SPO: Self Preference Optimization with Self Regularization

Yuhao Sun, Yifan Zhang, Quandong Wang, QinZhuo Wu, Wei Liu, Jian Luan
MiLM PLUS, Xiaomi Inc

{sunyuhaol, zhangyifan27, wuqginzhuo, liuwei4@, luanjian}@xiaomi.com
quandwang@hotmail . com

Abstract

Direct Preference Optimization (DPO) is a
widely used offline preference optimization al-
gorithm that enhances the simplicity and train-
ing stability of reinforcement learning through
reward function reparameterization from PPO.
Recently, SimPO (Simple Preference Opti-
mization) and CPO (Contrastive Preference
Optimization) have proposed reference-free
preference optimization methods to simplify
DPO’s training process. We observe that these
reference-free methods exhibit higher training
efficiency but are prone to overoptimization,
leading to performance degradation. To ad-
dress these issues, we propose Self Preference
Optimization (SPO). SPO employs the SiLU
function to replace the conventional logsig-
moid loss function. The SiL.U function attains
its minimum at a finite value, preventing the
model from excessively amplifying the chosen-
rejected sample probability ratio and thereby
mitigating overoptimization problem. We the-
oretically demonstrate that the SPO loss is an
upper bound of the DPO loss, implying that op-
timizing the SPO objective implicitly optimizes
the DPO objective. We evaluate SPO’s effec-
tiveness across multiple benchmarks including
AlpacaEval 2 and MT-Bench. Experimental
results show that SPO achieves a 7% improve-
ment over SimPO in length-controlled win rate
on AlpacaEval 2, while demonstrating superior
performance on MT-Bench.

1 Introduction

Benefiting from large-scale pre-training (Radford
et al., 2019; Mann et al., 2020) and instruction
fine-tuning on high-quality data (Wei et al., 2021),
large language models (LLMs) have demonstrated
exceptional capabilities in generating human-like
responses. One of the key steps in building state-
of-the-art LLMs is preference optimization, which
aligns pre-trained LLMs with human preferences
using human assessment data, making the model
more helpful, truthful, and harmless.

6
DPO (Logsigmoid)
IPO (Square)
4 SLiC (ReLU)
—— SPO (SiLU)
z 2
0
-2

Figure 1: The primary difference among most offline
preference optimization methods lies in the choice of the
loss function, with logsigmoid (softplus) being a popular
option. However, logsigmoid approaches its minimum
at negative infinity, which may lead to overoptimization.
To mitigate this issue, SPO replaces logsigmoid with
SiLU, which has a finite minimum value and possesses
regularization properties.

Recently, researchers have been exploring sim-
pler offline algorithms, with Direct Preference Op-
timization (DPO) (Rafailov et al., 2024) being a
representative approach. DPO reparameterizes the
reward function in PPO (Schulman et al., 2017), en-
abling direct policy learning from preference data
without the need for an explicit reward model. Due
to its simplicity and stability, DPO has been widely
adopted in practical applications.

DPO requires a reference policy to ensure that
the aligned model does not deviate excessively
from the reference model. In contrast, approaches
like SimPO (Meng et al., 2024), CPO (Xu et al.,
2024a) and ORPO (Hong et al., 2024) propose
methods that do not rely on a reference model. Cur-
rent methods typically implement SFT and pref-
erence optimization sequentially. However, this
often leads to catastrophic forgetting and compli-
cates the training process. ORPO integrates both

5601

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 5601-5614
November 4-9, 2025 ©2025 Association for Computational Linguistics

(=}

Alpaca Eval 2 LC (%)

MT-Bench Score

. Zephyr
w## Gemma

—E[log 5(Plog 20 _ gl g 700)]

Tref (V) Tref (VLX)

(=}

o

s p) —
—E[log o L log mo(y,v) — L log ma(yiko) 7)|

N W s U D
o

—_
(=]

E [SiLU (—(%log To(ylx) = Llog ma(yilx) - 7))]

W

Length-Controlled Win Rate (%)

(=}

SFT

DPO SimPO SPO SFT DPO

SimPO SPO

Figure 2: Comparison of loss functions. SPO mainly differ from DPO and SimPO in their loss functions, as
indicated in the shaded box. SPO replace logsigmoid by sigmoid linear unit(SiLU), which act as a self regularize
activation function. SPO outperforms DPO and SimPO across AlpacaEval 2 and Arena-Hard when applied to

different base models.

processes simultaneously, but this results in per-
formance degradation (Wang et al., 2024). SimPO
observes that longer sequences tend to have lower
log probabilities, which introduces a length bias in
the model. To mitigate this effect, SimPO incor-
porates length normalization into the loss function.
However, these methods still suffer from the prob-
lem of over-optimization.

In preference learning, especially in DPO and
related methods, over-optimization refers to the
phenomenon where the policy drifts too far from
the reference model. It happens when maximizing
the proxy reward (such as the likelihood gap or
reward model score) leads to decreased overall per-
formance, consistency, or diversity. After writing
out the DPO loss in its standard form, we arrive at
the equivalent expression:

L(mg; , Tref) =
log(l N (mo(yi |)/ Tret (Y |x))>ﬁ> 1)

W@(yw | x)/wref(yw | €

It is immediate that this term is minimized when:

mo(y; |) =0 2)

If the probability of the rejected sample is pushed
too close to zero, the ratio becomes infinitely large
regardless of the actual probability of the preferred
sample. In this case, the model may exploit weak-
nesses in the reward signal by focusing solely on
minimizing the probability of the negative sample
while ignoring the probability of the positive sam-
ple, leading it to deviate from the preferred output
and the reference policy.

Figure 3 illustrates an over-optimization issue
where both positive and negative sample probabili-
ties decrease simultaneously from SimPO’s train-
ing curves. Both DPO and SimPO optimize the

probability difference between positive and nega-
tive samples but their objectives allow a scenario
where both positive and negative samples probabil-
ities decrease, with the negative sample probability
decreasing more significantly. In an extreme case,
if the negative sample probability reaches zero, the
optimization objective becomes entirely unrelated
to the positive samples. This creates a reward hack-
ing issue (Xu et al., 2024b), where the model can
minimize the loss simply by only reducing the prob-
ability of negative samples and completely ignore
the positive samples. Ideally, only the negative
sample probability should decrease while the posi-
tive sample probability remains stable. Practically,
this may be difficult to achieve because there is a
certain degree of correlation between positive and
negative samples. Therefore, how to design prefer-
ence optimization algorithms to achieve both high
performance and high efficiency remains an open
challenge.

We believe that the choice of the loss function
is key to addressing this issue. As shown in the
figure 1, a recent study (Tang et al., 2024) has
pointed out that different methods mainly differ
in their loss functions, and proposed GPO (Gen-
eralized Preference Optimization), which param-
eterizes preference optimization losses through a
family of convex functions f, and views DPO, IPO
(Azar et al., 2024), and SLiC (Zhao et al., 2023) as
special cases. We found that methods like DPO typ-
ically use logsigmoid as the loss function. However,
due to the properties of the logsigmoid function,
it reaches its minimum when the probability ratio
between positive and negative samples approaches
infinity. This causes the model to excessively am-
plify the probability gap between positive and neg-
ative samples. On the other hand, if ReL.U is used

5602

as the loss function, the gradient becomes zero
when the positive-to-negative sample probability
ratio exceeds a certain threshold, which may lead
to underfitting.

In this paper, we investigate the role and impact
of loss functions in pairwise preference datasets
for preference optimization models and propose
a simple and effective preference optimization
method—Self-Preference Optimization (SPO), as
shown in figure 2, which utilize SiL.U as loss func-
tion in the training process. Compared to DPO, our
method does not require a reference model, mak-
ing it resource-efficient. Additionally, unlike other
reference-free methods like ORPO and SimPO,
we avoid the performance degradation caused by
simplifying the preference optimization process
through loss function regularization.

After training the SPO model and compari-
son models with Ultrafeedback (Cui et al., 2024),
we evaluate them on instruction-following bench-
marks, including AlpacaEval 2 (Dubois et al., 2024)
and MT-bench (Zheng et al., 2023). Under the
Gemma (Team et al., 2024) model setup, SPO out-
performs DPO by up to 9.6% in length-controlled
win rate on AlpacaEval 2 compared to GPT-4-turbo
(et al., 2023), and surpasses SimPO by 7.3%. We
perform ablation studies on the key design aspects
of SPO. Since preference optimization methods are
sensitive to hyperparameters, we conducted a hy-
perparameter search based on the suggestions in
the SimPO paper to achieve optimal performance.
The ablation experiments show that the SPO loss
function outperforms other loss functions. Further-
more, referring to methods like CPO and RPO that
use SFT loss for regularization, we compare the
effects of different SFT weights. The results in-
dicate that a small SFT weight slightly improves
the performance on MT-bench while decreasing
performance on AlpacaEval 2, suggesting that the
regularization effect of the SPO loss function itself
is strong, and therefore using only the SPO loss is
also viable.

Our contributions can be summarized as follows:

* We propose SPO, a novel reference-free of-
fline preference optimization method. SPO
mitigates overoptimization issues and en-
hances preference optimization effectiveness
by regularization of the loss function.

* We theoretically prove that the SPO loss is
an upper bound of the DPO loss, meaning

Chosen Logps and Rejected Logps

—— logps chosen

—— logps rejected

|
—
[$;1

Log Probability
S
o

|
N
o

0 20 40 60 80
Training Step

Figure 3: Log probabilities for chosen and rejected re-
sponses when using SimPO for preference optimization
of the Zephyr model on the Ultrafeedback dataset.

that optimizing the SPO objective implicitly
optimizes the DPO objective.

* We conduct extensive experiments on vari-
ous instruction-following benchmarks. Our
results show that SPO outperforms compari-
son methods such as DPO and SimPO across
multiple models and benchmarks, demonstrat-
ing the effectiveness of SPO.

2 Related Work

Offline preference optimization. Reinforcement
Learning from Human Feedback (RLHF) is a
method designed to align large language models
(LLMs) with human preferences and values. The
RLHF process typically consists of three key stages:
supervised fine-tuning, reward model training, and
policy optimization, with Proximal Policy Opti-
mization (PPO) being a widely adopted algorithm
in the policy optimization phase. To address the
complexity and inefficiency of online preference
optimization, researchers have explored alternative
approaches in offline preference optimization, with
Direct Preference Optimization (DPO) being a no-
table example. In this study, we focus exclusively
on offline settings to avoid iterative training pro-
cesses, aiming to leverage the advantages of offline
preference optimization while addressing its inher-
ent limitations.

Preference optimization objectives. In addi-
tion to DPO (Rafailov et al., 2024), many other
methods have been proposed. Some approach ex-
plores simplified preference optimization objec-
tives that do not rely on a reference model, such
as ORPO (Hong et al., 2024) and SimPO (Meng
et al., 2024). ORPO merges the SFT and prefer-
ence optimization stages and optimizes the odds
ratio of positive and negative samples. SimPO

5603

uses length normalization techniques to improve
the performance of the model. RPO (Liu et al.,
2024) regularizes the optimization process using
SFT loss. Although this method has been applied in
previous research, RPO theoretically demonstrates
its effectiveness. GPO (Tang et al., 2024) points
out that the main differences between preference
optimization methods lie in the design of the loss
function and proposes a unified perspective to gen-
eralize them. In this study, we compare SPO with a
series of offline optimization algorithms, including
DPO, IPO (Azar et al., 2024), SLiC (Zhao et al.,
2023), and SimPO, and find that SPO outperforms
these methods in various experimental settings.

Overoptimization in DPO. In the context of
direct preference optimization for large language
models, overoptimization (Michaud et al., 2020;
Gao et al., 2023) can lead to discrepancies between
model behavior and human expectations, ultimately
reducing performance. When the model relies on
an imperfect, overfitted, and misgeneralized proxy
reward, it may perform well on limited data but lose
effectiveness in real-world applications (Xu et al.,
2024b). To address this issue, researchers have ex-
plored both theoretical and practical approaches to
better understand and manage the uncertainty in
learning human preferences from finite data. Our
approach tackles this problem by providing a so-
lution that not only avoids overoptimization but is
also easily implementable in practice, thereby im-
proving the model’s generalization capability and
its adaptability to real-world tasks.

3 SPO: Self Preference Optimization

In this section, we first introduce the background of
DPO. Then, we derive the reference-free SPO ob-
jective by replacing the actual reference model with
an ideal reference model and regularizing it using
the SiLU function. Finally, we incorporate addi-
tional length normalization and SFT regularization
to obtain the final SPO objective. The pseudocode
of our method is as follows (Algorithm 1).

3.1 Preliminaries

DPO (Rafailov et al., 2024) (Direct Preference Op-
timization) has emerged as a widely adopted offline
preference optimization method. Unlike traditional
approaches that rely on explicitly training a reward
model, DPO introduces a reparameterization of the
reward function r using a closed-form expression,

Algorithm 1 : Self Preference Optimization

Input: Dataset (D) with prompts and responses,
policy LM 7y, total number of iterations 7, learn-
ing rate oy
fort =0to T do
Sample a mini-batch of tuples (x, Y., ¥;)
from D,
Compute Lspo via Eq. (17),
Update policy parameters 6 using adamw
optimizer with learning rate o.
end for

which directly incorporates the optimal policy:

r(o9) = plog TR

+ Blog Z(z), (3)
where g represents the learned policy, mer is a ref-
erence policy—typically derived from a supervised
fine-tuned (SFT) model—and Z(x) is a partition
function ensuring normalization.

Preferences are denoted as y,, > y; | x, where
yw and y; are the preferred and dispreferred an-
swers, respectively. By leveraging this reward for-
mulation within the Bradley-Terry (BT) ranking
model, DPO expresses the probability of preferring
one response over another as:

—r(zm), @4

where o(+) denotes the sigmoid function. This for-
mulation allows DPO to model preference data
directly via the policy, bypassing the need for a
separate reward model. The corresponding opti-
mization objective for DPO is then given by:

p(yw =Y ’ :L') = U(T(x7yw)

L(We; 7Tref) = _E(x,yw,yl)wD
log o 6 log mo(yw |) 5 log oy |)
Trrof(yw ‘ :L') 7-‘-I‘Cf(yl ’ $)

)

Similarly, SimPO also directly models prefer-
ences via the policy but introduces a length normal-
ization term to reduce length bias. The objective
function of SimPO is defined as:

£SlmPO (7T0) = _E(myyw’yl)ND
B
log o (1 -
og o ol 0g 79 (Yw|T) (6)

|Z| log o (yi|z) — 7>‘

Here, |y, | and |y;| denote the lengths of the pre-
ferred and less preferred responses, respectively.

5604

The hyperparameter y serves as a margin to encour-
age sufficient separation between the two terms,
in SPO, we derive this margin parameter from a
different perspective.

3.2 Deriving of SPO Objective

Compared to SFT, DPO has some drawbacks. First,
DPO has lower memory efficiency: it requires
twice the memory capacity to store both the param-
eterized policy and the reference policy simultane-
ously. Second, DPO has lower speed efficiency: the
model needs to execute two policies sequentially,
doubling the processing time.

Recently, some methods such as ORPO and
SimPO have proposed reference-free approaches.
However, these reference-free methods are prone
to overoptimization, which may lead to distribution
shifts and performance degradation. To address
these issues, we propose SPO.

The basic form for SPO is as follows:

‘CSPO (7T9) = E(w,yw,yz)ND
SiLU (— (Blog T (yu|x)— (7)
Blogmo(uilz) — 7))

Next, we theoretically prove that the SPO objective
is an upper bound of the DPO objective.

Theorem 1. Assume that for all (x,yw,y1) ~ D
the reference model satisfies

7Tref(yw ‘ 513)

>k 8
7Tref(yl | x) ’ ®

for some constant k > 0. Define the DPO loss as

L(ﬂ'@;ﬂ'ref) = _E(az,yw,yl)wD
log o ﬂ log ﬂ-e(y’w ‘ x) _ Og W@(yl ’ l’)
7Tref<yw | «T) 7I'ref(yl ‘ 13)
)]
Let the idealized reference model 7 satisfy
Ty | z)
Then,
L(mg; mref) < L(mg;) + C, (11)
with

7"-ref(yw | ZL‘) B log k‘)

C =K@ yy,y)~D ﬁ(log Teef (Y1 |)

12)

Based on this formula, we further replace the
logsigmoid function with SiLU. SiLU (Ramachan-
dran et al., 2017) is a smooth variant of ReLLU,
first proposed in the GELU (Hendrycks and Gim-
pel, 2016) paper. GELU was originally motivated
by combining ReLLU (Nair and Hinton, 2010) and
the regularization properties of Dropout (Srivas-
tava et al., 2014). While the Swish (SiLU) ac-
tivation was introduced later, its functional form
was already presented in the GELU paper as an
approximation. Swish’s main contribution lies in
rediscovering "GELU" through an extensive search
of activation functions and demonstrating its effec-
tiveness over ReLU. We use SiL.U primarily due
to its simpler form and its adoption in modern IIm
architectures like LLaMA’s SwiGLU (Grattafiori
et al., 2024; Shazeer, 2020). Additionally, as the
function graphs of SiLU and GELU are fundamen-
tally similar, SiLU inherits GELU’s regularization
properties. We found that in the preference opti-
mization scenario, SiLU exhibits a similar regu-
larization effect, since SiLU’s minimum value is
finite rather than approaching infinity, it prevents
the model from overly optimizing the probability
difference between positive and negative samples,
thus providing a regularization effect.

The logsigmoid function and the softplus func-
tion are closely related. Specifically, the logsig-
moid function can be expressed in terms of the
softplus function as follows:

logsigmoid(z) = —log(1 + e~ %) 13)
= —softplus(—x).

As shown in the figure 4, SiLU plus a constant is
an upper bound of softplus.

Proposition 1. For any x € R,

SiLU(z) + In(2) > softplus(x), (14)
where
, o
SiLU(z) = = (15)
and
softplus(z) = In(1 4 %) (16)

According to Theorem 1 and Proposition 1, the
SPO loss is an upper bound of the DPO loss. There-
fore, optimizing the SPO objective will minimize
the DPO objective, theoretically proving the effec-
tiveness of the SPO objective.

5605

6
softplus
—_— SiLUx)+1In(2)
4 -
2 2
0
-2

4 -2 0 2 4

Figure 4: SiL.U is smaller than softplus, but SiLU plus
an appropriate constant becomes larger than softplus.

3.3 Length Normalization

Furthermore, we incorporate length normalization
to enhance the model’s robustness. The complete
SPO loss function is as follows:

Lspo (779) = E(x,yw y1)~D [SZLU (

_ (’lfulogwe(ywﬁ) B ’;i’logwe(yﬂiﬂ) - PY))‘
(17)

4 Experiments

In this section, our goal is to understand the per-
formance of SPO compared to other preference
optimization methods under different experimen-
tal settings. We outline our experimental settings
(Section 4.1) and present and analyze the main re-
sults (Section 4.2). Then, we show the results of
ablation studies to compare the impact of several
key designs on SPO (Section 4.3).

4.1 Experimental Settings

Evaluation bechmarks. We primarily use the au-
tomatic evaluation frameworks, MT-Bench and Al-
pacaEval 2, to evaluate our models. These bench-
marks assess the models’ conversational abilities
across various types of questions. Automatic eval-
uation is highly similar to human evaluation and
is more cost-effective, making it widely adopted
by the community. As shown in Table 1, AlpacaE-
val 2 includes 805 questions from 5 datasets, and
MT-Bench covers 8 categories, consisting of 80
two-turn dialogues. In addition to these two bench-
marks, Arena-Hard (Li et al., 2024) is also a com-
mon choice. However, we found that most of the
questions in the Arena-Hard benchmark are coding

questions and thus lack diversity, which could in-
troduce bias into the evaluation results. Therefore,
we decided not to use this benchmark. We report
scores following the evaluation protocols of each
benchmark. For AlpacaEval 2, we report both the
win rate (WR) and the length-controlled win rate
(LC). The LC metric is specifically designed to be
robust against model verbosity. For MT-Bench, we
report the average MT-Bench score with GPT-40
(Hurst et al., 2024) as the evaluation models.

Base models. We use two models, Zephyr-7B
(Tunstall et al., 2023) and Gemma-2-9B (Team
et al., 2024), for preference optimization, the
Gemma model is larger and more powerful. The
main purpose of using different models as the base
model is to verify the generality of SPO. The train-
ing process for Zephyr starts by training a base
model on the UltraChat-200k (Ding et al., 2023)
dataset to obtain an SFT model. We directly use the
open-source versions of these models because they
have undergone extensive testing, making them
more powerful and robust. Then, we use the SFT
model as a starting point and perform preference
optimization on the UltraFeedback dataset. For
the Gemma model, since it has already undergone
SFT, we directly perform preference optimization
without an additional SFT process. We also use the
UltraFeedback dataset for preference optimization
to ensure a fair comparison.

Comparison methods. As shown in Table 2,
we compare SPO with other offline preference op-
timization methods. SFT can be regarded as a pref-
erence optimization method that uses only positive
samples. Similar to DPO, CPO uses sequence log-
likelihood as a reward and trains alongside an SFT
objective. IPO is a theoretically grounded method
that avoids DPO’s assumption that pairwise prefer-
ences can be replaced with pointwise rewards by
using a squared loss function. SLiC uses hinge
loss for optimization and includes a margin pa-
rameter. SimPO employs length normalization,
and CPO uses SFT regularization. We found these
techniques to be effective in our experiments and
thus incorporated them into the SPO loss. We thor-
oughly tuned the hyperparameters for each baseline
method and reported the best performance. Most
preference optimization methods, except for SLiC
and IPO, use the logsigmoid function as the loss
function. In our main experiments, we compared
SFT, DPO, CPO, and SimPO. In ablation studies,
we compared the effects of different loss functions,
such as ReLU, GELU, and Square.

5606

Table 1: Evaluation details for AlpacaEval 2 and MT-Bench

Benchmark Questions Judge Model Metric
AlpacaEval 2 (Dubois et al., 2024) 805 GPT-4 Turbo LC & win rate
MT-Bench (Zheng et al., 2023) 80 GPT-40 Rating of 1-10

Table 2: Comparison of Methods and Their Objective Functions

Method Objective

SFT (Wei et al., 2021)
DPO (Rafailov et al., 2024)
SLiC (Zhao et al., 2023)
IPO (Azar et al., 2024)
CPO (Xu et al., 2024a)
SimPO (Meng et al., 2024)

SPO (ours)

max (0,9 —

(yw‘x)
(1 O8 Trrlyala)

—logo (\y |

—log 7o (yw|)
—logo (6 log

o yw |z)
7Tret Yw ‘:)S

log T (yw|x) + log mo(yi|z)) —
—log
—log o (Blog me(yuw|z) —

log 7 (Yw|z) —
SILU (= (2 1og mo(yule) — 27 log mo(uilz) — 7))

o (yi]z)
/8 g 7Tret yll|90)>
A log mp (Yo |x)

7o (y1lz)
Wref(yl|x)

Blogﬂe(yz\w)) Mog 79 (yw)
|y | log g yllw) 'Y)

4.2 Main Results

As shown in Table 3 and 4, the simple SFT method
can also achieve some improvements over the base-
line(The baseline model is the off-the-shelf model
we use as a starting point), but the preference opti-
mization algorithms that use positive and negative
sample pairs show greater improvements. We be-
lieve this is because the positive sample data is
not perfect, and the contrast between positive and
negative samples provides a direction for improve-
ment of the positive samples. Compared to other
preference optimization algorithms, SPO demon-
strates consistent improvements on these evaluation
datasets. Moreover, the comparison of results be-
tween the Zephyr model and the Gemma model
shows that SPO achieves greater improvements on
a stronger baseline, validating its robustness and
effectiveness. Without a reference model, SPO has
smaller memory usage and computational require-
ments compared to DPO, making it simple and
efficient to implement.

4.3 Ablation Studies

We conducted all ablation experiments on the
Zephyr model, including the choice of loss func-
tion, the effect of SFT regularization, and the im-
pact of the hyperparameters beta and gamma. The
effect of length normalization has been validated
in previous papers, so we do not discuss it further.

Comparison of different loss functions. As
shown in Table 5, we trained the model using com-
mon activation functions as loss functions, where
ReLU corresponds to SLiC and square corresponds

to IPO. The identity function directly optimizes
the log probability ratio, but this leads to a large
amount of repetitive content in the model output, re-
sulting in the lowest benchmark scores. We believe
this is a result of overoptimization, highlighting the
necessity of loss function regularization. GELU
and SiLL.U achieved the best results among these
functions. Notably, the performance of the GELU
function is similar to that of SiLU, because GELU
can be approximated by SiLU, making it equiva-
lent to using SiL.U with different beta values. Since
SiL.U is simpler in form compared to GELU, we
implemented SiLLU in SPO.

Analysis of training dynamics. As shown in
Figure 5, we compare the training logs, chosen log
probabilities (logps), and accuracies of the Zephyr
model when trained on UltraFeedback using the
logsigmoid(SimPO) and SiLU(SPO) loss functions.
It can be observed that the positive sample probabil-
ities decrease to some extent in both methods, but
the decrease is less pronounced in SPO compared
to SimPO, indicating that the SPO loss function
helps prevent overoptimization to some extent. On
the other hand, the accuracies of both methods con-
tinue to rise, suggesting that the preference opti-
mization algorithm enhances the model’s ability to
distinguish between positive and negative samples.
Ultimately, the accuracy of SPO is slightly higher
than that of SimPO, validating the effectiveness of
SPO.

The impact of SFT regularization. As shown
in Table 6, we trained the Zephyr model with differ-
ent SFT weights. When the SFT weight is relatively

5607

Table 3: Performance of Different Methods on Zephyr-7B and Gemma-2-9B

Zephyr-7B Gemma-2-9B

Method AlpacaEval 2 MT-Bench AlpacaEval2 MT-Bench

LC WR Score LC WR Score
Baseline 446 255 4.58 4375 39.01 6.84
SFT 6.55 5.37 4.81 4426 40.14 6.92
DPO 16.83 14.16 5.44 47.54 44.39 7.17
CPO 2231 23.14 5.64 48.50 46.62 7.31
SimPO 2492 2547 5.72 49.84 50.56 7.45
SPO (ours) 28.04 29.35 5.87 571 53.05 7.62

Table 4: Performance of Different Methods on Mistral-Instruct-7B and LLaMA-Instruct-7B

Mistral-Instruct-7B

LLaMA-Instruct-7B

Method AlpacaEval 2 MT-Bench AlpacaEval 2 MT-Bench
LC WR Score LC WR Score
Baseline 12.1 11.86 5.96 22.45 23.06 6.32
SFT 16.34 15.13 6.02 26.77 27.52 6.40
DPO 20.47 19.67 6.15 30.21 31.44 6.42
CPO 24.05 24.72 6.12 33.80 32.92 6.55
SimPO 28.53 28.20 6.22 37.57 37.02 6.59
SPO (ours) 33.48 34.16 6.34 42.55 40.69 6.75

Table 5: Comparison of loss function

AlpacaEval 2 MT-Bench

act

LC WR Score
Identity 0.00 0.00 1.17
ReLU 23.89 26.23 5.56
Square 21.8 2232 541
GELU 26.34 29.86 5.76
SiLU (SPO) 28.04 29.35 5.87

Table 6: The Impact of SFT Regularization

AlpacaEval 2 MT-Bench

A LC WR Score
0 28.04 29.35 5.87
0.1 2447 2401 5.92
05 159 13.18 5.58
1 14.25 10.95 5.31

small, MT-Bench can achieve some improvement,
but the performance on AlpacaEval 2 decreases.
A larger SFT weight results in a decline in perfor-
mance on both evaluation sets. We believe that
SFT regularization has some effect, but the SiLU
function in the SPO loss function itself has a strong
regularization effect, so not using SFT regulariza-
tion is also feasible.

The impact of hyperparameters. As shown in

Chosen Logps and Rejected Logps Reward (Accuracies)

0.8 — SimPO

— SPO
=}
Z-15
2 0.7
g £
g
=201 — SimPO_Chosen
S —— SPO_Chosen 0.6

5| — SimPO_Rejected
| — SPO_Rejected

Accuracy

0 100 200 300 400 0 100 200 300 400
Training Step Training Step

Figure 5: The training curves of the Zephyr model on
the UltraFeedback dataset, with chosen log probabilities
on the left and accuracies on the right. The red line
represents SPO, and the blue line represents SimPO.

Beta vs LC and WR

—e— LC —e— LC
WR . WR

& 220
9 9
£27 g
= =
3 S 10
< <
26
0

1.0 15 20 25 3.0 35 4.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Beta Gamma

Gamma vs LC and WR

Figure 6: The impact of different hyperparameters beta
and gamma under the settings of the Zephyr model.

Figure 6, the preference optimization algorithms
are relatively sensitive to the hyperparameters beta
and gamma, so parameter tuning is required to
achieve optimal performance. We found that for
the Zephyr model, the best model performance is
achieved when beta and gamma are set to 2.5 and
0.8, respectively. Therefore, we used this setting
in our main experiments. Through calculations,

5608

we found that the minimum value of the loss func-
tion is achieved when the log probability ratio of
positive and negative samples is 1.31, which corre-
sponds to a positive to negative sample probability
ratio of 3.7 for the ideal reference model.

5 Conclusion

In this paper, we propose Self-Preference Opti-
mization (SPO), which is a new reference-free of-
fline preference optimization method. SPO miti-
gates the overoptimization issues in DPO and other
reference-free methods through loss function regu-
larization. The key design of SPO lies in replacing
the logsigmoid loss function with SiLU. We the-
oretically prove that the SPO loss function is an
upper bound of the DPO loss function, meaning
that optimizing the SPO objective implicitly opti-
mizes the DPO objective.

Experimental results show that, across models
of various sizes, SPO is preferred over other pref-
erence optimization methods in evaluations on Al-
pacaEval 2 and MT-Bench. Furthermore, as the
base model size increases, SPO’s win rate against
DPO also improves, further demonstrating its sta-
bility and generality. Extensive ablation studies
indicate that loss function regularization of SPO is
crucial and validate its effectiveness.

Limitations

We only study off-policy methods such as DPO
and SimPO, whose behavior may differ from on-
policy preference optimization algorithms like PPO.
While conducting a comprehensive analysis of var-
ious preference optimization methods, we did not
cover a broader range of preference optimization
algorithms. Additionally, we evaluated our method
on only two model size and two public human feed-
back datasets, whereas some recent studies suggest
that automated evaluations may exhibit certain bi-
ases compared to human evaluations. We leave a
more extensive comparative study for future work.

Ethics Statement

This study focuses on simplifying the DPO train-
ing process and mitigating overoptimization issues
during training. Experiments are conducted using
publicly available data and pre-trained models, no
new models will be released for public use. There-
fore, there are no ethical concerns.

References

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447-4455.
PMLR.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. 2024. Ultrafeedback:
Boosting language models with scaled ai feedback.
In Forty-first International Conference on Machine
Learning.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Runji Wang R.J. Chen R.L. Jin Ruyi Chen Shanghao
Lu Shangyan Zhou Shanhuang Chen Shengfeng Ye
Shiyu Wang Shuiping Yu Shunfeng Zhou Shuting
Pan S.S. Li et al. DeepSeek-Al, Daya Guo, De-
jian Yang, Haowei Zhang, Junxiao Song, Ruoyu
Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu
Wu, Z.F. Wu, Zhibin Gou, Zhihong Shao, Zhu-
oshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong
Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Han-
wei Xu, Haocheng Wang, Honghui Ding, Huajian
Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo,
Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
Yuan, Junjie Qiu, Junlong Li, J.L.. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang
Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei
Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Ming-
ming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, Red Avila, Igor Babuschkin,

5609

Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain
et al. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, pages
10835-10866. PMLR.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo:
Monolithic preference optimization without refer-
ence model. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 11170-11189.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o0 system card. arXiv preprint
arXiv:2410.21276.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi
Guo, Yingxiang Yang, Jose Blanchet, and Zhaoran
Wang. 2024. Provably mitigating overoptimization

in rlhf: Your sft loss is implicitly an adversarial regu-
larizer. arXiv preprint arXiv:2405.16436.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhari-
wal, A Neelakantan, P Shyam, G Sastry, A Askell,
S Agarwal, et al. 2020. Language models are few-
shot learners. arXiv preprint arXiv:2005.14165, 1.

Yu Meng, Mengzhou Xia, and Danqgi Chen.
2024. Simpo: Simple preference optimization
with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Eric J Michaud, Adam Gleave, and Stuart Russell. 2020.
Understanding learned reward functions. arXiv
preprint arXiv:2012.05862.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807-814.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Prajit Ramachandran, Barret Zoph, and Quoc V Le.
2017. Searching for activation functions. arXiv
preprint arXiv:1710.05941.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505-3506.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929-1958.

5610

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng,
Daniele Calandriello, Rémi Munos, Mark Row-
land, Pierre Harvey Richemond, Michal Valko,
Bernardo Avila Pires, and Bilal Piot. 2024. General-
ized preference optimization: A unified approach to
offline alignment. arXiv preprint arXiv:2402.05749.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Shengyi Huang, Kashif Rasul, Al-
varo Bartolome, Alexander M. Rush, and Thomas
Wolf. The Alignment Handbook.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of Im alignment. arXiv preprint
arXiv:2310.16944.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Ki-
ran Ramnath, Sougata Chaudhuri, Shubham Mehro-
tra, Xiang-Bo Mao, Sitaram Asur, et al. 2024. A
comprehensive survey of 1lm alignment techniques:
RIhf, rlaif, ppo, dpo and more. arXiv preprint
arXiv:2407.16216.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024a. Contrastive pref-
erence optimization: Pushing the boundaries of 1lm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and
Yi Wu. 2024b. Is dpo superior to ppo for llm
alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719.

Yao Zhao, Rishabh Joshi, Tiangi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se-
quence likelihood calibration with human feedback.
arXiv preprint arXiv:2305.10425.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

A Implementation Details

We use the PyTorch framework and modify the
code based on the alignment handbook (Tunstall
et al.) For all models in our experiments, we use
DeepSpeed Zero 3 (Rasley et al., 2020) for par-
allel training and Flash Attention 2 (Dao, 2023)
for acceleration. The Zephyr model is trained
using 4 x 80GB Nvidia H100 GPUs, while the
Gemma 9B model, which requires more memory,
is trained using 8 x 80GB Nvidia H100 GPUs.
As suggested by previous research, all models are
trained for one epoch on the Ultra Feedback dataset.
Training the Zephyr model takes approximately 2
hours, while training the Gemma model takes about
4 hours. For optimization, we use the AdamW
(Loshchilov, 2017) optimizer with a cosine decay
learning rate schedule. To maintain a fixed batch
size of 128 across experiments with different num-
bers of GPUs, we adjust the gradient accumulation.
For input length, each instance is truncated and
padded to 1,024 tokens for Zephyr and 2,048 to-
kens for Gemma.

During the inference and evaluation phase, for
AlpacaEval 2, we use a sampling decoding strategy
to generate responses and set the temperature to
0.7, following SimPO. For MT-Bench, we adhere
to the official decoding configuration, which de-
fines different sampling temperatures for different
categories. When analyzing the evaluation results,
we found that accessing the gpt4 series models
has rate limitations, and exceeding the rate limit
can result in network errors, leading to abnormal
scores. To ensure accurate evaluation, we set the
concurrency to 2 and check the completeness of
the results after evaluation. For each model, the
MT-Bench evaluation takes about 20 minutes, and
the AlpacaEval 2 evaluation takes about 1 hour.

B Theorem Proof
Proof of Theorem 1

Proof. We begin with the loss using the reference
model:

L(ﬂ'e; 7rref) = _E(:c,ymyl)ND
log g ﬁ logw _B logm
ﬂref(yw | ZC) Wref(yz | .'L')
= _}E(Ivyuuyl)’vD
log o Blogw_ﬁ 1ogw '
W@(yl | .CC) Wref(yl | gj)
(18)

5611

https://github.com/huggingface/alignment-handbook

Since

7"'ref(yw | l') >k — log 7Tref(yw | l') > IngJ

Teet (Y1 |) Teet (Y1 |) (1;)
we have

6 lOg W@(yw ‘ l') . ,8 lOg 7Tref(yw | CC)

mo(y | x) et (Y1 | @) 20)
B 1ng — B logk.
mo(yi |)

Define the loss with the idealized reference model:

L(me; 7) = ~E(z)~
21
log o ﬂlogw—ﬁlogk . @1
To(yi | ©)

Because the sigmoid o (-) is strictly increasing, we
obtain

7o (Yw |) _ Tref (Y |)
G<B log 7T9(y[‘ JJ) B log 7rref(yl | (L‘))

7r9(yw ’ SC)
< a(ﬁ logm - B logk>.

(22)

Taking negative logarithms (a decreasing operation)
gives

7Tref(yl ‘ CU)

—log a(ﬂ log m — G log

71'1ref(yw | 37))

> —log a(ﬁ logm - p logk:>.

(23)
Thus, from (18) and (21) we immediately have
L(mg; Tret) > L(mg; 7).

(24)

For the reverse bound, note that log o(z) is Lip-
schitz with constant 1 because

diz logo(z)=1—-0(z) < 1. (25)
Thus, for any A > 0 and any z,
logo(z — A) > logo(z) — A. (26)
Set
Z:Blogw—ﬁlogk 27
mo(yi | @)

7Tref(yw | -75)

—logk) > 0. (28)
T k) 0. ¢

Then,
- loga(z — A(ar)) < —logo(z) + A(x). (29)
Taking expectations over D gives

L(mg; meet) < L(mo; T) + E(g g 5)~D A(T).

(30)
Defining
C = E(xzywvyl)ND A(x) (31)
we conclude that
L(mg; mpet) < L(mg; @) + C. (32)
This completes the proof. 0
Proof of Proposition 1
Proof. Define the difference function
f(z) = SiLU(z) + In(2) — softplus(z). (33)
Simplifying, we obtain
flx) = T1e +1In(2) —In(1+e7%). (34)
The derivative of f(x) is
, ze *
= — 35

whose sign is determined by z: f’(x) > 0 for x >
0 and f'(z) < 0 for z < 0. Thus, f(x) attains its
minimum at z = 0, where f(0) = 0. Furthermore,
as r — +oo, f(x) — In(2) > 0. Therefore,
f(z) > 0 for all z € R, and the proposition holds.

O

C Gradient Analysis

The loss function of Self Preference Optimization
(SPO) in its basic form is defined as:

Lsp()(ﬂ'g) = E(:v,yw,yz)ND [SiLU (— (
Blog mo(ywl|z) — Blog m(yi|x)
—7))]
(36)

Here, my(y|x) is the policy function, representing
the probability of selecting action y given input

5612

Z. Yy and y; are positive and negative samples,

respectively. 3 and y are hyperparameters. The

SiLU function is defined as:
SiLU(z) = z - 0(2) 37)

where o(z) = H% is the Sigmoid function.
Let z = — (Blog 7o (yw|x) — Blogme(yi]x) — 7).

The loss function can be rewritten as:

Lspo(ma) = E 4y, y)~p [SILU(2)] (38)

First, compute the derivative of the SiLU func-
tion with respect to z:

dSiLU(z

dz() =0(2)+20(2)(1 —0o(2))

=0o(z)(1+2(1 = 0(2)))

(39)

Next, compute the derivative of z with respect
to 0:

0z __ (0logmylyslr) _ Ologm(uila)
00 00 00

(40)
Thus, the gradient of the SPO loss function with
respect to 0 is:

4 4
2 4
" AJ
—27 — logsigmoid
—— logsigmoid derivative
SiLU
~41 — SiLU derivative

-4 -2 0 2 4

Figure 7: Comparison of SPO and DPO gradients, red:
SPO, blue: DPO, solid lines represent the derivatives,
transparent lines represent the corresponding original
functions.

do(z)
") _ o)1 - o(2)

(45)

Thus, the gradient of the logsigmoid loss func-
tion with respect to z is:

aLlogsigmoid (770) 1
= — . 1 —_—
OLspo(mg) E dSiLU(z) 0z 0z o(z) o(z)(1 —o(z))
o9 lowen~D T g =—(1-0(2))
41) (46)
oL o Next, compute the derivative of z with respect
SPOU0) sy e (214 21— () 10

3 dlog my(ywl|z) Ologmy(yi|z)
00 a0
42)

Another commonly used loss function is the
logsigmoid form:

Liogsigmoid (7o) = E(%ymyl)ND

[—log o (Blog me(yw|z) — Blog mg(yi|x) —)]
(43)

The gradient derivation for this form is as fol-
lows:

Let z = Blog mg(yw|x) — Blogme(yi|x) — 7.
The loss function becomes:

Llogsigmoid(ﬂ'H) = E(:c,yw,yl)ND [_ log U(Z)] 44)

The derivative of the Sigmoid function is:

)

9z _ , (0Ologmp(ywlz) Ologme(yi|x)
26 =" < 90 a0
(47)
Thus, the gradient of the logsigmoid loss func-
tion with respect to 0 is:

8Llogsigmoid(7r6) -
— o5~ L@yww)~D
9Logsigmoia (M) 0=
0z 00
0 Liogsigmoid (79
% = E(z,yw,yl)ND [_(1 - U(Z))
5 0 log 79 (yw|x) B dlog ma(yi|x)]
06 00
(49)

5613

Advantages of SPO Gradients. In SPO gradients,
the term o(2)(1 + z(1 — o(2))) dynamically ad-
justs the gradient direction based on 2, which can
be considered as the weight of the gradient, the
other term is the same as in the logsigmoid form
loss. As shown in figure 7, the weight term in the
logsigmoid gradient is always negative, resulting
in a fixed gradient direction. In contrast, the SPO
gradient changes direction when the value exceeds
a certain threshold, preventing overoptimization.

D Other Details

Scientific artifacts. We utilized various scien-
tific achievements in our paper, including prefer-
ence datasets, foundational large language models
(LLMs), and training and evaluation tools. All the
achievements used are properly cited. Current large
models and preference datasets may encompass a
wide range of data types and leverage data from
various domains and sources, so we do not provide
detailed information in this paper. Readers can re-
fer to the original sources for more information. In
this paper, we primarily use these achievements for
non-distribution and non-commercial purposes, in
compliance with their licensing requirements.

Use of AI assistants. To reduce the cost of manual
revisions, we used ChatGPT (Ouyang et al., 2022)
and DeepSeek R1 (DeepSeek-Al, 2025) to revise
the language of the paper. The revisions were made
solely to enhance the clarity and readability of the
text and not for any other purpose.

5614

