching retrieval, it can only be
solved by the 4th prompt, which costs the most
output tokens and the longest time. Examples of
our prompts and the model’s responses are shown
in Appendix D.1.

Therefore, we conclude that LLM can indeed
solve these context-difficult problems if we scale
the reasoning process to N + n2+n

2 steps, with a
well-designed prompt. However, this method has
huge latency when the context is very long or there
are too many items to retrieve. So far, we have
not found a solution which achieves both accu-
racy and efficiency purely relying on LLM itself
(some other technologies may help, shown in Ap-
pendix F), which indicates the original intention of
LCLMs, to process massive information simulta-
neously, has not been fully achieved. However, we
find the reasoning steps for these retrieval tasks are
basically simple and parallel (not involving very
complicated or interlocking logic), which indicates
there may be methods to compress them to improve
efficiency.

4 Conclusion

In this paper, we use evaluation on synthetic
datasets to demonstrate that LCLMs always strug-
gle to solve some basic cases, such as multi-

matching retrieval and logic-based retrieval. Then,
we find they must be addressed by a sufficiently
long reasoning process guided by specific prompts.
Therefore, we highlight that merely extending the
context window size and relying solely on the
“long-context capability” of LCLMs cannot address
all types of long-context tasks. On the other hand,
although long reasoning process can improve accu-
racy, it is too time-consuming and inefficient. Thus,
we urge more novel perspectives and approaches
to more efficiently and accurately exploit long con-
texts.

5 Limitations

Our study only use synthetic retrieval tasks to re-
flect LCLMs’ abilities in different settings. Al-
though it is sufficient to illustrate the issue, eval-
uating in complex real-world scenarios would be
better.

Our proposed prompting method guiding the
model to reason are only used to demonstrate the
ability of LCLMs, rather than a solution for real-
life problems.
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A Experimental Settings for Data
Construction and Model Evaluation

A.1 Data Construction

To prevent data contamination, we create two fully
synthetic datasets: Key-Value Pair Retrieval and
Student Resume Retrieval. These datasets make it
easy for us to make controlled changes to the input
context size and problem types.

In Key-Value pair retrieval, the context is a
JSON-formatted dictionary consisting of N ran-
domly generated Key-Value pairs. The Key is a
10-digit string, and the Value is a positive inte-
ger. The question is appended to the context and
varies based on the task type. For multi-matching,
the model must retrieve all Keys associated with a
given Value. For logic-based retrieval, the model
needs to identify the Key with the Value within a
specified range.

In the Student Resume Retrieval task, all origi-
nal resumes are fictional and generated by GPT-4o.
The context includes N rows, each detailing a fic-
tional college student’s information, such as name,
age, graduation school, interests, GPA, and a short
self-introduction. In multi-matching problems, the
task is to retrieve all students graduating from a
specified university. For logic-based retrieval, the
problem is to identify the student whose GPA falls
within a specified range or interest belongs to a cer-
tain category. All GPAs are rounded to two decimal
places and range from 0 to 5.

We denote N as the total number of items (an
item corresponds to either a key-value pair or a
student) in the input context and n as the number of
items to be retrieved. In KV retrieval, N is set to 4,
10, 100, 1000 and the corresponding context length
is 0.04k, 0.1k, 1k and 10k tokens respectively. In
student resume retrieval, N is set to 4, 10 and 100
and the corresponding context length is 0.3k, 0.6k
and 6k respectively. For logic-based retrieval, n is
set to 1, and the model is informed that only one
correct item exists. In multi-matching (n-matching)
retrieval, n is set to different values from 1 to 20,
and the model is not informed of the number of
matching items. The gold items (i.e. the items to
be retrieved) are distributed at random positions
within the context. For each problem setting, we
construct 200 test samples with different context.

For direct or logic-based retrieval where n = 1,
each question has the exact answer, making evalua-
tion straightforward and objective. We use exact-
match evaluation and accuracy as the metric for all

tasks. For multi-matching retrieval, the model may
generate a list of items as the answer, which may be
partially correct and random in order. To calculate
accuracy, we only consider the prediction correct if
it is an totally exact match (without considering the
order of the items) to the reference set, i.e., both
over-selection and under-selection are considered
incorrect.

We have experimented with different context
formats, such as declarative sentences, JSON dic-
tionary, and Markdown tables, as well as placing
the question before the context. These variations
show no significant impact on performance. More-
over, although logic-based retrieval can be more
advanced forms, we restrict it to basic forms such
as numeric comparison for simplicity. Therefore,
we standardize the format of all prompts to align
with the examples provided above across all exper-
iments.

A.2 Data Example

KV retrieval Here is an example of the context
of a KV retrieval task and different types of the ap-
pended questions, including direct retrieval, multi-
step-question retrieval, multi-matching retrieval,
multi-matching retrieval but only need to retrieve
the last one, and logic-based tasks:

Context

Json data with 3000 key-value pairs:
{“1532968704”: 78, “5921306748”: 84,
“3742815096”: 47, ......, “3276918540”: 76}

Question

Direct Retrieval: In the above json data, please
find the value of the key ’6978024153’. Give
your final answer (the value) in format of “value:
{answer}"

Reasoning and aggregation (multi-step-
question):
Question: In the above json data, please find the
value (you need to search it in the Json dictio-
nary) of the Key. The Key is the string S.
S is the sequential concatenation of A and B.
A is the sequential concatenation of the cor-
responding values (you need to search it in
the Json dictionary) of the keys “8517603942",
“2681307945", “3759160248", “6201843957",
“7138095462”. When concatenating, each value
is seen as a character.
B is a string “85467”.
Let’s think step by step, and give your final
answer (the key and the value) in format of
“key:{answer} value:{answer}"
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Multi-matching retrieval:
Question: In the above json data, please find all
the keys with the value 0. Give your answer (the
keys separated by comma) in format of “keys:
{answer}"

Multi-matching retrieval (only need to retrieve
the last one):
Question: In the above json data, please find all
the keys with the value 0. You only need to find
one more key to complete the answer. Answer:
The 3 keys whose value is 0 are:
key 1: “1864209357"
key 2: “3145286970"
key 3: {answer}

Logic based retrieval:
Question: In the above json data, please find
the Key (only one) whose Value (an integer) is
greater than 223 and smaller than 278. Give
your answer (the key) in format of “key: {answer}"

Student resume retrieval Here is an example of
the student resume retrieval task. All the students
information are converted to declarative sentences
of a fixed format in the context.

Context

Here are 100 students’ resumes:

The student named Hallie Turner is 21 years
old, graduated from New York University with a
GPA of 4.96. He/She is interested in basketball
and his/her self-introduction is: Creative writer
exploring the impact of social media on culture.

The student named Sonali Jain is 22 years old,
graduated from Mithibai College with a GPA of
2.52. He/She is interested in Writing and his/her
self-introduction is: An artist and writer inspired
by travels across cultures.

The student named ......

Question

Simple retrieval:
Question: What is the age of the student named
Hallie Turner?

Multi-matching retrieval:
Question: Please find all the students who grad-
uated from Tokyo University of Agriculture and
Technology. Please give your final answer (the
students’ names separated by commas) in the
format of “names: {answer}"

Logic based retrieval (arithmetic):
Question: Which student has a GPA between
2.25 and 2.58? Please give your final answer

(the student’s name) in the format of “name: {an-
swer}"
Logic based retrieval (classification):
Question: Which student’s interest belongs to Sports?
Please give your final answer (the student’s name) in
the format of “name: {answer}"

B Complete Evaluation Results

In this section, we present our complete evaluation
results of various models on 4 types of retrieval
tasks: direct retrieval, multi-step-question retrieval,
multi-matching retrieval and logic-based retrieval.
The data and prompt we used are shown in Ap-
pendix 2.1.

B.1 Direct Retrieval: Usually Simple, But
Sensitive to Question Types

Previous benchmarks have demonstrated the
model’s strong performance in direct retrieval tasks
such as NIAH (gkamradt, 2023) and Key-Value re-
trieval (Zhang et al., 2024), even when the context
length exceeds 100k tokens. However, interest-
ingly, our experiments with 2 simple types of direct
retrieval tasks with only slight differences reveal
that some models may be more sensitive to the
question type, while the extremely long context
itself is not of primary concern.

For KV retrieval task across different context
lengths, we test two types of problems: searching
for a value given a key (k-v), and searching for a
key given a value (v-k). The results, shown in Table
4, indicate that in the “k-v” task, increased context
length does not significantly affect model perfor-
mance, because the task is inherently simple for
the model. However, for phi-3.5 and deepseek, a
slight modification in the problem to a “v-k” form,
while keeping the context length constant, leads
to a sharp decline in performance, which is much
greater than that caused by simply increasing the
context length for the same problem. This suggests
that models are more sensitive to the type of prob-
lem than to the length of the context. (We infer that
models like phi-3.5 and deepseek may treat “v-k”
task as a numeric comparing task rather than direct
retrieval, thus perform very poor in long context.)

Therefore, we conclude, current long-context
models can indeed perfectly pass tests like Key-
Value retrieval or NIAH (gkamradt, 2023) in 128k
length, but they may be highly susceptible to the
specific form of questions, even when the context
itself remains unchanged. So we speculate that
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Task Model N=10 N=100 N=1000 N=3000

k-v
phi-3.5 100 99 92 85
llama3.1 70b 100 100 99 100
deepseek 100 100 100 100
gpt-4o 100 100 100 100

v-k
phi-3.5 98 67 7 0
llama3.1 70b 100 100 99 100
deepseek 100 99 10 0
gpt-4o 100 100 100 100

Table 4: model score on simple KV retrieval tasks with 2 problem types: k-v means given key, search value and
v-k means given value, search key. The context lengths with respect to KV number 10, 100, 1000, 3000 are
0.1k,1k,10k,30k.

Model Total KVs (N ) 1 step 3 steps 5 steps

phi-3.5
10 85, 68 58, 49 15, 17
100 60, 48 57, 30 3, 13

1000 62, 10 13, 0 0, 7

llama3.1 70b
10 99, 95 97, 95 78, 83
100 96, 96 97, 92 71, 78

1000 96, 88 91, 55 50, 50

deepseek
10 100, 100 100, 100 100, 100
100 100, 93 100, 100 100, 100

1000 100, 40 97,40 93,60

gpt-4o
10 100, 100 100, 100 100, 100
100 100, 100 100, 100 100, 100

1000 100, 100 100, 100 94, 97

Table 5: Model performance on tasks requiring gathering n values to form a new key and then retrieve its value. We
record 2 scores, the former is the accuracy of forming the Key and the latter is the accuracy of getting the Value.

problems with seemingly similar forms may have
fundamentally different natures.

B.2 Multi-step-question Retrieval: Can be
Solved By Normal CoT

Multi-step-question retrieval tasks, including multi-
query, multi-hop, chain-of-retrieval tasks, etc. (Li
et al., 2024; Wang et al., 2024d), intuitively appear
more challenging due to the need to aggregate dis-
persed information from the context by multiple
steps. Nevertheless, our experiments indicate that
they are not necessarily difficult, provided LLMs
can automatically decompose them into simpler
steps using CoT approach (Wei et al., 2022). We
must emphasize that, it is important to distinguish
multi-matching from multi-step-question retrieval:
the former requires retrieving multiple items with
only one query, while the latter also requires re-

trieving multiple items but can be achieved with
multiple different queries.

Previous studies (Wang et al., 2024d; Goldman
et al., 2024; Li et al., 2024, 2023) typically char-
acterize long-context tasks, which require the ag-
gregation of dispersed information for multi-step
reasoning, as difficult by default. While this as-
sessment aligns with intuition, we argue that this
classification is not universally scientific. Instead,
the complexity of such tasks should be evaluated
based on their specific composition, because a com-
plex task may not be inherently difficult if a model
can systematically reason and decompose the task
into manageable steps.

To illustrate this, we constructed a multi-step-
question Key-Value retrieval problem that involves
a chain-of-retrieval process. This task requires a
model to retrieve n values corresponding to n keys,
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Model Total KVs 1 match 5 matches 10 matches 20 matches

phi-3.5
10 91 (7/0/2) 36 (5/30/29) / /
100 42 (35/2/21) 0 (0/10/90) 0 (0/0/100) 0 (0/0/100)

1000 1 (7/13/79) 1 (7/0/87) 0 (0/7/93) 0 (0/0/100)

llama3.1 70b
10 100 (0/0/0) 99 (1/0/0) / /
100 99 (0/0/0) 59 (17/14/8) 45 (14/17/22) 24 (12/34/30)

1000 62 (0/0/0) 3 (2/47/46) 0 (0/15/85) 0 (0/12/88)

deepseek
10 100 (0/0/0) 100 (0/0/0) / /
100 95 (3/0/2) 40 (9/36/15) 13 (9/42/36) 3 (3/43/51)

1000 0 (0/100/0) 0 (0/100/0) 0 (0/100/0) 0 (0/100/0)

gemini
10 100 (0/0/0) 100 (0/0/0) / /
100 100 (0/0/0) 82 (14/1/3) 48 (32/12/8) 35 (14/36/15)

1000 94 (2/4/0) 66 (3/26/5) 18 (9/47/26) 2 (4/45/49)

gpt-4o
10 100 (0/0/0) 100 (0/0/0) / /
100 100 (0/0/0) 98 (0/2/0) 85 (5/5/5) 50 (5/40/5)

1000 60 (5/35/0) 45 (5/45/5) 5 (0/50/45) 0 (0/17/83)

Table 6: Accuracy on KV retrieval, requiring retrieve all the keys with the given value, when the number of total
KVs and matching KVs are increasing.

concatenate them into a string, and then combine
this string with another given string to generate
a new key, from which the model must retrieve
its value as the final answer (see detailed prompts
in Appendix A.2). Although this problem seems
complex, requiring aggregating at least n+1 pieces
of information from different parts of the context
and performing at least n+1 reasoning steps, it
can actually be decomposed into simple steps us-
ing a chain-of-thought (CoT) approach (Wei et al.,
2022).

The results presented in Table 5 reveal that most
models’s performance are almost unaffected except
the smallest one, phi-3.5, as the numbers of rea-
soning steps and total items increase. And we find
the models automatically adopt CoT in most cases.
That means LCLM with good comprehension, rea-
soning, and organizational abilities can easily solve
them.

B.3 Multi-matching Retrieval: Difficult to
Provide a Complete Answer

For multi-matching retrieval, the model generates
a list of items as the answer, which can be catego-
rized into four distinct cases:

1. Fully Correct: The model’s response exactly
matches the correct answer, i.e., both sets are
equal.

2. Over-selection: The correct answer is a
proper subset of the model’s response.

3. Under-selection: The model’s response is a
proper subset of the correct answer.

4. Mis-selection: The model’s response and the
correct answer do not overlap as subsets of
each other.

In Table 6 and Table 7, we detail the model’s
performance, with the first number representing the
rate of fully correct responses, while the numbers in
parentheses denote over-selection, under-selection,
and mis-selection, respectively.

The results reveal that when only 1 matching
item is present, larger models, such as Gemini
(Team et al., 2023), demonstrate superior perfor-
mance, achieving an accuracy of up to 94% even in
lengthy contexts. However, with the introduction
of multiple matching items, such as 5 or 10, the
accuracy of all language models rapidly declines
to nearly zero, particularly evident in the more re-
alistic scenario of Student Resume Retrieval. This
trend suggests that the inherent difficulty of the
task is consistently challenging across models of
varying sizes.

B.4 Logic-based Retrieval: Difficult
The result of arithmetical logic-based retrieval are
illustrated in Table 8, and that of classification-

5624



Model Total Students 1 match 5 matches 10 matches

phi-3.5
10 98 (1/0/1) 27 (13/47/13) 98 (0/2/0)
100 33 (52/0/15) 0 (1/4/95) 0 (0/1/99)

llama3.1 70b
10 100 (0/0/0) 99 (0/1/0) 100 (0/0/0)
100 98 (1/0/1) 21 (8/48/23) 0 (3/45/52)

deepseek
10 100 (0/0/0) 91 (1/8/0) 100 (0/0/0)
100 100 (0/0/0) 23 (1/54/22) 0 (1/36/63)

gemini
10 100 (0/0/0) 100 (0/0/0) 100 (0/0/0)
100 96 (4/0/0) 36 (8/47/9) 8 (5/37/50)

gpt-4o
10 100 (0/0/0) 100 (0/0/0) 100 (0/0/0)
100 100 (0/0/0) 65 (0/20/15) 0 (0/75/25)

Table 7: Accuracy on student resume retrieval, requiring retrieve all the students graduating from the given university,
when the number of total students and matching students vary.

Model
KV Retrieval Student Resume Retrieval

N=4 N=10 N=100 N=1000 N=4 N=10 N=100

phi-3.5 69 9 0 0 75 53 9
llama-3.1-70b 72 41 6 1 81 63 13
deepseek 84 67 12 0 94 81 21
gemini 78 33 6 0 92 80 12
gpt-4o 97 87 38 5 100 92 30

Table 8: The accuracy (%) on logic-based KV retrieval and Student Resume Retrieval.

Model N=4 N=10 N=30 N=100

gemini 88 82 55 20
gpt-4o 92 88 72 42

Table 9: The accuracy (%) on classification-based logic-
based Student Resume Retrieval.

based logic-based retrieval is in 9. When the con-
text contains only 4 items, LLMs successfully se-
lect the correct item in most cases, indicating that
these models possess logical judgment capabili-
ties. However, for both datasets, all tested models
struggle with these tasks as the context length in-
creases, consistently retrieving an incorrect item
whose value lies outside the specified range. It is
reasonable to anticipate that these difficulties will
be further exacerbated in more complex scenarios
that require logical judgment beyond mere numeri-
cal comparison and simple classification.

C Analytical Experiments

To delve deeper into why LLMs struggle to solve
these seemingly simple tasks, we conduct some
analytical experiments, including studying LLMs’
hidden states and attention weights, to observe
LLMs’ behavior when handling difficult retrieval
tasks. We aim to answer the question: Do these
difficult retrieval tasks fundamentally differ from
traditional retrieval tasks?

Specifically, our findings are as follows, which
will be detailed in the following sections. Some of
them may be trivial.

For logic-based retrieval:

1. The internal behavior of LLMs in logic-based
retrieval is more akin to arithmetic tasks (i.e.
logical tasks) which necessitate reasoning
with multiple steps.

2. Logic-based retrieval can be decompose to
2 components: decide which value is in the
range, and then get the corresponding key.
However, vector retrieval cannot even solve
the first one if within one step.
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And for multi-matching retrieval:

1. The model’s internal behavior in multi-
matching retrieval is originally an one-by-one
retrieval process.

2. Even when we decompose a multi-matching
retrieval problem into n single-item retrievals,
the difficulty of retrieval still continuously
increases for items searched later. In other
words, it is still not easy to retrieve just one
of the matching items in a multi-matching re-
trieval task.

C.1 Experiment Settings for Hidden States
and Attention Analysis

In our experiments, analyzing the internal behavior
of the model is the most crucial. We employ linear
probing to explore the information encapsulated
in hidden states and statistically analyze attention
weights to infer the model’s internal mechanisms.
Given our earlier observations of similar perfor-
mance trends between large and small models, we
adopt the lightweight small model, phi-3.5-mini
(Abdin et al., 2024), which consists of 32 layers
and has a hidden size of 3072, for simplicity.

The dataset used is still Key-Value retrieval, but
more simplified: the total number of KVs does not
exceed 100, the value range is constrained to 0 to
9, and we do not apply the chat template to allow
the model to generate answers directly following
the question.

In both hidden state and attention analyses, we
first identify the anchor token, whose hidden states
are used for linear probing and function as the
query token in the attention mechanism. In tasks
where n is 1, the last token of the question serves as
the anchor token. In multi-matching retrieval tasks,
n is set to 3, and the 3 gold Keys are appended
to the question. The token immediately preceding
each of the 3 appended Keys acts as the anchor
token, i.e., we conduct experiments on 3 anchor
tokens separately. The selected anchor tokens in
different question types are highlighted in red in
the examples below:

Anchor Tokens

Direct retrieval: {Context} In the above JSON
data, the Key whose Value is 5 is: “

Logic-based retrieval: {Context} In the above
JSON data, the Key whose Value is larger than
4 and smaller than 6 is: “

Multi-matching retrieval: {Context} In the
above JSON data, all the Keys whose Value
is 5 are: “1532968704”, “5921306748”,
“3742815096”

In examining hidden states, we employ linear
probing to determine whether the model has suc-
cessfully retrieved the correct Key and stored its
information in the hidden states output by each
layer. The label, i.e. the probing target, is the first
digit of the gold Key to be retrieved, enabling our
linear probe to function as a 10-class classifier with
a single linear layer. We use 1,600 samples for
training and 400 for testing the classifier, and for
each layer, we train and test the classifier indepen-
dently. We train it for 8 epochs with the learning
rate of 10−5.

To elucidate the model’s attention dynamics, we
compute “relative attention” which the anchor to-
ken pays to the gold Key and Value in each layer.
“Relative attention” is the ratio of the average at-
tention weight directed towards the gold Key (or
Value) to that towards all other candidate Keys (or
Values), reflecting the model’s capacity to focus on
the target one and exclude distractors.

C.2 Analyze Logic-Based Retrieval
C.2.1 Internal Model Behavior: More Like

Multi-Step Arithmetic
First, we analyze the process of a logic-based KV
retrieval task, comparing it with two other tasks:
(1) direct KV retrieval, where the model retrieves
the Key corresponding to a given Value, and (2) a
basic arithmetic task that involves identifying the
largest number among N integers ranging from 0 to
100 (see the problem settings in Appendix C.4.1).
In task (2), we use the ground-truth’s unit’s digit
as the label for probing, and the last token of the
prompt as the anchor token.

From the linear probing accuracy (Figure 4) and
the attention dynamics (Figure 5), we find that
model behavior in logic-based retrieval is funda-
mentally different from standard retrieval and more
resembles the numeric comparison task:

1. For direct retrieval, probing accuracy in-
creases in discrete jumps, notably between layers
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Figure 4: Linear probing accuracy in each layer of 3 tasks: direct KV retrieval, logical KV retrieval, and getting the
maximum value among N numbers.

Figure 5: Relative attention to the gold Key and Value
of each layer of different KV retrieval tasks.

14 and 20, rather than progressively across all lay-
ers. The relative attention toward the gold Key and
Value also peaks between layers 15 and 23, suggest-
ing that this attention correlates with the retrieval
behavior. This indicates that retrieval activity is
concentrated within particular layers (e.g. layers
14 and 20).

2. In logic-based retrieval, the attention curves
show a distinct trend and remain consistently lower
than direct retrieval. What’s more, the point at
which the accuracy of logic-based retrieval begins
to improve, layer 19, is noticeably later than that
of direct retrieval, layer 14; instead, it more closely
mirrors the numeric comparing task, which also
begins to increase at layer 19. This indicates that
logic-based retrieval problems differ fundamentally
from normal retrieval tasks, bearing more resem-
blance to arithmetic problems.

A prior research (Feng et al., 2023) has theoreti-
cally demonstrated that a constant-size transformer

model cannot solve arithmetic problems with many
steps in a single step unless using CoT (Wei et al.,
2022). Therefore, a logic-based retrieval, as it re-
sembles arithmetic, will also be unsolvable in one
step as long as N is large enough.

C.2.2 Can Vector Retrieval Solve Logic-based
Retrieval?

Second, we intuitively decompose a logic-based
retrieval problem into 2 components: decide which
value is in the range, and get the corresponding
key. Since our focus is on retrieval scenarios, we
directly employ models designed for RAG (Lewis
et al., 2020) to test the feasibility of performing the
first step through vector retrieval. (The second step
is the same as normal retrieval.)

Vector retrieval is one of the most widely re-
trieval techniques, which encodes both the query
and candidates into embedding vectors, then cal-
culates the similarity between the query and each
candidate to retrieve the top similar options. This
process is similar to the attention mechanism within
LLMs (Xu et al., 2023). Since similarity computa-
tion can be conducted in parallel for each candidate,
it can be considered as a single-step process from
an external perspective.

We test 2 sentence embedding models com-
monly used for RAG (Lewis et al., 2020), e5-
large-multilingual (Wang et al., 2024c) and bge-
m3(Zhang et al., 2023), on a numerical value com-
paring task to see if it can retrieve the correct num-
ber from 20 integers. The candidate keys are inte-
gers within the range 0 to 30, 100, 1,000, or 10,000,
and the queries have 2 types, equality relations
and greater&less-than comparison (examples are
shown in Appendix C.4.2). If the embedding vector
of the correct number has the highest similarity to
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that of the query, it is considered correct. As shown
in Table 10, they only function properly when re-
trieval is based on equality relations; however, their
performance significantly declines with more ad-
vanced logical operations, such as greater-than or
less-than comparisons.

This suggests that one-step vector retrieval tech-
niques are inadequate for logic-based retrieval. In
other words, a transformer model cannot achieve
logic-based retrieval through the attention mecha-
nism within a single layer (or a few layers); instead,
it requires a more advanced reasoning process.

C.3 Analyze Multi-Matching Retrieval

C.3.1 Internal Model Behavior: Retrieve
One-by-one But Increasingly Hard for
Retrieving Later Items

For the multi-matching situation, first, we examine
the model’s behavior when tasked with predicting
each matching item. The relative attention curve
(Figure 6b) and the linear probing accuracy (Figure
6a) demonstrate that:

1. In multi-matching retrieval, the model re-
trieves the matching items one by one rather than
simultaneously, as no information about the 2nd
or 3rd key can be detected at the end of the ques-
tion (i.e. the first anchor token), which proves the
model does not retrieve multiple items all at once.
Correspondingly, the attention to the 2nd or 3rd
key at the end of the question is very low, and the
model mainly focus on only the 1st key.

2. The model can accurately retrieve the first
Key, akin to the behavior in direct retrieval. How-
ever, for the subsequent Keys, both attention and
probing accuracy are much lower, with the 3rd
Key being harder to retrieve than the 2nd. This
proves predicting later items is increasingly harder
for LLMs, despite there in fact being no priority
relationship among the items.

C.3.2 Is Retrieving Just One Item Simple?

Second, to further prove that retrieving a later item
is indeed more challenging, we design a simplified
version of the multi-matching Key-Value (KV) re-
trieval problem: the model is provided with all but
one of the n matching Keys and is required to pre-
dict the last remaining Key (see detailed prompts in
Appendix A.2). The Key to be retrieved is selected
randomly, meaning it may not necessarily be the
last one that appears in the sequence of the input
context.

The results in Table 11 demonstrate that even
when the task is ostensibly reduced to predicting
a single item, corresponding to just one step in
the one-by-one retrieval process, the difficulty still
increases to very high as the number of matching
items grows. The results indicate that retrieving
even a single item is not simple, if the item is a
later (the order in which items appear in the output
sequence, rather than the input sequence) retrieved
one.

We speculate the increasing difficulty may stem
from the increasing complexity of retrieval crite-
ria for later items. Retrieving subsequent Keys
requires more extensive and stringent criteria, in-
cluding conditions to exclude previously retrieved
items, thereby complicating the retrieval process.
In other words, the model need to pay more efforts
to exclude previously retrieved items to avoid get-
ting too many items at the same time. Therefore,
multi-matching retrieval also has the multi-step na-
ture: it not only needs n steps to generate n items
for n-matching retrieval, and but also may need
additional k-1 steps to exclude previous ones for
the k-th item. Consequently, the number of steps
required may be proportional to n2.

C.4 Additional Information of Problem
Settings

C.4.1 Arithmetic Problem

Finding the biggest number among N numbers typ-
ically needs N steps, which belongs to the simplest
multi-step logical problems. Our prompt is as the
following, where the model will predict the correct
answer directly after the prompt.

A list of integers: 15, 24, 31, 44. In the list,
the biggest integer is

C.4.2 Sentence Embedding Models on Math
problems

We test 2 commonly used sentence embedding
model, e5-large-multilingual (Wang et al., 2024c)
and bge-m3(Zhang et al., 2023), on a numerical
value comparing task to see if it can retrieve the cor-
rect number from 20 integers. The candidate keys
are integers within the range 0 to 30, 100, 1,000, or
10,000, and the queries have 2 types: (1) equality
judgement (2) greater&less than judgement. As the
example:
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Model Criteria Type within 30 within 100 within 1k within 10k

e5-large
Greater/Less Than 36 31 21 16

Equal 95 98 99 99

bge-m3
Greater/Less Than 37 29 20 23

Equal 95 98 99 100

Table 10: Accuracy of sentence embedding models on numerical comparison retrieval, with 2 different types of
retrieval criteria, as the range of random selected numbers increases. The number of test samples are 100.

(a) Linear probing (b) Relative attention

Figure 6: (a) The accuracy of probing from hidden states of each layer when predicting the first, second, and third
Key. For example, “2nd key at 1st” means we probe from the hidden states of the 1st anchor token but use the 2nd
anchor token (the 2nd gold Key’s first digit) as the label for training and testing. (b) Attention to each Key or Value
when predicting the first, second, and third Key respectively. For example, “1st to 2nd” means we calculate the
attention to the 2nd gold Key (or Value) with the 1st anchor token as the query token.

Query and Candidates

query (equal): The integer equal to 310.

query (greater than and less than): The inte-
ger smaller than 223 and larger than 356.

20 candidates (range 0-1000): 310, 734, 296,
501, 893, 178, 645, 923, 57, 782, 464, 852, 213,
689, 371, 970, 510, 116, 455, 682

D Using Specific CoT-like Prompts

D.1 Examine Each Item One-by-one to
Retrieve

Taking a logic-based KV retrieval task for example,
when given a normal question without CoT-like
prompt, the model (gpt-4o) tends to make mistakes:

Context

Json data with 100 key-value pairs:

{“0214587963”: 933, “9578042316”: 354,
“8593746120”: 143, “9473061852”: 353,
...... “0587214936”: 448, “6742193850”: 379,
“2405163897”: 572, “4871369052”: 768, ......
“6028917354”: 448, “3249758610”: 938}

Standard Q&A

Question: In the above json data, please find
the Key (only one) whose Value (an integer) is
greater than 527 and smaller than 620. Give
your answer (the key) in format of “key: {answer}"

Wrong Answer: The key whose value is
greater than 527 and smaller than 620 is
“1748263950” with a value of 525.

If we use a special CoT-like prompt to let it to
examine each item one by one, it generates about
2000 tokens to judge every KV pair, which takes
a long time but finally gives the right answer (for
multi-matching problems, the process is similar):
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Model Total KVs 3 matches 10 matches 30 matches 100 matches

phi-3.5
100 22 2 0 /

1000 0 0 0 0

llama3.1 70b
100 91 66 54 /

1000 61 43 16 1

deepseek
100 93 75 37 /

1000 15 5 6 0

gpt-4o
100 100 92 42 /

1000 95 42 25 1

gemini
100 100 99 67 /

1000 99 90 49 8

Table 11: Accuracy on KV retrieval, requiring retrieving only the last Key (of n Keys) with the given Value, and
other Keys with the given Value are already given.

Check Each item One-by-one Q&A

Question: In the above json data, please find
the Key (only one) whose Value (an integer) is
greater than 527 and smaller than 620.

Please check each item one by one and re-
turn your judgment (yes/no) on whether it
meets the requirements. Give your final an-
swer (the key) in format of “key: {answer}"

Correct Answer: To find the key whose value is
greater than 527 and smaller than 620, let’s ex-
amine each key-value pair in the provided JSON
data:
1. “0214587963”: 933 (no)
2. “9578042316”: 354 (no)
......
50. “6742193850”: 379 (no)
51. “2405163897”: 572 (yes)
52. “4871369052”: 768 (no)
......
100. “3249758610”: 938 (no)

The key that meets the requirement is
“2405163897” with a value of 572.
Final answer: key: 2405163897

D.2 Examine Each Item One-by-one And
Maintain A List

Taking student resume analysis for example, when
asking the model to update a list while examining
each item, the prompt design and the answer of
gpt-4o are as follows:

Check Each item One-by-one and Add to a
List Q&A

Question: Please find all the students who
graduated from Jilin University. Please give your
final answer (the students’ names separated by
commas) in the format of "names: answer"

To solve this question, please do the
following steps directly by yourself (instead
of writing code):
1. First, initialize an empty list to store the
matching items.
2. Sequentially examine every item one
by one. if it meet the requirement, output
"true" and add it to the list, and print the
current list; otherwise, output "false" and
just continue to the next one.
3. Finally, according to the list, summarize
your final answer to the question.

Correct Answer: 1. Initialize an empty list:
m̀atching_students = [].̀

2. Sequentially examine each student:

- Kieran Adams: Graduated from Jilin University.
True. Add to list. Current list: [̀’Kieran Adams’].̀
- Xie Yan: Graduated from Xiamen University.
False. Continue.
- Leo Hall: Graduated from University of
Pennsylvania. False. Continue.
- Rika Sakamoto: Graduated from Jilin University.
True. Add to list. Current list: [̀’Kieran Adams’,
’Rika Sakamoto’].̀
......

3. Final answer: names: Kieran Adams, Rika
Sakamoto, Emiko Fujiwara, Shiori Yoshida, Mia
Garcia, Deng Xin, Ava Martinez, Aditya Bhat,
Serena Morgan, Noah Lewis
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D.3 Use Program of Thoughts to Retrieve

Program of Thoughts Q&A

Question: In the above json data, please find
the Key (only one) whose Value (an integer) is
greater than 527 and smaller than 620. You can
write a python program to solve this, and regard
the json data as a file “KV.json”.

Answer: To find the key whose value is greater
than 527 and smaller than 620, you can use the
following Python program. This program reads
the JSON data from a file named “KV.json” and
searches for the key that meets the criteria.

import json

# Load the JSON data from the file
with open("KV.json", r") as file:

data = json.load(file)

# Initialize a variable to store the
desired key

desired_key \= None

# Iterate over the key-value pairs in
the JSON data

for key, value in data.items():
# Check if the value is greater than

527 and smaller than 620
if 527 < value < 620:

desired_key = key
break # Since we only need one

key, we can break once we
find it

# Print the desired key
print("The key with value greater than

527 and smaller than 620 is:",
desired_key)

This program will output the key that satisfies
the condition. When you run it with the pro-
vided JSON data, it will find and print the key
‘"2405163897"‘, which has the value ‘572‘.

We can also use program-of-thoughts prompt
(Chen et al., 2022) to let the model write programs
to solve this retrieval task. Writing python program
to solve this task is very easy for gpt-4o, and then
by executing this program in an external interpreter,
we can get the right result. Here is an example of
logic-based KV retrieval (it can similarly easily
solve multi-matching problems), whose context is
the same as the previous section.

E Analyse the Components of
Challenging Tasks from Various
Long-context Benchmarks

E.1 Distinguishing what is multi-matching or
logic-based retrieval

We regard multi-matching and logic-based retrieval
as important individual components with distinct
natures. It may be difficult for first readers to distin-
guish between multi-matching and multi-query, or
logic-based retrieval and problems requiring logic.
Here we use some simple example to illustrate this.
The primary characteristic of multi-matching or
logic-based retrieval is the inability to be further
divided into multiple manageable steps using CoT,
unless examining each item in the context one by
one.

Multi-matching means multiple items meet one
retrieval criteria, which can almost no longer be
subdivided into multiple independent conditions.
However, as for multi-query, although the retrieval
criteria is also in one sentence, it can be easily
subdivided.

Context

⋆ Jack is 30 years old.
⋆ Mike is 20 years old.
⋆ Lee is 50 years old.
⋆ William is 20 years old.
⋆ James is 35 years old.

Here is the example, where the multi-query re-
trieval question can be subdivided into 3 questions
to retrieve the 3 people individually, while the
multi-matching retrieval problem cannot.

Question Differentiation (1)

Multi-query retrieval (easy): How old is Jack,
Lee and James respectively?

CoT: (1) retrieve Jack’s age (2) retrieve
Lee’s age (3) retrieve James’s age (4) summary

Multi-matching retrieval (hard): Who are 20
years old ?

Here is the example, where a problem requiring
logical reasoning can be easily devided into simple
4 steps, while the logic-based retrieval problem
cannot.

In our study, “logic" typically specifically refers
to logical judgments which cannot simply be re-
flected by similarity, such as determining that 50 is
greater than 45. Although “equality" is also a logi-
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cal relationship in mathematics, the equivalence of
two identical numbers can always be established
through low-level abstract similarity alone. There-
fore, LLMs or embedding models do not require
advanced “logic" to judge equality relationships.
Therefore, retrieval based on equality is not consid-
ered a logic-based retrieval problem in our study.

Question Differentiation (2)

Requiring logical reasoning (easy): Whose
age is equal to the age of Lee minus the age of
Jack?

CoT: (1) retrieve Lee’s age (2) retrieve
Jack’s age (3) do a simple subtraction and get
the target age (4) retrieve by the target age

Logic-based retrieval (hard): Who is older than
45?

E.2 Analyse Advanced Long-context Tasks

In Table 12, we list some advanced long-context
tasks from previous benchmarks, and identify if the
task is very hard, involves multi-step-question or
multi-matching retrieval or logic-based retrieval.

If the evaluation results from this benchmark
indicate that no existing model is able to score
above 60 on this task, we will categorize the task
as very difficult; otherwise, it will be marked as
not very difficult. How we decide whether it is
multi-step-question, multi-matching or logic-based
is shown in Appendix E.3.

Note that multi-matching will not be very diffi-
cult if the amount of matching items is not so large,
for example, a 3-matching retrieval may be easy
for Gemini, but 30-matching must be really hard.

E.3 Details of these tasks

Here we show the process that we analyse previ-
ous challenging tasks from different benchmarks
to identify which component these tasks involve.
We omit simple tasks like single-needle NIAH or
normal multi-document QA.

E.3.1 Loogle

Loogle (Li et al., 2023) is a long-context bench-
mark which first distinguish short-dependency
tasks and long-dependency tasks. Long-
dependency means the task needs a large portion
of the context rather than just a short part, which
is much more challenging. We analyse the 4 task
types belonging to long-dependency tasks:

Multiple information retrieval: This task is
quite different from traditional short-term retrieval
tasks, there are usually multiple and diverse pieces
of evidence throughout the entire text for one spe-
cific answer. This task usually involves multi-
matching retrieval, but sometimes can also be sepa-
rable into steps.

Computation: This task firstly needs multiple
information retrieval from a wide range of texts,
and then use these data for calculating. A major-
ity of the evidence within the text takes the form
of numerical data. However, this task is in fact
composed of 3 solvable steps: understand the ques-
tion to determine which numeric to retrieve, get the
numeric through normal retrieval operation (step
1 and 2 may be perform several times to get mul-
tiple numeric), calculate the answer based on the
retrieved data. Thus it does not belong to logical re-
trieval, but may sometimes involve multi-matching.

Timeline reorder: This task requires reordering
the timeline of a set of events presented in a per-
muted order. It apparently needs to compare the
size of numbers to determine which event should
be retrieved first or later. So it involves logic-based
retrieval.

Comprehension and reasoning: This task de-
mands not only a profound comprehension of the
question but also intricate reasoning to discern the
underlying implications for searching for the appro-
priate evidence. It must be a multi-step problem,
but whether this issue involves other components
remains uncertain and depends on the specific na-
ture of the problem in question.

E.3.2 Ruler

We choose 5 difficult tasks from Ruler (Hsieh et al.,
2024) to analyse:

Multi-keys NIAH: Multiple “needles” are in-
serted into the “haystack”, and only one of them
needs to be retrieved. The additional “needles” are
hard distractors. This is a normal retrieval task.
Though many hard distractors are inserted, power-
ful LLMs can usually overcome this.

Multi-values NIAH: Multiple “needles” sharing
the same key are inserted into the “haystack”. All
values associated with the same key need to be
retrieved. This is totally the same as the multi-
matching retrieval.
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Benchmark Task Name hard multi-step-Q multi-match logic-based

Loogle

Multiple info retrieval Ë é Ë é
Computation Ë Ë é �
Timeline reorder Ë Ë é Ë
Comprehension&reasoning Ë Ë � �

Ruler

Multi-keys NIAH é é é é
Multi-values NIAH é é Ë é
Multi-queries NIAH é Ë é é
Multi-hop Tracing é Ë é é
Aggregation é Ë Ë é

NeedleBench
Multi-Needle Retrieval é Ë é é
Multi-Needle Reasoning é Ë é é
Ancestral Trace é Ë é é

Loong

Spotlight Locating é é é é
Comparison Ë é � Ë
Clustering Ë é � Ë
Chain of Reasoning é Ë � �

Table 12: Some advanced long context tasks from different benchmarks. We mark whether the task is very
hard, involves multi-step-question or multi-matching retrieval or logic-based retrieval. � means this is uncertain,
depending on more specific scenarios.

Multi-queries NIAH: Multiple “needles” with
distinct keys are inserted into the “haystack”. On
the surface, it may appear that a problem requires
the retrieval of multiple values. However, since
each value has a distinct key, it can actually be
decomposed into multiple simple retrieval tasks.
Therefore, this does not fall under the category of
logic-based retrieval or multi-match retrieval.

Multi-hop Tracing: A variable X1 is initialized
with a value V, followed by a linear chain of vari-
able name binding statements (e.g., X2 = X1, X3
= X2, ...), which are inserted at various positions
of the input. The objective is to return all vari-
able names pointing to the same value V. This is a
classic chain-of-retrieval task. It can also be decom-
posed into multiple simple retrieval tasks, e.g., first
retrieve X1, then use X1 as the query to retrieve
X2. Therefore, it is multi-step-question, but not
multi-matching. It may be logic-based retrieval if
the variable name binding statements involve more
complex calculations.

Aggregation: This task includes Common
Words (CWE) and Frequent Words Extraction
(FWE). A model needs to return the top-K frequent
words in the context. This is a very hard multi-
step problem consisting of at least 3 steps: identify
each word, use each word as the query to do multi-

matching retrieval and compare the frequency of
each word. So it must involve multi-matching.

E.3.3 NeedleBench

NeedleBench (Li et al., 2024) aims to let NIAH
(gkamradt, 2023) more challenging. We analyse all
the tasks from it, except the simplest one, Single-
Needle Retrieval Task.

Multi-Needle Retrieval Task: This task is nearly
the same as Multi-queries NIAH. It can actually
be decomposed into multiple independent retrieval
problems, thus it is not difficult.

Multi-Needle Reasoning: In this task, the model
must first engage in reasoning to comprehend the
issue, thereby determining which specific pieces
of information are required. Subsequently, it must
retrieve these multiple pieces of information from
the context. This task is also multi-step-question,
which can be solved by CoT (Wei et al., 2022).
However, none of the steps necessitates logic-based
or multi-matching retrieval.

Ancestral Trace Challenge: The context encom-
passes a multitude of interpersonal relationships,
and the model is tasked with discerning the ances-
tral relationship between two individuals. This is
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similar to Multi-hop Tracing, so it does not neces-
sitate logic-based or multi-matching retrieval.

E.3.4 Loong
Loong (Wang et al., 2024d) is a recent long-context
benchmark which emphasized the challenge of the
task. Most tasks in it involves mathematical calcu-
lation, which is very hard for LLMs. We analyse
all of the 4 tasks from it.

Spotlight Locating: It is aimed at examining the
LLMs’ ability to search the evidence within one
document from multiple ones. So it is a simple
retrieval task.

Comparison: One of the sub-tasks is that given
a specific numerical or conceptual range, the model
should output all objects within multiple docu-
ments that meet the condition. Apparently, this
task is a typical logic-based retrieval task.

Clustering: One of the sub-tasks requires the
model to group the evidence existing in the pro-
vided financial reports into corresponding sets
based on textual or numerical criteria. Apparently,
this task is a typical logic-based retrieval task, too.

Chain of Reasoning: This task evaluates the
model’s proficiency in logical reasoning, which re-
quires LLMs to locate the corresponding evidence
within multiple documents and model the logical
relationships among them for deducing the answer.
This is similar to Multi-hop Tracing, which is a
multi-step reasoning task, but whether involving
logic-retrieval or multi-matching should depends
on specific problems.

F Potential Solutions

As we have found, though CoT can help, relying
solely on the LLM itself provide the complete an-
swers with the reasoning process is extremely in-
efficient. Nevertheless, using external tools may
provide a viable solution. For example, if the input
context is well-structured (e.g. Markdown tables
or JSON data), the model can be prompted to write
programs and execute them using external inter-
preters (Chen et al., 2022) to accurately yield the
correct answer, as demonstrated in Appendix D.3.
However, for more complex and mutable scenarios,
it may still require further works such as design-
ing sophisticated systems consisting of multiple AI
Agents (Xi et al., 2023). Some recent works (Hao
et al., 2024) about reasoning in the implicit space
may also help.
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