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Abstract

With the help of in-context learning (ICL),
large language models (LLMs) have achieved
impressive performance across various tasks.
However, the function of descriptive instruc-
tions during ICL remains under-explored. In
this work, we propose an ensemble prompt
framework to describe the selection criteria
of multiple in-context examples, and prelim-
inary experiments on machine translation (MT)
across six translation directions confirm that
this framework boosts ICL performance. But
to our surprise, LLMs might not care what the
descriptions actually say, and the performance
gain is primarily caused by the ensemble for-
mat, since it could lead to improvement even
with random descriptive nouns. We further ap-
ply this new ensemble framework on a range of
commonsense, math, logical reasoning and hal-
lucination tasks with three LLMs and achieve
promising results, suggesting again that design-
ing a proper prompt format would be much
more effective and efficient than paying effort
into specific descriptions.

1 Introduction

In-context learning (ICL) boosts the performance
of large language models (LLMs) across numerous
natural language processing (NLP) tasks, where
LLMs are presented with in-context examples con-
taining input and ground truth output (Brown et al.,
2020; Dong et al., 2023). Many works have verified
the vital role of in-context examples in ICL (Wang
et al., 2023; Wei et al., 2023). However, Min et al.
(2022) find that ground truth labels might not be
the key to ICL performance on classification tasks.

The selection of in-context examples has been
proven significant to the performance of ICL (Ru-
bin et al., 2022) and there have been various works
on in-context example selection (Agrawal et al.,
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Instruction: Translate German into English.
Examples with similar tennis:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar arch-rival:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar Noun 𝐴:

Example 𝐴!
Example 𝐴"

Examples with similar Noun 𝐵:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 1: Template and Alpaca’s example of Ensemble.

2023; Li et al., 2023; Ye et al., 2023). Besides di-
verse approaches of selecting examples, no existing
work has tried to explicitly tell LLMs in what way
those specific examples are selected. We hypothe-
size that if LLMs are prompted with instructions
describing the properties of selected in-context ex-
amples, they might learn better from these exam-
ples, since instruction following is one of LLMs’
most important qualities nowadays (Ouyang et al.,
2022; Peng et al., 2023; Zhang et al., 2024). Tang
et al. (2024) prompt LLMs with examples selected
based on both word-level and syntax-level crite-
ria for machine translation (MT) for better ICL
performance. This inspires us to tell LLMs where
different in-context examples come from when they
are selected by multiple methods.

In our experiments on MT, we first select in-
context examples based on lexical and syntactic
similarity for each test input separately. Then we
combine both to construct the complete set of exam-
ples, with half word-level examples and half syntax-
level examples. Further, we devise a novel ensem-
ble prompt framework (as shown in the left part
"Prompt Template" of Figure 1), adding example-
level instructions to describe that the following
examples are with similar words or similar syntax.

Experimental results on MT demonstrate that
adding such ensemble prompt framework does
improve LLMs’ performance over conventional
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prompts. Meanwhile, we find that when the
example-level descriptions do not correspond to
the source of in-context examples or are completely
nonsense, LLMs still benefit from the prompt.
These surprising results indicate that in fact LLMs
might not care what the descriptions say and are
more sensitive to the prompt format. In other
words, a proper format can be much more effective
than well-designed descriptions in ICL.

To further verify the superiority of the ensemble
framework, we present empirical evaluations on
commonsense, math, logical reasoning and halluci-
nation benchmarks (including nine datasets in total)
across three small-scale LLMs (Alpaca, Llama3
and Mistral) and one large-scale LLM (GPT-3.5).
The novel prompt framework is able to achieve
promising results even with the descriptive nouns
in the prompt being random nouns, further suggest-
ing that a proper prompt format would be much
more effective and efficient compared with labori-
ous design of detailed and specific descriptions.

There are a few studies very related to our work.
Min et al. (2022) find that the labels of in-context
examples do not need to be correct for classification
tasks. Wei et al. (2023) find that larger language
models learn from in-context examples even when
the labels are flipped or unrelated. Srivastava et al.
(2024) demonstrate that optimizing examples is
less effective in some tasks given a high-quality
task instruction. Our work is different from the
above in that we focus on the meaning of descrip-
tions rather than labels or examples in ICL and
our finding is that the format of prompts is more
important than carefully designed descriptions.

Our contributions can be summarized as follows:

• For the first time, we specifically analyze the
effect of prompt descriptions on ICL perfor-
mance and find that LLMs might not care
what users actually say in descriptions, while
they are more sensitive to the prompt format.

• We present a simple yet effective prompt
framework that is proven feasible on MT
through comprehensive experiments across
six translation directions. Promising experi-
mental results on three LLMs further verify
the superiority of the novel framework on a
range of commonsense, math, logical reason-
ing and hallucination tasks.

Our code is available at https://github.com/
JamyDon/Format-Beats-Descriptions.

2 Prompting LLMs for MT

Primarily, we focus on MT, a typical generation
task. Recently, various approaches of selecting
in-context examples have been proposed for MT
(Agrawal et al., 2023; Kumar et al., 2023; Tang
et al., 2024). However, no existing work has tried
to make LLMs aware of in what way those specific
in-context examples are selected.

We assume that LLMs would perform better
when they are told the reasons for selecting those
examples. Tang et al. (2024) select examples based
on a combination of word-level and syntax-level
criteria, which inspires us to present an ensemble
prompt framework to make LLMs clearly know the
reasons behind example selection. In addition, to
have a comprehensive idea of whether LLMs really
know what is said in the descriptions, we design
some prompt variants that are less meaningful or
completely nonsense.

2.1 In-context Example Selection for MT
For word-level examples, we simply select them
using BM25 (Bassani, 2023). For syntax-level ex-
amples, we use the top-k polynomial algorithm
proposed by Tang et al. (2024) to convert depen-
dency trees into polynomials and compute syntactic
similarity based on the Manhattan distances (Craw,
2017) between polynomial terms. For brevity, we
denote the syntax-level algorithm by "Polynomial".

To combine word-level and syntax-level exam-
ples, we simply concatenate them. For example,
the first and the remaining half of examples are
selected by BM25 and Polynomial respectively.

2.2 A New Ensemble Prompt Framework
To maintain consistency, all our MT experiments
use four in-context examples.

First of all, we use the most regular prompt with-
out any example-level descriptions as baseline (re-
ferred to as Vanilla), which is shown in Figure 2.

Task-level Instruction

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"
Test Input

Instruction: Translate German into English.
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
German: Was sind diese vier?
English:

Prompt Template Prompt Example of Alpaca

Figure 2: Template and Alpaca’s example of Vanilla.

In the template, "Task-level Instruction" instructs
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the model to do the current task (MT here). "Exam-
ple Ai" and "Example Bi" denote the i-th example
from selection approach A (e.g., BM25) and B
(e.g., Polynomial) respectively, all containing both
source language inputs and target language trans-
lations. "Test Input" refers to the source language
input of the test sample, which requires the LLM
to translate it into the target language.

Then, we add example-level descriptions for ex-
amples from different selection approaches and ex-
plicitly instruct the LLM to translate the test input.
This prompt framework is referred to as Ensemble
and is shown in Figure 1 as presented in Section
1. "Noun A" and "Noun B" describe the examples
from selection A and B respectively. For exam-
ple, the two nouns can be "words" and "syntax" to
properly describe examples selected by BM25 and
Polynomial respectively. In this way, we can con-
veniently control the example-level descriptions to
tell the LLM why those examples are used.

2.3 Experimental Setup

Language ISO Code Dataset #Pairs (M)

German DE Europarl 1.8
French FR Europarl 1.9
Russian RU ParaCrawl 5.4

Table 1: Data statistics.

2.3.1 Datasets
We perform evaluation on the devtest set of
FLORES-101 (Goyal et al., 2022), which contains
1012 sentences with translations in 101 languages.
We experiment between English and three common
languages: German, French and Russian. We use
Europarl (Koehn, 2005) for German and French
and ParaCrawl (Bañón et al., 2020) for Russian as
example database, from which we select in-context
examples. Detailed statistics are in Table 1.

2.3.2 Evaluation Metrics
We report COMET (Rei et al., 2020) scores from
wmt20-comet-da 1, which is considered a superior
metric for MT today (Kocmi et al., 2021).

2.3.3 Language Models
We experiment with two LLMs commonly used
in MT: XGLM7.5B (Lin et al., 2022) and Alpaca
(Taori et al., 2023). XGLM is a multilingual lan-
guage model with 7.5B parameters supporting 30

1https://huggingface.co/Unbabel/wmt20-comet-da

languages that is frequently used in MT. Alpaca is a
7B LLM instruction-tuned from LLaMA (Touvron
et al., 2023).

2.3.4 Example Selection
To maintain consistency, all our MT experiments
use four in-context examples (4-shot). We evaluate
different ways of selecting examples for compar-
ison. Note that if all four examples are selected
by the same method, the first two are considered
examples from A and the last two are considered
from B in the Ensemble template in Figure 1.

Random: The four examples are randomly sam-
pled from the example database. We report the
average result of three different random seeds.

BM25: We retrieve the top-4 matching examples
for each test input using BM25 (Bassani, 2023).

Polynomial: It is rather time-consuming to re-
trieve examples from databases containing millions
of data using the Polynomial algorithm. Following
Tang et al. (2024), we instead re-rank the top-100
examples retrieved by BM25 using Polynomial and
the top-4 are used as final in-context examples.

BM25 + Polynomial: To combine examples
with both lexical and syntactic similarity, we simply
concatenate examples from BM25 and Polynomial.
Specifically, the first two examples are from BM25
and the remaining two are from Polynomial.

Polynomial + BM25: The first two examples
are from Polynomial and the remaining two are
from BM25.

2.3.5 Prompts
We design various prompts to explore whether
LLMs can benefit from explicit descriptions of
examples and whether they really understand the
meaning of descriptions.

Vanilla: The normal prompt without any
example-level descriptions as shown in Figure 2.

Ensemble (Word + Syntax): Shown in Figure
3a, Noun A and Noun B are "words" and "syntax"
respectively, which semantically corresponds to
BM25 + Polynomial examples but is converse to
Polynomial + BM25.

Ensemble (Syntax + Word): Shown in Figure
3b, Noun A and Noun B are "syntax" and "words"
respectively, which semantically matches Polyno-
mial + BM25 examples but mismatches BM25 +
Polynomial.

Different Ensemble (Word + Syntax): Shown
in Figure 3c, Noun A and Noun B are still "words"
and "syntax" respectively but the qualifier "simi-
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lar" is replaced with "different". This aims to find
out whether LLMs pay attention to the meaning
of "different/similar" and care the semantics of de-
scriptions.

Ensemble (Word + Semantics): Shown in Fig-
ure 3d, Noun A and Noun B are "words" and "se-
mantics" respectively, which does not semantically
match any of our example selection methods.

Ensemble (Random + Random): Shown in
Figure 3e, for each input, Noun A and Noun B
are different random English nouns sampled using
Wonderwords 2, aiming to explore LLMs’ under-
standing of descriptions.

2.4 Main Results

To give a quick view of LLMs’ MT performance,
Table 2 shows the COMET scores of Vanilla base-
lines averaged over six translation directions.

Example Selection XGLM Alpaca

Random 54.07 55.42
BM25 55.00 56.27
Polynomial 55.52 56.13
BM25 + Polynomial 56.17 56.18
Polynomial + BM25 56.18 55.49

Table 2: Results of Vanilla baselines of XGLM and
Alpaca with different example selection methods, aver-
aged over six translation directions.

Main results are shown in Figure 4. For conve-
nient comparison, we present the performance gain
of different Ensemble prompts over Vanilla with
different selections of in-context examples and the
results are averaged over six translation directions.
For detailed results of different translation direc-
tions, please refer to Appendix B.

As can be seen from the results, those "correct"
prompts, exactly corresponding to the selection of
in-context examples (e.g., Ensemble (Word + Syn-
tax) with BM25 + Polynomial examples and En-
semble (Syntax + Word) with Polynomial + BM25
examples), do bring some help as expected. How-
ever, when the prompt does not correspond to the
selection of examples (i.e., is "incorrect"), the
performance improves as well and sometimes even
more than those "correct" cases. For example, on
XGLM with BM25 + Polynomial examples, En-
semble (Syntax + Word) improves more than En-
semble (Word + Syntax), even though the former
is completely reversed. On Alpaca with BM25 +

2https://github.com/mrmaxguns/wonderwordsmodule

Instruction: Translate German into English.
Examples with similar words:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar syntax:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar words:

Example 𝐴!
Example 𝐴"

Examples with similar syntax:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

(a) Ensemble (Word + Syntax).

Instruction: Translate German into English.
Examples with similar syntax:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar words:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar syntax:

Example 𝐴!
Example 𝐴"

Examples with similar words:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

(b) Ensemble (Syntax + Word).

Instruction: Translate German into English.
Examples with different words:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with different syntax:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with different words:

Example 𝐴!
Example 𝐴"

Examples with different syntax:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

(c) Different Ensemble (Word + Syntax).

Instruction: Translate German into English.
Examples with similar words:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar semantics:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar words:

Example 𝐴!
Example 𝐴"

Examples with similar semantics:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

(d) Ensemble (Word + Semantics).

Instruction: Translate German into English.
Examples with similar tennis:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar arch-rival:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar Noun 𝐴:

Example 𝐴!
Example 𝐴"

Examples with similar Noun 𝐵:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

(e) Ensemble (Random + Random).

Figure 3: Templates and Alpaca’s examples of Ensem-
ble prompts.
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Figure 4: Main results on XGLM and Alpaca, showing the performance gain of different prompts over the Vanilla
prompt, averaged over all six translation directions. Each cluster presents the results of a selection of in-context
examples and each bar in it presents the result of a prompt. "Ens.", "W.", "Syn.", "Sem.", "Diff.", "Rand.", "Poly."
refer to "Ensemble", "Word", "Syntax", "Semantics", "Different", "Random", "Polynomial", respectively.

Polynomial examples, Ensemble (Word + Seman-
tics) improves more than Ensemble (Word + Syn-
tax), albeit the examples with similar syntax do
not necessarily bear similar semantics. More in-
terestingly, Different Ensemble (Word + Syntax),
telling the LLM that the in-context examples are
with different properties, is able to beat "correct"
prompts sometimes (e.g., on XGLM with BM25 +
Polynomial examples and Alpaca with Polynomial
+ BM25 examples).

Surprisingly, no matter how in-context exam-
ples are selected and whether the prompts are "cor-
rect", Ensemble prompts bring improvement in
most cases. Even Ensemble (Random + Random),
in which example-level descriptions are with ran-
dom nouns and could be completely nonsense (like
"examples with similar nobody"), brings improve-
ment in most cases, especially obtaining the most
gain on Alpaca with Polynomial + BM25 examples
compared with other prompts, correct or incorrect.
These results indicate that LLMs might not really
take the example-level descriptions into consider-
ation during ICL. In other words, they might not
necessarily care what users say in the descriptions.

Compared with proper descriptions, it seems
the format of prompts matters more. For exam-
ple, on Alpaca with Random examples, no matter
what the example-level descriptions say, all Ensem-
ble prompts bring nearly equal improvement over
Vanilla. This indicates that Ensemble is a superior
format compared with Vanilla in this case.

To sum up, the experimental results on MT sug-
gest that a proper prompt format leads to better ICL
performance of LLMs while a careful design of
descriptions might be less effective.

2.5 Ablation Study

To better understand how the Ensemble format
brings improvement, we perform ablation experi-
ments over the organization of the prompt:

Ensemble (Random + Random): The Ensem-
ble prompt with random nouns in the example-level
descriptions as described in Section 2.3.

Single (Random): Organized based on Figure
1, but the second description is removed. There is
only one example-level description above the four
examples, where Noun A is a random noun.

Single (Example): Organized based on Figure
1, but the second description is removed. There is
only one example-level description above the four
examples, being "Examples:" only, without any
further descriptions. This prompt only informs the
LLM that the following four instances are examples
and does not describe their properties.

Vanilla (Translate): Organized based on Figure
1, but both the two descriptions are removed. The
only difference with Vanilla is the translation in-
struction "Translate the following sentence:" before
the test input. This prompt only informs the LLM
to translate the test input and tells nothing about
the in-context examples.

Detailed templates and examples of the above
prompts are presented in Appendix A.

Results are presented in Figure 5, showing that
removing one or two example-level descriptions
or removing the random noun describing the prop-
erty of in-context examples hurt the performance
gain in most cases. On XGLM, only the original
Ensemble format performs better than Vanilla. Al-
paca exhibits an abnormal trend when prompted
with Polynomial and BM25 + Polynomial exam-
ples, where Ensemble (Random + Random) cannot
outperform other prompts. This may be due to
that Alpaca is instruction-tuned and the Single or
Vanilla (Translate) prompts are also friendly to it
in some cases because of the post-training stage.
But overall, Single (Random), Single (Example)
and Vanilla (Translate) still bring less improvement
than Ensemble (Random + Random) in more than
half of the cases.
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Figure 5: Ablation studies over the organization of
the prompt, showing the performance gain of differ-
ent prompts over Vanilla, averaged over all six transla-
tion directions. "Rand.", "Poly.", "Ens.", "Sgl.", "V.",
"Trans." refer to "Random", "Polynomial", "Ensemble",
"Single", "Vanilla", "Translate", respectively.

Ablation experiments suggest that in MT, our
proposed Ensemble is a relatively superior prompt
format, performing better than other variants.

2.6 Analysis via Attention Weights
To have a better idea of the internal mechanism of
LLMs when prompted with different prompts, we
compute the attention weights between different
prompt components. We focus on three compo-
nents: in-context examples (from A or B, denoted
by "Example-A" and "Example-B"), the target posi-
tion (denoted by "Target") where the model starts to
generate predictions (following Wang et al. (2023),
we use the final token in the input) and the two
descriptive nouns ("Noun-A" and "Noun-B"). We
obtain the attention weights averaged over all at-
tention heads from the attention matrix across all
the layers. All the results are averaged over all six
language directions.

Results comparing Ensemble (Word + Syntax)
(EWS) and Ensemble (Random + Random) (ERR)
on XGLM with BM25 + Polynomial examples are
presented in Figure 6 (for results on Alpaca, re-
fer to Appendix C). If the model really cares what
the descriptions say, its attention to meaningful de-
scriptive nouns (in EWS) should be much greater
than those meaningless (in ERR). However, in most
cases, EWS performs no higher than ERR, indicat-
ing that the model does not really care what the
descriptive nouns actually are. "Target to Noun-A"
is a special case, where EWS is high in shallow

layers. But in deeper layers, EWS falls behind and
ERR takes the lead. This shows that the model
might pay more attention to the meaningful noun
when understanding the context in shallow layers
but gradually forgets it when it comes to generation
in deeper layers. In a word, the attention weights
further confirm our claim that LLMs do not really
care what the descriptive nouns are in most cases.

2.7 Discussion

Above results show that LLMs benefit from our
Ensemble prompts in most cases. However, the
benefit comes from a proper format rather than the
meaningful descriptions (e.g., "similar words" and
"similar syntax"). This demonstrates that LLMs
might not care what users say in the descriptions
but is more sensitive to the format of prompts. In
other words, designing a proper prompt format
would be more efficient than paying a lot of effort
into looking for a perfect description.

In the next section, we apply Ensemble format
to more tasks to further verify its generalizability.

3 Generalizing the New Ensemble
Prompt Framework to More Tasks

To further verify our conclusion obtained from MT
that our proposed Ensemble framework improves
ICL even when the example-level descriptions are
incorrect or meaningless, we perform the compari-
son between Vanilla and Ensemble (Random + Ran-
dom), which we would refer to as ERR, on more
types of tasks across different language models.

3.1 Experimental Setup

3.1.1 Datasets

We use a total of nine benchmarks, covering four
task types: commonsense QA, logical reasoning,
arithmetic reasoning, and hallucination detection.

For commonsense QA, we adopt four datasets.
The widely-used CSQA (Talmor et al., 2019) fea-
tures commonsense questions about the world in-
volving complex semantics requiring prior knowl-
edge. StrategyQA (Geva et al., 2021) challenges
models to infer implicit reasoning steps using a
strategy to answer questions. We also choose two
specialized evaluation sets from BIG-bench (Sri-
vastava et al., 2023): Date Understanding, which
asks models to infer the date from a context, and
Sports Understanding, which involves assessing
the plausibility of sentences related to sports.
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Figure 6: Attention weights (×1e-4) on XGLM of all 32 layers with BM25 + Polynomial examples. EWS and ERR
denotes Ensemble (Word + Syntax) and Ensemble (Random + Random) respectively.
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Figure 7: Results on nine datasets across three small-scale models. In the "Date" subplot, the score of Mistral under
the Vanilla prompt is too low to be a visible bar in the chart.

For logical reasoning task, we choose Logical
Fallacy and Three Objects (a subset of Logical De-
duction) from Big-bench (Srivastava et al., 2023).
Logical Fallacy aims to test the model’s ability
to identify whether there are fallacies in a given
logical reasoning, and Three Objects requires the
model to infer the order of a sequence of objects
from a set of minimal conditions.

To explore the performance of ERR on math
word problems, we adopt the following two
datasets: GSM8K (Cobbe et al., 2021), which con-
sists of high quality free-response grade school
math problems, and AQuA (Ling et al., 2017), con-
taining the algebraic word problems in the form of
multiple-choice questions.

In addition, to explore whether ERR could alle-
viate LLMs’ hallucination, we choose Known Un-
knowns from Big-bench (Srivastava et al., 2023).

The number of test inputs for each dataset is
listed in Table 3. Details of splitting training set
(example database) and test set are in Appendix D.

Dataset Test Inputs

CSQA 1221
StrategyQA 1012
Date 365
Sports 996
Logical Fallacy 1012
Three Objects 296
Known Unknowns 42
GSM8K 1319
AQuA 254

Table 3: Number of test inputs for each dataset.

3.1.2 Evaluation Metric

These nine datasets are either in the form of
multiple-choice questions or free-response ques-
tions with standard answers, so we use accuracy as
the metric for all of them.

3.1.3 Language Models

We experiment with both instruction-tuned and
non-instruction-tuned models to see whether our
findings could extend to different kinds of mod-
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els. We evaluate three frequently used open source
LLMs with around 7B parameters, including Al-
paca (Taori et al., 2023), Llama3 (Llama Team,
2024), and Mistral (Jiang et al., 2023), among
which Llama3 is a base model before instruction
tuning. To assess the effect of ERR on more pow-
erful models, we also evaluate GPT-3.5 (Ouyang
et al., 2022) 3. We use Llama-3.1-8B, Mistral-7B-
Instruct-v0.2 and gpt-3.5-turbo-0125 4 for Llama3,
Mistral and GPT-3.5 respectively.

3.1.4 Example Selection

Note that randomly selected examples combined
with ERR have already brought non-trivial improve-
ments to MT. Therefore, for each dataset discussed
in this section, we randomly select a uniform set
of examples (4-shot) for all test inputs without ap-
plying any carefully designed selection method, in
order to focus on and verify the simple yet effective
and universal nature of ERR.

3.1.5 Prompts

We compare ERR with Vanilla across different
datasets and LLMs. Given that these tasks usu-
ally involve reasoning, on which chain-of-thought
(CoT) is commonly utilized (Wei et al., 2022), we
experiment both without CoT ("w/o CoT", which
are identical to the original templates) and with
CoT ("w/ CoT"). This allows us to examine both
the orthogonality and compatibility with CoT of
ERR , as well as assess its performance across var-
ious models and tasks. Specifically, we evaluate
Vanilla (w/o CoT), Vanilla (w/ CoT), ERR (w/o
CoT), and ERR (w/ CoT). Due to space constraints,
examples of prompt templates discussed in this
section are provided in Appendix E.
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Figure 8: Results of the four types of tasks on GPT-3.5.

3We choose this model because it is a commonly used cost-
effective API-based LLM and a de facto black box baseline.

4https://openai.com/api/

3.2 Results of Small-scale Models

Results across all nine datasets and three small-
scale models (Alpaca, Llama3 and Mistral) are il-
lustrated in Figure 7. Detailed results are presented
in Appendix B.

The results demonstrate that ERR (w/ CoT),
achieved by integrating CoT with our proposed
prompt framework, either significantly outperforms
or matches Vanilla (w/ CoT) in 25 out of 27 exper-
iments (covering nine datasets and three models).
The exceptions are Alpaca on the Sports dataset and
Mistral on the AQuA dataset, where ERR (w/ CoT)
shows somewhat lower performance compared to
Vanilla (w/ CoT). When CoT is not incorporated,
ERR generally performs much better than or on
par with Vanilla, except for the Sports dataset with
Llama3, where ERR performs a little poorer.

Surprisingly, ERR (w/o CoT) sometimes even
surpasses Vanilla (w/ CoT), suggesting that the
ERR framework alone can offer more improve-
ments than CoT. This highlights the value of ERR
and reaffirms that the format plays a crucial role
in enhancing LLMs’ problem-solving capabilities.
In terms of models, the performance of ERR on
Alpaca is far less impressive than on Llama3 and
Mistral, which may be because Alpaca has strong
instruction-following capabilities and is more ro-
bust to different prompts.

In summary, without using any carefully de-
signed selection methods, directly filling the ran-
domly selected examples into the ERR framework
brings significant improvement to various reason-
ing tasks and even alleviates the hallucination of
models in most cases, no matter how meaning-
less and incorrect the example-level descriptions
are. Moreover, ERR can work perfectly with CoT.
Therefore, at least for relatively small models, this
simple yet effective trick is worth introducing into
prompt engineering for various tasks.

We also experiment with Llama2 (Llama Team,
2023) and the results are in Appendix F. The overall
trend is consistent with Llama3.

3.3 Results of GPT-3.5

As shown in Figure 8, ERR performs similarly to
Vanilla across every dataset using GPT-3.5. Al-
though the ERR format does not bring signifi-
cant improvement to these tasks with GPT-3.5
and Alpaca (as shown in Figure 7), the fact re-
mains that the incorrect or meaningless example-
level descriptions caused by random nouns do not
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have much negative impact on GPT-3.5, a suf-
ficiently powerful model, or Alpaca, which has
strong instruction-following capabilities. In some
cases, it even slightly improves performance (e.g.,
ERR (w/ CoT) outperforms Vanilla (w/ CoT) on
AQuA and Known Unknowns). In other words,
LLMs might not care what users actually say to de-
scribe the provided examples while they are more
sensitive to the format of prompts, which is in line
with our findings obtained from MT.

3.4 Discussion

Based on the experiments conducted on both small-
scale and large-scale models, we can conclude that
ERR is a simple yet practical and universal prompt
framework. It can enhance problem-solving ca-
pabilities of small models and be applied to large
models without the risk of performance degrada-
tion due to the meaningless noise within it. In other
words, there might be less need to meticulously
select examples or design detailed descriptions. In-
stead, you can uniformly and efficiently apply ERR
to various tasks with different models.

As analyzed in Section 2.6, the ERR framework
can work because LLMs pay less attention to the
descriptive nouns while being more sensitive to
the overall prompt format. We conjecture that the
underlying reason could be that LLMs have been
presented with many patterns similar to ERR dur-
ing pre-training and thus perform better when pre-
sented with ERR prompts (Chen et al., 2024). How-
ever, due to lack of access to the pre-training pro-
cess of LLMs (either open-source or close-source),
we cannot further validate our conjecture more
solidly and our understanding of the deeper mecha-
nism remains limited to superficial analysis, which
is one of the limitations of this work.

4 Related Work

In-context Example Selection Rubin et al.
(2022) suggest that LLMs’ ICL performance
strongly depends on the selection of in-context ex-
amples. In consequence, many works have been
trying to explore ways of selecting better in-context
examples in recent years. Li et al. (2023) train a
unified in-context example retriever across a wide
range of tasks. Ye et al. (2023) select examples
based on both relevance and diversity, with the
help of determinantal point processes. Agrawal
et al. (2023) ensure n-gram coverage to select bet-
ter examples for MT. Kumar et al. (2023) train an

in-context example scorer for MT based on sev-
eral features. Tang et al. (2024) combine both
word-level and syntax-level coverage when select-
ing examples for MT.

Mechanism of In-context Learning With the
popularity of ICL, there have been numerous stud-
ies on analyzing the mechanism of ICL. One stream
of these studies focuses on explaining the essence
of ICL, relating ICL to gradient descent (Von Os-
wald et al., 2023), implicit Bayesian inference (Xie
et al., 2022), induction heads completing token se-
quences based on similar context (Olsson et al.,
2022), generation maintaining coherency (Sia and
Duh, 2023), creation of task vectors based on in-
context examples (Hendel et al., 2023), etc. The
other stream focuses on the role of in-context exam-
ples, especially labels of these examples. Min et al.
(2022) find that ground truth labels are not neces-
sary and LLMs perform fairly well even with ran-
dom labels. Wang et al. (2023) find that label words
play the role of anchors that aggregating informa-
tion of the whole examples and serve as a reference
for LLMs’ final predictions. Wei et al. (2023) find
that larger language models can override seman-
tic priors and learn from in-context examples with
flipped labels or semantically-unrelated labels.

5 Conclusion

In this work, we analyze the effect of descriptive
instructions in prompts during ICL and propose an
Ensemble prompt framework describing the prop-
erties of in-context examples selected by different
methods. Experimental results on MT indicate that
while LLMs are sensitive to prompt formats, they
might not care the actual meaning of the descrip-
tions and the framework improves LLMs’ perfor-
mance even with meaningless descriptions com-
pared with the conventional prompt. We further
apply the Ensemble framework to four other NLP
tasks and find that it achieves promising results, es-
pecially on small-scale models. These results sug-
gest that rather than working hard on well-designed
descriptions, making use of a proper prompt format
would be more effective and efficient.
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Limitations

First, since there are so many open-source LLMs in
the world nowadays, it is impossible to experiment
with all existing models and thus our work only
employ several commonly-used LLMs. Second,
since we do not have access to the pre-training or
post-training process of LLMs (either open-source
or close-source), our analysis of the mechanism of
ICL could be somewhat superficial. The behavior
of LLMs can be highly subject to their training
data, which we have no access to. Lastly, although
we reveal that ERR is a superior prompt format for
several models, it could still be a local optimum
and how to effectively search for a best prompt
format for different models and tasks is still under-
explored, which we leave for future work.
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A Prompts for MT Ablation Study

Templates and prompt examples of Ensemble (Ran-
dom + Random), Single (Random), Single (Exam-
ple), Vanilla (Translate) are shown in Figure 9-12.

B Full Experimental Results

Full results of MT are presented in Table 4 and 5.
Full results of other tasks in Section 3.2 are pre-
sented in Table 6.

C Attention Weights on Alpaca

Figure 13 presents the attention weights on Alpaca.
For example-to-noun attention weights, ERR is

Instruction: Translate German into English.
Examples with similar tennis:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
Examples with similar arch-rival:
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar Noun 𝐴:

Example 𝐴!
Example 𝐴"

Examples with similar Noun 𝐵:

Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 9: Template and example of Ensemble (Random
+ Random).

Instruction: Translate German into English.
Examples with similar tennis:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples with similar Noun 𝐴:

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 10: Template and example of Single (Random).

Instruction: Translate German into English.
Examples:
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Examples:

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 11: Template and example of Single (Example).

Instruction: Translate German into English.
German: Diese vier sind wichtig.
English: These four are important.
German: Diese fünf sind interessant.
English: These five are interesting.
German: Wer ist Martha?
English: Who is Martha?
German: Was ist NLP?
English: What is NLP?
Translate the following sentence:
German: Was sind diese vier?
English:

Task-level Instruction

Example 𝐴!
Example 𝐴"
Example 𝐵!
Example 𝐵"

Translate the following sentence:

Test Input

Prompt Template Prompt Example of Alpaca

Figure 12: Template and example of Vanilla (Translate).
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Prompt Selection-A Selection-B
Into EN Out of EN

Avg.DE FR RU DE FR RU

Vanilla

Random Random 63.65 71.40 52.37 40.34 54.58 42.07 54.07
BM25 BM25 64.32 71.83 51.15 42.53 56.58 43.58 55.00

Polynomial Polynomial 64.29 71.25 53.47 43.23 55.15 45.73 55.52
BM25 Polynomial 65.34 72.01 53.74 43.41 56.48 46.04 56.17

Polynomial BM25 64.66 72.04 53.04 44.37 56.56 46.43 56.18

Ensemble (Word + Syntax)

Random Random 65.07 72.41 54.14 43.09 56.25 42.07 55.50
BM25 BM25 66.02 72.81 54.13 43.77 56.81 43.19 56.12

Polynomial Polynomial 65.98 72.66 54.67 44.37 58.13 45.49 56.88
BM25 Polynomial 66.08 72.58 54.29 43.51 57.07 45.26 56.47

Polynomial BM25 65.89 73.03 54.06 43.78 57.60 46.87 56.87

Ensemble (Syntax + Word)

Random Random 65.04 72.37 54.15 42.95 56.27 41.85 55.40
BM25 BM25 66.20 72.41 53.73 43.39 57.24 42.40 55.90

Polynomial Polynomial 66.16 72.55 54.66 44.75 56.82 44.38 56.55
BM25 Polynomial 65.99 72.77 54.21 44.05 57.26 45.09 56.56

Polynomial BM25 65.96 72.96 54.12 43.47 57.51 46.94 56.83

Diff. Ensemble (Word + Syntax)

Random Random 65.09 72.53 53.84 42.65 56.15 41.38 55.27
BM25 BM25 65.95 72.33 54.06 43.42 57.27 41.88 55.82

Polynomial Polynomial 65.98 72.58 54.76 44.60 58.36 45.95 57.04
BM25 Polynomial 66.04 72.49 54.75 44.03 57.70 45.95 56.83

Polynomial BM25 66.17 73.17 54.10 44.17 57.48 46.02 56.85

Ensemble (Word + Semantics)

Random Random 65.09 72.26 54.14 42.64 56.11 42.61 55.48
BM25 BM25 66.32 72.25 53.89 43.29 57.02 42.51 55.88

Polynomial Polynomial 66.36 72.46 54.62 44.17 57.24 45.61 56.74
BM25 Polynomial 65.80 72.74 54.40 44.06 56.86 45.54 56.57

Polynomial BM25 66.06 72.99 53.47 43.24 57.55 46.93 56.71

Ensemble (Random + Random)

Random Random 65.37 72.54 54.01 42.59 56.22 40.41 55.19
BM25 BM25 66.41 72.72 54.24 43.08 56.59 41.44 55.75

Polynomial Polynomial 66.28 72.56 54.70 43.81 57.42 43.22 56.33
BM25 Polynomial 65.99 72.77 54.04 44.85 57.25 45.39 56.72

Polynomial BM25 65.73 73.26 53.73 43.27 56.78 44.73 56.25

Table 4: Full MT results of XGLM.
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Figure 13: Attention weights (×1e-4) on Alpaca of all 32 layers with BM25 + Polynomial examples. EWS and ERR
denotes Ensemble (Word + Syntax) and Ensemble (Random + Random) respectively.
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Prompt Selection-A Selection-B
Into EN Out of EN

Avg.DE FR RU DE FR RU

Vanilla

Random Random 69.88 76.46 57.80 42.52 56.61 29.25 55.42
BM25 BM25 69.08 76.41 58.52 43.65 57.34 32.63 56.27

Polynomial Polynomial 69.65 75.79 58.77 43.55 56.60 32.39 56.13
BM25 Polynomial 69.34 76.02 58.38 43.31 56.79 33.21 56.18

Polynomial BM25 69.03 76.11 57.84 42.20 55.81 31.93 55.49

Ensemble (Word + Syntax)

Random Random 69.86 76.64 57.57 43.51 57.25 30.79 55.94
BM25 BM25 69.44 76.21 57.60 44.41 58.16 31.26 56.18

Polynomial Polynomial 69.86 76.06 58.26 44.46 57.06 33.27 56.50
BM25 Polynomial 69.58 76.09 57.98 43.84 57.57 32.85 56.32

Polynomial BM25 69.41 76.32 57.78 42.79 58.18 31.07 55.93

Ensemble (Syntax + Word)

Random Random 69.80 76.73 57.53 43.50 57.31 30.70 55.93
BM25 BM25 69.46 76.15 57.63 44.58 58.46 32.09 56.40

Polynomial Polynomial 69.76 76.11 58.14 44.11 56.64 33.24 56.33
BM25 Polynomial 69.60 76.11 57.91 43.88 57.81 32.22 56.26

Polynomial BM25 69.64 76.11 57.77 42.42 58.43 31.41 55.96

Diff. Ensemble (Word + Syntax)

Random Random 69.77 76.63 57.46 43.67 57.48 30.55 55.93
BM25 BM25 69.44 76.33 57.70 44.24 58.48 31.76 56.33

Polynomial Polynomial 69.75 76.07 58.12 44.09 57.31 32.46 56.30
BM25 Polynomial 69.54 76.21 57.68 43.61 57.49 32.27 56.13

Polynomial BM25 69.49 76.23 57.65 42.79 58.20 32.09 56.08

Ensemble (Word + Semantics)

Random Random 69.88 76.70 57.51 43.30 57.35 30.98 55.96
BM25 BM25 69.44 76.20 57.65 44.47 57.88 32.48 56.35

Polynomial Polynomial 69.82 76.10 58.35 44.00 57.25 33.45 56.50
BM25 Polynomial 69.57 76.23 58.12 44.07 57.73 32.79 56.42

Polynomial BM25 69.49 76.17 57.99 43.20 58.49 31.66 56.17

Ensemble (Random + Random)

Random Random 69.77 76.61 57.38 43.52 57.55 30.90 55.95
BM25 BM25 69.46 76.24 57.58 44.40 58.25 33.23 56.53

Polynomial Polynomial 69.63 75.93 57.77 44.36 56.73 33.45 56.31
BM25 Polynomial 69.55 76.01 57.86 42.75 57.80 32.63 56.10

Polynomial BM25 69.74 76.04 57.73 43.33 58.30 33.27 56.40

Table 5: Full MT results of Alpaca.

Model Template
Performance

Date SgyQA CSQA Sports LF TO GSM8K AQuA KU Avg.

LLaMA-2-7B

Vanilla w/ CoT 3.01 50.99 21.70 50.20 48.72 30.74 22.29 21.65 45.24 32.73
ERR w/ CoT 45.21 59.78 55.36 79.42 56.03 41.55 21.15 23.62 85.71 51.98

Vanilla w/o CoT 0.27 47.33 19.25 54.42 48.91 30.07 0.91 23.23 52.38 30.75
ERR w/o CoT 27.67 59.88 23.91 16.77 1.58 36.49 5.91 22.44 69.05 29.30

LLaMA-3.1-8B

Vanilla w/ CoT 9.04 51.28 24.41 55.32 52.08 35.47 49.05 24.80 69.05 41.17
ERR w/ CoT 38.63 55.53 31.04 74.60 51.58 38.18 48.52 26.77 69.05 48.21

Vanilla w/o CoT 7.95 41.90 28.42 54.22 51.98 37.50 1.14 16.93 28.57 29.84
ERR w/o CoT 13.70 59.68 36.12 50.00 50.79 35.81 4.70 22.83 57.14 36.75

Alpaca-7B

Vanilla w/ CoT 26.03 60.38 50.53 80.12 52.27 35.81 6.44 18.11 71.43 44.57
ERR w/ CoT 26.85 60.47 50.04 74.40 54.74 35.14 6.75 20.08 71.43 44.43

Vanilla w/o CoT 25.21 60.77 46.27 60.24 55.63 35.47 4.70 24.80 64.29 41.93
ERR w/o CoT 24.93 61.17 50.12 61.04 55.14 34.80 4.78 24.41 64.29 42.30

Mistral-7B

Vanilla w/ CoT 6.30 57.71 50.37 61.24 48.22 31.08 43.21 29.13 73.81 44.56
ERR w/ CoT 36.99 66.60 61.83 84.94 64.03 33.78 43.97 25.98 83.33 55.72

Vanilla w/o CoT 0.27 49.70 20.97 78.21 46.05 31.08 1.06 18.90 61.90 34.24
ERR w/o CoT 13.15 64.13 55.86 77.11 61.86 49.32 7.96 22.44 66.67 46.50

Table 6: Full results of Date Understanding (Date), StrategyQA (SgyQA), CSQA, Sports Understanding (Sports),
Logical Fallacy (LF), Three Objects (TO), GSM8K, AQuA and Known Unknowns (KU).
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close to EWS. For target-to-noun attention weights,
EWS is higher in shallow layers but falls behind
ERR in deeper layers, especially in the last layer.
This demonstrates that Alpaca might pay more at-
tention to the meaningful words ("word" and "syn-
tax") when understanding the context in shallow
layers but gradually forgets them when it comes
to generation in the deeper layers. In short, EWS
performs no higher than ERR in most cases.

D Dataset Details for Reasoning Tasks

We list the details of splitting training set (example
database) and test set for our conducted reasoning
tasks, covering four types and nine datasets. We set
random seed for all possible shuffling and sampling
operations to 42. Note that we experiment with 4-
shot for all datasets.

D.1 Datasets Fetched from Exclusive Source
• CSQA (Talmor et al., 2019): https://www.
tau-nlp.org/commonsenseqa. We follow
the official split and select the training set
as our example database and the dev set as
our test set. Because the training set itself is
randomly divided from the whole dataset, we
directly select examples from it in order.

• GSM8K (Cobbe et al., 2021):
https://github.com/openai/
grade-school-math. We select the
test.jsonl as our test set and the
train.jsonl as our example database and
randomly sample four examples from it.

• AQuA (Ling et al., 2017): https://github.
com/google-deepmind/AQuA. We select
the test.json as our test set. Since the orig-
inal training set is relatively large, for simplic-
ity, we directly copy the four examples listed
in the supplementary materials of Wei et al.
(2022) and we ensure that these four examples
do not appear in the test set.

D.2 Datasets Fetched from The Big-bench
For StrategyQA (Geva et al., 2021), Date, Sports,
Logical Fallacy, Three Objects, and Known Un-
knowns, we fetched them from the Big-bench
(Srivastava et al., 2023). Each of them has a
task.json. We randomly shuffle the task.json
and split it to a training set and a test set. Then we
select examples from the training set in order.

Specifically, the principle for splitting the train-
ing and test sets is as follows: If the total number

of samples exceeds 1,012 a lot, we retain 1,012
samples as the test set and use the remainder as
the training set. Otherwise, we select four exam-
ples for the training set and use the rest for testing.
For the Sports and Logical Fallacy datasets, which
have only two possible answers (similar to binary
classification), we first separate the positive and
negative examples, shuffle them individually, and
then construct the test set and training set. The
test set is composed of an equal number of positive
and negative examples, with the remaining samples
used as the training set.

E Prompts for Reasoning Tasks Used in
this Work

Figure 14-22 show the examples of ERR (w/ CoT)
prompt for respective datasets. Some tasks contain
Answer Choices. In order to save space, the blank
lines between the options are replaced with spaces
in those figures. Each Figure has grey text for
reasoning, cyan text for the parts of ERR that are
unique to Vanilla, and italic words in the cyan text
representing random nouns. Therefore, deleting
the grey text gives ERR (w/o CoT), keeping the
grey text but deleting the cyan text gives Vanilla (w/
CoT), and deleting both the cyan and grey text gives
Vanilla (w/o CoT).5 The reasoning is generated by
ChatGPT 6. Note the ChatGPT is not the same as
GPT-3.5 we used for experiments.

F Results of Llama2

Results of Llama2-7B-chat-hf (Llama Team, 2023)
on the nine datasets are presented in Figure 23.
While ERR outperforms Vanilla with Llama2
across most datasets, its performance on Logical
Fallacy and Sports is notably poor. Llama2 almost
always responds with confused emojis for Logi-
cal Fallacy questions and outputs questions like
"plausible or implausible?" for Sports, leading to
predominantly incorrect answers. Further investi-
gation into these issues is left for future work.

G Computational Details

G.1 Hardware

Inference of LLMs runs on an NVIDIA A40 GPU
(with memory of 48 GB). Other experiments run

5When changing "w/ CoT" to "w/o CoT", you may also
need to replace "So the answer is ..." with "The answer is ..."
for syntactical reasons.

6https://chatgpt.com/
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Figure 14: Prompt for CSQA.
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Figure 15: Prompt for StrategyQA.

Figure 16: Prompt for Date.
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Figure 17: Prompt for Sports.

on Intel® Xeon® Gold 6348 CPU (with memory
of 256 GB).

G.2 Software
Our OS: Ubuntu 20.04.6 LTS. Our code: Python
only. Libraries and packages are specified in the
source code.

H Licenses

Artifact License

XGLM MIT
Alpaca Apache-2.0
Llama Llama Community License Agreement
Mistral Apache-2.0
COMET Apache-2.0
FLORES-101 CC-BY-SA-4.0
Europarl Unknown
ParaCrawl CC0
CSQA CC-BY-SA-4.0
StrategyQA MIT
BIG-bench Apache-2.0
GSM8K MIT
AQuA Apache-2.0

Table 7: Licenses of scientific artifacts we use.

The licenses of the scientific artifacts we use are
shown in Table 7.
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Figure 18: Prompt for Logical Fallacy.
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Figure 19: Prompt for Three Objects.
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Figure 20: Prompt for Known Unknowns.
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Figure 21: Prompt for GSM8K. For this dataset, we let LLMs first generate reasoning and then answer under the
"w/ CoT" setting.
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Figure 22: Prompt for AQuA.

Figure 23: Results of Llama2 on the nine datasets.
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